Time-dependent System Reliability Analysis with Second Order

Reliability Method

Hao Wu

Graduate Research Assistant

School of Mechanical Engineering

Purdue University

West Lafayette, IN, 47907, United States

E-mail: wul508@purdue.edu

Xiaoping Du

Professor

Department of Mechanical and Energy Engineering
Indiana University - Purdue University Indianapolis,
723 W. Michigan Street

Indianapolis, IN, 46202, United States

E-mail: duxi@iu.edu

Zhangli Hu

Graduate Research Assistant

Department of Mechanical and Aerospace Engineering
Missouri University of Science and Technology
Rolla, MO, United States

E-mail: zh3zd@mst.edu


mailto:duxi@iu.edu

ABSTRACT

System reliability is quantified by the probability that a system performs its intended function
in a period of time without failures. System reliability can be predicted if all the limit-state
functions of the components of the system are available, and such a prediction is usually time
consuming. This work develops a time-dependent system reliability method that is extended from
the component time-dependent reliability method using the envelope method and second order
reliability method. The proposed method is efficient and is intended for series systems with limit-
state functions whose input variables include random variables and time. The component reliability
is estimated by the second order component reliability method with an improve envelope approach,
which produces a component reliability index. The covariance between component responses are
estimated with the first order approximations, which are available from the second order
approximations of the component reliability analysis. Then the joint distribution of all the
component responses is approximated by a multivariate normal distribution with its mean vector
being component reliability indexes and covariance being those between component responses.

The proposed method is demonstrated and evaluated by three examples.



1 . INTRODUCTION

System reliability is measured by the probability that the system performs its intended function
in routine circumstances during a specified period of time [1]. It is necessary to predict system
reliability accurately and efficiently in the early design stage since it can be used to estimate the
lifecycle cost, determine maintenance policies, and optimize the system performance [2-4]. A
mechanical system consists of multiple components, and each component may also have multiple
failure modes. In this work, we consider a failure mode as a component. If the limit-state function
of a failure mode is invariant over time, its reliability and probability of failure are constant.
However, the limit-state function may vary over time in many engineering problems, such as
function generator mechanisms [5] and bridges under stochastic loading [6]. Then a time-
dependent reliability method is required.

Suppose the limit-state function of the i-th failure mode is given by

Yi = g:(X,t) (1)
where Y; is a component response, which is a function of time t; X = (X4, ..., X;,)T is the vector of
independent input random variables. Then the time-dependent component reliability on a time
interval [t,, ts] is defined by

R(to, ts) = Pr(g(X,t) = 0,Vt € [to, t;]) (2)
and the corresponding probability of failure is defined by
Py (to,t5) = Pr(g(X, £) < 0,3t € [to,£,]) 3)
Eq. (3) indicates that if g(-) < 0 at any instant of time on [t,, ts], the component fails.
In this study, we focus on series system. For a series system, the entire series system fails if

one failure mode occurs. For a time-dependent series system, the system fails if any failure mode



occurs at any instant of time. The system reliability R, (t,, ts) and probability of system failure

Drs(to, ts) are given by

m
R (ty, ts) = Pr (ﬂ giX,t;)) =0,Vt; € [to,t5]> 4)
i=1
and
m
Pfs(tOI ts) =Pr (U gi(X, ti) <0, Elti € [tO' ts]) (5)
i=1

where U and N stand for union and intersection, respectively.

Component reliability analysis is required for system reliability analysis. Methods of time-
dependent component reliability analysis include three groups: Rice’s formula based methods [7-
10], meta-model based methods [11-14], and methods which convert time-dependent into time-
independent reliability . Rice’s formula based methods are most commonly used [15]. For example,
the PHI2 method [8] allows for time-variant reliability problems to be solved using classical time-
invariant reliability method, the first order reliability method (FORM). Hu and Du then proposed
the joint up-crossing rate method in estimating the time-dependent reliability [9]. Rice’s formula-
based methods are in general more efficient than others but may lead to large errors if up-crossings
are strongly dependent.

Higher accuracy can be achieved by metamodeling methods. Hu and Du introduced a mixed
efficient global optimization method employing the adaptive Kriging-Monte Carlo simulation
(MCS) so that this high accuracy is achieved [13]. Wang and Wang developed a nested extreme
response surface method by employing Kriging for reliability analysis with time-variant
performance characteristics [14]. This group of methods may result in a high computational cost

if the dimension of the problem is high.



Converting a time-dependent problem into a time-independent counterpart is possible by using
the extreme value of the limit-state function. The methods include the envelope function method
[16], extreme value response method [17], and the composite limit-state function method [18].
Still, obtaining accurate distribution of the extreme value in an efficient way is complicated. Hu
and Du recently employed sequential efficient global optimization (EGO) to transform the time-
dependent reliability problem into a time-independent problem with a second order method. The
Hessian matrix is approximated by a quasi-Newton approach. It uses the gradients of the limit-
state function at the points before the MPP search converges to the MPP. The method is efficient,
but it may not accurately approximate the Hessian matrix since the points may not be on the surface
of the envelope function [19].

Many studies have been conducted on time-dependent system reliability as well. For instance,
Song and Der Kiureghian developed a joint first-passage probability method based on the
conditional distribution analysis in estimating the reliability of systems subjected to stochastic
excitation [20]. Radhika et al. investigated nonlinear vibrating systems under stochastic excitations
by implementing the asymptotic extreme value theory and Monte Carlo simulation (MCS) [21].
Yu et al. employed the combination of the extreme value moment and improved maximum entropy
method to access the time-variant system reliability with temporal parameters [22]. Gong and
Frangopol proposed a new efficient method for time-dependent reliability which is formulated as
a large-scale series system consisting of time-independent response functions [23]. Hu and
Mahadevan proposed a novel and efficient methodology for time-dependent system reliability by
considering the system as an equivalent Gaussian random field [24]. Jiang and Wei introduced an

improved time-variant reliability analysis method based on stochastic process discretization,



which transformed the time-variant reliability problem into time-invariant series system problem
[25].

Time-independent system reliability can be approximated by the multidimensional integration
of the joint probability density function (PDF) of random variables once the marginal distributions
and correlation coefficients of component states are obtained by the second and first order
approximations [26]. Wu and Du proposed a method of predicting the time-independent system
reliability by approximating the marginal distributions with the second order saddlepoint method
(SOSPA) [27].

It is desirable to take advantages of methods for both time-dependent component reliability
and time-independent system reliability. To this end, in this work we integrate the second order
saddlepoint approximation [19] for both time-dependent component reliability and time-
independent system reliability. The distinctive feature of our new method is the ture second order
approximaiton to component envelope functions with its accurate Hessian matrix calculation. The
second derivatives of the envelope functions with repsect to the input random varaibles are exactly
evalauted from the second derivatives of the corresponding component limit-state functions with
respect to the input random varaibles and time. The second feature is that the second order
approaxiamtion is extended from component reliabilty analysis to sytem reliabilty analysis.

This paper is organized as follows: Section 2 reviews the first order reliability method for time
dependent reliability analysis. Section 3 discusses the proposed method for time-dependent system
reliability analysis. Section 4 presents three examples, and Section 5 provides conclusions and

discusses possible future work.



2 . METHODOLOGY REVIEW

The second order time-dependent system reliability method is based on several existing

methods, which are reviewed in this section.

2.1 Time-Dependent Component Reliability

The limit-state function of a component is given in Eq. (1), and its reliability is therefore a

function of time (or timespan) as indicated in Eq. (2). The most commonly used reliability method

is FORM, which is reviewed below.

2.1.1 First Order Reliability Method

FORM is originally used for time-independent reliability analysis, and it can also be used for

time-dependent reliability analysis. It converts a general non-Gaussian process response into an

equivalent Gaussian process response. X is at first transformed into standard normal variables U.

Then the most probable point (MPP) u* at t is identified by the following model:

{min\/ UTu

s.t. giX,t) = g(T(U),t) =0
where T(+) is an operator of the transformation from U to X.

The limit-state function is linearized at u* (t) by

ag
aU;

N
9T, 0 = g(uw', O+ Y = U= )
i=1 ut

=Vg@u ,t)(U— u")

ag
w T ouy

where Vg(u*,t) = [:Tg
1

l is the gradient , and u; is the i-th component of u*.
u*

Then the probability of failure is computed by

pr = Pr(g(X,t) < 0,3t € [to, ts])
7

(6)

(7)

(8)



= Pr(B(t) + a(t)U < 0,3t € [t,, t,])

where S(t) is the time-dependent reliability index, given by

() =llu” | 9)
and a(t) is the time-dependent unit gradient vector given by
vg(t)
a(t) = Vg1 [ a1 (8), az(2), ..., ay (D)] (10)

As Eq. (7) shows, the non-Gaussian process g(X, t) has been transformed into an equivalent
Gaussian process represented as a sum of standard normal random variables. After this, many

methodologies are available for solving for the probability of failure, such as the upcrossing rate

method [8, 9] and MCS [28].
2.1.2 Sequential optimization with EGO [19]

The time-dependent probability of failure can be evaluated by the extreme value of the limit-

state function.

pf(tO' ts) = PF(Q(X, t) < O' t € [tO' ts]) (11)

= Pr (t min _g(X,t) < O)

E[tOltS]
The extreme limit-state function is equivalent to the envelope function [16] or the composite

limit-state function [18], and ter{}ir% | g(X, t) is obtained by

GX) = min g(X.t) = g(X,{(X)) (12)

where G (X) is the global minimum value of g(X, t) with respect to t. G(X) is time independent
and only depends on X. £ is the time instant when the global minimal value of G (X) occurs. £ is

the function of X.



fz{fl min _g(X, t)} (13)

tE[tOJtS]
The envelope function G (X) is a surface tangent to all the instantaneous limit-state functions

at different time instants. If FORM is used for envelope function, its MPP is obtained by

{min\/ UTu

. _ (14)
s. t. ter[rgtl)gs] g(TU),t) =0

Eq. (14) is a double loop optimization problem. The inner loop is the global optimization with
respect to time t while the outer loop is the MPP search with respect to U. The double loop is
decoupled into a sequential single-loop process.

The first cycle is FORM analysis, the MPP uyy, at the initial time ¢, by

{minv UTU (15)

s.t. g(T(U),tx) =0
Then the time is updated by global optimization at u(;), and the new time is denoted by £,

which is given by

tM = argmin g (T(“a) ,t)) (16)

teltots]

In the next cycle, the new MPP “Ez) is located at the time instant £ using Eq. (16). And then

the time is updated to £®) by performing global optimization at ug).

t® = argming (T(uzz) ,t)) (17)

teto,ts]
The above process is repeated until convergence.
The Efficient Global Optimization (EGO) is employed to solve the time t [29]. EGO has been
widely used in various areas because it can efficiently search for the global optimum [13, 30]. The
task is to solve for the time so that g(t) = g(T(uypp), t) is minimized. With a number of training

points, the function is approximated by the following surrogate model:
9



y =g = g(T(uypp),t) = F(O)y + Z(¢) (18)
where F(t)Ty is a deterministic term, F(t) is a vector of regression functions, y is a vector of
regression coefficients, and Z(t) is a stationary Gaussian process with zero mean and a covariance
given by

Cov(Z(t1),Z(t2)) = aZR(ty, t5) (19)
where o is process variance, and R(:,) is the correlation function.

The output of the surrogate model is a Gaussian random variable following

¥ = g)~N(u®),o*()) (20)
where u(t) and o(t) are the mean and standard deviation of y, respectively.

After building the initial model, the expected improvement (EI) metric is used to identify the
new training point with the highest probability to produce a better extreme value of the response.
The improvement is defined by

I = max(y* —y,0) (21)

where y* = mzin . g(t;) is the current minimum response.
1=1,2,..,

EI is computed by

EI(¢) = E[max(y" — v, 0)] (22)
y*—ut) y* — u(t)
=y —u@®))e|—— )| ————
CAR)) < o) > +a( )qb( =
where ®@(-) and ¢ () are the cumulative distribution function (CDF) and PDF of a standard normal
variable, respectively.

The new training point t,,,,, 1s identified as the time that minimizes the expected improvement.

tnew = argminEI(t) (23)
t

10



The convergence criterion of EGO is set to eg; = |y*| X 2%. By combining sequential strategy
with EGO, the MPP u* of extreme limit-state function G (X) can be obtained efficiently by solving
Eq. (14). The probability of failure with FORM is estimated by

pr(to ts) = Pr(g(X,t) < 0,3t € [t,,ts]) (24)
= Pr(G(X) < 0) = ®(-p)
where f =l u* || is the first order reliability index.

In general, the envelope function can be highly nonlinear and FORM may not be accurate
enough. Thus, a second order method is preferred, and it uses the envelope theorem to obtain the
second order information of the extreme limit-state function. Then SOSPA is used to estimate the
probability of failure.

3. PROPOSED METHOD

3.1 Overview

The envelope function of a component (or limit-state function) is generally nonlinear as shown
in Fig. 1. It is the reason we use a second order approximation for the envelope function.
Specifically, we approximate the envelope function at its MPP with a quadratic function. As a
result, we also need the gradient and the Hessian matrix of the envelope function at the MPP.

It is shown that the MPP of the envelope function is the worst-case MPP of the limit-state
function on [t, ts] [19]. In other words, the MPP is the closest point between the origin and all
the instantaneous limit-state functions on [t, ts]. This is illustrated in Fig. 1. The MPP of the
envelope function can be efficiently found using the sequential single loop method [19]. This MPP
is also the MPP of the worst-case limit-state function; as a result, the gradient of the envelope

function is equal to the gradient of the worst-case limit-state function [19].

11



Place Fig. 1 here

Fig. 1 Relationship between the worst-case limit-state function and envelope function

The curvature of the envelope function, however, may not be the curvature of the worst-case
limit-state function as shown in Fig. 1. This means that the Hessian matrix of the envelope function
is in general not equal to that of the worst-case limit-state function. The Hessian matrix of the
envelope function is approximated by the gradients of the instantaneous limit-state functions in
[19], but the second derivative of the envelope function with respect to time is omitted. Hence the
method in [19] may not always work. In this work, we derive analytical second derivatives of the
envelope function with respect to both random input variables and time, and the Hessian matrix of
the envelope function can then be obtained accurately.

The general procedure of finding the second order information of the envelope is summarized
below. At first we employ the method in [19] to find the MPP of the envelope function using Eq.
(14). Once we find the MPP, we know the gradient of the envelope function because it is equal to
the gradient of the limit-state function at the MPP. Next we determine the Hessian matrix of the
envelope function with Eq. (35). The Hessian matrix consists of second derivatives of the limit-
state function with respect to random input variables X and time t. The equations are derived in
Sec. 3.2. When the MPP, gradient and Hessian matrix are available, we use the second order
saddlepoint approximation to find the probability of component failure and then perform system

reliability analysis. The method hereby is denoted by SOSPA.
3.2 Hessian matrix of the envelope function

After the MPP of the envelope function is found, a quadratic envelope function is formulated

as[27]
12



G(U)=a+bTU+UTCU (25)

where
1 T T
(a =3 (u)"Hu* = VG (u*)'u*
b =VG(u*) — Hu* (26)
1
C = EH = dlag(él, 62, "'léN)
aG G T
VG(u*) = (— y ey T ) is the gradient of the envelope function. H is the Hessian
AU | AU |

matrix, which is given by

[ 0°G 9%G
| oU? aU,aU,
H = : (27)
926G 926G ‘
aU,0U, ouz 1.

The envelope function G(X) = 0 at u* is given by

G(U) = pin gU,t) =gU, 0|y (28)

t is the worst-case time instant, and it is found by
gU,t) =0 (29)
where g is the derivative of g with respect to t.
The first derivative of G (U) with respect to a random input variable at u* is

G _dg  dg ot

= — 30
U, — au; T 9t au, (30)
As g(U,t) = 0, Eq. (30) becomes
dG adg
= — 31
oU; au; (3D

13



Eq. (31) indicates that the envelope function and the limit-state function have the same gradient

at u*. Then, the second derivative of G (U) with respect random input random variables at u* is

0’6 0 (66)_ 0 <ag)
oU;0U; — 9U; \oU;) ~ aU; \aU;

d%g d%g ot

= 3U,0U; 90,0t 90, (32)
We then take the derivative of Eq. (29) with respect to U}, and it is given by

dg dg ot

(’)_Uj + Ea—uj =0 (33)

at ag /0g

—=_Z /7 34

aU; au;/ at (34)
Plugging Egs. (29) and (34) into Eq. (32) yields the Hessian matrix H at u* and £.

%G _ d%g 0%g 0%g 0%g (35)
ou;0U;| , . 0UdU;| ., . 0U;0tdU;at/ ot?
u,t u,t u* f

The finite difference method can be used to calculate the Hessian matrix of the envelope
function.

Next, the second order saddlepoint approximation is employed to estimate the probability of
failure. Saddlepoint approximation has several excellent features. It yields an accurate probability
estimation, especially in the tail area of a distribution [31, 32].

The cumulant generating function (CGF) of G (U) is given by
n-1
1 1
K(s) = —Bs+ ESZ — Ez log(1 — 2sk;) (36)
i

where ki = Ei

The derivatives of CGF are

14



n-1

I ki
K(s)——B+s+Z—1_zski
1=

n-—1 kz
KII — Z L
(s) =1+ L (1= 25k
1=

The saddlepoint s, is obtained by solving the following equation:

n-1 k
K'() = — Z—i =
(t) B+S+.11—Z%i 0
=

Then the probability of failure is evaluated by

pr(to ts) = Pr(g(X,t) < 0,3t € [t,, t;])

= o) + o) ()

v

where

w = sgn(se) (2[=K (s)])2

v = s, [K" (s)]2

in which sgn(s;) = +1, —1, or 0, depending on whether s; is positive, negative, or zero.

(37)

(38)

(39)

(40)

(41)

(42)

The detailed steps of time-dependent component reliability analysis using SOSPA are

summarized below.

Step 1: Set k = 1. Use the initial time instant as the initial extreme value time £ = t, and

use a unit vector as the initial MPP u;y = u,.

Step 2: Search for the MPP at time instant £*~1) and obtain MPP uzk) in the k-th cycle by

solving

minvVUTU
s.t. g(T(U),t®*V) =0

15



Step 3: Determine the optimal time £*) and the corresponding minimum value gr(:i)n by
implementing EGO method with u,.

Step 4: Check convergence. The convergence criterion is defined as

()

&= |gmin S etol

If € < &4; , terminate the iteration. Otherwise, set k = k + 1 and return to Step 2.

Step S: Determine the gradient VG and Hessian matrix H of the envelope function at ug, and
£,

Step 6: Calculate p; using SOSPA.

Note that the proposed method does not work when the extreme value of the limit-state

function occurs at the beginning time instant t,, or end time instant t;, where Eq. (29) is invalid.
3.3 System reliability with SOSPA

In this section, we discuss how to extend SOSPA for time dependent component reliability to
time dependent system reliability analysis.

System reliability can be estimated by integrating the joint PDF of all responses in the safe
region. To use SOSPA, we consider the PDF of component responses directly. The system state is
determined by component states predicted from component limit-state functions ¥; = g;(X, t) (i =
1,2,..m).

Given all the limit-state functions with time, the series system reliability is then determined by
the

Rs = Pr(ﬂ Y, =9;,X,t) >0,Vt € [to,t5]> (43)

=1

16



Eq. (43) enable us to consider component reliability and dependencies since it needs the joint
PDF fy(y) of Y = (Y3, Y5, ..., Y;). We approximate the joint PDF fy(y) by a multivariate normal
distribution. If we only consider the first order terms of the extreme limit-state function Eq. (25),
it becomes

G;(U) = =VG(u)Tu; + VG (u;)"U (44)

If we divide both sides of Eq. (44) by the magnitude of the gradient, we obtain

G __ VG@)T VG )
IVG ()l VGl ™ IVGu)||
or
AR o
where a; is the unit vector of VG;(u;). At the MPP, the reliability index is given by
u; = —pia; (47)

Then event of the safe component G;(U) > 0 is equivalent to the event 5; + a;FU >(0. We then
define a new variable
Z; 1s an equivalent component response. It is obvious that Z; follows a normal distribution. As
a result, all the equivalent component responses follow a multivariate normal distribution if the
envelope functions of all the components are linearized at their MPPs. The system reliability is
then approximated by
m
Rg = Pr<ﬂ = —7,(U) < o) (49)
i=1
Z = (Zy,Z,, ..., Zy)T follows a multivariate normal distribution denoted by N (u, ), where

I, is the mean vector and X, is the covariance matrix. —Z also follows a multivariate normal
17



distribution N(—pz, X;). System reliability thus becomes the CDF ®,,(0; —pz, X,) of —Z at 0;

namely

0 0
Ry = &y, (0; -1y, I;) = f f £, (2)dz (50)

where f,(z) is the joint PDF of —Z, given by

fz(z) =

_ (z — uz)Tz_l(Z - uz)) (51)

1
JeorE,l < 2
The accuracy of the mean vector p; and covariance matrix X, determines the accuracy of the
multivariate normal integration in Eq. (51). To maintain high accuracy, we use SOSPA to
determine p;. The marginal CDF of Z; at 0, which is the component reliability is given by
Rspai = Pr(Z; > 0) (52)
Then the associated reliability index is determined by
Bspai = © ™' (Rspai) (53)
and Sspa; 1s an equivalent reliability index.
Since fspy is estimated with higher accuracy in the estimated reliability, we use it to replace
p in Eq. (48). The mean vector of the multivariable distribution of Z becomes
uz = (Bspar - Bspam) (54)
The above treatment ensures that the component reliability or the marginal distributions of
component responses are accurately estimated by the second order approximation. For higher
efficiency, we use FORM or Eq. (48) to estimate the covariance matrix X, [33]. Let the
components of X5 be p;; (i # j, i,j =1,2,...,m), which is given by

pij = a;ro(j (55)
Then X is given by

18



1 pum
pm1 1

mxm
With u; and X, available, the system reliability Ry can be easily calculated by integrating the
joint PDF in Eq. (51) from (—oo, ..., —00) to (0, ...,0) and the time dependent probability of system
failure is
Prs =1 —Rg (57)
Many methods such as the first order multi-normal approximation (FOMN) [34] and Alan
Genz method [35-37] are developed to integrate f(z) in Eq. (51). More details about the accuracy
of the multivariate normal CDF are given in the Appendix.
The proposed method provides a new way to estimate the time dependent system reliability
with nonlinear limit-state functions. The dependencies between component responses are
automatically accommodated in the system covariance matrix, and component marginal CDFs can

be obtained accurately using SOSPA. The procedure of the system reliability analysis is briefly

summarized below. The flowchart of this procedure is given in Fig. 2.

Place Fig. 2 here

Fig. 2 Flowchart of time-dependent system reliability
Step 1: Transform random variables X into U in the standard normal space.
Execute Step 2 and 4 for all components in the system.
Step 2: Search for MPPs u*, obtain the optimal time £ of the component limit-state function
with the efficient global optimization method.

Step 3: Determine the gradient VG and Hessian matrix H of the envelope function.

19



Step 4: Calculate the probability of component failure and use SOSPA to find the mean vector
of equivalent component responses.

Execute Steps 5 and 6 for system reliability analysis.

Step 5: Use the MPPs and reliability indexes of all components to find the covariance matrix
of component responses.

Step 6: Form the multivariate normal PDF and integrate it to obtain time dependent system

reliability.
3.4 Extension to the problems with input random process

When the limit-state function involves random processes, it becomes Y = g(X, L(t), t), where
L(t) is a vector of random processes. Series expansion methods, such as the Karhunen—Loeve
series expansion, the orthogonal series expansion, and the expansion optimal linear estimation
method (EOLE) [38], can be used to convert them into independent random variables, and then
the proposed method can still work. Take EOLE as an example for a Gaussian random process
L(t). The time interval [t, ts] is evenly discretized into N points, and the N X N autocorrelation
coefficient matrix X = [p(ti,tj)] ,1=12,..,N,j=12,..N is obtained. Then the EOLE

expansion is given by
S U
LU, 0) ~ u(t) + o(t) Z—"q;}z(: Ok =12,..,7 (58)
j=1 '\/A_J

where u (t) and o(t) are mean and standard deviation of L(t), respectively. Uy, k = 1,2, ...7, are
independent standard normal variables, A = (14,15, ...,4,)7 is the eigenvalue vector, and
¢4, d,, ..., P, are the corresponding eigenvectors obtained from autocorrelation coefficient matrix

X. Note that 7 is determined as the smallest integer that meets the following criterion:

20



Zr.= A
;V—IAJ- > 7 (59)
j=14

where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value close to,
but not larger than 1. The smaller is 7, the less accurate is the expansion. If n = 1, the expansion

is exact. Normally, 7 is set to 0.9999.
3.5 Parallel Systems

The above results can be extended to parallel systems. For a parallel system, the probability of
failure can be computed by

m
pfS = Pr (U Yl = gi(xl t) < O;Ht € [to,ts],i = 1121 ;m> (60)

=1
Let G;(X,t) = —g;(X, t), then
m
pss = Pr <ﬂ Y, = G;(X,t) > 0,3t € [ty t.],i = 1,2, m) (61)
i=1
Eq. (61) evaluates the probability of an intersection of m events as Eq. (43) does for a series
system. Hence the proposed method can be used to calculate Eq. (61), which leads to the system

reliability Rg = 1 — pys .

4. EXAMPLES

In this section, three examples are presented to test SOSPA for system reliability analysis.
Example 1 is a mathematical problem which is used to demonstrate the details of the proposed
method. Examples 2 and 3 are engineering problems. The accuracy is measured by the percentage

error with respect to a solution from MCS. The error is calculated by

MCS
_ Prs _pfs |

g =1l % 100% (62)

pfs
21



where py; is the result from SOSPA or FORM, and p%cs is the result from MCS.

4.1 Example 1: A math problem

A series system consists of two components with random basic variables X = (X1, X,). X; (i =
1,2) is normally distributed with parameter y; = 3.5 and o; = 0.3. The two limit-state functions
are given by

g1(X,t) = X2X, — 5X;t + (X, + 1)t? — 8.2 (63)

g2(X,t) = (cos(57) X; + sin(5") X;,)?(—sin(5)X; + cos(5) X,)
—5(cos(5°) X; + sin(5") X,)t + ((—sin(5°)X; + cos(57) X, + 1)t — 3.9 (64)
where t varies within [0,5].

Fig. 3 shows the parabolic curve of the envelope function of g,(X,t) formed by the
instantancous limit-state surface at different time instants within the interval [0,5]. The contours
of the analytical envelope functions of G; and G, are plotted in Fig. 4. The shaded area represents
the system failure region.

In order to explain clearly how the SOSPA method works, we only show the details for g; (X, t).
First, the MPP of the envelope function at £ is obtained using sequential EGO. The iteration history

is shown in Table 1. Once the iteration is convergent, the MPP is found at (—1.0714,—3.1172)T.

Place Fig. 3 here

Fig. 3 Envelope function formed by instantaneous limit-state surfaces

Place Fig. 4 here

Fig. 4 System extreme limit-state function
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The probabilities of failure for g, and g, from SOSPA are pr; = 6.0040 X 10~* and Pr2 =
7.2248 x 10~*. The mean values of the two equivalent component responses Z = (Z;,7Z,)T are
then given by u, = Bsospa = (—3.2387, —3.1855)T. The unit directional vectors of the two
limit-state functions are a; = (0.3254,0.9456)T and a, = (0.0098,1.0)". Thus, the correlation
coefficient between g; and g, is p;, = o a, = 0.9487, and the covariance matrix is obtained as

follow.

>;=[1 P12 =[ 1 0.9487]
2o lpar 1 0.9487 1

Table 1 Iteration history of MPP search for g,

Place Table 1 here

The probability of system failure from SOSPA is pss = 1 — R; = 9.4747 X 10~*. When
FORM is used, the covariance is the same as X,, and the mean values of the two equivalent
component responses are below

u, = Brorm = (—3.2963,—-3.2079)T

The probability of system failure from FORM is pys = 8.3738 x 10~*. The MCS solution
with a sample size of 10° is also obtained. For MCS, the time interval [0,5] is evenly discretized
into 100 points. The total number of function calls is therefore 2 X 108. The results are shown in
Table 2 where the errors calculated by Eq. (62) are given in brackets. Table 2 shows that SOSPA
is much more accurate than FORM which produces a large error due to the nonlinearity of the
envelope functions. However, the total function calls of FORM and SOSPA are 365 and 410,

respectively, showing FORM is more efficient.

Table 2 Probability of system failure in Example 1
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Place Table 2 here

4.2 Example 2: A roof truss structure

A roof truss problem is modified as our second example shown in Fig. 5 [39]. The top boom
and all the compression bars are made of concrete while the bottom boom and all the tension bars
are made of steel. The bars bear a nonstationary Gaussian process whose autocorrelation

coefficient function is given by

p(ty, t;) = exp [_ (tl ; tz)zl (65)

A and E are the cross-sectional area and elastic modulus of the concrete bars, respectively. Ag
and Es are the cross-sectional area and elastic modulus of the steel bars, respectively. All

parameters are independent and are listed in Table 3.

Place Fig. 5 here

Fig. 5 A roof truss

Table 3 Distribution of random variables

Place Table 3 here

The perpendicular deflection of the roof peak node is calculated by

AC

_ q_lz(3.81 1.13) 66)
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A failure occurs when the perpendicular deflection AC exceeds 1.6 cm at any instant of time

period [0,10]. The limit-state function is then defined by

ql? (3.81 1.13) 7

X,t) =0.016 — —
9:X, 1) = 0.016 — = AcEc+AsEs

The second failure mode is that the internal force of one bar exceeds its ultimate stress. The
internal force of the bar is 1.185q(, and the ultimate strength of the bar is f-A., where f. is the
compressive stress of the bar. The second limit-state function is then given by

9.X,t) = fcAc — 1.185¢l (68)

The third failure occurs when the internal force of another bar 0.75ql exceeds its ultimate
stress fsAg, where fs is the tensile strength of the bar. Therefore, the third limit-state function is
formulated by

93(X,t) = fsAs — 0.75ql (69)

The time period [0,10] years is evenly discretized into N = 50 points. With Eq. (65), the
50 X 50 autocorrelation coefficient matrix X of random process g is obtained. The most
significant five eigenvalues of X are 35.54, 11.90, 2.24, 0.28, and 0.03. We use EOLE to generate
the series expansion of q(t) and only keep the first five orders.

SOSPA produces mean vector of the equivalent component responses:

n, = (—2.6681,—3.4056, —2.7416)7T

and the covariance matrix is as follows:

0.1564 1 0.0375

1 piz P13 1 0.1564 0.2824
L, =(p21 1 pas|=
0.2824 0.0375 1

P31 P32 1

The probability of system failure from SOSPA is psg = 7.1017 X 1073,
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FORM and MCS are also used, and the sample size of MCS for each component is
5 x 108. The results from three methods are given in Table 4, showing that SOSPA has the higher

accuracy than FORM with less efficiency.

Table 4 Probability of system failure in Example 2

Place Table 4 here

4.3 Example 3: A Function Generator Mechanism System

Fig. 6 shows a function generator mechanism system, which can achieve a desire motion. This

system consists of two function generator mechanisms [40].

Place Fig. 6 here

Fig. 6 A Function Generator Mechanism System

Mechanism 1 is a four-bar linkage mechanism with links B;, B, B3, and B,, and it generates

a sine function. Its motion error is the difference between the actual motion output and the required
motion output. It is defined as

Xy v) = ka(Xy,¥) — ka(¥) (70)

where X; = (B4, B3, B3, B;) and links B, and By are welded together. The two input angles satisfy

y=62°+0 (71)

From the mechanism analysis, k,(X;,¥) and k4(y) can be obtained by

(72)

5, + JET+ D} —Ff)

Ko(Xy,7) =2 arctan( F,— D,

and
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ky(y) = 60° + 60° sin G (y— 97°)> (73)

where D; = 2B,(B; — B,cosy) , E, = —2B,B,siny , and F, =B?+ B%+ B} —B?-—
2B{B,cosy.
Mechanism 2 is the other four-bar linkage mechanism with links B, Bs, B¢, and B, and it
generates a logarithm function. The motion error is given by
£2(X2,0) = 1,(X3,0) —14(6) (74)

Where X2 = (Bl, Bs, Bﬁ' B7).

—E, +EZ +D? — F?
N.(X,,0) =2 arctan< 2 = \/ 2 2 2) (75)
F, =D,
. [(6 +157)/607]
na(8) = 60 logy, (76)

log 2
where D, = 2B,(B; — Bscosf) , E, = —2B<B;sinf , and F,=B?+ B+ B?—B?—
2B, Bscos6.

Mechanism 1 is considered reliable if {e, < &,(X;,¥) < e;}, where e; and e, are allowable
motion errors with e; = 1.4 and e, = —0.8. When the motion error is positive, the limit-state
function is defined by

91X, 7) =e; —&1(Xy,7) (77)

As for the negative motion error, the limit-state function is given by

92Xy, y) =Xy, v) — e (78)
Similarly, the limit-state functions of mechanism 2 are as follows:
93(X2,0) = e3 — £;,(X;,0) (79)

94((X2, 9)) =£,(X3,0) — ey (80)

27



in which e; = 1.0 and e, = —2.4. The random variables are given in Table 5. The mechanism
system performs its intended functions over an interval of [6,, 8s]=[45,95°]. The system is a

series system with four components (limit-state functions).

Table 5 Parameters in Example 3

Place Table 5 here

Table 6 shows the results. It indicates that the accuracy of SOSPA is in general better than
FORM. However, both methods produce almost identical results for ps, and ps,. The reason is
that the extreme values of two corresponding limit-state functions occur at the beginning of the
time period (at 45°). Thus, the Hessian matrices of the two envelope functions are not accurate,
and SOSPA is not accurate for ps, and ps,. Since the two probabilities of component failure are
much smaller than the other two probabilities, their effect on the probability of system failure is

insignificant.

Table 6 Probability of system failure in Example 3

Place Table 6 here
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5. CONCLUSION

The proposed time dependent system reliability method predicts system reliability with a
second order approximation. It is therefore in general more accurate than the first order
approximation method. But it is less efficient than the latter method due to the need of second
derivatives.

The new method converts a time dependent problem into a time independent problem by using
the envelope function or the extreme value of a limit-state function over the time span under
consideration. The most probable point (MPP) of the envelope function is found with the help of
efficient global optimization. Then the envelope function is approximated at the MPP with its
gradient and Hessian matrix. The reliability of each component is calculated by the second order
saddlepoint approximation, and the dependencies between component responses are considered
with the first approximation for the sake of efficiency. Once the estimated marginal component
distributions and component correlations are available, the joint distribution of all the component
responses is formed by a multivariate normal distribution, which leads to a fast evaluation of the
system reliability.

The proposed envelope method works well if the envelope function is convex. The global MPP
of the envelope function may not be found if the envelope function has multiple MPPs. For this
case, the MPP search may start from different instants of time, and then the worst-case MPP is
used. The proposed method does not work for a special case where the extreme value of a limit-
state function occurs at the beginning or end of the period of time under consideration, and the
reason is that the derivations of the Hessian matrix of the envelope function are for the case where

the extreme value occurs inside the period of time.
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Out future work will address the above two issues. The proposed method can also be further
extended to time and space dependent problems where random processes and random fields are
also involved.
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APPENDIX: Accuracy of Multivariate Normal Integration

The numerical integration of the multivariate normal probability in Eq. (50) is often a
difficult problem if the dimension is high [35]. Here we provide two examples to show the

performance of the numerical integration of multivariate normal probability.

The first example is Example 1 in Sec. 4. The mean values of the two equivalent component

0.9487]'

responses are m = (—3.2963,—3.2079)T, and the covariance matrix is £ = [0 91187 1

This is a low-dimensional problem. We have provided the result from the numerical integration

method pss = 8.3737 X 10™*. The results from MCS with a sample size of 10® is pss =

8.3702 x 10~*. The difference between the two probabilities is 0.04%, indicating the good

accuracy of the numerical integration method.
Example 2 involves a time-dependent problem with the limit-state function
g(t) = —4 + U, cos(t) + U, sin(t) (81)
where t € [0,2n]. U; and U, are standard normal variables. g(t) is a stationary Gaussian

process with a mean of —4 and a autocorrelation coefficient function p(t4,t,) given by
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p(t1,tz) = cos(t; — t;) (83)

If t € [0,2m] is evenly discretized into 500 points, then g(t) is discretized into 500 random

variables g;,i = 1,2, ... 500. With the discretization, Eq. (2) can rewrite as

500
R =Pr (ﬂ gi(X) tl) = OIVti € [tO' ts]) (84)
i=1
. . . . . T
The normal integration is 500 dimensional. The mean vector p = ('ugi)i=12 500 where
g, = —4. The covariance matrix is L, = (pif)i,j=1,2,...,5oo where
cos(t;—t;) ifi#j
pij={1 (l ]) .f._]. (85)
ifi=j

The time-dependent probability of failure pr = 1 — R.

For this high-dimensional normal integration, the commonly used method is the Quasi MCS
method [37]. The analytical solution exists for this problem and is given in Table A.1. If a
special treatment is implemented for this problem, for example, the dimension reduction by
eliminating the time instants where the Pr(g;(X,t;) = 0) is low, the error could be reduced as

shown in Table A.1.

Table A.1 Results of high dimensional normal integration

Method Exact Quasi MCS method Dimension reduction
method
43109 x 10~* 3.3370 x 107
—4
Prs 3.3546 X 10 (28.5%) (0.5%)
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The two examples indicate that a low dimensional (< 3) normal integration can be computed
by numerical integration with good accuracy. A higher dimensional normal integration may not
be accurate. Obtaining high accuracy of higher dimensional normal integrations deserves further

investigations.
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Table 1 Iteration history of MPP search for g4

Iterations * t
1 (—6.1450,—1.7052)T 1.4735
2 (—2.1526,—2.9252)T 1.9689
3 (—1.3877,—3.0305)T 2.1483
4 (—1.1631,—3.0878)T 2.2063
5 (—1.0941,—-3.1096)T 2.2251
6 (—1.0714,-3.1172)T 2.2314

Table 2 Probability of system failure in Example 1

Methods SOSPA FORM MCS
—2 ~2
D2 72?; ggﬁ,/ol )O 4 6'6(81%‘_}53%()) 4 7.470 x 10~
| | B |
Nogyis of g1 127 112 108
Nogyis of g 283 253 108
Total 410 365 2 x 108
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Table 3 Distribution of random variables

V(a[tﬁinaitt))le Mean géi?i?;i Distribution
g(N/m) | 14000(0.2sin(0.25t) + 0.8) 500 Gfﬁ;fg‘;ﬁfgss
L(m) 12 0.12 Normal
As(m?) 9.0x10* 9.0x10~5 Normal
Ac(m?) 5x1072 5x10~3 Normal
Es(N/m?) 2x101t 2x101° Lognormal
E;.(N/m?) 3x101° 3x10° Lognormal
fs(N/m?) 3.35x108 6.7x107 Normal
fo(N/m2) 1.34x107 2.68x10° Normal
Table 4 Probability of system failure in Example 2
Methods SOSPA FORM MCS
=3 =3
Pr1 3'82; (; ;,/01 )O 4 34(312(_)32%()) 4 3.9623 x 103
P2 3'3?21_2;,/01)0 3 3'028621)2/01)0 3 3.3740 x 1074
Pr3 3'0526_2;/01)0 3 2'853_22)/01)0 3 3.1324 x 1073
e | TS
Nooyis of g 306 188 5 x 108
Nooyis of g 599 363 5 x 108
Nooyis of g 592 538 5 x 108
Total 1797 1089 1.5 x 10°
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Table 5 Parameters in Example 3

Variable Standard .
(Unit) Mean deviation Distribution
B;(mm) 100 0.3 Normal
B, (mm) 55.5 0.05 Normal
B3 (mm) 144.1 0.05 Normal
B,(mm) 72.5 0.05 Normal
Bs(mm) 79.5 0.05 Normal
Bg(mm) 203 0.05 Normal
B;(mm) 150.8 0.05 Normal

Table 6 Probability of system failure in Example 3

Methods SOSPA FORM MCS
-3 -3
Pri 6'8?16_31;,/01)0 5 5'6(21;_392(;3 5 6.9440 x 1073
D2 6'1?32;)/01)0 3 6'1?32;)/01)0 3 6.430 X 10~°
Pr3 2'523_61;)/:)0 4 2'08(;_623%()) 4 2.520 x 102
| P | ST |
Noopis of gy 179 124 108
Nogyis of g 398 288 108
Nogyis of g 320 210 108
Nogyis of ga 479 369 108

38




Total

1376 991 4 x 108

Limit-state function
Ve g(ust):o
/S
»

Failure region

Envelope function
y G(u):()

Fig. 1 Relationship between the worst-case limit-state function and envelope function
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| Transform variables X to U

A 4

MPP search and Efficient Global optimization

{minxl uuT

s.t. g(TW), %) =0
‘“1(\[/1{1)313

min g (T (“1(\/’;1)919) , t)

v

Converge ?

Determine Hessian H and gradient VG
of the envelope function

v

Calculate R; of component 7 using SOSPA

v

Form the mean vector

u, = (Bspas, -, Bspam)
and the covariance p;; = 0(?0(1-

{

Calculate the system reliability

Fig. 2 Flowchart of time-dependent system reliability
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Fig. 3 Envelope function formed by instantaneous limit-state surfaces
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Fig. 5 A roof truss
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Fig. 6 A Function Generator Mechanism System
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