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ABSTRACT 

 System reliability is quantified by the probability that a system performs its intended function 

in a period of time without failures. System reliability can be predicted if all the limit-state 

functions of the components of the system are available, and such a prediction is usually time 

consuming. This work develops a time-dependent system reliability method that is extended from 

the component time-dependent reliability method using the envelope method and second order 

reliability method. The proposed method is efficient and is intended for series systems with limit-

state functions whose input variables include random variables and time. The component reliability 

is estimated by the second order component reliability method with an improve envelope approach, 

which produces a component reliability index. The covariance between component responses are 

estimated with the first order approximations, which are available from the second order 

approximations of the component reliability analysis. Then the joint distribution of all the 

component responses is approximated by a multivariate normal distribution with its mean vector 

being component reliability indexes and covariance being those between component responses. 

The proposed method is demonstrated and evaluated by three examples. 
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1． INTRODUCTION 

System reliability is measured by the probability that the system performs its intended function 

in routine circumstances during a specified period of time [1]. It is necessary to predict system 

reliability accurately and efficiently in the early design stage since it can be used to estimate the 

lifecycle cost, determine maintenance policies, and optimize the system performance [2-4]. A 

mechanical system consists of multiple components, and each component may also have multiple 

failure modes. In this work, we consider a failure mode as a component. If the limit-state function 

of a failure mode is invariant over time, its reliability and probability of failure are constant. 

However, the limit-state function may vary over time in many engineering problems, such as 

function generator mechanisms [5] and bridges under stochastic loading [6]. Then a time-

dependent reliability method is required. 

Suppose the limit-state function of the i-th failure mode is given by 

𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) (1) 

where 𝑌𝑖 is a component response, which is a function of time 𝑡; 𝐗 = (𝑋1, … , 𝑋𝑛)
T is the vector of 

independent input random variables. Then the time-dependent component reliability on a time 

interval [𝑡0, 𝑡𝑠] is defined by 

𝑅(𝑡0, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) ≥ 0, ∀𝑡 ∈ [𝑡0, 𝑡𝑠]) (2) 

and the corresponding probability of failure is defined by 

𝑝𝑓(𝑡0, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠]) (3) 

Eq. (3) indicates that if 𝑔(⋅) < 0 at any instant of time on [𝑡0, 𝑡𝑠], the component fails.  

In this study, we focus on series system. For a series system, the entire series system fails if 

one failure mode occurs. For a time-dependent series system, the system fails if any failure mode 
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occurs at any instant of time. The system reliability 𝑅𝑠(𝑡0, 𝑡𝑠) and probability of system failure 

𝑝𝑓𝑠(𝑡0, 𝑡𝑠) are given by  

𝑅𝑠(𝑡0, 𝑡𝑠) = Pr (⋂𝑔𝑖(𝐗, 𝑡𝑖)

𝑚

𝑖=1

≥ 0, ∀𝑡𝑖 ∈ [𝑡0, 𝑡𝑠]) (4) 

and 

𝑃𝑓𝑠(𝑡0, 𝑡𝑠) = Pr (⋃𝑔𝑖(𝐗, 𝑡𝑖)

𝑚

𝑖=1

< 0, ∃𝑡𝑖 ∈ [𝑡0, 𝑡𝑠]) (5) 

where ∪ and ∩ stand for union and intersection, respectively. 

Component reliability analysis is required for system reliability analysis. Methods of time-

dependent component reliability analysis include three groups: Rice’s formula based methods [7-

10], meta-model based methods [11-14], and methods which convert time-dependent into time-

independent reliability . Rice’s formula based methods are most commonly used [15]. For example, 

the PHI2 method [8] allows for time-variant reliability problems to be solved using classical time-

invariant reliability method, the first order reliability method (FORM). Hu and Du then proposed 

the joint up-crossing rate method in estimating the time-dependent reliability [9]. Rice’s formula-

based methods are in general more efficient than others but may lead to large errors if up-crossings 

are strongly dependent.  

Higher accuracy can be achieved by metamodeling methods. Hu and Du introduced a mixed 

efficient global optimization method employing the adaptive Kriging-Monte Carlo simulation 

(MCS) so that this high accuracy is achieved [13]. Wang and Wang developed a nested extreme 

response surface method by employing Kriging for reliability analysis with time-variant 

performance characteristics [14]. This group of methods may result in a high computational cost 

if the dimension of the problem is high.  
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Converting a time-dependent problem into a time-independent counterpart is possible by using 

the extreme value of the limit-state function. The methods include the envelope function method 

[16], extreme value response method [17], and the composite limit-state function method [18]. 

Still, obtaining accurate distribution of the extreme value in an efficient way is complicated. Hu 

and Du recently employed sequential efficient global optimization (EGO) to transform the time-

dependent reliability problem into a time-independent problem with a second order method. The 

Hessian matrix is approximated by a quasi-Newton approach. It uses the gradients of the limit-

state function at the points before the MPP search converges to the MPP. The method is efficient, 

but it may not accurately approximate the Hessian matrix since the points may not be on the surface 

of the envelope function [19]. 

Many studies have been conducted on time-dependent system reliability as well. For instance, 

Song and Der Kiureghian developed a joint first-passage probability method based on the 

conditional distribution analysis in estimating the reliability of systems subjected to stochastic 

excitation [20]. Radhika et al. investigated nonlinear vibrating systems under stochastic excitations 

by implementing the asymptotic extreme value theory and Monte Carlo simulation (MCS) [21]. 

Yu et al. employed the combination of the extreme value moment and improved maximum entropy 

method to access the time-variant system reliability with temporal parameters [22]. Gong and 

Frangopol proposed a new efficient method for time-dependent reliability which is formulated as 

a large-scale series system consisting of time-independent response functions [23]. Hu and 

Mahadevan proposed a novel and efficient methodology for time-dependent system reliability by 

considering the system as an equivalent Gaussian random field [24]. Jiang and Wei introduced an 

improved time-variant reliability analysis method based on stochastic process discretization, 
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which transformed the time-variant reliability problem into time-invariant series system problem 

[25]. 

Time-independent system reliability can be approximated by the multidimensional integration 

of the joint probability density function (PDF) of random variables once the marginal distributions 

and correlation coefficients of component states are obtained by the second and first order 

approximations [26]. Wu and Du proposed a method of predicting the time-independent system 

reliability by approximating the marginal distributions with the second order saddlepoint method 

(SOSPA) [27].  

It is desirable to take advantages of methods for both time-dependent component reliability 

and time-independent system reliability. To this end, in this work we integrate the second order 

saddlepoint approximation [19] for both time-dependent component reliability and time-

independent system reliability. The distinctive feature of our new method is the ture second order 

approximaiton to component envelope functions with its accurate Hessian matrix calculation. The 

second derivatives of the envelope functions with repsect to the input random varaibles are exactly 

evalauted from the second derivatives of the corresponding component limit-state functions with 

respect to the input random varaibles and time. The second feature is that the second order 

approaxiamtion is extended from component reliabilty analysis to sytem reliabilty analysis.   

This paper is organized as follows: Section 2 reviews the first order reliability method for time 

dependent reliability analysis. Section 3 discusses the proposed method for time-dependent system 

reliability analysis. Section 4 presents three examples, and Section 5 provides conclusions and 

discusses possible future work. 
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2． METHODOLOGY REVIEW 

The second order time-dependent system reliability method is based on several existing 

methods, which are reviewed in this section.  

2.1 Time-Dependent Component Reliability 

The limit-state function of a component is given in Eq. (1), and its reliability is therefore a 

function of time (or timespan) as indicated in Eq. (2). The most commonly used reliability method 

is FORM, which is reviewed below. 

2.1.1 First Order Reliability Method  

FORM is originally used for time-independent reliability analysis, and it can also be used for 

time-dependent reliability analysis. It converts a general non-Gaussian process response into an 

equivalent Gaussian process response. 𝐗 is at first transformed into standard normal variables 𝐔. 

Then the most probable point (MPP) 𝐮∗ at 𝑡 is identified by the following model: 

{min
√𝐔T𝐔

s. t.  𝑔(𝐗, 𝑡) = 𝑔(T(𝐔), 𝑡) = 0
(6) 

where T(∙) is an operator of the transformation from 𝐔 to 𝐗. 

The limit-state function is linearized at  𝐮∗ (𝑡) by  

𝑔(T(𝐔), 𝑡) = 𝑔( 𝐮∗ , 𝑡) +∑
𝜕𝑔

𝜕𝑈𝑖

N

𝑖=1

|

𝐮∗

(𝑈𝑖 − 𝑢𝑖
∗) (7) 

= ∇𝑔(𝐮∗ , 𝑡)(𝐔 − 𝐮∗ )  

where  ∇𝑔(𝐮∗ , 𝑡) = [
𝜕𝑔

𝜕𝑈1
|
𝐮∗
, … ,

𝜕𝑔

𝜕𝑈𝑁
|
𝐮∗  

] is the gradient , and 𝑢𝑖
∗ is the i-th component of 𝐮∗. 

Then the probability of failure is computed by   

𝑝𝑓 = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠]) (8) 
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         = Pr(𝛽(𝑡) + 𝛂(𝑡)𝐔 < 0, ∃𝑡 ∈ [𝑡0, 𝑡𝑠])  

where 𝛽(𝑡) is the time-dependent reliability index, given by 

𝛽(𝑡) =∥ 𝐮∗ ∥ (9) 

and 𝛂(𝑡) is the time-dependent unit gradient vector given by 

𝛂(𝑡) =
∇𝑔(𝑡)

∥ ∇𝑔(𝑡) ∥
= [ 𝛼1(𝑡), 𝛼2(𝑡), … , α𝑁(𝑡)] (10) 

As Eq. (7) shows, the non-Gaussian process 𝑔(𝐗, 𝑡) has been transformed into an equivalent 

Gaussian process represented as a sum of standard normal random variables. After this, many 

methodologies are available for solving for the probability of failure, such as the upcrossing rate 

method [8, 9] and MCS [28]. 

2.1.2 Sequential optimization with EGO [19] 

The time-dependent probability of failure can be evaluated by the extreme value of the limit-

state function. 

𝑝𝑓(𝑡𝑜, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠]) (11)  

                                                      = Pr ( min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) < 0)   

The extreme limit-state function is equivalent to the envelope function [16] or the composite 

limit-state function [18], and min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) is obtained by 

𝐺(𝐗) = min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡) = 𝑔(𝐗, 𝑡̃(𝐗)) (12) 

where 𝐺(𝐗) is the global minimum value of 𝑔(𝐗, 𝑡) with respect to 𝑡. 𝐺(𝐗) is time independent 

and only depends on 𝐗.  𝑡̃ is the time instant when the global minimal value of 𝐺(𝐗) occurs. 𝑡̃ is 

the function of 𝐗. 
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𝑡̃ = {𝑡̃| min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐗, 𝑡)} (13) 

The envelope function 𝐺(𝐗) is a surface tangent to all the instantaneous limit-state functions 

at different time instants. If FORM is used for envelope function, its MPP is obtained by 

{
min√𝐔T𝐔
s. t. min

𝑡∈[𝑡𝑜,𝑡𝑠]
𝑔(T(𝐔), 𝑡) = 0

(14) 

Eq. (14) is a double loop optimization problem. The inner loop is the global optimization with 

respect to time 𝑡 while the outer loop is the MPP search with respect to 𝐔. The double loop is 

decoupled into a sequential single-loop process. 

The first cycle is FORM analysis, the MPP 𝐮(1)
∗  at the initial time 𝑡0 by 

{min
√𝐔T𝐔

s. t.  𝑔(T(𝐔), 𝑡0) = 0
(15) 

Then the time is updated by global optimization at 𝐮(1)
∗ , and the new time is denoted by 𝑡̃(1), 

which is given by 

𝑡̃(1) = argmin
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔 (T(𝐮(1)
∗  , 𝑡)) (16) 

In the next cycle, the new MPP 𝐮(2)
∗   is located at the time instant 𝑡̃(1) using Eq. (16). And then 

the time is updated to 𝑡̃(2) by performing global optimization at 𝐮(2)
∗ . 

𝑡̃(2) = argmin
𝑡∈𝑡𝑜,𝑡𝑠]

𝑔 (T(𝐮(2)
∗  , 𝑡)) (17) 

The above process is repeated until convergence. 

The Efficient Global Optimization (EGO) is employed to solve the time 𝑡 [29]. EGO has been 

widely used in various areas because it can efficiently search for the global optimum [13, 30]. The 

task is to solve for the time so that 𝑔(𝑡) = 𝑔(T(𝐮MPP), 𝑡) is minimized. With a number of training 

points, the function is approximated by the following surrogate model: 
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𝑦̂ = 𝑔(𝑡) = 𝑔(T(𝐮MPP), 𝑡) = 𝐹(𝑡)T𝛾 + Z(𝑡) (18) 

where 𝐹(𝑡)T𝛾 is a deterministic term, 𝐹(𝑡) is a vector of regression functions, 𝛾 is a vector of 

regression coefficients, and 𝑍(𝑡) is a stationary Gaussian process with zero mean and a covariance 

given by 

Cov(𝑍(𝑡1), 𝑍(𝑡2)) = 𝜎𝑍
2𝑅(𝑡1, 𝑡2) (19) 

where 𝜎𝑍
2 is process variance, and 𝑅(∙,∙) is the correlation function. 

The output of the surrogate model is a Gaussian random variable following 

𝑦̂ = 𝑔(𝑡)~𝑁(𝜇(𝑡), 𝜎2(𝑡)) (20) 

where 𝜇(𝑡) and 𝜎(𝑡) are the mean and standard deviation of 𝑦̂, respectively. 

After building the initial model, the expected improvement (EI) metric is used to identify the 

new training point with the highest probability to produce a better extreme value of the response. 

The improvement is defined by 

I = max(𝑦∗ − 𝑦, 0) (21) 

where 𝑦∗ = min
𝑖=1,2,…,𝑘

𝑔(𝑡𝑖) is the current minimum response.  

EI is computed by      

EI(𝑡) = E[max(𝑦∗ − 𝑦, 0)] (22) 

= (𝑦∗ − 𝜇(𝑡))Φ(
𝑦∗ − 𝜇(𝑡)

𝜎(𝑡)
) + 𝜎(𝑡)𝜙 (

𝑦∗ − 𝜇(𝑡)

𝜎(𝑡)
) 

where Φ(∙) and 𝜙(∙) are the cumulative distribution function (CDF) and PDF of a standard normal 

variable, respectively. 

The new training point 𝑡𝑛𝑒𝑤 is identified as the time that minimizes the expected improvement. 

𝑡𝑛𝑒𝑤 = argminEI
𝑡

(𝑡) (23) 
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The convergence criterion of EGO is set to 𝜀EI = |𝑦
∗| × 2%. By combining sequential strategy 

with EGO, the MPP 𝐮∗ of extreme limit-state function 𝐺(𝐗) can be obtained efficiently by solving 

Eq. (14). The probability of failure with FORM is estimated by      

𝑝𝑓(𝑡𝑜, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠]) (24) 

             = Pr(𝐺(𝐗) < 0) = Φ(−𝛽) 

where 𝛽 =∥ 𝐮∗ ∥ is the first order reliability index.  

In general, the envelope function can be highly nonlinear and FORM may not be accurate 

enough. Thus, a second order method is preferred, and it uses the envelope theorem to obtain the 

second order information of the extreme limit-state function. Then SOSPA is used to estimate the 

probability of failure. 

3.  PROPOSED METHOD 

3.1 Overview 

The envelope function of a component (or limit-state function) is generally nonlinear as shown 

in Fig. 1. It is the reason we use a second order approximation for the envelope function. 

Specifically, we approximate the envelope function at its MPP with a quadratic function. As a 

result, we also need the gradient and the Hessian matrix of the envelope function at the MPP.  

It is shown that the MPP of the envelope function is the worst-case MPP of the limit-state 

function on [𝑡0, 𝑡𝑠] [19]. In other words, the MPP is the closest point between the origin and all 

the instantaneous limit-state functions on [𝑡0, 𝑡𝑠]. This is illustrated in Fig. 1. The MPP of the 

envelope function can be efficiently found using the sequential single loop method [19]. This MPP 

is also the MPP of the worst-case limit-state function; as a result, the gradient of the envelope 

function is equal to the gradient of the worst-case limit-state function [19].  
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------------------------------- 
Place Fig. 1 here 

------------------------------- 

Fig. 1 Relationship between the worst-case limit-state function and envelope function 

The curvature of the envelope function, however, may not be the curvature of the worst-case 

limit-state function as shown in Fig. 1. This means that the Hessian matrix of the envelope function 

is in general not equal to that of the worst-case limit-state function. The Hessian matrix of the 

envelope function is approximated by the gradients of the instantaneous limit-state functions in 

[19], but the second derivative of the envelope function with respect to time is omitted. Hence the 

method in [19] may not always work. In this work, we derive analytical second derivatives of the 

envelope function with respect to both random input variables and time, and the Hessian matrix of 

the envelope function can then be obtained accurately. 

The general procedure of finding the second order information of the envelope is summarized 

below. At first we employ the method in [19] to find the MPP of the envelope function using Eq. 

(14). Once we find the MPP, we know the gradient of the envelope function because it is equal to 

the gradient of the limit-state function at the MPP. Next we determine the Hessian matrix of the 

envelope function with Eq. (35). The Hessian matrix consists of second derivatives of the limit-

state function with respect to random input variables 𝐗 and time 𝑡. The equations are derived in 

Sec. 3.2. When the MPP, gradient and Hessian matrix are available, we use the second order 

saddlepoint approximation to find the probability of component failure and then perform system 

reliability analysis. The method hereby is denoted by SOSPA. 

3.2 Hessian matrix of the envelope function 

After the MPP of the envelope function is found, a quadratic envelope function is formulated 

as[27] 
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𝐺(𝐔) = a + 𝐛T𝐔 + 𝐔T𝐂𝐔 (25) 

where      

{
 
 

 
 𝑎 =

1

2
(𝐮∗)T𝐇𝐮∗ − ∇𝐺(𝐮∗)T𝐮∗

𝐛 = ∇𝐺(𝐮∗) − 𝐇𝐮∗

𝐂 =
1

2
𝐇 = diag(𝑐̃1, 𝑐̃2, … , 𝑐̃𝑁)

(26) 

 ∇G(𝐮∗) = (
𝜕𝐺

∂𝑈1
|
𝐮∗
, … . ,

𝜕𝐺

∂𝑈𝑛
|
𝐮∗
)
T

is the gradient of the envelope function. 𝐇  is the Hessian 

matrix, which is given by 

𝐇 =

[
 
 
 
 
 
𝜕2𝐺

𝜕𝑈1
2 ⋯

𝜕2𝐺

𝜕𝑈1𝜕𝑈𝑛
⋮ ⋱ ⋮

𝜕2𝐺

𝜕𝑈𝑛𝜕𝑈1
⋯

𝜕2𝐺

𝜕𝑈𝑛2 ]
 
 
 
 
 

𝐮∗

(27) 

The envelope function 𝐺(𝐗) = 0 at 𝐮∗ is given by 

𝐺(𝐔) = min
𝑡∈[𝑡𝑜,𝑡𝑠]

𝑔(𝐔, 𝑡) =𝑔(𝐔, 𝑡̃)|𝐮∗ (28) 

𝑡̃ is the worst-case time instant, and it is found by 

𝑔̇(𝐔, 𝑡) = 0 (29) 

where 𝑔̇ is the derivative of 𝑔 with respect to 𝑡. 

The first derivative of 𝐺(𝐔) with respect to a random input variable at 𝐮∗ is 

𝜕𝐺

𝜕𝑈𝑖
=
∂𝑔

∂𝑈𝑖
+
∂𝑔

∂𝑡̃

𝜕𝑡̃

𝜕𝑈𝑖
(30) 

As  𝑔̇(𝐔, 𝑡) = 0, Eq. (30) becomes 

𝜕𝐺

𝜕𝑈𝑖
=
∂𝑔

∂𝑈𝑖
(31) 
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Eq. (31) indicates that the envelope function and the limit-state function have the same gradient 

at 𝐮∗. Then, the second derivative of 𝐺(𝐔) with respect random input random variables at 𝐮∗ is 

𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
=

𝜕

𝜕𝑈𝑗
(
𝜕𝐺

𝜕𝑈𝑖
) =

𝜕

𝜕𝑈𝑗
(
𝜕𝑔

𝜕𝑈𝑖
) 

          =
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
+

𝜕2𝑔

𝜕𝑈𝑖𝜕𝑡

∂𝑡

∂𝑈𝑗
(32) 

We then take the derivative of Eq. (29) with respect to 𝑈𝑗, and it is given by 

∂𝑔̇

∂𝑈𝑗
+
∂𝑔̇

∂𝑡

∂𝑡

∂𝑈𝑗
= 0 (33) 

∂𝑡

∂𝑈𝑗
= −

∂𝑔̇

∂𝑈𝑗

∂𝑔̇

∂𝑡
⁄ (34) 

Plugging Eqs. (29) and (34) into Eq. (32) yields the Hessian matrix H at 𝐮∗ and 𝑡̃. 

𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
|
𝐮∗ ,𝑡̃

=
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
|
𝐮∗ ,𝑡̃

−
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑡

𝜕2𝑔

𝜕𝑈𝑗𝜕𝑡

𝜕2𝑔

𝜕𝑡2
⁄ |

𝐮∗ ,𝑡̃

(35) 

The finite difference method can be used to calculate the Hessian matrix of the envelope 

function. 

Next, the second order saddlepoint approximation is employed to estimate the probability of 

failure. Saddlepoint approximation has several excellent features. It yields an accurate probability 

estimation, especially in the tail area of a distribution [31, 32].  

The cumulant generating function (CGF) of 𝐺(𝐔) is given by 

𝐾(𝑠) = −𝛽𝑠 +
1

2
𝑠2 −

1

2
∑ log(1 − 2𝑠𝑘𝑖)

𝑛−1

𝑖

(36) 

where 𝑘𝑖 = 𝑐̃𝑖 

The derivatives of CGF are      
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𝐾′(𝑠) = −𝛽 + 𝑠 +∑
𝑘𝑖

1 − 2𝑠𝑘𝑖

𝑛−1

𝑖=1

(37) 

𝐾′′(𝑠) = 1 +∑
𝑘𝑖
2

(1 − 2𝑠𝑘𝑖)2

𝑛−1

𝑖=1

(38) 

The saddlepoint 𝑠𝑠 is obtained by solving the following equation:  

𝐾′(𝑡) = −𝛽 + 𝑠 +∑
𝑘𝑖

1 − 2𝑠𝑘𝑖

𝑛−1

𝑖=1

= 0 (39) 

 Then the probability of failure is evaluated by 

𝑝𝑓(𝑡𝑜, 𝑡𝑠) = Pr(𝑔(𝐗, 𝑡) < 0, ∃𝑡 ∈ [𝑡𝑜 , 𝑡𝑠])

         = Φ(𝑤) + 𝜙(𝑤) (
1

𝑤
−
1

𝑣
) (40)

 

where 

𝑤 = sgn(𝑠𝑠){2[−𝐾(𝑠𝑠)]}
1
2 (41) 

𝑣 = 𝑠𝑠[𝐾
′′(𝑠𝑠)]

1
2 (42) 

in which sgn(𝑠𝑠) = +1, −1, or 0, depending on whether 𝑠𝑠 is positive, negative, or zero. 

The detailed steps of time-dependent component reliability analysis using SOSPA are 

summarized below. 

Step 1: Set 𝑘 = 1. Use the initial time instant as the initial extreme value time 𝑡̃(0) = 𝑡0 and 

use a unit vector as the initial MPP 𝐮(1)
∗ = 𝐮0. 

Step 2: Search for the MPP at time instant 𝑡̃(𝑘−1) and obtain MPP 𝐮(𝑘)
∗  in the 𝑘-th cycle by 

solving 

{
min√𝐔T𝐔
s. t.  𝑔(T(𝐔), 𝑡̃(𝑘−1)) = 0
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Step 3: Determine the optimal time 𝑡̃(𝑘)  and the corresponding minimum value 𝑔min
(𝑘)

 by 

implementing EGO method with 𝐮(𝑘)
∗ . 

Step 4: Check convergence. The convergence criterion is defined as  

𝜀 = |𝑔min
(𝑘)
| ≤ 𝜀𝑡𝑜𝑙 

If 𝜀 ≤ 𝜀𝑡𝑜𝑙 , terminate the iteration. Otherwise, set 𝑘 = 𝑘 + 1 and return to Step 2. 

Step 5: Determine the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function at 𝐮(𝑘)
∗  and 

𝑡̃(𝑘). 

Step 6: Calculate 𝑝𝑓 using SOSPA. 

Note that the proposed method does not work when the extreme value of the limit-state 

function occurs at the beginning time instant 𝑡𝑜 or end time instant 𝑡𝑠, where Eq. (29) is invalid. 

3.3 System reliability with SOSPA 

In this section, we discuss how to extend SOSPA for time dependent component reliability to 

time dependent system reliability analysis.  

System reliability can be estimated by integrating the joint PDF of all responses in the safe 

region. To use SOSPA, we consider the PDF of component responses directly. The system state is 

determined by component states predicted from component limit-state functions 𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) (𝑖 =

1,2, …𝑚). 

Given all the limit-state functions with time, the series system reliability is then determined by 

the   

𝑅𝑆 = Pr(⋂𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) > 0

𝑚

𝑖=1

, ∀𝑡 ∈ [𝑡0, 𝑡𝑠]) (43) 
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Eq. (43) enable us to consider component reliability and dependencies since it needs the joint 

PDF 𝑓𝐘(𝒚) of 𝐘 = (𝑌1, 𝑌2, … , 𝑌𝑚). We approximate the joint PDF 𝑓𝐘(𝒚) by a multivariate normal 

distribution. If we only consider the first order terms of the extreme limit-state function Eq. (25), 

it becomes 

𝐺𝑖(𝐔) = −∇𝐺(𝐮𝑖
∗)T𝐮𝑖

∗ + ∇𝐺(𝐮𝑖
∗)T𝐔 (44) 

If we divide both sides of Eq. (44) by the magnitude of the gradient, we obtain 

𝐺𝑖(𝐔)

‖∇𝐺(𝐮𝑖
∗)‖

= −
∇𝐺𝑖(𝐮𝑖

∗)T

‖∇𝐺(𝐮𝑖
∗)‖

𝐮𝑖
∗ +

∇𝐺𝑖(𝐮𝑖
∗)T

‖∇𝐺(𝐮𝑖
∗)‖

𝐔 (45) 

or 

𝐺𝑖(𝐔)

‖∇𝐺(𝐮𝑖
∗)‖

= −𝛂𝑖
T𝐮𝑖

∗ + 𝛂𝑖
T𝐔 (46) 

where 𝛂𝑖 is the unit vector of ∇𝐺𝑖(𝐮𝑖
∗). At the MPP, the reliability index is given by 

𝐮𝑖
∗ = −𝛽𝑖𝛂𝑖 (47) 

Then event of the safe component 𝐺𝑖(𝐔) > 0 is equivalent to the event 𝛽𝑖 + 𝜶𝑖
T𝐔 >0. We then 

define a new variable  

𝑍𝑖 = 𝛽𝑖 + 𝛂𝑖
T𝐔 (48) 

𝑍𝑖 is an equivalent component response. It is obvious that 𝑍𝑖 follows a normal distribution. As 

a result, all the equivalent component responses follow a multivariate normal distribution if the 

envelope functions of all the components are linearized at their MPPs. The system reliability is 

then approximated by 

𝑅𝑆 = Pr(⋂ = −𝑍𝑖(𝐔) < 0

𝑚

𝑖=1

) (49) 

𝐙 = (𝑍1, 𝑍2, … , 𝑍𝑚)
T follows a multivariate normal distribution denoted by 𝑁(𝛍𝑍, 𝚺𝑍), where 

𝛍𝑍 is the mean vector and 𝚺𝑍 is the covariance matrix. −𝐙  also follows a multivariate normal 
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distribution 𝑁(−𝛍𝑍, 𝚺𝑍). System reliability thus becomes the CDF Φ𝑚(𝟎;−𝛍𝑍 , 𝚺𝑍) of −𝐙 at 0; 

namely  

𝑅𝑆 = Φ𝑚(𝟎;−𝛍𝑍, 𝚺𝑍) = ∫ ⋯∫ 𝑓𝑧

0

−∞

0

−∞

(𝐳)𝑑𝐳 (50) 

where 𝑓𝑧(𝐳) is the joint PDF of −𝐙, given by 

𝑓𝑍(𝐳) =
1

√(2𝜋)𝑚|𝚺𝑍|
exp (−

(𝐳 − 𝐮𝑍)
T𝚺−1(𝐳 − 𝐮𝑍)

2
) (51) 

The accuracy of the mean vector 𝛍𝑍 and covariance matrix 𝚺𝑍 determines the accuracy of the 

multivariate normal integration in Eq. (51). To maintain high accuracy, we use SOSPA to 

determine 𝛍𝑍. The marginal CDF of 𝑍𝑖 at 0, which is the component reliability is given by 

𝑅SPA𝑖 = Pr(𝑍𝑖 > 0) (52) 

Then the associated reliability index is determined by  

𝛽SPA𝑖 = Φ
−1(𝑅SPA𝑖) (53) 

and 𝛽SPA𝑖 is an equivalent reliability index. 

Since 𝛽SPA is estimated with higher accuracy in the estimated reliability, we use it to replace 

𝛽 in Eq. (48). The mean vector of the multivariable distribution of Z becomes 

𝐮𝑍 = (𝛽SPA1, … , 𝛽SPA𝑚) (54) 

The above treatment ensures that the component reliability or the marginal distributions of 

component responses are accurately estimated by the second order approximation. For higher 

efficiency, we use FORM or Eq. (48) to estimate the covariance matrix 𝚺𝑍  [33]. Let the 

components of 𝚺𝑍 be 𝜌𝑖𝑗(𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, … ,𝑚), which is given by   

𝜌𝑖𝑗 = 𝛂𝑖
T𝛂𝑗 (55) 

Then 𝚺𝑍 is given by  
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𝚺𝑍 = [
1 ⋯ 𝜌1𝑚
⋮ ⋱ ⋮
𝜌𝑚1 ⋯ 1

]

𝑚×𝑚

(56) 

With 𝐮𝑍 and 𝚺𝑍 available, the system reliability 𝑅𝑠 can be easily calculated by integrating the 

joint PDF in Eq. (51) from (−∞,… ,−∞) to (0, … ,0) and the time dependent probability of system 

failure is 

𝑝𝑓𝑠 = 1 − 𝑅𝑠 (57) 

Many methods such as the first order multi-normal approximation (FOMN) [34] and Alan 

Genz method [35-37] are developed to integrate 𝑓𝑍(𝐳) in Eq. (51). More details about the accuracy 

of the multivariate normal CDF are given in the Appendix. 

The proposed method provides a new way to estimate the time dependent system reliability 

with nonlinear limit-state functions. The dependencies between component responses are 

automatically accommodated in the system covariance matrix, and component marginal CDFs can 

be obtained accurately using SOSPA. The procedure of the system reliability analysis is briefly 

summarized below. The flowchart of this procedure is given in Fig. 2. 

------------------------------- 
Place Fig. 2 here 

------------------------------- 

Fig. 2 Flowchart of time-dependent system reliability 

Step 1: Transform random variables 𝐗 into 𝐔 in the standard normal space. 

Execute Step 2 and 4 for all components in the system. 

Step 2: Search for MPPs 𝐮∗, obtain the optimal time 𝑡̃ of the component limit-state function 

with the efficient global optimization method.  

Step 3: Determine the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function. 
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Step 4: Calculate the probability of component failure and use SOSPA to find the mean vector 

of equivalent component responses. 

Execute Steps 5 and 6 for system reliability analysis. 

Step 5: Use the MPPs and reliability indexes of all components to find the covariance matrix 

of component responses. 

Step 6: Form the multivariate normal PDF and integrate it to obtain time dependent system 

reliability. 

3.4 Extension to the problems with input random process 

When the limit-state function involves random processes, it becomes 𝑌 = 𝑔(𝐗, 𝐋(𝑡), 𝑡), where 

𝐋(𝑡) is a vector of random processes. Series expansion methods, such as the Karhunen–Loeve 

series expansion, the orthogonal series expansion, and the expansion optimal linear estimation 

method (EOLE) [38], can be used to convert them into independent random variables, and then 

the proposed method can still work. Take EOLE as an example for a Gaussian random process 

𝐿(𝑡). The time interval [𝑡0, 𝑡𝑠] is evenly discretized into 𝑁 points, and the 𝑁 × 𝑁 autocorrelation 

coefficient matrix 𝚺 = [𝜌(𝑡𝑖 , 𝑡𝑗)] , 𝑖 = 1,2, … ,𝑁, 𝑗 = 1,2, …𝑁  is obtained. Then the EOLE 

expansion is given by 

𝐿(𝐔, 𝑡) ≈ 𝜇(𝑡) + 𝜎(𝑡)∑
𝑈𝑘

√𝜆𝑗

𝑟

𝑗=1

𝛟𝑗
T𝚺(: , 𝑡), 𝑘 = 1,2, … , 𝑟 (58) 

where 𝜇 (𝑡) and 𝜎(𝑡) are mean and standard deviation of 𝐋(𝑡), respectively. 𝑈𝑘, 𝑘 = 1,2, … 𝑟, are 

independent standard normal variables, 𝛌 = (𝜆1, 𝜆2, … , 𝜆𝑟)
𝑇  is the eigenvalue vector, and 

𝛟1, 𝛟2, … , 𝛟𝑟 are the corresponding eigenvectors obtained from autocorrelation coefficient matrix 

𝚺. Note that 𝑟 is determined as the smallest integer that meets the following criterion: 
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∑ 𝜆𝑗
𝑟
𝑗=1

∑ 𝜆𝑗
𝑁
𝑗=1

≥ 𝜂 (59) 

where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value close to, 

but not larger than 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 = 1, the expansion 

is exact. Normally, 𝜂 is set to 0.9999. 

3.5 Parallel Systems 

The above results can be extended to parallel systems. For a parallel system, the probability of 

failure can be computed by 

𝑝𝑓𝑆 = Pr(⋃𝑌𝑖 = 𝑔𝑖(𝐗, 𝑡) < 0

𝑚

𝑖=1

, ∃𝑡 ∈ [𝑡0, 𝑡𝑠], 𝑖 = 1,2, … ,𝑚) (60) 

Let 𝐺𝑖(𝐗, 𝑡) = −𝑔𝑖(𝐗, 𝑡), then 

𝑝𝑓𝑆 = Pr(⋂𝑌𝑖 = 𝐺𝑖(𝐗, 𝑡) > 0

𝑚

𝑖=1

, ∃𝑡 ∈ [𝑡0, 𝑡𝑠], 𝑖 = 1,2, … ,𝑚) (61) 

Eq. (61) evaluates the probability of an intersection of m events as Eq. (43) does for a series 

system. Hence the proposed method can be used to calculate Eq. (61), which leads to the system 

reliability 𝑅𝑆 = 1 − 𝑝𝑓𝑆 . 

4.  EXAMPLES 

In this section, three examples are presented to test SOSPA for system reliability analysis. 

Example 1 is a mathematical problem which is used to demonstrate the details of the proposed 

method. Examples 2 and 3 are engineering problems. The accuracy is measured by the percentage 

error with respect to a solution from MCS. The error is calculated by 

𝜀 =
|𝑝𝑓𝑠 − 𝑝𝑓𝑠

MCS|

𝑝𝑓𝑠
MCS

× 100% (62) 
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where  𝑝𝑓𝑠 is the result from SOSPA or FORM, and 𝑝𝑓𝑠
MCS is the result from MCS.  

4.1 Example 1: A math problem 

A series system consists of two components with random basic variables 𝐗 = (𝑋1, 𝑋2). 𝑋𝑖 (𝑖 =

1,2) is normally distributed with parameter 𝜇𝑖 = 3.5  and 𝜎𝑖 = 0.3. The two limit-state functions 

are given by 

𝑔1(𝐗, 𝑡) = 𝑋1
2𝑋2 − 5𝑋1𝑡 + (𝑋2 + 1)𝑡

2 − 8.2 (63) 

𝑔2(𝐗, 𝑡) = (cos(5°)𝑋1 + sin(5
°) 𝑋2)

2(− sin(5°)𝑋1 + cos(5
°)𝑋2) 

−5(cos(5°) 𝑋1 + sin(5
°)𝑋2)𝑡 + ((−sin(5

°)𝑋1 + cos(5
°) 𝑋2 + 1)𝑡

2 − 3.9 (64) 

where 𝑡 varies within [0,5]. 

Fig. 3 shows the parabolic curve of the envelope function of 𝑔1(𝐗, 𝑡)  formed by the 

instantaneous limit-state surface at different time instants within the interval [0,5]. The contours 

of the analytical envelope functions of 𝐺1 and 𝐺2 are plotted in Fig. 4. The shaded area represents 

the system failure region.  

In order to explain clearly how the SOSPA method works, we only show the details for 𝑔1(𝐗, 𝑡). 

First, the MPP of the envelope function at 𝑡̃ is obtained using sequential EGO. The iteration history 

is shown in Table 1. Once the iteration is convergent, the MPP is found at (−1.0714,−3.1172)T. 

------------------------------- 
Place Fig. 3 here 

------------------------------- 

Fig. 3 Envelope function formed by instantaneous limit-state surfaces 

------------------------------- 
Place Fig. 4 here 

------------------------------- 

Fig. 4 System extreme limit-state function 
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The probabilities of failure for 𝑔1 and 𝑔2 from SOSPA are 𝑝𝑓1 = 6.0040 × 10−4 and 𝑝𝑓2 =

7.2248 × 10−4. The mean values of the two equivalent component responses 𝐙 = (𝑍1, 𝑍2)
T are 

then given by 𝐮z = 𝛃SOSPA = (−3.2387,−3.1855)T . The unit directional vectors of the two 

limit-state functions are 𝛂1 = (0.3254,0.9456)T and 𝛂2 = (0.0098,1.0)T. Thus, the correlation 

coefficient between 𝑔1 and 𝑔2 is 𝜌12 = 𝛂1
T𝛂2 = 0.9487, and the covariance matrix is obtained as 

follow. 

𝚺z = [
1 𝜌12
𝜌21 1

] = [
1 0.9487

0.9487 1
] 

Table 1 Iteration history of MPP search for 𝑔1 

------------------------------- 
Place Table 1 here 

------------------------------- 

The probability of system failure from SOSPA is 𝑝𝑓𝑠 = 1 − 𝑅𝑠 = 9.4747 × 10−4 . When 

FORM is used, the covariance is the same as 𝚺z , and the mean values of the two equivalent 

component responses are below 

𝐮z = 𝛃FORM = (−3.2963,−3.2079)T 

The probability of system failure from FORM is 𝑝𝑓𝑠 = 8.3738 × 10
−4. The MCS solution 

with a sample size of 106 is also obtained. For MCS, the time interval [0,5] is evenly discretized 

into 100 points. The total number of function calls is therefore 2 × 108. The results are shown in 

Table 2 where the errors calculated by Eq. (62) are given in brackets. Table 2 shows that SOSPA 

is much more accurate than FORM which produces a large error due to the nonlinearity of the 

envelope functions. However, the total function calls of FORM and SOSPA are 365 and 410, 

respectively, showing FORM is more efficient. 

Table 2 Probability of system failure in Example 1 
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------------------------------- 
Place Table 2 here 

------------------------------- 

4.2 Example 2: A roof truss structure 

A roof truss problem is modified as our second example shown in Fig. 5 [39]. The top boom 

and all the compression bars are made of concrete while the bottom boom and all the tension bars 

are made of steel. The bars bear a nonstationary Gaussian process whose autocorrelation 

coefficient function is given by  

𝜌(𝑡1, 𝑡2) = exp [− (
𝑡1 − 𝑡2
6

)
2

] (65) 

𝐴𝐶  and 𝐸𝐶 are the cross-sectional area and elastic modulus of the concrete bars, respectively. 𝐴𝑆 

and 𝐸𝑆  are the cross-sectional area and elastic modulus of the steel bars, respectively. All 

parameters are independent and are listed in Table 3.  

------------------------------- 
Place Fig. 5 here 

------------------------------- 

Fig. 5 A roof truss 

Table 3 Distribution of random variables 

------------------------------- 
Place Table 3 here 

------------------------------- 

The perpendicular deflection of the roof peak node is calculated by  

∆𝐶 =
𝑞𝑙2

2
(
3.81

𝐴𝐶𝐸𝐶
+
1.13

𝐴𝑆𝐸𝑆
) (66) 
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A failure occurs when the perpendicular deflection ∆𝐶 exceeds 1.6 cm at any instant of time 

period [0,10]. The limit-state function is then defined by 

𝑔1(𝐗, 𝑡) = 0.016 −
𝑞𝑙2

2
(
3.81

𝐴𝐶𝐸𝐶
+
1.13

𝐴𝑆𝐸𝑆
) (67) 

The second failure mode is that the internal force of one bar exceeds its ultimate stress. The 

internal force of the bar is 1.185𝑞𝑙, and the ultimate strength of the bar is 𝑓𝐶𝐴𝐶 , where 𝑓𝐶  is the 

compressive stress of the bar. The second limit-state function is then given by 

𝑔2(𝐗, 𝑡) = 𝑓𝐶𝐴𝐶 − 1.185𝑞𝑙 (68) 

The third failure occurs when the internal force of another bar 0.75𝑞𝑙 exceeds its ultimate 

stress 𝑓𝑆𝐴𝑆, where 𝑓𝑆 is the tensile strength of the bar. Therefore, the third limit-state function is 

formulated by 

𝑔3(𝐗, 𝑡) = 𝑓𝑆𝐴𝑆 − 0.75𝑞𝑙 (69) 

The time period [0,10] years is evenly discretized into 𝑁 = 50 points. With Eq. (65), the 

50 × 50  autocorrelation coefficient matrix 𝚺  of random process 𝑞  is obtained. The most 

significant five eigenvalues of 𝚺 are 35.54, 11.90, 2.24, 0.28, and 0.03. We use EOLE to generate 

the series expansion of 𝑞(𝑡) and only keep the first five orders. 

 SOSPA produces mean vector of the equivalent component responses: 

𝛍𝑧 = (−2.6681,−3.4056,−2.7416)T 

and the covariance matrix is as follows: 

𝚺z = [

1 𝜌12 𝜌13
𝜌21 1 𝜌23
𝜌31 𝜌32 1

] = [
1 0.1564 0.2824

0.1564 1 0.0375
0.2824 0.0375 1

] 

The probability of system failure from SOSPA is 𝑝𝑓𝑠 = 7.1017 × 10
−3. 
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FORM and MCS are also used, and the sample size of MCS for each component is  

5 × 108. The results from three methods are given in Table 4, showing that SOSPA has the higher 

accuracy than FORM with less efficiency.  

Table 4 Probability of system failure in Example 2 

------------------------------- 
Place Table 4 here 

------------------------------- 

4.3 Example 3: A Function Generator Mechanism System 

Fig. 6 shows a function generator mechanism system, which can achieve a desire motion. This 

system consists of two function generator mechanisms [40]. 

------------------------------- 
Place Fig. 6 here 

------------------------------- 

Fig. 6 A Function Generator Mechanism System 

Mechanism 1 is a four-bar linkage mechanism with links 𝐵1, 𝐵2, 𝐵3, and 𝐵4, and it generates 

a sine function. Its motion error is the difference between the actual motion output and the required 

motion output. It is defined as 

𝜀1(𝐗1, 𝛾) = 𝜅𝑎(𝐗1, 𝛾) − 𝜅𝑑(𝛾) (70) 

where 𝐗1 = (𝐵1, 𝐵2, 𝐵3, 𝐵4) and links 𝐵2 and 𝐵5 are welded together. The two input angles satisfy 

𝛾 = 62∘ + 𝜃 (71) 

From the mechanism analysis, 𝜅𝑎(𝐗1, 𝛾) and 𝜅𝑑(𝛾)  can be obtained by 

𝜅𝑎(𝐗1, 𝛾) = 2 arctan(
−𝐸1 ± √𝐸1

2 + 𝐷1
2 − 𝐹1

2

𝐹1 − 𝐷1
) (72) 

and  
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𝜅𝑑(γ) = 60° + 60° sin (
3

4
(γ − 97°)) (73) 

where 𝐷1 = 2𝐵4(𝐵1 − 𝐵2𝑐𝑜𝑠𝛾) , 𝐸1 = −2𝐵2𝐵4𝑠𝑖𝑛𝛾 , and 𝐹1 = 𝐵1
2 + 𝐵2

2 + 𝐵4
2 − 𝐵3

2 −

2𝐵1𝐵2𝑐𝑜𝑠𝛾. 

Mechanism 2 is the other four-bar linkage mechanism with links 𝐵1, 𝐵5, 𝐵6, and 𝐵7, and it 

generates a logarithm function. The motion error is given by 

𝜀2(𝐗2, 𝜃) = 𝜂𝑎(𝐗2, 𝜃) − 𝜂𝑑(𝜃) (74) 

where 𝐗2 = (𝐵1, 𝐵5, 𝐵6, 𝐵7). 

𝜂𝑎(𝐗2, 𝜃) = 2 arctan(
−𝐸2 ± √𝐸2

2 + 𝐷2
2 − 𝐹2

2

𝐹2 − 𝐷2
) (75) 

𝜂𝑑(𝜃) = 60
°log10

[(𝜃 + 15°) 60°⁄ ]

log10 2
(76) 

where 𝐷2 = 2𝐵7(𝐵1 − 𝐵5𝑐𝑜𝑠𝜃) , 𝐸2 = −2𝐵5𝐵7𝑠𝑖𝑛𝜃 , and 𝐹2 = 𝐵1
2 + 𝐵5

2 + 𝐵7
2 − 𝐵6

2 −

2𝐵1𝐵5𝑐𝑜𝑠𝜃. 

Mechanism 1 is considered reliable if {𝑒2 < 𝜀1(𝐗1, 𝛾) < 𝑒1}, where 𝑒1 and 𝑒2 are allowable 

motion errors with 𝑒1 = 1.4 and 𝑒2 = −0.8. When the motion error is positive, the limit-state 

function is defined by 

𝑔1(𝐗1, 𝛾) = 𝑒1 − 𝜀1(𝐗1, 𝛾) (77) 

As for the negative motion error, the limit-state function is given by 

𝑔2(𝐗1, 𝛾) = 𝜀1(𝐗1, 𝛾) − 𝑒2 (78) 

Similarly, the limit-state functions of mechanism 2 are as follows: 

𝑔3(𝐗2, 𝜃) = 𝑒3 − 𝜀2(𝐗2, 𝜃) (79) 

𝑔4((𝐗2, 𝜃)) = 𝜀2(𝐗2, 𝜃) − 𝑒4 (80) 
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in which 𝑒3 = 1.0 and 𝑒4 = −2.4. The random variables are given in Table 5. The mechanism 

system performs its intended functions over an interval of  [𝜃0, 𝜃𝑠]= [45
°, 95°]. The system is a 

series system with four components (limit-state functions).  

Table 5 Parameters in Example 3 

------------------------------- 
Place Table 5 here 

------------------------------- 

Table 6 shows the results. It indicates that the accuracy of SOSPA is in general better than 

FORM. However, both methods produce almost identical results for 𝑝𝑓2 and 𝑝𝑓4. The reason is 

that the extreme values of two corresponding limit-state functions occur at the beginning of the 

time period (at 45°). Thus, the Hessian matrices of the two envelope functions are not accurate, 

and SOSPA is not accurate for 𝑝𝑓2 and 𝑝𝑓4. Since the two probabilities of component failure are 

much smaller than the other two probabilities, their effect on the probability of system failure is 

insignificant.  

Table 6 Probability of system failure in Example 3 

------------------------------- 
Place Table 6 here 

------------------------------- 
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5. CONCLUSION  

The proposed time dependent system reliability method predicts system reliability with a 

second order approximation. It is therefore in general more accurate than the first order 

approximation method. But it is less efficient than the latter method due to the need of second 

derivatives.  

The new method converts a time dependent problem into a time independent problem by using 

the envelope function or the extreme value of a limit-state function over the time span under 

consideration. The most probable point (MPP) of the envelope function is found with the help of 

efficient global optimization. Then the envelope function is approximated at the MPP with its 

gradient and Hessian matrix. The reliability of each component is calculated by the second order 

saddlepoint approximation, and the dependencies between component responses are considered 

with the first approximation for the sake of efficiency. Once the estimated marginal component 

distributions and component correlations are available, the joint distribution of all the component 

responses is formed by a multivariate normal distribution, which leads to a fast evaluation of the 

system reliability. 

The proposed envelope method works well if the envelope function is convex. The global MPP 

of the envelope function may not be found if the envelope function has multiple MPPs. For this 

case, the MPP search may start from different instants of time, and then the worst-case MPP is 

used. The proposed method does not work for a special case where the extreme value of a limit-

state function occurs at the beginning or end of the period of time under consideration, and the 

reason is that the derivations of the Hessian matrix of the envelope function are for the case where 

the extreme value occurs inside the period of time. 
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Out future work will address the above two issues. The proposed method can also be further 

extended to time and space dependent problems where random processes and random fields are 

also involved.  
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APPENDIX: Accuracy of Multivariate Normal Integration 

The numerical integration of the multivariate normal probability in Eq. (50) is often a 

difficult problem if the dimension is high [35]. Here we provide two examples to show the 

performance of the numerical integration of multivariate normal probability. 

The first example is Example 1 in Sec. 4. The mean values of the two equivalent component 

responses are 𝛍 = (−3.2963,−3.2079)T, and the covariance matrix is 𝚺 = [
1 0.9487

0.9487 1
]. 

This is a low-dimensional problem. We have provided the result from the numerical integration 

method 𝑝𝑓𝑠 = 8.3737 × 10
−4 . The results from MCS with a sample size of 108  is 𝑝𝑓𝑠 =

8.3702 × 10−4 . The difference between the two probabilities is 0.04%, indicating the good 

accuracy of the numerical integration method. 

Example 2 involves a time-dependent problem with the limit-state function 

𝑔(𝑡) = −4 + 𝑈1 cos(𝑡) + 𝑈2 sin(𝑡) (81) 

where 𝑡 ∈ [0,2π] . 𝑈1  and 𝑈2  are standard normal variables. 𝑔(𝑡)  is a stationary Gaussian 

process with a mean of −4 and a autocorrelation coefficient function 𝜌(𝑡1, 𝑡2) given by 
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𝜌(𝑡1, 𝑡2) = cos(𝑡1 − 𝑡2) (83) 

If 𝑡 ∈ [0,2π] is evenly discretized into 500 points, then 𝑔(t) is discretized into 500 random 

variables 𝑔𝑖, 𝑖 = 1,2, … 500. With the discretization, Eq. (2) can rewrite as  

𝑅 = Pr(⋂𝑔𝑖(𝑿, 𝑡𝑖)

500

𝑖=1

≥ 0, ∀𝑡𝑖 ∈ [𝑡0, 𝑡𝑠]) (84) 

The normal integration is 500 dimensional. The mean vector 𝛍 = (𝜇𝑔𝑖)𝑖=1,2,…,500
T

  where 

𝜇𝑔𝑖 = −4. The covariance matrix is 𝚺𝑔 = (𝜌𝑖𝑗)𝑖,𝑗=1,2,…,500  where 

𝜌𝑖𝑗 = {
cos(𝑡𝑖 − 𝑡𝑗) 𝑖𝑓 𝑖 ≠ 𝑗 

1                    𝑖𝑓 𝑖 = 𝑗
(85) 

The time-dependent probability of failure 𝑝𝑓 = 1 − 𝑅. 

For this high-dimensional normal integration, the commonly used method is the Quasi MCS 

method [37]. The analytical solution exists for this problem and is given in Table A.1.  If a 

special treatment is implemented for this problem, for example, the dimension reduction by 

eliminating the time instants where the Pr(𝑔𝑖(𝑿, 𝑡𝑖) ≥ 0) is low, the error could be reduced as 

shown in Table A.1. 

Table A.1 Results of high dimensional normal integration 

Method Exact Quasi MCS method 
Dimension reduction 

method 

𝑝𝑓𝑠 3.3546 × 10−4 
4.3109 × 10−4 

(28.5%) 
3.3370 × 10−4 

(0.5%) 
 



32 

 

The two examples indicate that a low dimensional (≤ 3) normal integration can be computed 

by numerical integration with good accuracy. A higher dimensional normal integration may not 

be accurate. Obtaining high accuracy of higher dimensional normal integrations deserves further 

investigations. 
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Table 1 Iteration history of MPP search for 𝑔1 

 

Iterations 𝐮∗ 𝑡̃ 

1 (−6.1450,−1.7052)T 1.4735 

2 (−2.1526,−2.9252)T 1.9689 

3 (−1.3877,−3.0305)T 2.1483 

4 (−1.1631,−3.0878)T 2.2063 

5 (−1.0941,−3.1096)T 2.2251 

6 (−1.0714,−3.1172)T 2.2314 

 

 

Table 2 Probability of system failure in Example 1 

Methods SOSPA FORM MCS 

𝑝𝑓1 
6.0040 × 10−4 

(2.81%) 
4.8989 × 10−4 

(16.10%) 
5.840 × 10−4 

𝑝𝑓2 
7.2248 × 10−4 

(3.28%) 
6.6864 × 10−4 

(10.50%) 
7.470 × 10−4 

𝑝𝑓𝑠 
9.4747 × 10−4 

(0.89%) 
8.3738 × 10−4 

(12.40%) 
9.560 × 10−4 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔1 127 112 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔2 283 253 108 

Total 410 365 2 × 108 
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Table 3 Distribution of random variables 

Variable 

(Unit) 
Mean 

Standard 

deviation 
Distribution 

𝑞(N/m) 14000(0.2 sin(0.25𝑡) + 0.8) 500 
Nonstationary 

Gaussian process  

𝐿(m) 12 0.12 Normal 

𝐴𝑆(m
2) 9.010−4 9.010−5 Normal 

𝐴𝐶(m
2) 510−2 510−3 Normal 

𝐸𝑆(N/m
2) 21011 21010 Lognormal 

𝐸𝐶(N/m
2) 31010 3109 Lognormal 

𝑓𝑆(N/m
2) 3.35108 6.7107 Normal 

𝑓𝐶(N/m
2) 1.34107 2.68106 Normal 

 

 

 

Table 4 Probability of system failure in Example 2 

Methods SOSPA FORM MCS 

𝑝𝑓1 
3.8140 × 10−3 

(3.74%) 
3.4370 × 10−3 

(13.35%) 
3.9623 × 10−3 

𝑝𝑓2 
3.3010 × 10−4 

(2.16%) 
3.0768 × 10−4 

(8.81%) 
3.3740 × 10−4 

𝑝𝑓3 
3.0569 × 10−3 

(2.41%) 
2.8297 × 10−3 

(9.66%) 
3.1324 × 10−3 

𝑝𝑓𝑠 
7.1017 × 10−3 

(2.78%) 
6.4885 × 10−3 

(11.20%) 
7.3049 × 10−3 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔1 306 188 5 × 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔1 599 363 5 × 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔1 592 538 5 × 108 

Total 1797 1089 1.5 × 109 
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Table 5 Parameters in Example 3 

Variable  

(Unit) 
Mean 

Standard 

deviation 
Distribution 

𝐵1(mm) 100 0.3 Normal 

𝐵2(mm) 55.5 0.05 Normal 

𝐵3(mm) 144.1 0.05 Normal 

𝐵4(mm) 72.5 0.05 Normal 

𝐵5(mm) 79.5 0.05 Normal 

𝐵6(mm) 203 0.05 Normal 

𝐵7(mm) 150.8 0.05 Normal 

 

 

Table 6 Probability of system failure in Example 3 

Methods SOSPA FORM MCS 

𝑝𝑓1 
6.8663 × 10−3 

(1.12%) 
5.6273 × 10−3 

(18.94%) 
6.9440 × 10−3 

𝑝𝑓2 
6.1088 × 10−5 

(4.55%) 
6.1088 × 10−5 

(4.55%) 
6.430 × 10−5 

𝑝𝑓3 
2.5156 × 10−3 

(0.17%) 
2.0006 × 10−3 

(19.20%) 
2.520 × 10−3 

𝑝𝑓4 
4.3845 × 10−4 

(11.80%) 
4.3845 × 10−4 

(11.80%) 
4.970 × 10−4 

𝑝𝑓𝑠 
7.5580 × 10−3 

(1.11%) 
6.2230 × 10−3 

(18.60%) 
7.6430 × 10−3 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔1 179 124 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔2 398 288 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔3 320 210 108 

𝑁𝑐𝑎𝑙𝑙𝑠 of 𝑔4 479 369 108 
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Total 1376 991 4 × 108 

 

 

 

 

 
Fig. 1 Relationship between the worst-case limit-state function and envelope function 
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Fig. 2 Flowchart of time-dependent system reliability 
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Fig. 3 Envelope function formed by instantaneous limit-state surfaces 
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Fig. 4 System extreme limit-state function 

 

 
Fig. 5 A roof truss 
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Fig. 6 A Function Generator Mechanism System 

 


