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ABSTRACT 

The average lifetime or the mean time to failure (MTTF) of a product is an important 

metric to measure the product reliability. Current methods of evaluating the MTTF are 

mainly based on statistics or data. They need lifetime testing on a number of products to 

get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, 

however, is expensive in terms of both time and cost. The efficiency is also low because it 

cannot be effectively incorporated in the early design stage where many physics-based 

models are available. We propose to predict the MTTF in the design stage by means of a 
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physics-based Gaussian process method. Since the physics-based models are usually 

computationally demanding, we face a problem with both big data (on the model input 

side) and small data (on the model output side). The proposed adaptive supervised training 

method with the Gaussian process regression can quickly predict the MTTF with a reduced 

number of physical model calls. The proposed method can enable continually improved 

design by changing design variables until reliability measures, including the MTTF, are 

satisfied. The effectiveness of the method is demonstrated by three examples. 

Keywords: Average Lifetime, Mean Time to Failure, Gaussian Process Model, Adaptive 

Training, Supervised Learning 
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1. Introduction 

In reliability engineering [1-5], the average lifetime, or the mean time to failure 

(MTTF), is an important metric of product reliability [1, 6]. Statistics-based methods [7, 8] 

are widely used to estimate the MTTF. The methods need lifetime testing [9] on many 

products to obtain the lifetime samples, which are then used to estimate the average lifetime 

by statistical analysis. The methods are generally expensive in three aspects. First, lifetime 

testing is time-consuming when the actual product lifetime is very long such as years. 

Although the accelerated life testing [10-12] can reduce the testing time, the results may 

not reflect the reliability of the product in normal use conditions. Second, the cost of the 

testing is usually high. Third, the testing is performed and lifetime data are collected after 

the products have been made. It is too late and more costly to fix reliability issues if the 

MTTF is shorter than expected. It is desirable to predict the MTTF during the early design 

stage.  

Direct lifetime data, however, are rarely available during the design stage. Physics-

based methods [13-17] then play an important role to deal with this problem. The methods 

use limit-state functions, which are computational models derived from physical principles, 

to predict the states of the components and subsystems of the product with respect to 

potential failure modes [15]. With the computational models for the failure modes, physics-

based methods are much more efficient than the statistics-based methods. They can predict 

reliability performance for a given design. If the reliability metrics, including the MTTF, 

do not meet the design requirements, design variables will be updated until the reliability 
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requirements are satisfied. Physics-based methods are therefore a powerful tool to support 

design for reliability [18-22]. 

Physics-based methods were originally developed for structural reliability analysis [13, 

16, 17]. In the last decades, many new physics-based reliability methods have been 

developed. These methods cover a wide range of applications, from component reliability 

[23-28] to system reliability [29-33], and from time-independent reliability to time-

dependent reliability [34-41] and time- and space-dependent reliability [42, 43]. 

Computational models, such as a finite element analysis model [44], are usually 

computationally expensive. We usually know distributions of random input variables, and 

it is possible for us to generate many random samples for the input variables. In this sense 

we have big data. On the other hand, we can afford to run the computational models only 

a limited number of times, and then we have small data for the responses. For this reason, 

machine learning (ML) methodologies have been increasingly used for reliability analysis. 

Typical ML methods for reliability analysis include Gaussian process (GP) based methods 

[28, 31, 34, 45, 46], support vector machine (SVM) based methods [47, 48], and neural 

network based methods [49-51]. 

In this study, we extend the physics-based methods to predict the MTTF of a product. 

Since this task needs more calls of the computational model than a regular reliability 

analysis, we also rely on ML to maintain computational efficiency. Specifically, we employ 

the supervised machine learning method [52] and adaptively train a GP to approximate the 

computational function with respect to the basic random input variables and random 

processes. Once the learning is finished, the MTTF of the product is obtained. 
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The rest of this paper is organized as follows. The problem statement is given in 

Section 2. A brief review of GP is provided in Section 3. The proposed method is discussed 

in Section 4. Three examples are illustrated in Section 5, followed by conclusions in 

Section 6. 

2. Problem Statement 

The computational function for reliability analysis is called a limit-state function given 

by 

 𝑌 = 𝐺(𝐗, 𝑡) (1) 

where 𝐗 = (𝑋1, 𝑋2 … ,𝑋𝑁)𝑇 are 𝑁 basic input random variables and 𝑡 is time. Note that the 

input of 𝐺(∙) may also include random processes, which can be transformed into functions 

of additional random variables and 𝑡. Thus Eq. (1) does not lose generality. 𝑌 is in general 

a random process. The product fails once the response 𝑌 becomes negative. 

 

 

Fig. 1. A sample path of the limit-state function 

 

Fig. 1 shows a sample path (trajectory) of 𝑌 when 𝐗 is fixed to a realization 𝐱. When 

𝑡 = 𝜏(𝐱), 𝑌 takes a negative value for the first time, and hence 𝜏(𝐱) is called first time to 

failure (FTTF). If the product is non-repairable, 𝜏(𝐱) is the lifetime (given that 𝐗 = 𝐱), and 
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afterwards 𝑌(𝐱, 𝑡), 𝑡 > 𝜏  has no physical meaning. A special scenario is 𝐺(𝐱, 0) < 0 , 

which means that the product fails at 𝑡 = 0  and hence 𝜏(𝐱) = 0 . Combining the two 

scenarios, 𝜏(𝐱) is defined as 

 𝜏(𝐱) = {
0, if 𝐺(𝐱, 0) < 0

minimum root of 𝐺(𝐱, 𝑡) = 0, if 𝐺(𝐱, 0) ≥ 0 
 (2) 

Since 𝜏(𝐗) is dependent on the input random variables 𝐗, it is also a random variable. 

The product’s MTTF 𝜏̅ is the mean value of 𝜏(𝐗) and is given by [6] 

 
𝜏̅ = ∫ 𝜏𝑓𝜏(𝜏)

+∞

0

d𝜏 
(3) 

where 𝑓𝜏(𝜏) is the probability density function (PDF) of 𝜏(𝐗).  

For statistics-based methods, the lifetime testing is used to obtain 𝑛test samples of 𝜏 

and then estimate 𝜏̅ through the following equation 

 𝜏̅ ≈
1

𝑛test
∑ 𝜏𝑘

𝑛test

𝑘=1

 (4) 

where 𝜏𝑘 is the 𝑘th sample of 𝜏. As discussed in Section 1, statistics-based methods are 

generally expensive and time-consuming due to the lifetime testing.  

For physics-based methods, the main challenge of estimating 𝜏̅ using Eq. (3) is that it 

is difficult to obtain 𝑓𝜏(𝜏) on the interval [0,+∞) or [0, 𝑇] where 𝑇 is a sufficiently large 

value. The most straightforward method is the Monte Carlo simulation (MCS) [53]. It 

samples 𝐗 with sufficiently large sample size 𝑛MCS  and then finds corresponding 𝑛MCS 

samples of 𝜏(𝐗) using Eq. (2). It finally estimates 𝜏̅ through the following equation 

 𝜏̅ ≈
1

𝑛MCS
∑ 𝜏𝑘

𝑛MCS

𝑘=1

 (5) 
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where 𝜏𝑘 is the 𝑘th sample of 𝜏. It is noted that in physics-based method, the samples of 𝜏 

are obtained through Eq. (2), which is based on the numerical model 𝐺(𝐗, 𝑡), instead of 

through lifetime testing. However, even without lifetime testing, it is still computationally 

expensive to solve Eq. (2) 𝑛MCS times to obtain the 𝑛MCS samples of 𝜏, with the premise 

that 𝐺(𝐗, 𝑡) is generally an expensive black-box function in practical engineering problems. 

Another way to derive MTTF is through the time-dependent reliability 𝑅(𝑡) [34-39], 

which is defined as 

 𝑅(𝑡) = Pr{𝐺(𝐗, 𝑡′) > 0, ∀𝑡′ ∈ [0, 𝑡]} (6) 

Then MTTF is given by [6] 

 𝜏̅ = ∫ 𝑅(𝑡)
𝑇

0

d𝑡 (7) 

which is equivalent to Eq. (3). Estimating MTTF through Eq. (7), however, is also a 

challenge, because we need to know the time-dependent reliability 𝑅(𝑡) on interval [0, 𝑇]. 

In the last decades, many time-dependent reliability methods have been proposed. A simple 

yet well-known time-dependent reliability analysis method is the equivalent Gaussian 

process method [37, 39, 54]. The main idea of the equivalent Gaussian process method is 

to convert the limit-state function 𝐺(𝐗, 𝑡) into an equivalent Gaussian process using the 

first-order reliability method (FORM) [37, 39, 54]. Then Gaussian integral methods are 

employed to calculate 𝑅(𝑡). This method works well for some engineering problems. 

However, calculating 𝑅(𝑡) on a large-span interval [0, 𝑇] efficiently is still a challenge. 

The objective of this study is to predict 𝜏̅ efficiently and accurately. The proposed 

method avoids using the brute-force MCS and the expensive methods based on the complex 

time-dependent reliability analysis. 
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3. Introduction to Gaussian Process Model  

Before presenting the proposed method, we briefly introduce GP [45] (or Kriging 

model [46]) and the learning function U [28], on which the proposed method is based. 

3.1. Gaussian process model 

A GP makes regression to a function 𝐹(𝐱) from a training sample set, or a design of 

experiment (DoE). The main idea of GP is to treat 𝐹(𝐱) as a realization of a Gaussian 

process ℱ(𝐱) given by 

 ℱ(𝐱) = 𝐟(𝐱)𝑇𝛃 + 𝑍(𝐱) (8) 

where 𝐟(𝐱) is a vector of regression functions whose coefficients are assembled in vector 𝛃, 

and 𝑍(𝐱) is a stationary Gaussian process with zero mean and covariance given by 

 Cov[𝑍(𝐱𝑖), 𝑍(𝐱𝑗)] = 𝜎𝑍
2𝑟(𝐱𝑖, 𝐱𝑗) (9) 

where 𝜎𝑍
2  is the variance of 𝑍(𝐱), and 𝑟(∙,∙) is the correlation function. A widely used 

model of the correlation function is called Gaussian model, or squared exponential model 

[46], and is given by 

 𝑟(𝐱𝑖, 𝐱𝑗) = ∏exp [−𝜃𝑑(𝑥𝑖𝑑 − 𝑥𝑗𝑑)
2
]

𝐷

𝑑=1

 (10) 

where 𝐷 is the dimension of 𝐱, 𝑥𝑖𝑑 is the 𝑑th component of 𝐱𝑖, 𝑥𝑗𝑑  is the 𝑑th component of 

𝐱𝑗, and 𝜃𝑑 is a parameter indicating the correlation in dimension 𝑑. The output of the GP 

is a Gaussian variable 

 𝐹̂(𝐱)~𝑁 (𝜇𝐹̂(𝐱), 𝜎𝐹̂
2(𝐱)) (11) 
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where 𝜇𝐹̂(𝐱) is the GP prediction, and 𝜎𝐹̂
2(𝐱) is called mean squared error [46]. Given a 

DoE, 𝜇𝐹̂(𝐱) and 𝜎𝐹̂
2(𝐱) are determined using the maximum likelihood method [55]. More 

details about GP are available in [45, 46].  

3.2. Learning function U 

In engineering problems where only the sign of 𝐹(𝐱) is of interest, such as reliability 

analysis where only the sign of the limit-state function is important, we need to measure 

how certain the sign of 𝐹(𝐱) has been predicted by sign[𝜇𝐹̂(𝐱)], the sign of 𝜇𝐹̂(𝐱). If 

𝜇𝐹̂(𝐱) > 0, then the probability that 𝐹(𝐱) > 0 is Φ(
𝜇𝐹̂(𝐱)

𝜎𝐹̂(𝐱)
), where Φ(∙) is the cumulative 

distribution function of a standard normal variable. Similarly, if 𝜇𝐹̂(𝐱) < 0 , then the 

probability that 𝐹(𝐱) < 0 is Φ(−
𝜇𝐹̂(𝐱)

𝜎𝐹̂(𝐱)
). Combining the two cases, the probability that the 

sign of 𝐹(𝐱) has been correctly predicted by sign[𝜇𝐹̂(𝐱)] is Φ(
|𝜇𝐹̂(𝐱)|

𝜎𝐹̂(𝐱)
). 

|𝜇𝐹̂(𝐱)|

𝜎𝐹̂(𝐱)
, which is 

monotonic to Φ(
|𝜇𝐹̂(𝐱)|

𝜎𝐹̂(𝐱)
) and known as the learning function 𝑈 [28], is widely used to 

determine whether sign[𝐹(𝐱)] is predicted correctly. 

4. The Proposed Method 

4.1. Overview of the proposed method 

The main idea of the proposed method is to adaptively train a GP 𝐺̂(𝐗, 𝑡) for 𝐺(𝐗, 𝑡). 

With 𝐺̂(𝐗, 𝑡) , we can obtain the surrogate model 𝜏̂(𝐗)  of 𝜏(𝐗) . Since 𝜏̂(𝐗)  is 

computationally cheap, we can calculate 𝜏̅ using MCS. 
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Training 𝐺̂(𝐗, 𝑡) should be task-oriented in order to improve efficiency. We employ a 

learning function and a stopping criterion to fulfill the task-oriented training. Fig. 2 shows 

a brief flowchart of the proposed method. There are mainly three steps. Step 1 is the initial 

design of experiments. It generates the initial training points for 𝐺̂(𝐗, 𝑡). In Step 2, 𝐺̂(𝐗, 𝑡) 

is adaptively refined by adding new training points. The learning function and stopping 

criterion are used to find the new training points and determine when to terminate the 

training. In Step 3, the sample size of 𝐗, and hence of 𝜏̂(𝐗), is adaptively enlarged until 𝜏̅ 

is estimated with sufficiently high fidelity. The three steps are discussed in detail in 

Subsections 4.2 through 4.4. 

 

 

Fig. 2. Brief flowchart of the proposed method 
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4.2. Design of experiments for initial GP 

The principle of the design of experiments for building a GP is to spread the initial 

training points evenly. Commonly used sampling methods include random sampling, Latin 

hypercube sampling, and Hammersley sampling [56]. In this study, we employ the 

Hammersley sampling method because it has better uniformity properties over a 

multidimensional space [57]. Since the dimension of the entire input vector (𝐗, 𝑡) is 𝑁 +

1 , the Hammersley sampling method generates initial training points in a hypercube 

[0,1]𝑁+1. To get initial training points of 𝐗, we can simply use the inverse probability 

method to transform the training points from the hypercube space to the X-space. As for 

the initial training points of 𝑡, we treat 𝑡 as if it was a uniform random variable and could 

also be transformed from the interval [0,1] to the time interval [0, 𝑇]. We assume that 𝑇 is 

sufficiently large so that Eq. (3) has at least a root in [0, 𝑇]. The initial training points 𝐱in 

of 𝐗 = (𝑋1, 𝑋2 … ,𝑋𝑁)𝑇 are 

 𝐱in =

[
 
 
 
 𝑥1

(1)
𝑥2

(1) ⋱ 𝑥𝑁
(1)

𝑥1
(2)

𝑥2
(2) ⋱ 𝑥𝑁

(2)

⋮

𝑥1
(𝑛in)

⋮

𝑥2
(𝑛in)

⋱
⋱

⋮

𝑥𝑁
(𝑛in)

]
 
 
 
 

 (12) 

where 𝑛in is the total number of initial training points. With 𝐱in and the initial training 

points 𝐭in  of 𝑡, we then obtain initial training points 𝐲in  of 𝑌 by evaluating Eq. (1) 𝑛in 

times. Finally, we get the initial training set (𝐱trn, 𝐭trn, 𝐲trn) = (𝐱in, 𝐭in, 𝐲in), where the 

superscript trn and in represents the general training points and initial training points, 

respectively. 
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4.3. Adaptive training 

With the initial training points (𝐱in, 𝐭in, 𝐲in), we can build an initial GP 𝐺̂(𝐗, 𝑡) to 

approximate 𝐺(𝐗, 𝑡). The initial 𝐺̂(𝐗, 𝑡) is usually not accurate. The task of the adaptive 

training is to add training points to refine 𝐺̂(𝐗, 𝑡) sequentially and adaptively. Specifically, 

a task-oriented learning function and stopping criterion are employed. 

For numerical computation, [0, 𝑇]  is evenly discretized into 𝑚  points 𝐭 =

(𝑡1, 𝑡2, … , 𝑡𝑚 )𝑇. Then 𝜏(𝐱) is approximated by 

 𝜏̂(𝐱) = min{𝑡 ∈ 𝐭|𝜇𝐺̂(𝐱, 𝑡) ≤ 0} (13) 

To estimate 𝜏̅, we first randomly generate 𝑛s samples 𝐱s of 𝐗. Then 𝜏̅ is approximated by 

 𝜏̅ =
1

𝑛s
∑𝜏̂(𝐱(𝑖))

𝑛s

𝑖=1

 (14) 

where 𝐱(𝑖)  is the 𝑖th  random sample of 𝐗 . Eq. (14) can yield accurate 𝜏̅  when two 

conditions are satisfied. First, the sample size 𝑛s is sufficiently large. The determination of 

𝑛s will be given in Subsection 4.4. Second, the model 𝜏̂(𝐗) is accurate for all the samples 

𝐱s. How to add training samples to refine 𝐺̂(𝐱, 𝑡) so that the second condition is satisfied 

is the key of the adaptive training. 

Intuitively, 𝜏̂(𝐗)  is accurate as long as 𝜇𝐺̂(𝐗, 𝑡)  approximates 𝐺(𝐗, 𝑡)  accurately. 

However, training 𝐺̂(𝐗, 𝑡) in this way is not efficient and it disobeys the task-oriented rule. 

In fact, 𝑡∗ ∈ 𝐭  is an accurate solution to Eq. (2) as long as the signs of 

{𝐺(𝐱, 𝑡)|, 𝑡 ∈ 𝐭, 𝑡 ≤ 𝑡∗ } are predicted accurately. For example, if 𝐺̂(𝐱, 𝑡) can accurately 

predict the signs of 𝐺(𝐱, 𝑡𝑗), 𝑗 = 1,2,3,4,5  as (+,+,+,+,−) , then 𝑡5  is the accurate 

solution to Eq. (2). We do not need to care if 𝐺̂(𝐱, 𝑡)  predicts the specific values of 
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𝐺(𝐱, 𝑡𝑗), 𝑗 = 1,2,3,4,5 or the signs of 𝐺(𝐱, 𝑡𝑗), 𝑗 ≥ 6 accurately. Note that in this example 

the exact solution to Eq. (2) should be within the interval [𝑡4, 𝑡5], but we can still treat 𝑡5 

as the solution without losing significant accuracy as long as 𝑚 is sufficiently large. 

The learning function 𝑈 proposed in [28] is used to measure how accurate the sign at 

a point is predicted. It is given by 

 𝑈(𝐱, 𝑡) =
|𝜇𝐺̂(𝐱, 𝑡)|

𝜎𝐺̂(𝐱, 𝑡)
 (15) 

To refine 𝐺̂(𝐗, 𝑡), we should add training points where the accuracy is poor or 𝑈 is small 

since a small 𝑈 means that the chance of correctly predicting the sign of 𝐺(𝐱, 𝑡) is small. 

If 𝐗 is fixed to 𝐱, the next training point (𝐱, 𝑡next) is determined by 

 (𝐱, 𝑡next) = argmin
𝑡∈𝐭,𝑡≤𝜏̂(𝐱)

𝑈(𝐱, 𝑡) (16) 

Since there are 𝑛s samples of 𝐗, Eq. (16) determines 𝑛s points. Among them, the point 

with minimal 𝑈  is finally selected as the next training point (𝐱next, 𝑡next) , which is 

determined by 

 (𝐱next, 𝑡next) = argmin
𝐱∈𝐱s,𝑡∈𝐭,𝑡≤𝜏̂(𝐱)

𝑈(𝐱, 𝑡) (17) 

With the learning function given in Eq. (17), we can add training points to update 

(𝐱trn, 𝐭trn, 𝐲trn) and 𝐺̂(𝐗, 𝑡) sequentially until a stopping criterion is satisfied. The same 

learning function in Eq. (17) is also used in [40, 41] for time-dependent reliability analysis 

with the first passage time. 

The direct use of 𝑈(𝐱, 𝑡) and hence Eq. (17), however, may result in duplicate training 

points. In other words, the next training point determined by Eq. (17) may be among 

(𝐱trn, 𝐭trn, 𝐲trn). Once this happens, the adaptive training fails. Theoretically, because GP 
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is an exact interpolator, if a point (𝐱∗, 𝑡∗, 𝑦∗) is among the training set (𝐱trn, 𝐭trn, 𝐲trn), 

𝐺̂(𝐗, 𝑡) will predict 𝐺(𝐱∗, 𝑡∗) exactly as 𝑦∗, i.e., 𝜇𝐺̂(𝐱∗, 𝑡∗) = 𝑦∗ and 𝜎𝐺̂(𝐱∗, 𝑡∗) = 0. As a 

result, 𝑈(𝐱∗, 𝑡∗) = +∞, (𝐱∗, 𝑡∗) will never be selected by Eq. (17) as the next training 

point, and the duplicate training points will never be encountered. However, due to the 

numerical error, 𝜎𝐺̂(𝐱∗, 𝑡∗) is not exactly zero but a small positive number. In this case, if 

𝜇𝐺̂(𝐱∗, 𝑡∗) is smaller than 𝜎𝐺̂(𝐱∗, 𝑡∗), we will have 𝑈(𝐱∗, 𝑡∗) < 1, and Eq. (17) may select 

(𝐱∗, 𝑡∗) as the next training point, leading to the duplicate training points.  

Another problem caused by 𝑈  is that the adaptively added training points may 

cluster together [34]. It will make the correlation matrix of GP ill-conditioned. If this 

happens, some of the clustered training points will have negligible effect on the refinement 

of 𝐺̂(𝐗, 𝑡), and the adaptive training may not converge. Hu and Mahadevan [34] proposed 

to disqualify those points to be candidate training points if they are highly correlated with 

any one of the existing training points. Specifically, the candidate training points are shrunk 

from point set 𝐱s × 𝐭  to {(𝐱, 𝑡) ∈ 𝐱s × 𝐭| max
(𝐱′,𝑡′)∈(𝐱trn,𝐭trn)

𝑟[(𝐱, 𝑡), (𝐱′, 𝑡′) ] < 𝜂} , where 

𝑟(∙,∙) is the correlation function used in GP to describe the correlation of two points, and 𝜂 

is a hyperparameter. It guarantees that the candidate training points are sufficiently far 

away from the current training points, and thereby that the newly selected training point 

will not overlap or cluster with any one of the current training points. We employ this 

method and then update the learning function in Eq. (17) to the following one 

 (𝐱next, 𝑡next) = arg min
𝑡≤𝜏̂(𝐱),(𝐱,𝑡)∈𝐂

𝑈(𝐱, 𝑡) (18) 

where 𝐂 = {(𝐱, 𝑡) ∈ 𝐱s × 𝐭| max
(𝐱′,𝑡′)∈(𝐱trn,𝐭trn)

𝑟[(𝐱, 𝑡), (𝐱′, 𝑡′) ] < 𝜂}. 
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In addition to the learning function, the other important component of the adaptive 

training is the stopping criterion. Since the learning function can add training points 

iteratively to update 𝐺̂(𝐗, 𝑡), and hence 𝜏̂(𝐱) in Eq. (13), a stopping criterion is necessary 

to terminate the iteration. Once the model 𝜏̂(𝐗) is accurate on all the samples 𝐱s, we no 

longer add new training points. Therefore, the iteration ends if the following condition is 

satisfied 

 𝑊 > 𝑤 (19) 

where 𝑊 = min
𝑡≤𝜏̂(𝐱),(𝐱,𝑡)∈𝐂

𝑈(𝐱, 𝑡), and 𝑤 is a hyperparameter and is recommended to set to 

2. Generally, the larger is 𝑤, the more accurate will 𝜏̅ be. Larger 𝑤, however, will lower 

the efficiency, so the selection of 𝑤  needs a tradeoff. There is no rigorous theory to 

determine the best 𝑤, and we recommend 2 based on both our experience from many 

experiments and [28]. 

4.4. Adaptive sample size 

Since the random sampling method is used to estimate 𝜏̅  through Eq. (14), it is 

desirable to select a good sample size 𝑛s . We use an initial sample size 𝑛0  and then 

adaptively increase the sample size until 𝜏̅ is obtained with a sufficiently high fidelity [58]. 

Since 𝜏(𝐗) is a random variable, the sample size needed to estimate its mean value 𝜏̅ 

is dependent on its standard deviation 𝜎𝜏. With the sample size 𝑛s, the deviation coefficient 

𝛤 of 𝜏̅ is given by 

 𝛤 =
𝜎𝜏

𝜏̅√𝑛s

 (20) 

where 𝜏̅ is estimated by Eq. (14) and 𝜎𝜏 is estimated by 
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 𝜎𝜏 = √
1

𝑛s − 1
∑[𝜏̂(𝐱(𝑖)) − 𝜏̅]2

𝑛s

𝑖=1

 (21) 

Eq. (20) shows that the larger is 𝑛s, the smaller 𝛤 will we have. A smaller 𝛤 means that 𝜏̅ 

is more accurately estimated by Eq. (14). 𝜏̅ is said to be accurate if the following condition 

is satisfied 

 𝛤 ≤ 𝛾 (22) 

where 𝛾 is a threshold, which usually takes a small positive number, such as 0.005. 

If the current 𝑛s cannot satisfy Eq. (22), we should increase it. Combining Eq. (20) 

and Eq. (22), we have 

 𝑛s ≥ (
𝜎𝜏

𝜏̅𝛾
)
2

 (23) 

It means that at least a sample size of (
𝜎𝜏

𝜏̅𝛾
)
2

is necessary to guarantee Eq. (22). Let 𝑛1 =

ceil [(
𝜎𝜏

𝜏̅𝛾
)
2

], where ceil(∙) represents the operation to get the nearest larger integer. Then 

the number 𝑛add by which 𝑛s should be increased is given by 

 𝑛add = 𝑛1 − 𝑛s (24) 

However, when 𝐺̂(𝐗, 𝑡) is too rough at the first several adaptive training iterations, both 𝜏̅ 

and 𝜎𝜏 may have poor accuracy, and 𝑛add given in Eq. (24) may be misleading. To deal 

with this issue, we set a threshold 𝑛̃add for 𝑛add. Then Eq. (24) is updated to 

 𝑛add = {
𝑛̃add, if 𝑛1 − 𝑛s > 𝑛̃add

𝑛1 − 𝑛s, otherwise
 (25) 
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Since it is cheap to compute samples of 𝜏̂(𝐗), 𝑛̃add is not really a key hyperparameter of 

the proposed method, and generally it is good to set 𝑛̃add  to 1,000, according to our 

experience from many experiments. 

4.5. Implementation 

The detailed flowchart of the proposed method is shown in Fig. 3. The total number 

𝑛e of function evaluations of 𝐺(𝐗, 𝑡) is used to measure the main computational cost of the 

proposed method, with the assumption that 𝐺(𝐗, 𝑡) is a computationally expensive black-

box function in practical engineering problems. 

 

 

Fig. 3. Detailed flowchart of the proposed method 
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4.6. Extension to problems with input random processes 

When the limit-state function 𝐺(∙) has input random processes, it is straightforward to 

employ the series expansion methods of the random processes, so that the above 

implementation of the proposed method can still work. 

Let 𝐇(𝑡) represents a vector of random processes, then the limit-state function is given 

by 

 𝑌 = 𝐺(𝐗,𝐇(𝑡), 𝑡) (26) 

To easily present the idea, we assume there is only one random process 𝐻(𝑡). Widely used 

series expansions for random fields include, the Karhunen-Loeve series expansion (K-L), 

the orthogonal series expansion (OSE), and the expansion optimal linear estimation method 

(EOLE) [59]. Since 𝑡 is discretized into 𝐭, the autocorrelation coefficient function of 𝐻(𝑡) 

is discretized into the autocorrelation coefficient matrix 𝐌𝐻 with dimension  𝑚 × 𝑚. Then 

the EOLE expansion 𝐻(𝛏, 𝑡) of 𝐻(𝑡) is given by 

 𝐻(𝛏, 𝑡) = 𝜇𝐻(𝑡) + 𝜎𝐻(𝑡)∑
𝜉𝑘

√𝜆𝑘

𝐕𝑘𝐌𝐻(: , 𝑘)
𝑚

𝑘=1
, 𝑡 ∈ 𝐭 (27) 

where 𝜇𝐻(𝑡) is the mean value function of 𝐻(𝑡), 𝜎𝐻(𝑡) is the standard deviation function 

of 𝐻(𝑡), 𝜉𝑘, 𝑘 = 1,2, … ,𝑚 are 𝑚 independent standard Gaussian variables, 𝜆𝑘 is the 𝑘-th 

eigenvalue of 𝐌𝐻 , 𝐕𝑘  is the 𝑘 -th (row) eigenvector of 𝐌𝐻 , and 𝐌𝐻(: , 𝑘)  is the 𝑘 -th 

column of 𝐌𝐻. Note that the eigenvalues are sorted from the largest to the smallest. Usually 

only the first 𝑚′ (𝑚′ ≤ 𝑚) eigenvalues are significant. Therefore, Eq. (27) is practically 

truncated, and only the first 𝑚′ orders are kept: 
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 𝐻(𝛏, 𝑡) = 𝜇𝐻(𝑡) + 𝜎𝐻(𝑡)∑
𝜉𝑘

√𝜆𝑘

𝐕𝑘𝐌𝐻(: , 𝑘)
𝑚′

𝑘=1
, 𝑡 ∈ 𝐭 (28) 

With the truncated expansion in Eq. (28), Eq. (26) is rewritten as 

 𝑌 = 𝐺(𝐗,𝐻(𝛏, 𝑡), 𝑡) (29) 

or equivalently as 

 𝑌 = 𝐺(𝐗̃, 𝑡) (30) 

where 𝐗̃ = (𝛏, 𝐗) . Eq. (30) shares the same format with Eq. (1) and hence the 

implementation given in Subsection 4.5 works as well. 

The direct implementation this way, however, may suffer from the curse of 

dimensionality. Since there are many random variables, i.e. 𝛏, in the series expansion 

𝐻(𝛏, 𝑡), the dimension of 𝛏 and hence that of 𝐺(𝐗̃, 𝑡) is high. As a result, the dimension of 

𝐺̂(𝐗̃, 𝑡) is also high. The high dimensionality has as least two drawbacks. First, it is not 

computationally cheap anymore, losing its expected advantages. Second, more training 

points are needed to train the GP. To overcome the drawbacks, we build a GP 𝐺̂(𝐗,𝐻, 𝑡) 

with respect to 𝐗, 𝐻, and 𝑡 [34, 58]. Note that the entire random process 𝐻 is treated as 

only one variable for 𝐺̂(𝐗, 𝐻, 𝑡). Then the surrogate model 𝐺̂(𝐗̃, 𝑡) with respect to 𝐗̃ and 𝑡 

is obtained through 

 𝐺̂(𝐗̃, 𝑡) = 𝐺̂[𝐗, 𝐻(𝛏, 𝑡), 𝑡] (31) 

Since the truncated series expansion 𝐻(𝛏, 𝐙) in Eq. (28) has a simple closed-form 

expression, if 𝐺̂(𝐗, 𝐻, 𝑡) is accurate and efficient, so will be 𝐺̂(𝐗̃, 𝑡) in Eq. (31). Since the 

dimension of 𝐺̂(𝐗, 𝐻, 𝑡) is (𝑚′ − 1) lower than that of 𝐺̂(𝐗̃, 𝑡), it is more efficient to train 

𝐺̂(𝐗, 𝐻, 𝑡). To build 𝐺̂(𝐗, 𝐻, 𝑡), we need the training points 𝐡trn of 𝐻. 𝐡trn can be obtained 
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simply by substituting (𝛏trn, 𝐭trn)  into Eq. (28). Similarly, when (𝐱̃(next), 𝑡(next))  is 

determined by Eq. (18), the next training point ℎ(next) of 𝐻 is obtained by substituting 

(𝛏(next), 𝐳(next)) into Eq. (28). Note that 𝐱̃(next) = (𝛏(next), 𝐱(next)). When multiple input 

random processes are involved, the procedure of building and updating the surrogate model 

𝐺̂ is similar. 

4.7. Application in design 

The proposed method predicts MTTF and can be used in design optimization. A design 

process may involve a number of iterations where new designs are iteratively generated. 

At each new design point, the proposed method is performed to predict MTTF if MTTF is 

one of the design requirements. From the analysis of the proposed method, design 

engineers know if the MTTF requirement is met. If the predicted MTTF is lower than 

expected, they can modify and generate a new design. By repeating this design process, 

engineers reach their final design that satisfies all the requirements, including the MTTF 

requirement. If optimization is the design tool used for the design, the MTTF could be 

treated as a design constraint. It is convenient to integrate the proposed method and the 

powerful Bayesian optimization [60] to perform design optimization since the GP method 

used in the proposed method is also employed in the Bayesian optimization. How to 

effectively do so is worth a further investigation in the future work.  

4.8. Discussions 

The advantage of the new physics-based method over statistics-based methods is its 

high efficiency and low cost. The main reason is that the statistics-based methods need the 
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lifetime testing while the physics-based method estimates MTTF using a numerical model. 

The other advantage is that MTTF can be predicted early during the design stage and can 

therefore be incorporated in the design optimization process. In addition, the adaptive 

training strategy embedded in the method improves the efficiency further.  

The proposed method, however, has two limitations. First, it is based on the premise 

that the failure mode can be modeled by a limit-state function. It will not work if the limit-

state function is not available or if the failure mode is hidden or unidentifiable during the 

early design. Second, the proposed method can only handle single failure modes. Extending 

it to multiple failure modes needs a further investigation. 

5. Examples 

In this section, we use three examples to illustrate the proposed method. The first one 

is an artificial math example with only one input random variable. It is designed to 

graphically show the procedure of the proposed method. The second one is an engineering 

example with both input random variables and a random process. The third one is an 

engineering example where the limit-state function is a black box using the finite element 

method (FEM) and where there are five input random processes. The limit-state functions 

of all the three examples are computationally inexpensive so that the brute-force method 

MCS is affordable for the validation purpose. The results of MCS are treated as accurate 

solutions for the accuracy comparison. The proposed method, however, is not limited to 

those simple problems. It also works for any failure mode with a complexed limit-state 

function as long as the limit-state function can be built for the MTTF analysis. In Example 

2, we also compare the proposed method with a time-dependent reliability based method 
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(TRBM). Specifically, in the TRBM, we convert the limit-state function into an equivalent 

Gaussian process [37, 39, 54], then use MCS to calculate 𝑅(𝑡)  on [0, 𝑇], and finally 

estimate MTTF using Eq. (7).  

All the three examples share the same values of the following parameters: 𝑚 = 100, 

𝑤 = 2 , 𝜂 = 0.95 , 𝛾 = 0.005 , and 𝑛̃add = 1,000 . MCS calls the original limit-state 

function in Eq. (1) directly to get samples of 𝜏(𝐗), and hence the mean lifetime 𝜏̅. The 

sample size 𝑛MCS of MCS is set to 105. All the three methods share the same discretization 

of 𝑡 ∈ [0, 𝑇]. 

5.1. Example 1: An artificial math example 

In this example, the limit-state function is given by 

 𝑌 = exp(−0.05𝑡)cos(0.25𝑡 + 𝑋), 𝑡 ∈ [0,40] (32) 

where 𝑋 is a standard uniform variable. With the Hammersley sampling method, we get 

𝑛in = 5 initial training points in [0,1]2. They are assembled in a matrix 𝐌 

 𝐌 =

[
 
 
 
 

0 0.5
0.2 0.25
0.4
0.6
0.8

0.75
0.125
0.625]

 
 
 
 

 (33) 

The first column of 𝐌 is mapped to the interval [0, 𝑇] of 𝑡, and then we get the initial 

training points 𝐭in = (0, 8, 16, 24,32)𝑇. The second column is mapped to interval [0,1] of 

𝑋 , and then we get the initial training points 𝐱in = (0.5, 0.25, 0.75, 0.125,0.625)𝑇 . 

Substituting the five training points (𝐱in, 𝐭in) into Eq. (1), we get five training points 𝐲in =

(0.8776,−0.4211, 0.0169, 0.2974,−0.1407)𝑇 of 𝑌.  
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Eq. (1) has been evaluated 5 times so far, and therefore currently 𝑛e = 5. With the 

training points (𝐱trn, 𝐭trn, 𝐲trn) = (𝐱in, 𝐭in, 𝐲in) , 𝐺̂(𝑋, 𝑡)  is built. Then more and more 

training points determined by the learning function in Eq. (18) are added one by one into 

the training set (𝐱trn, 𝐭trn, 𝐲trn) to refine 𝐺̂(𝑋, 𝑡). The sample size 𝑛s  is also increased 

adaptively from the initial value 𝑛0 = 1,000. After the algorithm converges, 6 training 

points are added, and 𝑛e is finally updated to 5 + 6 = 11. 𝑛s is finally increased to 2,632.  

Fig. 4 shows the actual contours of the limit-state function, as well as the training 

points. There are three contours indicating 𝑌 = 0. For each value of 𝑋, 𝐺(𝑋, 𝑡) = 0 has 

three roots. However, we need only the minimum one. In other words, we need the GP to 

accurately predict only the first contour. With the proposed learning function in Eq. (18), 

almost all adaptive training points are added near the first contour. It helps the GP 

efficiently find the first root, i.e., 𝜏(𝑋), without wasting computational effort in improving 

the GP in unimportant area. This is an expected good property of the proposed task-oriented 

adaptive training. 

Results are given in Table 1. The MTTF estimated by the proposed method is 4.48, 

and that estimated by MCS is 4.49. The relative error is −0.2%, showing the high accuracy 

of the proposed method. In addition, the proposed method evaluates the limit-state function 

11 times, far less than 107 times by MCS, showing the high efficiency of the proposed 

method. 
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Table 1. Results of Example 1 

Methods Proposed MCS 

𝜏̅ 4.48 4.49 

Relative error −0.2% - 

𝑛e 11 107 

 

 

Fig. 4. Contours and training points 

5.2. Example 2: A simply supported beam 

This example is modified from an example in [54]. Shown in Fig. 5 is a simply 

supported beam subjected to two random loads. The cross-section A-A is rectangular with 

width 𝑎 and height 𝑏. Due to corrosion, both 𝑎 and 𝑏 decrease with time 𝑡 and are given 

by 

 𝑎 = 𝑎0exp(−0.02𝑡) (34) 

and 
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 𝑏 = 𝑏0exp(−0.02𝑡) (35) 

where 𝑎0 and 𝑏0 are their initial values. A stationary random process load 𝐹(𝑡) acts at the 

midpoint of the beam. The beam is also subjected to a constant weight load and a load 𝑞, 

which is uniformly distributed on the top surface of the beam. The autocorrelation 

coefficient functions of 𝐹(𝑡) is given by 

 𝜌(𝑡1, 𝑡2) = exp [−(
𝑡1 − 𝑡2

5
)
2

] (36) 

 

Fig. 5. A simply supported beam [54] 

 

A failure occurs once the stress exceeds the ultimate strength. The limit-state function 

is given by 

  𝑌 = −0.25𝐹(𝑡)𝐿 − 0.125𝑞𝐿2 − 0.125ρ𝑎0𝑏0𝐿
2 + 0.25(𝑎0 − 2𝑘𝑡)(𝑎0 − 2𝑘𝑡)2𝜎 (37) 

where 𝜎 is the ultimate strength, 𝜌 = 78.5 kg/m3 is the density of the beam, 𝐿 = 5 m is 

the length of the beam, and t ∈ [0, 20 ] yr. Table 2 gives all random variables. 𝑛in and 𝑛0 

are set to 10 and 1,000, respectively. We use six random variables for the EOLE expansion 

of 𝐹(𝑡). 
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Table 2. Variables of Example 2 

Variable Mean 
Standard 

deviation 
Distribution Autocorrelation 

𝑎0 0.2 m 0.002 m Gaussian N/A 

𝑏0 0.04 m 0.004 m Gaussian N/A 

𝜎 0.24 GPa 0.0024 GPa Gaussian N/A 

𝐹(𝑡) 5,000 N 500 N 
Stationary Gaussian 

process 
Eq. (36) 

𝑞 450 N/m 50 N/m Gaussian N/A 

 

Results are given in Table 3. The MTTF evaluated by the proposed method is 11.61 

years, with a relative error of −0.4%. In addition, the proposed method needs 23 limit-

state function evaluations, which is much cheaper than MCS. In this example we also 

compare the proposed method with TRBM. TRBM also obtains accurate MTTF, 11.55 

years, with a relative error of −0.9%. TRBM, however, costs 1728 function evaluations, 

much less efficient than the proposed method. A main reason for the low efficiency is the 

computation in calculating the time-dependent reliability. For this reason, we do not 

recommend estimating MTTF through time-dependent reliability analysis methods. 

Another reason is that TRBM does not employ a surrogate model as the proposed method 

does.  

Table 3. Results of Example 2 

Methods Proposed TRBM MCS 

𝜏̅ 11.61 yr 11.55 yr 11.66 yr 

Relative error  −0.4% −0.9% - 

𝑛e 23 1728 107 
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5.3. Example 3: A 52-bar space truss 

This example is modified from an example in [61, 62]. Shown in Fig. 6 is a 52-bar 

space truss with 21 nodes. To distinguish the node numbers and the bar numbers, we add 

a decimal point after all node numbers in Fig. 6. All the nodes are located on the surface 

of an imaginary hemisphere whose radius is 𝑟 = 240 in. The cross-sectional areas of Bars 

1~8 and 29~36 are 2 in2. The cross-sectional areas of Bars 9~16 and other bars are 1.2 in2 

and 0.6 in2, respectively. The Young’s modulus of all bars is 𝐸, which is a lognormal 

random variable with mean and standard deviation being 25,000 ksi  and 25 ksi , 

respectively. Nodes 1~5 are subjected to external loads 𝐹1(𝑡)~𝐹5(𝑡) , all in the −𝑧 

direction. The five loads are modeled as Gaussian processes. They are independent of each 

other with the following autocorrelation coefficient function: 

 𝜌(𝑡1, 𝑡2) = exp [−(
𝑡1−𝑡2

5
)
2

]  (38) 

where 𝑡1, 𝑡2 ∈ [0, 10] yr . 𝐹2(𝑡)~𝐹5(𝑡)  are all stationary processes whose mean and 

standard deviation are 50 kip and 1 kip, respectively. 𝐹1(𝑡) is nonstationary, with mean 

value 𝜇1(𝑡) and standard deviation 𝜎1(𝑡) given by 

 𝜇1(𝑡) = 50exp(0.02𝑡) kip (39) 

and 

 𝜎1(𝑡) = exp(0.02𝑡) kip (40) 

where 𝑡 ∈ [0, 10] yr. 

A failure occurs when the displacement 𝛿  of Node 1 in −𝑧  direction exceeds a 

threshold 𝛿0 = 1.3 in. The limit-state function is given by 



28 

Xiaoping Du, JCISE-20-1217 

 𝑌(𝑡) = 𝛿0 −  δ(𝐸, 𝐅) (41) 

where 𝐅 = [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5 ] is the vector of all loads. 𝛿(𝐸, 𝐅) is calculated by FEM, and 

the linear bar element is used. 

𝑛in and 𝑛0 are set to 10 and 1,000, respectively. We use six random variables in the 

EOLE expansion of each random load. Results are given in Table 4. The mean lifetime 

evaluated by the proposed method is 4.79 years with a relative error of 0.8%. Besides, the 

proposed method costs 56 limit-state function evaluations and is much more efficient than 

MCS. 

 

Fig. 6. A 52-bar truss: top view (left) and left view (right) [61, 62] 

Table 4. Results of Example 3 

Methods Proposed MCS 

𝜏̅ 4.79 yr 4.75 yr 

Relative error 0.8% - 

𝑛e 56 107 
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6. Conclusions 

The mean time to failure (MTTF) is an important measure of product reliability. This 

study demonstrates that MTTF can be predicted computationally by a physics-based 

method. If a failure mode of the product is well understood and can be modelled 

mathematically, a limit-state function is available, and the physics-based method can then 

be used. It is in general much more efficient and cheaper than statistics-based methods. 

This study also demonstrates that ML is a powerful tool to assist the prediction of the 

MTTF. The results indicate that the proposed Gaussian process based adaptive training is 

effective to predict the MTTF. Three examples have shown the high accuracy and 

efficiency of the proposed method. 

The proposed method can only accommodate one failure mode. If there are multiple 

failure modes, the MTTF will depend on the limit-state functions of the failure modes and 

their relationships, for instance, whether they are in parallel or in series, and this will 

involve time-dependent system reliability analysis, where ML can play a more significant 

role. Our future work will include developing physics-based ML algorithms for multiple 

Gaussian process responses so that multiple limit-state functions can be handled. 
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Table 1 Results of Example 1 
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Table 3 Results of Example 2 
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Figure Caption List 

Fig. 1 A sample path of the limit-state function 

Fig. 2 Brief flowchart of the proposed method 

Fig. 3 Detailed flowchart of the proposed method 

Fig. 4 Contours and training points 

Fig. 5 A simply supported beam [54] 

Fig. 6 A 52-bar truss: top view (left) and left view (right) [61, 62] 

 


