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ABSTRACT

The average lifetime or the mean time to failure (MTTF) of a product is an important
metric to measure the product reliability. Current methods of evaluating the MTTF are
mainly based on statistics or data. They need lifetime testing on a number of products to
get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing,
however, is expensive in terms of both time and cost. The efficiency is also low because it
cannot be effectively incorporated in the early design stage where many physics-based

models are available. We propose to predict the MTTF in the design stage by means of a
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physics-based Gaussian process method. Since the physics-based models are usually
computationally demanding, we face a problem with both big data (on the model input
side) and small data (on the model output side). The proposed adaptive supervised training
method with the Gaussian process regression can quickly predict the MTTF with a reduced
number of physical model calls. The proposed method can enable continually improved
design by changing design variables until reliability measures, including the MTTF, are

satisfied. The effectiveness of the method is demonstrated by three examples.

Keywords: Average Lifetime, Mean Time to Failure, Gaussian Process Model, Adaptive

Training, Supervised Learning
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1. Introduction

In reliability engineering [1-5], the average lifetime, or the mean time to failure
(MTTF), is an important metric of product reliability [1, 6]. Statistics-based methods [7, 8]
are widely used to estimate the MTTF. The methods need lifetime testing [9] on many
products to obtain the lifetime samples, which are then used to estimate the average lifetime
by statistical analysis. The methods are generally expensive in three aspects. First, lifetime
testing is time-consuming when the actual product lifetime is very long such as years.
Although the accelerated life testing [10-12] can reduce the testing time, the results may
not reflect the reliability of the product in normal use conditions. Second, the cost of the
testing is usually high. Third, the testing is performed and lifetime data are collected after
the products have been made. It is too late and more costly to fix reliability issues if the
MTTF is shorter than expected. It is desirable to predict the MTTF during the early design
stage.

Direct lifetime data, however, are rarely available during the design stage. Physics-
based methods [13-17] then play an important role to deal with this problem. The methods
use limit-state functions, which are computational models derived from physical principles,
to predict the states of the components and subsystems of the product with respect to
potential failure modes [15]. With the computational models for the failure modes, physics-
based methods are much more efficient than the statistics-based methods. They can predict
reliability performance for a given design. If the reliability metrics, including the MTTF,

do not meet the design requirements, design variables will be updated until the reliability
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requirements are satisfied. Physics-based methods are therefore a powerful tool to support
design for reliability [18-22].

Physics-based methods were originally developed for structural reliability analysis [13,
16, 17]. In the last decades, many new physics-based reliability methods have been
developed. These methods cover a wide range of applications, from component reliability
[23-28] to system reliability [29-33], and from time-independent reliability to time-
dependent reliability [34-41] and time- and space-dependent reliability [42, 43].

Computational models, such as a finite element analysis model [44], are usually
computationally expensive. We usually know distributions of random input variables, and
it is possible for us to generate many random samples for the input variables. In this sense
we have big data. On the other hand, we can afford to run the computational models only
a limited number of times, and then we have small data for the responses. For this reason,
machine learning (ML) methodologies have been increasingly used for reliability analysis.
Typical ML methods for reliability analysis include Gaussian process (GP) based methods
[28, 31, 34, 45, 46], support vector machine (SVM) based methods [47, 48], and neural
network based methods [49-51].

In this study, we extend the physics-based methods to predict the MTTF of a product.
Since this task needs more calls of the computational model than a regular reliability
analysis, we also rely on ML to maintain computational efficiency. Specifically, we employ
the supervised machine learning method [52] and adaptively train a GP to approximate the
computational function with respect to the basic random input variables and random

processes. Once the learning is finished, the MTTF of the product is obtained.
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The rest of this paper is organized as follows. The problem statement is given in
Section 2. A brief review of GP is provided in Section 3. The proposed method is discussed
in Section 4. Three examples are illustrated in Section 5, followed by conclusions in

Section 6.

2. Problem Statement

The computational function for reliability analysis is called a limit-state function given
by
Y=G6(X1t) (1)
where X = (X1, X, ..., Xy)T are N basic input random variables and t is time. Note that the
input of G (+) may also include random processes, which can be transformed into functions
of additional random variables and t. Thus Eq. (1) does not lose generality. Y is in general

a random process. The product fails once the response Y becomes negative.

Y=G(x1t)

Fig. 1. A sample path of the limit-state function

Fig. 1 shows a sample path (trajectory) of Y when X is fixed to a realization X. When
t = 7(x), Y takes a negative value for the first time, and hence 7(X) is called first time to

failure (FTTF). If the product is non-repairable, T(X) is the lifetime (given that X = Xx), and
5
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afterwards Y (x,t),t > T has no physical meaning. A special scenario is G(x,0) <0,
which means that the product fails at t = 0 and hence 7(x) = 0. Combining the two

scenarios, 7(X) is defined as

0,if G(x,0) < 0
minimum root of G(x,t) = 0,if G(x,0) = 0

7(x) = { 2

Since 7(X) is dependent on the input random variables X, it is also a random variable.

The product’s MTTF 7 is the mean value of 7(X) and is given by [6]

T= j:oonT(T) dr )

where f;(7) is the probability density function (PDF) of 7(X).
For statistics-based methods, the lifetime testing is used to obtain nes; samples of T

and then estimate T through the following equation

Ntest

1
P Z T, 4)
Ntest

k=1

where 7y is the k'™ sample of 7. As discussed in Section 1, statistics-based methods are
generally expensive and time-consuming due to the lifetime testing.

For physics-based methods, the main challenge of estimating 7 using Eq. (3) is that it
is difficult to obtain f;(7) on the interval [0,+0) or [0, T] where T is a sufficiently large
value. The most straightforward method is the Monte Carlo simulation (MCS) [53]. It
samples X with sufficiently large sample size nycs and then finds corresponding nycs

samples of 7(X) using Eq. (2). It finally estimates T through the following equation

1
T= Z Tg (5)
NMcs
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where T, is the k™ sample of 7. It is noted that in physics-based method, the samples of
are obtained through Eq. (2), which is based on the numerical model G (X, t), instead of
through lifetime testing. However, even without lifetime testing, it is still computationally
expensive to solve Eq. (2) nycs times to obtain the nycg samples of 7, with the premise
that G(X, t) is generally an expensive black-box function in practical engineering problems.

Another way to derive MTTF is through the time-dependent reliability R(t) [34-39],
which is defined as

R(t) =Pr{G(X,t') > 0,vt' € [0,t]} (6)

Then MTTF is given by [6]

T
T= J;) R(t)dt (7

which is equivalent to Eq. (3). Estimating MTTF through Eq. (7), however, is also a
challenge, because we need to know the time-dependent reliability R(t) on interval [0, T].
In the last decades, many time-dependent reliability methods have been proposed. A simple
yet well-known time-dependent reliability analysis method is the equivalent Gaussian
process method [37, 39, 54]. The main idea of the equivalent Gaussian process method is
to convert the limit-state function G (X, t) into an equivalent Gaussian process using the
first-order reliability method (FORM) [37, 39, 54]. Then Gaussian integral methods are
employed to calculate R(t). This method works well for some engineering problems.
However, calculating R (t) on a large-span interval [0, T] efficiently is still a challenge.
The objective of this study is to predict T efficiently and accurately. The proposed
method avoids using the brute-force MCS and the expensive methods based on the complex

time-dependent reliability analysis.
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3. Introduction to Gaussian Process Model

Before presenting the proposed method, we briefly introduce GP [45] (or Kriging

model [46]) and the learning function U [28], on which the proposed method is based.
3.1. Gaussian process model

A GP makes regression to a function F(x) from a training sample set, or a design of
experiment (DoE). The main idea of GP is to treat F(X) as a realization of a Gaussian
process F(X) given by

Fx) =fx)B+2Z(x) ®)
where f(X) is a vector of regression functions whose coefficients are assembled in vector 3,
and Z(X) is a stationary Gaussian process with zero mean and covariance given by
Cov[Z(x)),Z(x;)] = o27(x;, %)) )
where o2 is the variance of Z(x), and 7(:,) is the correlation function. A widely used
model of the correlation function is called Gaussian model, or squared exponential model
[46], and is given by
D
r(x,x;) = 1_[ exp [—Hd (xia — xjd)z] (10)
d=1
where D is the dimension of X, x;4 is the d™" component of x;, Xjq 18 the d™ component of
X, and 6, is a parameter indicating the correlation in dimension d. The output of the GP

1s a Gaussian variable

FOO~N (1 (0), 57 () (11)
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where ug(x) is the GP prediction, and ch2 (x) is called mean squared error [46]. Given a

DoE, ug(x) and a% (x) are determined using the maximum likelihood method [55]. More

details about GP are available in [45, 46].

3.2. Learning function U

In engineering problems where only the sign of F(X) is of interest, such as reliability
analysis where only the sign of the limit-state function is important, we need to measure
how certain the sign of F(X) has been predicted by sign[uz(X)], the sign of us(x). If

Hp(x)
op(%)

Ug(x) > 0, then the probability that F(x) > 0 is ® ( >, where ® () is the cumulative

distribution function of a standard normal variable. Similarly, if uz(x) < 0, then the

probability that F(x) < 0 is ® (— “F—(X)) Combining the two cases, the probability that the

op(%)
sign of F(x) has been correctly predicted by sign[uz(x)] is @ (M> k9] which is

o (%) op(x)’

lup )|
op(x)

monotonic to dD( ) and known as the learning function U [28], is widely used to

determine whether sign[F (x)] is predicted correctly.
4. The Proposed Method

4.1. Overview of the proposed method

The main idea of the proposed method is to adaptively train a GP G (X, t) for G(X,t).
With G(X,t), we can obtain the surrogate model #(X) of 7(X). Since #(X) is

computationally cheap, we can calculate T using MCS.
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Training G (X, t) should be task-oriented in order to improve efficiency. We employ a
learning function and a stopping criterion to fulfill the task-oriented training. Fig. 2 shows
a brief flowchart of the proposed method. There are mainly three steps. Step 1 is the initial
design of experiments. It generates the initial training points for G (X, t). In Step 2, G(X, t)
is adaptively refined by adding new training points. The learning function and stopping
criterion are used to find the new training points and determine when to terminate the
training. In Step 3, the sample size of X, and hence of 7(X), is adaptively enlarged until 7
is estimated with sufficiently high fidelity. The three steps are discussed in detail in

Subsections 4.2 through 4.4.

Step 1 [Design of Experiment ]

obtain £(X)

[ Build G(X, t) and
|
1

accurate on
X samples

Increase sample size

If sample size
is sufficient

Step 3

T

Fig. 2. Brief flowchart of the proposed method
10
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4.2. Design of experiments for initial GP

The principle of the design of experiments for building a GP is to spread the initial
training points evenly. Commonly used sampling methods include random sampling, Latin
hypercube sampling, and Hammersley sampling [56]. In this study, we employ the
Hammersley sampling method because it has better uniformity properties over a
multidimensional space [57]. Since the dimension of the entire input vector (X, t) is N +
1, the Hammersley sampling method generates initial training points in a hypercube
[0,1]¥*1. To get initial training points of X, we can simply use the inverse probability
method to transform the training points from the hypercube space to the X-space. As for
the initial training points of t, we treat t as if it was a uniform random variable and could
also be transformed from the interval [0,1] to the time interval [0, T]. We assume that T is
sufficiently large so that Eq. (3) has at least a root in [0, T]. The initial training points x'®

of X = (X, X, ..., Xy)T are

OO R
. @) ©)) . (2)
xXM=[ X1 X - XN (12)
xf”in) X ;nin) “x I(Vnin)

where ny, is the total number of initial training points. With x'™ and the initial training
points ti" of t, we then obtain initial training points y'™ of Y by evaluating Eq. (1) nj,
times. Finally, we get the initial training set (x"™, t™, y'™) = (x", t'",yi"), where the
superscript #rn and in represents the general training points and initial training points,

respectively.

11
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4.3. Adaptive training

With the initial training points (x'1,t'",y'"), we can build an initial GP G(X,t) to
approximate G (X, t). The initial G (X, t) is usually not accurate. The task of the adaptive
training is to add training points to refine G (X, t) sequentially and adaptively. Specifically,
a task-oriented learning function and stopping criterion are employed.

For numerical computation, [0,T] is evenly discretized into m points t =
(t1,tp, ., t )T. Then 7(X) is approximated by

7(x) = min{t € tlus(x,t) < 0} (13)

To estimate 7, we first randomly generate ng samples X° of X. Then 7 is approximated by

ns
Fot t(x®) (14)

s
where x@ is the i™ random sample of X. Eq. (14) can yield accurate T when two
conditions are satisfied. First, the sample size ng is sufficiently large. The determination of
ng will be given in Subsection 4.4. Second, the model 7(X) is accurate for all the samples
x5. How to add training samples to refine G (X, t) so that the second condition is satisfied
is the key of the adaptive training.

Intuitively, 7(X) is accurate as long as us(X,t) approximates G(X,t) accurately.
However, training G (X, t) in this way is not efficient and it disobeys the task-oriented rule.
In fact, t* €t is an accurate solution to Eq. (2) as long as the signs of
{G(x,t)|,t €t,t < t*} are predicted accurately. For example, if G(X,t) can accurately
predict the signs of G(x, tj),j =1,2,3,4,5 as (+,+,+,+,—), then t5 is the accurate

solution to Eq. (2). We do not need to care if G(x,t) predicts the specific values of
12
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G(X, tj), j = 1,2,3,4,5 or the signs of G(x, tj), Jj = 6 accurately. Note that in this example
the exact solution to Eq. (2) should be within the interval [t,, ts], but we can still treat tg
as the solution without losing significant accuracy as long as m is sufficiently large.

The learning function U proposed in [28] is used to measure how accurate the sign at
a point is predicted. It is given by

lue(x, )|

Ux,t) = o D

(15)

To refine G (X, t), we should add training points where the accuracy is poor or U is small
since a small U means that the chance of correctly predicting the sign of G (x,t) is small.
If X is fixed to X, the next training point (X, t"*!) is determined by

(x, t"*Y) = argmin U(x, t) (16)

tet,t<7T(x)
Since there are ng samples of X, Eq. (16) determines ng points. Among them, the point
with minimal U is finally selected as the next training point (x"*t,¢"X%) which is
determined by

(xPext tnexty —  argmin  U(X,t) (17)
XEXS,tet,t<7(x)

With the learning function given in Eq. (17), we can add training points to update
(x0, £,y and G (X, t) sequentially until a stopping criterion is satisfied. The same
learning function in Eq. (17) is also used in [40, 41] for time-dependent reliability analysis
with the first passage time.

The direct use of U(x, t) and hence Eq. (17), however, may result in duplicate training
points. In other words, the next training point determined by Eq. (17) may be among

(x'™, 'yt Once this happens, the adaptive training fails. Theoretically, because GP

13
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is an exact interpolator, if a point (x*,t*,y*) is among the training set (x'™, t'?, ytrn),

G (X, t) will predict G (x*,t*) exactly as y*, i.e., ug(x*,t*) = y* and oz (x*,t*) = 0. As a
result, U(X*, t*) = 400, (x*,t*) will never be selected by Eq. (17) as the next training
point, and the duplicate training points will never be encountered. However, due to the
numerical error, gz (X", t*) is not exactly zero but a small positive number. In this case, if
pe(x*,t*) is smaller than o (x*,t*), we will have U(x",t*) < 1, and Eq. (17) may select
(x*,t*) as the next training point, leading to the duplicate training points.

Another problem caused by U is that the adaptively added training points may
cluster together [34]. It will make the correlation matrix of GP ill-conditioned. If this
happens, some of the clustered training points will have negligible effect on the refinement
of G(X, t), and the adaptive training may not converge. Hu and Mahadevan [34] proposed
to disqualify those points to be candidate training points if they are highly correlated with

any one of the existing training points. Specifically, the candidate training points are shrunk

from point set x° X t to {(x, t) ExSxt r[(x,t), X', t") ] < } where
( Itl)e(xtrn ttrn)

r(+,) is the correlation function used in GP to describe the correlation of two points, and 1
is a hyperparameter. It guarantees that the candidate training points are sufficiently far
away from the current training points, and thereby that the newly selected training point
will not overlap or cluster with any one of the current training points. We employ this

method and then update the learning function in Eq. (17) to the following one

next pnexty _—_ :
(xnext ¢next) = arg tﬁ(gl&t)ch(x, t) (18)

whereCz{(x,t) ExSxt r[(x,t), (X, t") ] < }

( ! tl)e(xtrn ttrn)

14
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In addition to the learning function, the other important component of the adaptive
training is the stopping criterion. Since the learning function can add training points
iteratively to update G (X, t), and hence #(x) in Eq. (13), a stopping criterion is necessary
to terminate the iteration. Once the model 7(X) is accurate on all the samples X5, we no
longer add new training points. Therefore, the iteration ends if the following condition is
satisfied

w>w (19)

where W = U(x,t), and w is a hyperparameter and is recommended to set to

min
t<7(x),(x,t)eC
2. Generally, the larger is w, the more accurate will 7 be. Larger w, however, will lower
the efficiency, so the selection of w needs a tradeoff. There is no rigorous theory to

determine the best w, and we recommend 2 based on both our experience from many

experiments and [28].

4.4. Adaptive sample size

Since the random sampling method is used to estimate T through Eq. (14), it is
desirable to select a good sample size ng. We use an initial sample size n, and then
adaptively increase the sample size until 7 is obtained with a sufficiently high fidelity [58].

Since 7(X) is a random variable, the sample size needed to estimate its mean value T
is dependent on its standard deviation o,. With the sample size ng, the deviation coefficient

I" of T is given by

I =

O-T

7 /ns (20)
where T is estimated by Eq. (14) and o; is estimated by

15
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ng

! - ) [ 0) - 712 21)

n —
s i=1

Eq. (20) shows that the larger is ng, the smaller I' will we have. A smaller I' means that T
is more accurately estimated by Eq. (14). T is said to be accurate if the following condition
is satisfied
I'<y (22)
where y is a threshold, which usually takes a small positive number, such as 0.005.
If the current ng cannot satisfy Eq. (22), we should increase it. Combining Eq. (20)

and Eq. (22), we have
o \?
ne = (—) 23)

2
It means that at least a sample size of (:—;) is necessary to guarantee Eq. (22). Letn; =

2
ceil [(:—;) ], where ceil(+) represents the operation to get the nearest larger integer. Then

the number n,qq by which ng should be increased is given by

Nadd = Ny — N (24)
However, when G (X, t) is too rough at the first several adaptive training iterations, both T
and o, may have poor accuracy, and n,4q given in Eq. (24) may be misleading. To deal
with this issue, we set a threshold 71,44 for n,44. Then Eq. (24) is updated to

flaad, if Ny — Mg > flagq

n,; — ng, otherwise (25)

Nadqd = {

16
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Since it is cheap to compute samples of 7(X), fi,qq is not really a key hyperparameter of

the proposed method, and generally it is good to set 71,44 to 1,000, according to our

experience from many experiments.

4.5. Implementation

The detailed flowchart of the proposed method is shown in Fig. 3. The total number

n, of function evaluations of G (X, t) is used to measure the main computational cost of the

proposed method, with the assumption that G(X, t) is a computationally expensive black-

box function in practical engineering problems.

[ Generate ng = ny random samples x°
]
[Generate Ny, initial training points (x'?, t'0 )]

and compute y"" with Eq. (1); 1. = njn

!
( Build G(X, ©) using (x™™, gm0, ytm) |
!

—-[Compute 7(X) at x5 with Eq. (13) ]

[Compute T with Eq. (14)]

Flnd (Xnext’ tnext) \
with Eq. (18),

Compute W

Generate ngqq compute ynext
random samples of X, with Eq. (1)
add them into x®, update n = ne + 1,
and update and add

Ne =nNg+n t t t
s s‘ add (xnex , tnex )ynex )

into

K (Xtrn, ttm, ytrn) /
Yes -

[ Compute n 44

Fig. 3. Detailed flowchart of the proposed method
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4.6. Extension to problems with input random processes

When the limit-state function G (+) has input random processes, it is straightforward to
employ the series expansion methods of the random processes, so that the above
implementation of the proposed method can still work.

Let H(t) represents a vector of random processes, then the limit-state function is given
by

Y =GX H(t),t) (26)
To easily present the idea, we assume there is only one random process H (t). Widely used
series expansions for random fields include, the Karhunen-Loeve series expansion (K-L),
the orthogonal series expansion (OSE), and the expansion optimal linear estimation method
(EOLE) [59]. Since t is discretized into t, the autocorrelation coefficient function of H(t)
is discretized into the autocorrelation coefficient matrix My with dimension m X m. Then

the EOLE expansion H (&, t) of H(t) is given by

H(E!t):,uH(t)-l_o-H(t)zzllJf_;—VkMH(:lk)'tEt (27)
= k

where py (t) is the mean value function of H(t), oy (t) is the standard deviation function
of H(t), &, k = 1,2, ..., m are m independent standard Gaussian variables, A, is the k-th
eigenvalue of My, V, is the k-th (row) eigenvector of My, and My (:, k) is the k-th
column of My. Note that the eigenvalues are sorted from the largest to the smallest. Usually
only the first m’ (m’ < m) eigenvalues are significant. Therefore, Eq. (27) is practically

truncated, and only the first m' orders are kept:

18
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!

H(E t) = uy(t) + oy(t) ZZ; k ViM,(:,k),tet (28)

Sk
A
With the truncated expansion in Eq. (28), Eq. (26) is rewritten as
Y=GXHE1),t) (29)
or equivalently as
Y =6(Xt) (30)
where X = (§,X) . Eq. (30) shares the same format with Eq. (1) and hence the
implementation given in Subsection 4.5 works as well.

The direct implementation this way, however, may suffer from the curse of
dimensionality. Since there are many random variables, i.e. §, in the series expansion
H(E, t), the dimension of § and hence that of G ()~(, t) is high. As a result, the dimension of
G (X t) is also high. The high dimensionality has as least two drawbacks. First, it is not
computationally cheap anymore, losing its expected advantages. Second, more training
points are needed to train the GP. To overcome the drawbacks, we build a GP G(X,H,t)
with respect to X, H, and t [34, 58]. Note that the entire random process H is treated as
only one variable for G (X, H, t). Then the surrogate model G (X, t) with respect to X and ¢
is obtained through

G(Xt) =GIX HE0),t] (31)

Since the truncated series expansion H(E,Z) in Eq. (28) has a simple closed-form
expression, if G(X, H, t) is accurate and efficient, so will be G (i, t) in Eq. (31). Since the
dimension of G(X, H, t) is (m’ — 1) lower than that of G (X, t), it is more efficient to train
G(X,H,t). Tobuild G(X, H,t), we need the training points h™ of H. h'™ can be obtained
19
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simply by substituting (£, t"™) into Eq. (28). Similarly, when (®exV),¢next)) jg
determined by Eq. (18), the next training point A("*Y of H is obtained by substituting
(gmext), z(nexV) jnto Eq. (28). Note that xPexV) = (gnext) x(ex0) when multiple input
random processes are involved, the procedure of building and updating the surrogate model

G is similar.
4.7. Application in design

The proposed method predicts MTTF and can be used in design optimization. A design
process may involve a number of iterations where new designs are iteratively generated.
At each new design point, the proposed method is performed to predict MTTF if MTTF is
one of the design requirements. From the analysis of the proposed method, design
engineers know if the MTTF requirement is met. If the predicted MTTF is lower than
expected, they can modify and generate a new design. By repeating this design process,
engineers reach their final design that satisfies all the requirements, including the MTTF
requirement. If optimization is the design tool used for the design, the MTTF could be
treated as a design constraint. It is convenient to integrate the proposed method and the
powerful Bayesian optimization [60] to perform design optimization since the GP method
used in the proposed method is also employed in the Bayesian optimization. How to

effectively do so is worth a further investigation in the future work.
4.8. Discussions

The advantage of the new physics-based method over statistics-based methods is its

high efficiency and low cost. The main reason is that the statistics-based methods need the
20
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lifetime testing while the physics-based method estimates MTTF using a numerical model.
The other advantage is that MTTF can be predicted early during the design stage and can
therefore be incorporated in the design optimization process. In addition, the adaptive
training strategy embedded in the method improves the efficiency further.

The proposed method, however, has two limitations. First, it is based on the premise
that the failure mode can be modeled by a limit-state function. It will not work if the limit-
state function is not available or if the failure mode is hidden or unidentifiable during the
early design. Second, the proposed method can only handle single failure modes. Extending

it to multiple failure modes needs a further investigation.

5. Examples

In this section, we use three examples to illustrate the proposed method. The first one
is an artificial math example with only one input random variable. It is designed to
graphically show the procedure of the proposed method. The second one is an engineering
example with both input random variables and a random process. The third one is an
engineering example where the limit-state function is a black box using the finite element
method (FEM) and where there are five input random processes. The limit-state functions
of all the three examples are computationally inexpensive so that the brute-force method
MCS is affordable for the validation purpose. The results of MCS are treated as accurate
solutions for the accuracy comparison. The proposed method, however, is not limited to
those simple problems. It also works for any failure mode with a complexed limit-state
function as long as the limit-state function can be built for the MTTF analysis. In Example

2, we also compare the proposed method with a time-dependent reliability based method
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(TRBM). Specifically, in the TRBM, we convert the limit-state function into an equivalent
Gaussian process [37, 39, 54], then use MCS to calculate R(t) on [0,T], and finally
estimate MTTF using Eq. (7).

All the three examples share the same values of the following parameters: m = 100,
w=2,1n=095, y =0.005, and 7,44 = 1,000. MCS calls the original limit-state
function in Eq. (1) directly to get samples of 7(X), and hence the mean lifetime 7. The
sample size nycg of MCS is set to 10°. All the three methods share the same discretization

oft € [0,T].

5.1. Example 1: An artificial math example

In this example, the limit-state function is given by
Y = exp(—0.05t)cos(0.25t + X), t € [0,40] (32)
where X is a standard uniform variable. With the Hammersley sampling method, we get

Ni, = 5 initial training points in [0,1]2. They are assembled in a matrix M

0 05
0.2 0.25
M=|04 0.75 (33)
0.6 0.125
0.8 0.625

The first column of M is mapped to the interval [0,T] of t, and then we get the initial
training points t™ = (0, 8, 16,24,32)”. The second column is mapped to interval [0,1] of
X, and then we get the initial training points x™ = (0.5,0.25,0.75,0.125,0.625)7 .
Substituting the five training points (xi“, ti“) into Eq. (1), we get five training points y' =

(0.8776,—0.4211,0.0169,0.2974,—0.1407)T of Y.
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Eq. (1) has been evaluated 5 times so far, and therefore currently n, = 5. With the
training points (x'", t™, y'm) = (xIn,ti", yi"), G(X,t) is built. Then more and more
training points determined by the learning function in Eq. (18) are added one by one into

trn gt ytny 6 refine G (X, t). The sample size ng is also increased

the training set (x
adaptively from the initial value n, = 1,000. After the algorithm converges, 6 training
points are added, and n, is finally updated to 5 + 6 = 11. ng is finally increased to 2,632.

Fig. 4 shows the actual contours of the limit-state function, as well as the training
points. There are three contours indicating Y = 0. For each value of X, G(X,t) = 0 has
three roots. However, we need only the minimum one. In other words, we need the GP to
accurately predict only the first contour. With the proposed learning function in Eq. (18),
almost all adaptive training points are added near the first contour. It helps the GP
efficiently find the first root, i.e., T(X), without wasting computational effort in improving
the GP in unimportant area. This is an expected good property of the proposed task-oriented
adaptive training.

Results are given in Table 1. The MTTF estimated by the proposed method is 4.48,
and that estimated by MCS is 4.49. The relative error is —0.2%, showing the high accuracy
of the proposed method. In addition, the proposed method evaluates the limit-state function

11 times, far less than 107 times by MCS, showing the high efficiency of the proposed

method.
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Table 1. Results of Example 1

Methods Proposed MCS
T 4.48 4.49
Relative error  —0.2% -
Ne 11 107
1 W T T 1 [ T I { T
GO; ‘ 4& \ | ) Actual contours
122 =4 \ ‘\,‘ © |Initial training points
0.8k |1 b + Added training points|
| \ I S © o o o \ \
| \'\ \r > JT Ve ‘
1rst Ol'lt(¥l,ll1 +°
Second Contour T? Contour
o
| \
2 i’: o o
20 30 40

Fig. 4. Contours and training points

5.2. Example 2: A simply supported beam

This example is modified from an example in [54]. Shown in Fig. 5 is a simply
supported beam subjected to two random loads. The cross-section A-A is rectangular with
width a and height b. Due to corrosion, both a and b decrease with time t and are given

by

a = ayexp(—0.02t) (34)
and
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b = byexp(—0.02t) (35)
where a, and b, are their initial values. A stationary random process load F(t) acts at the
midpoint of the beam. The beam is also subjected to a constant weight load and a load q,
which is uniformly distributed on the top surface of the beam. The autocorrelation

coefficient functions of F(t) is given by

t; — ty\2
p(tl,tz)=expl—(15 2)] (36)
L
F(t) A—A
10,
IR T ﬁ;

Fig. 5. A simply supported beam [54]

A failure occurs once the stress exceeds the ultimate strength. The limit-state function
is given by
Y = —0.25F(t)L — 0.125qL? — 0.125payboL? + 0.25(ay — 2kt)(ag — 2kt)%c  (37)
where o is the ultimate strength, p = 78.5 kg/m3 is the density of the beam, L = 5m is
the length of the beam, and t € [0, 20 | yr. Table 2 gives all random variables. n;, and n,
are setto 10 and 1,000, respectively. We use six random variables for the EOLE expansion

of F(t).
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Table 2. Variables of Example 2

Variable Mean Stapdgrd Distribution Autocorrelation
deviation
a 0.2m 0.002 m Gaussian N/A
b, 0.04m 0.004 m Gaussian N/A
o 0.24 GPa 0.0024 GPa Gaussian N/A
F(t) 5,000 N 500 N Stationary Gaussian Eq. (36)
process
q 450 N/m 50 N/m Gaussian N/A

Results are given in Table 3. The MTTF evaluated by the proposed method is 11.61

years, with a relative error of —0.4%. In addition, the proposed method needs 23 limit-

state function evaluations, which is much cheaper than MCS. In this example we also

compare the proposed method with TRBM. TRBM also obtains accurate MTTF, 11.55

years, with a relative error of —0.9%. TRBM, however, costs 1728 function evaluations,

much less efficient than the proposed method. A main reason for the low efficiency is the

computation in calculating the time-dependent reliability. For this reason, we do not

recommend estimating MTTF through time-dependent reliability analysis methods.

Another reason is that TRBM does not employ a surrogate model as the proposed method

does.

Table 3. Results of Example 2

Methods

Proposed TRBM MCS

Relative error

11.61yr
—0.4%
Ne 23

11.55yr 11.66yr

—0.9% -
1728 107
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5.3. Example 3: A 52-bar space truss

This example is modified from an example in [61, 62]. Shown in Fig. 6 is a 52-bar
space truss with 21 nodes. To distinguish the node numbers and the bar numbers, we add
a decimal point after all node numbers in Fig. 6. All the nodes are located on the surface
of an imaginary hemisphere whose radius is v = 240 in. The cross-sectional areas of Bars
1~8 and 29~36 are 2 in%. The cross-sectional areas of Bars 9~16 and other bars are 1.2 in?
and 0.6 in?, respectively. The Young’s modulus of all bars is E, which is a lognormal
random variable with mean and standard deviation being 25,000 ksi and 25 ksi ,
respectively. Nodes 1~5 are subjected to external loads F;(t)~Fs(t), all in the —z
direction. The five loads are modeled as Gaussian processes. They are independent of each
other with the following autocorrelation coefficient function:

t1—t;

pltr,t) = exp |- (252)'] &

where tq,t, € [0,10] yr. F,(t)~Fs(t) are all stationary processes whose mean and
standard deviation are 50 kip and 1 kip, respectively. F; (t) is nonstationary, with mean
value 4 (t) and standard deviation o, (t) given by
U, (t) = 50exp(0.02t) kip (39)
and
0, (t) = exp(0.02t) kip (40)
where t € [0,10] yr.
A failure occurs when the displacement § of Node 1 in —z direction exceeds a

threshold 6, = 1.3 in. The limit-state function is given by
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Y(£) = 8, — S(E,F)

(41)

where F = [F,, F,, F5, F,, Fs ] is the vector of all loads. §(E, F) is calculated by FEM, and

the linear bar element is used.

ni, and n, are set to 10 and 1,000, respectively. We use six random variables in the

EOLE expansion of each random load. Results are given in Table 4. The mean lifetime

evaluated by the proposed method is 4.79 years with a relative error of 0.8%. Besides, the

proposed method costs 56 limit-state function evaluations and is much more efficient than

MCS.

Fig. 6. A 52-bar truss: top view (left) and left view (right) [61, 62]

Table 4. Results of Example 3

Methods Proposed MCS

T 479yr 4.75yr
Relative error 0.8% -
Ne 56 107
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6. Conclusions

The mean time to failure (MTTF) is an important measure of product reliability. This
study demonstrates that MTTF can be predicted computationally by a physics-based
method. If a failure mode of the product is well understood and can be modelled
mathematically, a limit-state function is available, and the physics-based method can then
be used. It is in general much more efficient and cheaper than statistics-based methods.

This study also demonstrates that ML is a powerful tool to assist the prediction of the
MTTF. The results indicate that the proposed Gaussian process based adaptive training is
effective to predict the MTTF. Three examples have shown the high accuracy and
efficiency of the proposed method.

The proposed method can only accommodate one failure mode. If there are multiple
failure modes, the MTTF will depend on the limit-state functions of the failure modes and
their relationships, for instance, whether they are in parallel or in series, and this will
involve time-dependent system reliability analysis, where ML can play a more significant
role. Our future work will include developing physics-based ML algorithms for multiple

Gaussian process responses so that multiple limit-state functions can be handled.
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Figure Caption List

Fig. 1 A sample path of the limit-state function

Fig. 2 Brief flowchart of the proposed method

Fig. 3 Detailed flowchart of the proposed method

Fig. 4 Contours and training points

Fig. 5 A simply supported beam [54]

Fig. 6 A 52-bar truss: top view (left) and left view (right) [61, 62]
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