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In this paper, we study a class of time-inconsistent terminal Markovian control prob-
lems in discrete time subject to model uncertainty. We combine the concept of the
sub-game perfect strategies with the adaptive robust stochastic control method to tackle
the theoretical aspects of the considered stochastic control problem. Consequently, as
an important application of the theoretical results and by applying a machine learning
algorithm we solve numerically the mean-variance portfolio selection problem under the
model uncertainty.
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We dedicate this paper to the memory of Tomas Bjork.

1. Introduction
The main goal of this study is to develop a methodology to solve efficiently

some time-inconsistent Markovian control problems subject to model uncertainty

*Corresponding author.
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in a discrete time setup. The proposed approach hinges on the following main
building concepts: first, incorporating model uncertainty through the adaptive
robust paradigm introduced in [Bielecki et all dZ_Qlﬂ), second, dealing with time-
inconsistency of the stochastic control problem at hand by exploiting the concept

of sub-game perfect strategies as studied in BJmk_&_MuLde (|2Ql_4|), third, devel-

oping efficient numerical solutions for the obtained Bellman equations by adopting
the machine learning techniques proposed in \Chen & Ludkovski dZD_L‘i)

There exists a significant body of work on incorporating model uncertainty (or
model misspecification) in stochastic control problems, and among some of the
well-known and prominent methods we would mention the robust control approach

d&m_&_sihmﬂd]gdh%_d Hansen et g,]“ZDD_d \Hansen & Sargendm ), adaptive
control (Chen & Gud L9£j Duncan et all |_Q0j Uﬂ)ﬂ Kumar & Varaiya 12 M
and Bayesian adaptive control (Kumar & yaralyﬂ U)_Ej . We refer the reader to
Bielecki et all (IM) for a relatively comprehensive literature review on this sub-
ject and their connection to the adaptive robust methodology used in this paper
and originally introduced in [Bielecki et all (IZOLQ) The adaptive robust methodol-
ogy of Bielecki et all (I@ﬁ) is an approach that solves (time-consistent) Markovian
control problems in discrete time subject to model uncertainty. The core of this
methodology was to combine a recursive learning mechanism about the unknown
model, with the Markovian dynamics of that model and with the time-consistent
nature of the control problem studied therein, which allowed to derive an ade-
quate system of recursive dynamic programming equations, which where dubbed
the adaptive robust Bellman equations that gave a solution to the original control
problem.

In all the above-mentioned methods, inherently the stochastic problems are
(strongly) time-consistent in the sense that the dynamic programming principle
holds_true. For an overview of the time consistency in decision making, cf. Bielecki
et al. (IZD_lé7 lZD_l_?_H) While lack of (strong) time consistency in decision making is
not necessarily an unacceptable feature, from stochastic control point of view it
may lead to undesirable properties that, in particular, may lack adequate numer-
ically tractable solutions. A good body of literature have been dedicated to time-
inconsistent stochastic control problems have been emerged in the recent years,

rimarily for continuous time setup. We refer the reader to (m, Chap. 2) and
m ) for a comprehensive literature review of time-inconsistent stochas-
tic control problems in discrete time. Broadly speaking, there are three avenues that
researchers followed in dealing with time-inconsistent Markovian control problems
(primarily in discrete time) when the underlying model is fully known:

(1) The pre-commitment approach emphasizes the global optimality, namely the
controller optimizes the expected objective functional at the initial time point
and sticks to the resulting strategy through the whole time period. In general,
such strategy will be time-inconsistent if it is not revised by the controller
afterwards. In the context of optimal portfolio selection, the authors of|[Li & Ng
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(IZDDd) and |Li & Zhod d29_0d) introduced an embedding technique to obtain a

pre-committed solution of the dynamic mean-variance optimization problem.
(2) The sub-game perfect approach, sometimes also called consistent planning
approach, is based on ideas rooted in game theory, where the time-consistent
strategy is derived by assuming that the investor is playing an optimization
e with future-self. This approach, originated in Strot4 (Il%ﬂ) Goldman
ﬁ@) and systemically stumn %‘Lﬁzﬁ @Qﬁﬂ [Ekeland & Pirvu
%) (in continuous time) leads to a specific notion of optimality (sub-game
perfection) which can be characterized in terms of respective dynamlc program-

% equations. In this regard, Basak & Chabakauri (lZQld

) were the first to apply and extend this approach to the mean-variance
problem. Some more different examples are investigated in IBjork et all (IZD_lAI),

Bannister et all (IM)

(3) By modifying the criteria as time evolves such that the dynamic programming
principle holds that has been studied, in various forms in [Bouchard et all 2!!1!1),

Cui et gl] 2012), Karnam et QLJ 2017)., |Feinstein & B]]dlgﬂ 2019), Kovacova
& Rudloff ).

It should be mentioned that only a selected number of publications on time-
inconsistency of stochastic control problems in continuous time setup were
mentioned here. Generally speaking, there is no one right method in addressing
the time-inconsistency, and each of these three approaches has its advantages and
drawbacks.

In this work, we are focusing on the sub-game perfect approach that is appropri-
ately formulated for the Markovian control problem with model uncertainty. As an
important application of the proposed general theory, we consider the mean-variance
portfolio selection problem under model uncertainty. Besides being an important
contribution of our paper, arguably, the classical mean-variance portfolio optimiza-
tion methodology is one of the most popular portfolio selection methodology among
managers of financial portfolios. Notably, majority of the above cited literature is
devoted to the mean-variance optimization problem.

It is well-documented that solving numerically stochastic control problems sub-
ject to model uncertainty is a challenging task, and classical numerical methods
cannot be successfully applied even to the simplest problems. In|Chen & Ludkovski
(@) the authors introduced a method, rooted in the machine learning methodol-
ogy, to deal with such problems in the context of an adaptive robust, time-consistent,
stochastic control problem. In the present work, we apply a similar computational

approach for solving the aforementioned mean-variance problem.

The paper is organized as follows. In Sec. 2] we formulate the time-inconsistent
Markovian control problem subject to model uncertainty, as well as, the correspond-
ing time-inconsistent adaptive robust control problem (see Sec.2]). The main theo-
retical developments of this work are presented in Sec.[3l Specifically, in this section,
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we propose and analyze the time consistent sub-game perfect approach to deal with
the adaptive robust control problem of Sec. 2.1l We derive the Bellman equations
for the sub-game perfect strategies; see Theorem Bl In Sec. Bl we study the
existence of sub-game perfect strategies. An illustrative example of our theoretical
results that is rooted in the classical Markowitz’s mean-variance portfolio theory, is
presented in Sec. @ Using machine learning methods, in Sec. Bl we provide numeri-
cal solutions of the example presented in Sec. @ Finally, in Sec. [6, we outline some
possible research directions and open problems.

2. Time-Inconsistent Markovian Control Problem with Model
Uncertainty

In this section, we state the underlying time-inconsistent stochastic control problem.
Let (€2,.%) be a measurable space, T' € N be a fixed time horizon, and let us denote
by 7 :={0,1,2,...,T}and 7' :={0,1,2,...,T —1}. In what follows, we implicitly
assume that all considered probabilities are defined on (€2,.%), and as usual Ep
will denote the expectation under a probability measure P. We let ® C R? be a
nonempty Borel set,* which will play the role of the known parameter space. We
consider a random process Z = {Z;, t € T} on (2,.%) taking values in R, and
we denote by F = (%, t € T) its natural filtration. We postulate that this process
is observed by the controller, but the true law of Z is unknown to the controller
and assumed to be generated by a probability measure belonging to a (known)
parameterized family of probabilities P(®) = {Py, 6 € ©}. For simplicity, we will
write Eg instead of Ep,. We denote by Py~ the measure generating the true law of
Z, and thus 6* € © is the unknown true parameter. We will assume that ©® # {6*},
namely we consider the case of a nontrivial model uncertainty.

We let A C RF to denote the set of control values. For technical reasons, such
as the existence of measurable selectors, we assume that A is finite, although ten-
tatively all stated results can be extended to A being a compact. An admissible
control process ¢ is an F-adapted process, taking values in A and we will denote by
A the set of all admissible control processes.

We consider a discrete time controlled dynamical system with the state process
X taking values in R™ and having the dynamics

X1 =SXe, 00, Z141), teT', Xo=uz9ecR", (2.1)

with S:R"™ x A x R™ — R™ a measurable mapping, and ¢ a control process. We
limit ourselves to the class of Markovian strategies only.

2In general, the parameter space may be infinite-dimensional, consisting for example of dynamic
factors, such as deterministic functions of time or hidden Markov chains. In this study, for sim-
plicity, we chose the parameter space to be a subset of R?. In most applications, in order to avoid
problems with constrained estimation, the parameter space is taken to be equal to the maximal
relevant subset of R?.
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The underlying uncertain control problem is
sup (Eg«[F(X7)] + G(Ee- [ X71])), (2.2)
peA
where F,G:R" — R are some given Borel measurable functions. Throughout, we
will assume that all expectations are well-defined.

Remark 2.1. Generally speaking, all results obtained in this paper can be extended
to a more general control problem of the form

sup (Eg- [F(X1)] + G(Eg- [H(X7)])),

peA
where H:R"” — R and G:R — R. For example, if H is a bijection, then putting
Y: = H(X}) reduces the problem to the case ([2.2). Otherwise, one can increase the
dimension of the state process and replace X; with (X, H(X;)). With slight loss of
generality, and gain in readability, we opted to focus on ([22]).

Example 2.1 (Mean-variance). A typical, and also practically important, exam-
ple is the mean-variance (MV) control problem, where X is a scalar valued process,
and F(z) = x — v2?, G(z) = ~a?, for some fixed weight v > 0. Sometimes 7 is
refereed to as risk aversion parameter. In this case, the stochastic control problem
at hand becomes
sup (Eg« (X7) — v Varg«(Xr)). (2.3)
peA
In Sec. @ we will return to this example in the context of portfolio selection problem.

Problem (2.2), in general, is time-inconsistent in the sense that the dynamic
programming principle fails; see, for instance, the discussion in [Shi & Cui (I&LZI)
and [Bjork & Murgggi (IM) Additionally, the parameter 8* is not known to the
controller, and thus problem (Z2]) cannot be solved as is. In the rest of the paper,
we address these two issues via time consistent adaptive robust sub-game perfect
approach. To achieve this, we first formally formulate an adaptive robust control
problem corresponding to (Z.2]) (see Sec.[21]). The solution to this problem, by anal-
ogy, can be called adaptive robust pre-commitment strategy. Hence, by similar argu-
ments to the case without model uncertainty this problem is time-inconsistent. To
overcome this, we proceed with time consistent adaptive robust sub-game approach
(see Sec. B). Finally, the adaptive robust method requires handling a double (sup-
inf) optimization problem at each time instance, yielding Bellman equations that
are intrinsically multi-dimensional. For these reasons, computing the solutions of
the corresponding control problem is a nontrivial task, and we address this issue
using machine-learning technique for the MV problem (see Sec. [).

2.1. Time-inconsistent adaptive robust control problem

We mainly follow here the developments presented in [Bielecki et all (2!!19), with
the key difference that herein the Markovian controls problems are inherently time-
inconsistent, and for this reason we only use Markovian strategies.
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A central building block in the adaptive robust approach is the recursive con-
struction of confidence regions for the unknown model parameter 0*. We refer to
Bielecki et all (|2Q1_7_a|) for a general study of recursive constructions of (approxi-
mate) confidence regions for time homogeneous Markov chains, while in Sec. [l we
provide a specific such recursive construction corresponding to the optimal portfo-
lio selection problem under uncertainty. Here, we just postulate that the recursive
algorithm for building confidence regions uses an R%valued and observed process,
say (Cy, t € T'), satisfying the following abstract dynamics:

Ct_;,_l - R(t, Ct, Zt+1), t 6 T/, CO - CO, (24)

where R: 7' x RY x R™ — R? is a deterministic measurable function, and ¢y € ©.
Note that, given our assumptions about process Z, the process C' is F-adapted.
Usually C} is taken to be a consistent estimator of 6*.

Now, we fix a confidence level « € (0,1), and for each time ¢t € 7', we assume
that an (1 — a)-confidence region, say ©; C R?, for 6%, can be represented as

@t = T(t, Ct), (25)

where, for each t € 7/, 7(t,-) : R — 29 is a deterministic set valued function, with
29 denoting the set of all subsets of ©. Note that in view of ([Z4]) the construction of
confidence regions given in ([Z3)) is indeed recursive. In our construction of confidence
regions, the mapping 7(t, -) will be a measurable set valued function, with compact
values. The important property of the recursive confidence regions constructed in
Sec. @ is that lim;—,o, ©; = {6*}, where the convergence is understood Py~ almost
surely, and the limit is in the Hausdorff metric. This is not always the case, and
in Bielecki et all (2017a) it is shown that under some general assumptions the
convergence holds in probability. The sequence Oy, t € 7' represents learning about
0* based on the observed history up to time ¢ € 7. We introduce the augmented
state process Y; = (X4, Cy), t € T, and the augmented state space

Ey =R" x R?,

and we denote by £y the collection of Borel measurable sets in Fy. In view of the
above, the process Y has the following dynamics:

}/iH*l = G(tv)/tv Pt Zt+1)7 te Tl?
where G is the mapping G: 7’ X Fy x A x R™ — Ey defined as
G(t7y7a7 Z) - (S(:E7a7 Z)7R(t7 C7 Z))7 (2.6)

where y = (z,¢) € Ey.
A control process ¢ = (¢, t € T') is called Markovian control process if (with
a slight abuse of notation)

o1 = pe(Y2),

where (on the right-hand side) ¢;: By — A, is a measurable mapping.
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From now on, we constrain the set A of admissible control processes to the set
of Markovian control processes. For any admissible control process ¢ and for any
t € 7', we denote by ¢! = (px, k =t,...,T — 1) the “t-tail” of ¢; in particular,
@ = . Accordingly, we denote by A? the collection of t-tails (?; thus, A° = A.

Let 15,5 :Ey — O be a measurable mapping (Knightian selector), and let us
denote by ¢ = (U, t € T') the sequence of such mappings, and by ¢ = (i, s =
t,...,T—1) the t-tail of the sequence 1. The set of all sequences z/VJ, and, respectively,
¥, will be denoted by ¥ and WU, respectively.

Similarly, we consider the measurable mappings ¥;:Fy — ©, such that
Yi(x,¢) € 7(t,c¢). This, in particular, implies that 1:(X:, C;) € ©;. Correspond-
ingly, we define the set of all such selectors as W, the set of all sequences of such
mappings by ¥ = ¥y x --- x ¥p_1, and the set of t-tails by Wt Clearly, ¥ C 0.
Moreover, it € W' if and only if " € U and ¢ (ys) € 7(s,¢s), s=1t,...,T — 1.

Next, for each (t,y,a,0) € T’ x Ey x A x ©, we define a probability measure
on &y, given by

Q(B |t,y,a,0) =Py(Zi11 € {2:G(t,y,0a,z) € B})
= Po(G(t,y,a,Z1+1) € B), (2.7)

for any B € & . Throughout we assume that:

(A1) For every t € T and every a € A, the measure Q(dy’ | t,y,a,0) is a Borel
measurable stochastic kernel with respect to (y, 6).

This assumption will be satisfied in the context of the mean-variance problem dis-
cussed in Sec. [

Using Tonescu-Tulcea theorem (cf. Bauerle & Riede (Im, Appendix B)), for
every t € T', control process ¢ € Af, ¢ € W' time t state y; € Ey, we define
probability measure Qi’jﬁ on the concatenated canonical space X'_, 11 By as follows:

;’:d;(Bt-&-l X oo X BT)

T
= [ [T Qe L s ) ). (29)

Br y=t+1

Correspondingly, we define the family of probability measures Qi,t = {Q;’}f, (RS
Ut} Here, and everywhere below, to simplify the notations, we simply write ¢ € A?,
instead of ' € A?, and implicitly assume that the processes have the correct tail
dimension.

Analogously we define the set Q;},o = {Q;ﬁ’o, ¢ € U}. In Remark 22 we provide

a game oriented interpretation of mappings ¥ and 1/?, as strategies played by the
nature seen as a Knightian adversary of the controller.
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The time inconsistent strong robust control problem is then given as

sup inf (Eq(F(X7))+ G(Eqg(Xr))). (2.9)
peAQeQs

The corresponding time inconsistent adaptive robust control problem is

sup inf (Eq(F(Xr))+ G(Eg(X1))). (2.10)
PEAQEQY

Remark 2.2. The strong robust control problem is essentially a game problem
between the controller and his/her Knightian adversary — the nature, who may
keep changing the dynamics of the underlying stochastic system over time. In this
game, the nature is not restricted in its choices of model dynamics, except for the
requirement that 1(Y;) € ©, and each choice is potentially based on the value
of Y;. On the other hand, the adaptive robust control problem is a game problem
between the controller and the nature, who, as in the case of strong robust control
problem, may keep changing the dynamics of the underlying stochastic system over
time. However, in the latter game, the nature is restricted in its choices of model
dynamics to the effect that 1;(Y;) € 7(¢, Cy).

3. Time Consistent Adaptive Robust Sub-game Approach

In general, the dynamic programming principle proved in [Bielecki et all (Im, Sec.
2.2.1), does not apply to problem (@ZI0), which is the nature of the time inconsis-
tency of this problem. In particular, the backward induction procedure (or dynamic
programming principle) from [Bielecki et all (IAle, Sec. 2.2.1), cannot be used, in
general, to solve problem (ZI0]). Consequently, with no dynamic principle at hand,
practically speaking such problems cannot be solved numerically, especially when
the number of steps is large. Thus, instead of dealing with problem (2.10) as is, we
adopt the concept of sub-game perfect controls of [Bjork & Murgggi (w) to our
setup, which we will transform (2ZI0) into a time consistent problem that can be
solved by using backward induction.
For convenience, for ¢ € A?, y = (z,¢), and for ¢y € ¥ we define

t t41
Qo = () et o),

where (0;'*1) := (0,%41,...,%7). In what follows, we will use similar notation
(a;b) for concatenation of vectors a, b.
We define the time-t time inconsistent criterion as

Ti(y, ", 0") = Ege o (F(X1)) + G(Ege.s (X)),
y=(z,c) € By, teT, 3
and let
Jr(y) = F(z) + G(z), y=(z,c) € By.
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Definition 3.1. The pair of strategies (@, zZ) is called sub-game perfect if

max inf Ji(y, (a; @), (0;901)) = Ly, &, 00, (3.2)
acA fer(t,c)

for any y = (x,¢) € By, and t € T', with the convention that (a;3?) = a, and

(6;97)
Remark 3.1. Similarly, one can define the sub-game perfect strategies for the
strong robust case, by replacing set 7(¢,¢) in Definition Bl with ©. Due to the

imposed model assumptions, in particular Assumption (A2) below, all obtained
results hold true by similarity in the strong robust case.

0.

Please note that Definition BIlis not a definition of equilibrium strategies in any
game-theoretic sense, as we do not study any sort of game-theoretic equilibrium per
se, even though we may think of the controller and the nature as two players. This
definition is inspired by the concept of the sub-game perfect Nash equilibrium that
was applied in the context of time-inconsistent control problems, as presented for
example inBjork & Murgoci (2014, Definition 2.2). However, sub-game perfect Nash
equilibrium is not really the same as the classical game-theoretic concept of Nash
equilibrium, and should not be interpreted as such.

The idea of Definition Bl is to view the problem in the embedded sequential
optimization terms: at each point of time there are two decision makers who chose
decisions impacting evolution of the system: the controller and the nature. The two
decision makers acting at time ¢ € 7’ know that all the pairs of decision makers

coming after them will use the control (¢'*!, 1;“’1). Given such knowledge, the two
time-¢ decision makers optimize over A and 7(t,¢), respectively, so generate their
decisions. Following up on item (2) from the Introduction, we might interpret this
as the game played by the two players, the controller and the nature, at time-t,
with their future selves.

Throughout, we will use the notation

fory = (z,¢) € Ey, t € T' and some (&', 9") pair of sub-game perfect strategy. We
remark that due to the Definition [B.I] and Theorem [B.1] proved below, the value of
Vi(y) does not depend on the choice of the sub-game perfect strategy. We will also
show that there exists a sub-game perfect pair of strategies to the original stochastic
control problem (ZI0), and thus V;(y) is well-defined.

Note that, for any ¢t € A?, ¢t € ' we have that

i gty .
o Je(y, ", (0;4°77)) QEIQDE’ZP+<EQ(F<XT)) + G(Eq(X1)))
For y = (z,¢) € By, t € T', o € A', and ¢ € ¥" we denote
FPUW) = Bq s FOXr), g7(0) i= Bgo (X1),
) = F@), ¢y ==,

2150003-9
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and for y = (z,¢) € By, and t € T, we put g;(y) = gf’d’(y). In addition, we define
the following integral operator:

Quif = )Rty a.0),

where @ is given by ([2.7).
Clearly,

PP ) = QAN 98 (y) = Qg gty
With this at hand, we have the following counterpart of |BJQLk_&_Murde (IZQlA],

Lemma 3.2).

Lemma 3.1. For y = (z,¢) € Ey, a € A,0 € 7(t,c), and t € T, the following
identity holds:

Ty, (a; ™), (0:90171) = QU Ter (0! Y
@,

[Qy t (G © gt+1) G(QZ fgf+1f)]

with the convention that
JT(vavaT) :JT(y) :F(I)+G(I), Yy = (.’,E,C) 6E1Y~
Proof. We have

QZ:th+1('7 0, P) = Qy tft+ + Qy t (G ° gt+1)

and
t+1 ,9; t+1 a; t+1 (6; t+1
Ty, (a; @), (05 90H1)) = fLoe PO ) Lo gglme 0T ()
:Q ft+1 (QZ fgf_,_df)

This proves the result. O

Now we are in the position to prove the first main result about the backward
recursion for V; in terms of the corresponding Bellman equations.

Theorem 3.1. A pair (@, 1;) of Markovian strategies is a pair of sub-game perfect
strategies if and only if

Vi(y) =max inf (QyiVie = [QyF(G 0 Gi1) = GQpiges)):  (33)

9e(y) = Qwr7wt9t+17 (3.4)
Vr(y) = F(z) + G(2), (3.5)
for any y = (x,¢) € By, andt € T'.
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Proof. (=) In view of Lemma B3] we have that
Joly, (@3, 6:91) = Qs (- 304 — (@46 0 g77%)
— Qg7
= QZ:thH - [QZ:?(G 0 Git1) — G(ijfﬁm)],
y=(x,c) €Ey, acA, 0er(tc), teT'.
Thus,

_ £ +1 0 Tt+1
Vi(y) = Teaffaelfb@‘]t(( ), (0;4"))

. a,l a,f ~ a,0~
= glea}%fg,c)@y,t Vigr — [Qy,t (Gogit1) — G(Qy,t ge+1)])s

y=(z,c) €BEy, acA, 0er(tc), teT.
(<) We start with ¢ = T'— 1. Note that V@ = Jr. Thus, for y = (z,¢) € Ey, we

have

. a,l a,l - a,f .
Vr-a(y) = aea 067(1?51,c)(Qy7T—1VT —1Qyr1(Gogr) = GQyr_197)])

_ Qfﬂ:_lfy)va—l(y)V [QtpT 1() - 1(y)(G o gr)
G@p " V).
Using Lemma B.1] we deduce

Vr_i(y) = gleaj(eerg%£1,c) Jr-1(y,a,0) (3.6)

= Jra(y, gr—1,r1) = Jra(y, @ LT, (3.7)
which verifies 32) for t =T — 1 and pr—1 = pr—1 and 1/)T,1 =Yr_q.
Next, we let t = T'— 2. Then, using ([B.6) we produce

. a,f a,l .
Vr_a(y) = Igleaj(067(1;1{2)6)(Qy,T—2VT—1 - [Qy 7-2(Gogr1) — G<Qy,T—2gT—1)])

_ QSTT zéy) A — 2(y)V B [Qf,TTfféy),waz(y)(G o gr_1)

Q5 g )

Again, in view of Lemma [B.1] we obtain

Vir_a(y) = Igleafee(i%{u) Jr—a(y, (a; o7—1), (0;97_2)) (3.8)

= Jr—2(y, (¢r—2;¢7-1), (Pr—2;9r-1)) = Jr_1(y, " 2,07 ?), (3.9)

which verifies 2) for t =T — 2 and 372 = @72 and 72 = ¢7~2. Proceeding
in the analogous way for t =T — 3,...,0 we complete the proof. |
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3.1. FExistence of sub-game perfect strategies

In this section, we study the existence of a pair of sub-game perfect strategies. To
this end, in addition the model assumptions from Sec.2land the Assumption (A1),
we make the following standing assumptions:

(A2) The set © is a compact subset of R
(A3) The probability measures in the family

{Q(-t,y,a,0), te T, ye Ey,a€ A, 0 € ©}
are equivalent.

We will show that these assumptions are satisfied in the example studied in Sec. El
We note that Assumption (A3) could be alternatively formulated in terms of the
probability measures generated by Z%, 6 € @©.

Next we give the main result of this section.

Theorem 3.2. The functions Vi, t € T, are lower semi-analytic (L.s.a.), and there
exists a pair of sub-game perfect strategies.

Proof. We will prove existence of sub-game perfect strategies by applying Theo-
rem [B.1] and show, by backward inguction7 that for any t € 7/, y € Ey, there exist
universally measurable ¢ (y) and ¢:(y, ¢¢(y)) such that

Vily) = Q% UV — QY 2 (G oGip1) +G(QTY 1ptng) (3.10)

and Vi (y) is Ls.a., with gy 1 = gfff, and where we recall that Vi(y) := Ji(y, ¢*, ¥t)
for some pair of sub-perfect strategies.
In view of Lemma [B.I] we have that for t =7 — 1

: a,l
VT*l(y):%leai(aer(l;lffl,c)( T VT — QyT 1(G09T)+G(QyT 197)),

where we put gr(y) = « which is Borel measurable in y.

Hence, according to our assumptions, G o gr and Vp(y) = F(z) + G(z) are
also Borel measurable. By Assumption (A1), and using Bertsekas & Shrevel (Im,
Proposition 7.29), the following functions:

QLY \Vr, QU _((Gogr), G(QY5_.gr)

are Borel measurable in (y, a,f). Therefore, the function

Vr_1(y,a,0) == QU5 Vr — QU1 (G o gr) + G(QUT_13r)

is Borel measurable. Moreover, for any b € R, the set {(y,a,0) € Ey x A x 7(T —
1,¢):Vr_1(y,a,0) < b)} is a Borel measurable subset of Fy x A x 7(T — 1, ¢). Since
Ey x Ax 7(T —1,c¢) is a closed subset of Ey x A x ®, which is a Polish space (and
thus a Borel space), then it is a Borel subspace. In turn, by [Bertsekas & Shreve

, Proposition 7.36), the set {(y, a,0) € By x Ax7(T—1,¢) : Vr_1(y,a,0) < b)}
is analytic. Consequently, the function Vy_(y, a, ) is Ls.a.
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By adopting the notations in Bertsekas & Shrevd (Ilm, Proposition 7.50), we

writeP

X=Ey xA=R"xRIx A, z=(y,a),

Y =0, y=90,
D= U {(y,a)} x 7(T —1,¢),
(y,a)EEy XA

f(z,y) = Vr_1(y, a,0).

Recall that in view of the prior assumptions, X and Y are both Borel spaces. D is
a closed set and therefore analytic, and the cross section D, = D¢, ,) = {6 € © :
(y,a,0) € D} is given by D, ) = 7(T — 1, ¢). Hence, by Bertsekas & Shreve de_?ﬁ,

Proposition 7.47), the function

V'lf—l(yva) = 067(%“1{1 c) ‘V/Tfl(yvave)v (yva) S EY X Av

is l.s.a. Moreover, in view of Bertsekas & Shrevd (IlBﬂ,}’roposition 7.50), for any

e > 0, there exists an analytically measurable function ¢5._,(y,a) such that

B Vi (y,a) +e if Vi (y,a) > —o0,
VT*l(yvavw%—l(yva)) S 1

- if Vi (y,a) = —oc.

~1
Therefore, for any fixed (y,a), we obtain a sequence {07, (y,a), n € N}, such that

nh—>H;o VT—l(yv a, w%—l(y’ a)) = Vif71 (ya a)'

1
By Assumption (A2), there exists a convergent subsequence {¢;* | (y,a),k € N},

such that its limit 4., (y, a) satisfies

VT—l (ya a, J;fl(yv a)) = V’I:'Ll(ya a)'

Clearly, Vz_1(y) = maxaea Vi (y,a). Next, for every fixed a € A, any b € R, we
write the following complement of the upper level set as

{y€ By :Vi_1(y,a) <b} = {y € By : (y,a) € V' ((—o0,b))}
= projg, {V75' (=00, b)) N (By x {a})}.

As a projection of an analytic set, such set is analytic, and moreover, VT*_l (y,a) is
Ls.a. in y for every a € A. Thus, we get that Vr_;(y) is L.s.a. as being the maximum
of a finite collection of 1.s.a. functions.

PThe notation X and Y representing the relevant Borel spaces, should not be confused with the
notation X and Y representing the relevant processes.
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For every y € Ey, define &, (y) = argmax,c 4{V7_,(y,a) = Vr_1(y)}. Note
that the set A is finite. Hence, we write

{y € By : Vi (y,a) =Vr1(y)} ={y € By :Vi_,(y.a) = Vp_1(y) = 0}.

Since Vif_l(y,a) is L.s.a. in (y,a), then it is analytically measurable and univer-
sally measurable in (y,a). Moreover, it is universally measurable in y for every a.
Similarly, the function Vpr_1(y) is universally measurable in y as well. We get that
the set {y € By :V;_,(y,a)} is universally measurable for every a € A. Thus, the
function @i, (y) is universally measurable and it is the optimal selector. It is also
straightforward to verify (B.I0), and hence the proof for t =T — 1 is complete.
Next, we note that the stochastic kernel Q(dy'|T — 1,y,g5T_1,1ZT_1) is uni-
versally measurable as it is a composition of Borel measurable and univer-
sally measurable mappings (cf. Bertsekas & Shrevd M> Proposition 7.44))
Hence, byﬁmsg]mﬁ_&_Shrmd (Ilm Proposition 7.46), we deduce that gr—i(y) =

;TT lin 'gr is universally measurable.

For 0 <t < T —1, assume that V;(y) is l.s.a. and g¢(y) is universally measurable.
Then, by Bertsekas & Shreve (Ilm, Lemma 7.27), for any chosen 6 € ©, we have
that there exists a Borel measurable function g:(y) such that g:(y) = 9:(y) almost
surely under the reference measure P. Consequently, by Assumptlon (A3) we have
Qyﬂ5 f = Q f for any two integrable functions f and f, such that f is Borel

measurable, f is universally measurable, and f = f almost surely under P. Thus,
QZ ff?t Qy,t gt-

Finally, we note that the stochastic kernel Q(dy’ | ¢, v, a, #) is Borel measurable in
(y,a,0). BleﬁrIﬁﬁkaﬁ_&_Shrﬁ_vﬁ (Il_9_7ﬁ, Proposition 7.48), it implies that Qg:f_li/} is
L.s.a. On the other hand, since G o g; is Borel measurable, we have that —QZ:?(Gogt)

and G(Qg:fgt) are also Borel measurable. Thus, they are also l.s.a. The rest of the
proof follows analogously. By induction, we conclude that (BI0]) holds true for any
t € 7', y € Ey, and an universally measurable pair sub-game perfect strategies
exist. O

4. Uncertain Dynamic Mean-variance Portfolio Selection Problem

In this section, we will present an example that illustrates the results of Sec. Bl
Namely, we consider a dynamic mean-variance portfolio selection problem, when an
investor is deciding at time ¢ on investing in a risky asset and a risk-free banking
account in order to maximize the terminal weighted mean-variance criterion of the
form (23)), subject to market model uncertainty.

We take a risk-free asset B with a constant interest rate r = (Byy1 — By)/By, and
a risky asset, say a stock, with the corresponding return from time ¢ to t+1 denoted
by r{,;. We assume that the return process r®, is observed. The dynamics of the
wealth process, say W, produced by a self-financing trading strategy is given by

Wipr =Wl +r+@i(ri,—1)), te T, (4.1)
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with the initial wealth Wy = wy > 0, and where ¢; denotes the proportion of the
portfolio wealth invested in the risky asset from time ¢ to ¢t + 1. We assume that the
process ¢ takes finitely many values, say a;, i = 1,..., N, where a; € [0, 1].

We further assume that r{+1, t = 1,...,7—1, is an i.i.d. sequence of log-normal
distributed random variables, or saying differently we assume that the excess log-
returns are normally distributed. Namely,

s _ 7
r; =et —1,

where Z; is an i.i.d. sequence of Gaussian random variables with mean p and vari-
ance o2. Equivalently, we put Z, = u + oe;, where g;,, t € T’ are i.i.d. standard
Gaussian random variables. Note that under the above model assumptions, the
wealth process remains positive a.s. The model uncertainty will come from the
unknown parameters p and/or o. Using the notations from Sec. 2] here we have
that X; = W;, and setting x = w we get

S(w,a,z) =w(l+r+ale®*—1-7)), A={a;, i=1,...,N}.

Same as in Example 2] we take F(w) = w — yw?, and G(w) = yw?. Formally, the
investor’s adaptive robust mean variance problem is formulated as follows:

sup inf ‘P(EQ(WT) — v Varg(Wr)), (4.2)
peAQeQy

where A is the set of Markovian trading strategies. We will find a pair of sub-game
perfect strategy corresponding to (£2).

We will discuss two cases: Case 1 — unknown mean g and known standard
deviation o, and Case 2 — both p and ¢ are unknown.

Case 1. Assume that o is known, and the model ambiguity comes only from the
parameter p, whose true but unknown value is denoted by p*. Thus, using the
notations from Sec. @ we have that 6* = p*, 0 = p, and we take C; = iy, ® =
[4, ] C R, where [ is a point estimator of p, given the observations of process Z,
that takes values in ©. The values of the boundaries 1 and 1 are fixed a priori by the
observer. For the detailed discussion regarding the construction of such estimators
we refer to Bielecki et all (IZD_llab For this example, it is enough to take as [ the
Maximum Likelihood Estimator (MLE), which is the sample mean in this case,
projected appropriately on @. Formally, the recursion construction of i is defined
as follows:

N £
— a4+ ——Z
Fet = g e T o (4.3)

ﬁt-‘rl = W(ﬁt-‘rl)a te Tla

with fig = ¢p € ©, and where 7 is the projection to the closest point in ®, namely
m(p) = pif p € [, @), m(p) = pif p < p, and () = @ if p > @ We take as the
initial guess ¢y any point in @.
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Putting the above together we get that the function G defined in (Z0) is given
here by

G(t,w,c,a,2) = <w(1 trta(e® —1—r),7 (H%ch t%z» (4.4)

It can be easily verified that the kernel Q( - |¢,y, a, p), defined in terms of function G
given in ([£4]), satisfies Assumption (A1), for example by using Bertsekas & Shreve
, Proposition 7.26). Obviously Assumption (A2) is satisfied.
As far as Assumption (A3), let B € &y such that Q(B | t,y,a,u) = 0. In view
of [27)) we have that

Pu(Zt+l S {Z : G(t,y,a,z) S B}) = 07

where Z; 11 ~ N(p,02). Due to the normality, it is clear that for any p/ € ©, we
also have

P (Z{, €{2:G(t,y,a,2) € B}) =0

with Z/; ~ N(p/,0?). Hence, Q(B | t,y,a, /) = 0, and thus the stochastic kernels
Q( | t,y,a,n) and Q(- | t,y, a, ') are equivalent and Assumption (A3) is fulfilled.
Now, we note that the (1 — a)-confidence region for p* at time ¢ is given as

91& = T(tv //Zt)a

where

(t,¢) = [max <c — %qa/z,ﬁ>,min <c T %qa/g,ﬁﬂ, (4.5)

and where ¢, denotes the a-quantile of a standard normal distribution. We take
closed intervals in (@3] to preserve compactness. With these at hand we construct
the kernel @ according to (Z7)), and the set of probability measures QZ’(;:I(; on canon-
ical space according to (Z8]). We recall that in the present case yo = (wp, ¢p).

The Bellman equations (33)-(B3H) take the form

Viy) =max inf (QyVirs = [QyY (0521 ()) = 7(QFG0)") (46)

9:(y) = QY g, (4.7)
VT<y) = w,
y=(w,c) € By, teT,

with 7(t,¢) given in (ZH]).

In view of Theorem Bl a pair (,1)) of Markov strategies satisfying (6] (@)
is a pair of sub-game perfect strategies for the adaptive robust mean-variance prob-
lem ([£2]) with unknown pu.

In the next section, we will solve Eqgs. ([£8)—(Z3) for a pair (¢, 1&) using a machine
learning based method. Note that although the dimension of the state space Fy is
two in the present case, which allows for efficient use of the traditional grid-based
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method to numerically solve the Bellman equations, our machine learning based
method, originally proposed in \Chen & Ludkovski (IZQl_d) can be applied to high
dimensional problems where gridding is extremely inefficient. Generally speaking,
this approach overcomes the challenges met in high dimensional (robust) stochastic
control problems.

Case 2. Here we assume that both p and o are unknown, and thus, in the notations
of Sec. @ we have 6* = (u*, (6%)?), 0 = (u,02), © = [u, 71| x [¢%,7%] C R x Ry, for
some fixed p, 7 € R and 02,7 € R,. Similar to the Case 1, we take as the point
estimators for p* and (0*)? the corresponding MLEs, namely the sample mean and,
respectively, the sample variance, projected appropriately to the rectangle . It is

shown in Bielecki et all (201 (a]) that the following recursions hold true:

t 1
1L =+ —7
Ht+1 t+1ﬂt+t+1 t+1,
~2 b t

= Ty — Za1)?
Ott1 = 0t T (t+1)2(ut t+1)°

(ﬁt+178t2+1) :W(ﬁt+175t2+1)7 t= 17"'7T7 17
with some initial guess fip = cf, and 52 = c{j, and where 7 is the projection®
defined similarly as in ([@3]). Consequently, we set C; = (C},C/) = (jig,02),t € T,
and, respectively, we have
t 1 t t
R(t,c,z)=m cd + z, cd + d—2)?),
(t¢.2) <t+1 t+17t+1 @+1P( )

with ¢ = (¢/,¢”). Thus, in this case, we have

t 1
G(t,v,c,a,2) = <v(1 +r4+ale®—1-1)),7w (t—l——ld + P

t 1 t /
TriC + L (¢ — 2)2)> (4.9)

Similarly as in Case 1 with regard to function G given in (£4]), it can be easily
verified that the kernel Q( - | t,y, a, 1), defined in terms of function G given in (£9),
satisfies Assumptions (A1) and (A3). The (1 — a)-confidence region for (u*, (0*)?)
at time ¢ is the ellipsoid given by

615 = T(tv ﬁtv atQ)v
with

7(t,c) = {(/L,O’Q) €0: %(c’ —u)? + ﬁ(c” —0?)? < /{}, (4.10)

where & is the (1 — a) quantile of the x? distribution with two degrees of free-
dom. Accordingly, Eqs. 33)-33]) take the form analogous to (L0)—(£R) with, in

°We refer to Bielecki et _all dZQlld) for precise definition of the projection 7, but essentially it is
defined as the closest point in the set ©.
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particular, 7(t,¢) given in @I0). In view of Theorem Bl a pair (¢, ) of Markov
strategies satisfying such equations is a pair of sub-game perfect strategies for the
adaptive robust mean-variance problem ([@2]) with unknown p and o. Note that the
dimension of the state space in this case is three, and a grid-based method becomes
extremely inefficient. Hence, developing a numerical solver with good scalability
is crucial. As we mentioned earlier, and as described in next section, we will use
the regression Monte Carlo idea and Gaussian process surrogates to compute the
optimal pair (@, 1&) via backward recursion.

5. Machine Learning Algorithm and Numerical Results

It is important to note that even though the market model of Sec.dlis the same as the
one considered in [Bielecki et all (IZ_Qld, Sec. 4), the Bellman equations associated
to the problem in Sec. dl are more difficult to treat numerically than those from

, Sec. 4). In Bielecki et all (IZ_Qlﬂ) the authors used a (classical)
nonmachine-learning based algorithm to solve numerically the Bellman equations,
which cannot be used in the current work, for reasons outlined below.

The essence of the machine learning algorithm that we will use solving numer-
ically the example from previous section is the same for both Cases 1 and 2. The
algorithm begins with discretizing the relevant state space, for which we employ the
regression Monte Carlo method to create a random (nongridded) mesh for the pro-
cess Y = (W, C). Note that the component W depends on the control process, hence
at each time ¢ we randomly select from the set A a value of ¢;, and we randomly
generate a value of rtS_H, so to simulate the value of Wi4 ;. The resulting random
mesh consists of a number of simulated paths of Y. Then, we solve Eqs. (0]
(£3)) in Case 1, and their counterparts in Case 2, and compute the optimal trading
strategies at all mesh points.

The need for applying machine learning to solve our Bellman equations is
twofold. On one hand, to approximate the integral operations such as QZ:thH,
we replace the integrals with weighted sums through Monte Carlo simulation or a
Gaussian quadrature recipe. Accordingly, interpolation and/or extrapolation, via
appropriate Gaussian Processes (GP) surrogates, will be used to evaluate the terms
in the summations. Note that the state space used in the adaptive robust control
method is Fy, which is potentially highly dimensional, where traditional linear
interpolation/extrapolation methods bring multiple limitations, and therefore GP
surrogates are used to overcome these limitations. On the other hand, the com-
putation procedure involving solving Eqs. (@6)—([@38) in Case 1, and their coun-
terparts in Case 2, outputs approximate values of the optimal strategies for the
mesh points on the sample paths only. Hence, to obtain the value of @;(y) for
arbitrary y € Ey, an efficient regression model for ¢, such as a GP surrogate, is
desirable.
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5.1. Description of the algorithm

In view of the above mentioned computational challenges, we numerically tackle
the adaptive robust stochastic control problem by following the novel method
introduced in [Chen & Ludkovski (IZ_Qlﬂ) The key idea of this method is to utilize
a nonparametric value function approximation strategy (cf. (@)) called
Gaussian process surrogate (cf. [Rasmussexl (IM)) For the purpose of solving the
Bellman equations ([L0)—(Z8) in Case 1, and their counterparts in Case 2, we build
GP regression model for the value function Viy1(-) and the operator g;+1 so that
we can evaluate

,0 0~ 0 A
Q;t Vigr — VQZ,tth-s-l + ’Y(Qz,tgt+1)2- (5.1)

We also construct GP regression model for the optimal control ¢. It permits us
to apply the optimal strategy to out-of-sample paths without actual optimization,
which allows for a significant reduction of the computational cost.

As the GP surrogate for the value function V; we consider a regression model
Vi(y) such that for any y',...,y~N € Ey, with y' # i for i # j, the random
variables ‘N/t(yl), e ‘N/t(yN ) are jointly normally distributed. Then, given training
data (v, Vi(y')), i=1,..., N, for any y € Ey, the predicted value V;(y), providing
an estimate (approximation) of V;(y), is given by

V(y) = (k(y,y"), - k(y, y" DK + 7 (Valyh), . Veg™ )7,

where € is a tuning parameter, I is the N x N identity matrix and the matrix K
is defined as K; ; = k(y’,y’), i, 7 = 1,...,N. The function k(-, ) is the kernel
function for the GP model, and in this work we choose the kernel as the Matern-
5/2 (cf. [Rasmussexl (IM)) Fitting the GP surrogate V, means to estimate the
hyper-parameters inside k( -, - ) through training data (y*, V;(y%)),i =1,...,N. We
note that since we do not have the closed form expression for V;(y), we numerically
evaluate V;(y) instead. The GP surrogates for g; and ¢; are obtained in an analogous
way. We take e = 107°.

Given the mesh points {y?, i = 1,..., N, t =0,...,T—1}, the overall algorithm
proceeds as follows:

Part A: Time backward recursion for t =7 —1,...,0.

(1) Assume that %+1(y§+1),_gt+1(yé+1) and gﬁt_+1(yé+1)7_i =1,..., N, are numer-
ically approximated as Vii1(yiy1), 9ep1(¥i1) and @4 (yig1), 1 = L. --7N»
respectively. Also suppose that the corresponding GP surrogates Vi1, §;,1,
and ¢, are fitted through training data Wi, Vir1(Wi)s Wiits 9es1 (Wisn))s
and (Yj,1,9:1(Wis1)), i =1,..., N, respectively.

2150003-19



Int. J. Theor. Appl. Finan. 2021.24. Downloaded from www.worldscientific.com
by 174.62.172.43 on 06/08/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

T. R. Bielecki, T. Chen & I. Cialenco

(2) For time t, any a € A, § € 7(t,c) and each y¢, i = 1, ..., N, use one-step Monte
Carlo simulation to estimate the quantities

QZ;Z%#»I - ]EG [‘/t+l(G(t7 ytlv a, Zt+1))]7
QZ etth-‘,-l ]Eg[th—&-l(G(tvyi?a7Zt+1))]7

QZ%)tQtH = Eo[gr1(G(t, 3, a, Ziy1))).

For that, if Ztl+17 ceey Ztl‘j{l is a sample of Z;;1 drawn from the normal distri-
bution corresponding to parameter 6, where M > 0 is a positive integer, then
estimate the above expectations as

M
o~ 1 ~ ) )
a,f ~ a0 e
Qyz,t‘/t+1 ~ Qyti,t‘/t+1 - M Zl‘/t+l(G(t7ytlva7 Ztl-‘,-l))?
M
a,0 ~2 ~a0 72 1 2 G a T
Q i 191 N ng,tgtﬂ = Zg (G, y,a, Zi14)),

M
~ ~ 1 . .
0 A ~ 0= L j :A
Qgé,tgt-&-l ~ Qgg,tgtjtl L g +1(G(t7yza a, Z;+l))

Next, estimate the values of (&.1).
(3) For each y!, i = 1,..., N, and any a € A, build a uniform grid over the set
7(t, ), and search for a grid point, say 6(y;, a), that minimizes

~a,0 17 ~a,l =2 ~a,0 =
Qyii Vit = VQy drn (@ 3040)*.
(4) Compute
a0 i,a a@ £a) X a@ 1a) X
V (yt) = maX{Q (y )V ’YQ (y )gt+1 JF'Y(Q (y )gt+1)2}7

and obtain a maximizer @,(y!), and corresponding §,(v}) = Nf} (ty:)’e(y:’@‘(y:))

~ tr
Grini=1,...,N.

(5) Fit GP regression models for V;(-) and g:(-) using the results from Step 4
above. Fit a GP model for a;(-) as well; this is needed for obtaining values of
the optimal strategies for out-of-sample paths in Part B of the algorithm.

(6) Goto (1): Start the next recursion for ¢ — 1.

Part B: Forward simulation to evaluate the performance of the GP surrogate ét(-),
t=0,...,T7 —1, over the out-of-sample paths.

(1) Draw K > 0 samples of i.i.d. Zf’i,...,Z;’i, i =1,...,K, from the normal
distribution corresponding to the assumed true parameter 6*.
(2) All paths will start from the initial state yo. The state along each path i is

updated according to G(t, yi, @, (y%), Z:1), where ¢, is the GP surrogate fitted
in Part A.

2150003-20



Int. J. Theor. Appl. Finan. 2021.24. Downloaded from www.worldscientific.com
by 174.62.172.43 on 06/08/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

Uncertain Mean-Variance

(3) Obtain the terminal wealth W;«l, generated by é along the path corresponding
to the sample of Z7"",..., Z7",i=1,..., K, and compute

1 & 1 & N2 1 & °
Ve = E;WT’ —y E;(WT’) (EE;WTJ (5.2)
S ——

— . —
sample mean of W2 sample variance of W2

as an estimate of the performance of the optimal adaptive robust sub-game
perfect strategy ¢.

We compare (5.2)) to the performance of strategy generated by the strong robust
sub-game perfect methodology (cf. Remark B1]) on K = 2000 out-of-sample paths,
where the latter performance is measured in terms of the mean-variance utility, say
V' which is computed in analogy to (52)).

5.2. Numerical results

In this section, we apply the machine learning algorithm described above by taking
a specific set of parameters. For both, Cases 1 and 2 we take: T' = 52 with one period
of time corresponding to one week; the annualized return on banking account being
equal to 0.02 or equivalently r» = 0.0003846; the initial wealth Wy = 100; in Part A
of our algorithm the number of Monte Carlo simulations is N = 200, and M = 100;
the number of forward simulations in Part B is taken K = 2000; the confidence
level @ = 0.1. For both cases, we analyze the performance of the control methods
for v = 0.2 and v = 0.9. The assumed true parameter values, the initial guesses
for the parameters, the bounds for the uncertainty set ®, as well as the numerical
results, are presented for each case separately.

In what follows we will abbreviate adaptive robust as AR, and strong robust
as SR.

Case 1. Recall that in this case only the return p is assumed to be unknown.
The assumed true parameter value is denoted by p*, the initial guess is denoted
by po, the uncertainty set is the interval ® = [u,7i]. The relevant parameters are
summarized in Table [11

In Fig. @] we display the histogram of out-of-sample terminal wealth Wy that
corresponds to the two subcases (optimistic and pessimistic) and two stochastic

Table 1. Model parameters for mean-variance portfolio
selection problem; Case 1.

T =52, r=0.0003846, ~v=0.2, Wp=100

a=01, N=200, M =100, K = 2000

p* =0.00192, p=0.000192, @ =0.0096, o =0.0166
1o = 0.002308 (optimistic), or o = 0.001538 (pessimistic)
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Fig. 1. Evolution of the confidence intervals 7(t,c) at the confidence level « = 10%; Case 1,

pessimistic.

control approaches (AR and SR). The summary statistics are presented in Tables
and

We start by presenting the evolution of the confidence intervals 7(¢,¢) for the
unknown parameter p; see Fig. [Tl which represents the pessimistic initial guess (i.e.
1o = 0.001538 < p* = 0.00192). We recall that the SR methodology searches at
each time for the worst-case model in ®, while the AR searches over the confidence
region 7(t, ¢), and then approximates the corresponding optimal strategies.

We observe that the performance of the AR and SR methods is comparable in
Case 1. This indicates that in this case the uncertainty reduction is not very effective.
We attribute this to the fact that the uncertainty regarding the mean return requires
a longer time horizon. Nevertheless, the closer inspection of the results shows that
in some situations (e.g. optimistic case and v = 0.9) the performance of AR is better
than performance of SR.

Case 2. We take the same set of parameters as in Case 1 (see Table[I]), except that
instead of the known and fixed o, we now take

0" =0.0416, ¢ =0.0069, @ = 0.1109,

oo = 0.0347 (optimistic), oo = 0.0485 (pessimistic).

With both g and o unknown, the model uncertainty set is the two-dimensional rect-

angle © = [p, 71] X [02,52]. The evolution of the projected confidence regions, which
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Fig. 2. Histogram of the out-of-sample terminal wealth W for Case 1, unknown p and know o.
Risk averse coefficient v = 0.2 — top row, and v = 0.9 — bottom row; optimistic case — left
panel, and pessimistic case — right panel.

Table 2. Mean, variance, 90%-quantile, maximum and
minimum of the out-of-sample terminal wealth and
mean-variance utility V' for AR and SR for Case 1:

optimistic.
v=0.2 v=0.9
AR SR AR SR

mean(Wr)  102.204 102.203  102.263  102.267
var(Wr) 0.887 0.673 1.151 1.473
qo.00(Wr) 103.399  103.203 103.185  103.840
max(Wr) 107.664  105.747  106.504  108.971
min(Wr) 98.664 98.564 97.534 97.295
\%4 102.027  102.068  101.227  100.941
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Table 3. Mean, variance, 90%-quantile, maximum and minimum
of the out-of-sample terminal wealth and mean-variance utility
V for AR and SR for Case 1: pessimistic.

Pessimistic
v=0.2 v=0.9
AR SR AR SR
mean(Wr) 102.338 102.262 102.189 102.190
var(Wr) 1.328 1.122 0.430 0.523
qo.00(Wr) 103.673 103.481 102.912 103.107
max(Wr) 107.253 107.008 104.672 107.699
min(Wr) 97.537 97.187 99.3915 98.352
\% 102.073 102.038 101.802 101.719
1

%103 g

6~ o

L1 ///_
5~ L1 11
A
”

44 1

2 3

time steps

Fig. 3. Evolution of 7(t,¢) at confidence level o = 10% (ellipsoids), the true parameters value
(1*, (6*)?) (the solid straight line), and the MLE (fi,52) (dotted line), for Case 2, pessimistic.

are derived from confidence ellipsoids in this case, along with the true parameter
values (u*, (0*)?) and the MLEs (fi,52) are displayed in Fig. B

Similar to Case 1, we present the histograms of the out-of-sample terminal wealth
Wr, Fig. @ for AR and SR. The corresponding summary statistics are listed in
Tables @ and

The results clearly indicate that overall the performance of AR is better than
the performance of SR. Across the parameterizations, the value of the optimization
criterion (i.e. V) is larger for AR than for SR. This is because AR produces much
smaller variance of Wp than SR, while both methods produce comparable values
of the mean of Wr. This, together with the values of other statistics indicates that
SR is less risky than AR. We attribute this to better handling of model uncertainty
by AR than it is done by SR.
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Fig. 4. Histogram of the out-of-sample terminal wealth Wp for Case 2, unknown g and o. Risk
averse coefficient v = 0.2 — top row, and v = 0.9 — bottom row; optimistic case — left panel,
and pessimistic case — right panel.

Table 4. Mean, variance, 90%-quantile, maximum and

minimum of the out-of-sample terminal wealth and mean-
variance utility V' for the AR and SR methods; Case 2:

optimistic.
Optimistic
v=0.2 v=0.9
AR SR AR SR

mean(Wr)  102.371 103.132 102.693 102.703
var(Wr) 2.653 34.654 15.983 16.149
qo.00(Wr) 104.396 111.554 107.308 108.186
max(Wr) 113.741 126.470 123.094 121.139
min(Wr) 95.027 81.330 90.838 87.413
\%4 101.840 96.201 88.309 88.169
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Table 5. Mean, variance, 90%-quantile, maximum and mini-
mum of the out-of-sample terminal wealth and mean-variance
utility V' for the AR and SR methods; Case 2: pessimistic.

Pessimistic
v=0.2 v=0.9
AR SR AR SR
mean(Wr) 102.339 102.746 102.396 102.869
var(Wr) 4.653 18.911 3.349 29.698
qo.00(Wr) 103.521 108.125 104.542 110.036
max(Wr) 118.592 121.682 110.559 128.299
min(Wr) 91.981 80.703 95.238 82.473
\%4 101.408 98.964 99.382 76.142

Finally, we want to mention that while we performed a similar analysis for
various parameters sets and usually the obtained results are similar to the above,
some cases may require a deeper analysis and understanding. For example, when
the true parameter is close to the worst case one may expect that the strong robust
strategy would outperform the adaptive robust strategy, which is not always the
case. Also, in some examples, it may happen that the adaptive robust strategy
might perform better than the strategy generated by knowing the true parameter.
Understanding such phenomena will be part of the future work.

6. Concluding Remarks and Future Research

In this paper we have provided a methodology for dealing with a class of time-
inconsistent Markovian decision problems in discrete time subject to model uncer-
tainty, which is also known as Knigthian uncertainty. A version of the adaptive

robust approach, that was originated in [Bielecki et all (IZQl_d), combined with

sub-game perfect approach to time-inconsistent stochastic control problems as in

(Iﬁ), have been successfully used here. For simplicity we were
assuming that the set of available actions is finite. This assumption, although quite
fine from the numerical perspective, will be generalized to an appropriate compact-
ness assumption in a follow up study. We only proved the existence of a pair of
sub-game perfect strategies in Sec.[3.1l The study of the uniqueness of such strate-
gies is deferred to a follow-up paper. Finally, we want to mention that while in this
paper we only studied time-inconsistent Markovian decision problems with terminal
cost, the generalizations to the case of terminal plus running cost will be addressed
in future works.
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