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ABSTRACT

Average lifetime, or mean time to failure (MTTF), of a
product is an important metric to measure the product reliability.
Current methods of evaluating MTTF are mainly statistics or
data based. They need lifetime testing on a number of products
to get the lifetime samples, which are then used to estimate
MTTEF. The lifetime testing, however, is expensive in terms of
both time and cost. The efficiency is also low because it cannot
be effectively incorporated in the early design stage where many
physics-based models are available. We propose to predict
MTTF in the design stage by means of physics-based models.
The advantage is that the design can be continually improved by
changing design variables until reliability measures, including
MTTF, are satisfied. Since the physics-based models are usually
computationally demanding, we face a problem with both big
data (on the model input side) and small data (on the model
output side). We develop an adaptive supervised training method
based on Gaussian process regression, and the method can then
quickly predict MTTF with minimized number of calling the
physics-based models. The effectiveness of the method is
demonstrated by two examples.

1. INRODUCTION

In reliability engineering [ 1-5], the average lifetime, or mean
time to failure (MTTF), is an important metric of product
reliability [1, 6]. Statistics-based methods [7, 8] are widely used
to estimate MTTF. The methods need lifetime testing on a
number of products to obtain the lifetime samples, which are
then used to estimate the average lifetime by statistical analysis.
The methods are generally expensive in three aspects. First,
lifetime testing is time-consuming when the actual product
lifetime is very long such as years. Although the accelerated life
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testing [9] can reduce the testing time, the results may not reflect
the reliability of the product in normal use conditions. Second,
the budget of the testing is expensive and even unaffordable
when the products themselves are expensive. Third, testing is
performed or lifetime data are collected from field after the
product was made. It is too late and more costly to fix reliability
issues if MTTF is shorter than expected. It is desirable to predict
MTTF during the early design stage.

Direct lifetime data, however, are rarely available during the
design stage. Physics-based methods [10] then play an important
role to deal with this problem. The methods use limit-state
functions, which are computational models derived from
physical principles, to predict the states of the components and
subsystems of the product with respect to potential failure modes
[11]. With the computational models for the failure modes,
physics-based methods are much more efficient than the
statistics-based methods. They can predict reliability
performance for a given design. If the reliability measures,
including MTTF, do not meet the design requirements, design
variables will be changed until the reliability requirements are
met. Physics-based methods are therefore a powerful tool to
support design for reliability [12-16].

Physics-based methods were originally developed for
structural reliability analysis [10]. In the last decades, many new
physics-based reliability methods have been developed. These
methods cover a wide range of applications, from component
reliability to system reliability [10], and from time-independent
reliability to time-dependent reliability [17-19] and time- and
space-dependent reliability [20].

Computational models, such as a finite element analysis
model [21], are usually computationally expensive. We usually
know distributions of random input variables, and it is possible
for us to generate many random samples for the input variables.
In this sense we have big data. On the other hand, we can afford
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to run the computational models only a limited number of times,
and then we have small data for the responses. For this reason,
machine learning methodologies have been increasingly used for
reliability analysis. For example, Gaussian process (GP) method
for quantifying model structure uncertainty [22, 23]; the support
vector machine (SVM) method for estimating rare event
probabilities [11], and other methods for predicting component
and system reliability [24].

In this study, we extend the physics-based methods to
predict MTTF for a product. Since this task needs more calls of
the computational model than a regular reliability analysis, we
also rely on machine learning to maintain computational
efficiency. Specifically, we employ the supervised machine
learning method [25] and adaptively train a Gaussian process
regression model [26] to approximate the computational function
with respect to the basic random input variables. A learning
function is developed to guide adding training points. Once the
learning is finished, the MTTF of the product is obtained.

The problem statement is given in Section 2. The proposed
method is discussed in Section 3. In Section 4, we extend the
proposed method to deal with problems involving random
processes. Three examples are provided in Section 5, followed
by conclusions in Section 6.

2. PROBLEM STATEMENT

The computational function for reliability analysis is called
a limit-state function, which is given by

Y =6 1) (D

where X = (X;,X,..,Xy)T are N basic input random
variables and t is time. Note that the input of G(-) may also
include random processes, which can be transformed into
functions with respect to random variables and t. Thus Eq. (1)
does not lose generality. Y is in general a random process. The
product fails once its response Y takes a negative value.

Y =G(xt)

7(X)

0 N~ ~

FIGURE 1: A SAMPLE OF THE LIMIT-STATE FUNCTION

Fig. 1 shows a sample of ¥ when X is fixed to a
realization x. When t = 7(x), Y takes a negative value at the
first time, and hence 7(X) is called the first time to failure. If
the product is non-repairable, T(x) is the lifetime (given that
X =x), and afterwards Y(x,t),t > 7 has no any physical
meaning. Since 7(X) is dependent on the input random
variables X, it is also a random variable. The product’s mean
lifetime T or MTTF, is given by

7= E[t(X)] )

where E(-) represents an expectation.

The task of this study is to predict T efficiently and
accurately. Mathematically, 7(X) is the first (or minimum) root
of the following equation

GX,t) =0 (3)

Finding the minimum root of Eq. (3), however, may be
computationally expensive when the limit-state function G (X, t)
is an expensive black-box function. Therefore, developing an
accurate and efficient first-root finder is a challenge.

3. THE PROPOSED METHOD

3.1. Overview of the proposed method

The main idea of the proposed method is to adaptively train
a Gaussian process model (or Kriging model [27]) G(X,t) for
G(X,t). With G(X,t), we can obtain the surrogate model #(X)
of 7(X) at the same time. Since 7(X) is computationally
cheap, we can calculate T using Monte Carlo simulation (MCS)
[28].

Step 1 [Design of Experiment ]

i [ Build G (X, t) and
i obtain £(X)

accurate on
X samples

Increase sample size

If sample size
is sufficient

Step 3
T
FIGURE 2: BRIEF FLOWCHART OF THE PROPOSED
METHOD

Training G(X,t) should be task-oriented in order to
improve efficiency. We develop a learning function and a
stopping criterion to fulfill the task-oriented training. Fig. 2
shows a brief flowchart of the proposed method. There are
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mainly three steps. Step 1 is the design of experiments. It
generates the initial training points for G(X,t). In Step 2,
G(X,t) is adaptively refined by adding new training points. A
learning function and a stopping criterion are developed to find
the new training points and judge when to terminate the training.
In Step 3, the sample size of X, and hence of 7(X), is adaptively
enlarged until T is estimated with sufficiently high fidelity. The
three steps are discussed in details in Subsections 3.2 through
3.4.

3.2. Design of experiments for initial surrogate model
The principle of the design of experiments for building a
Kriging model is to spread the initial training points evenly.
Commonly used sampling methods include random sampling,
Latin hypercube sampling, and Hammersley sampling [29]. In
this study, we employ the Hammersley sampling method because
it has better uniformity properties over a multidimensional space
[30]. Since the dimension of the entire input vector (X,t) is
N + 1, the Hammersley sampling method generates initial
training points in a hypercube [0,1]V*1. To get initial training
points of X, we can simply use the inverse probability method
to transform the training points from the hypercube space to the
X-space. As for the initial training points of t, we treat t as if
it was a uniform random variable and could also be transformed
the interval [0,1] to the time interval [0,T]. We assume that T
is sufficiently large so that Eq. (3) has at least a root in [0, T].
The initial training points x'™ of X = (X, X, ..., Xy)" are

[ xl(l) xél) xlf,l)]
2 2 . ()]
X —[ R ‘ @)
i) ) . (i)
x, in x, in L Xy in

where n;, is the total number of initial training points. With x'®
and the initial training points t™™ of t, we then obtain initial
training points y'™ of Y by calling Eq. (1). Finally, we get the
initial training set (x'™;t""; y'™) = (x"; ti"; y'™), where the
superscript #rn and in represents the general training points and
initial training points, respectively.

3.3. Adaptive training
With the initial training points (x y'™), we can build an
initial Kriging model G(X,t) to approximate G(X,t). The
initial G(X,t) is generally not accurate. The task of the adaptive
training is to add training points to refine G(X,t) sequentially
and adaptively. Specifically, a task-oriented learning function
and stopping criterion are developed.
For numerical computation, [0,T] is evenly discretized

in, ¢in,
lt )

into m points t= (t;,ty..,tym )T . Then 7T(X) is
approximated by
#(x) = min{t € t|G(x,t) < 0} (5

To estimate T, we first randomly generate ng samples x° of
X. Then T is approximated by

ns
1 .
T=— > #(x®) (6)
Ns =1

where x® isthe i™ sample of X.Eq. (6) can yield accurate 7
only when two conditions are satisfied. First, the sample size ng
is sufficiently large. How to determine ng will be given in
Subsection 4.3. Second, the model 7(X) is accurate at all the
samples x°. How to add training samples to refine G(x,t) so
that the second condition is satisfied is the key of the adaptive
training.

Intuitively, #(X) is accurate as long as G(X,t)
approximates G (X,t) accurately. However, training G (X,t) in
this way is not efficient and it disobeys the task-oriented rule. In
fact, t* € t is an accurate solution to Eq. (5) as long as the signs
of {Gx,t)|,tett<t*} are predicted accurately. For
example, if G(x,t) can accurately predict the signs of
G(X, tj),j =1,2,34,5 as (+,+,+,+,—), then t5 is definitely
the accurate solution to Eq. (5). We do not need to care if G (x,t)
predicts the specific values of G(x, tj),j =1,2,3,4,5 or the
signs of G (x, t]-), Jj = 6 accurately.

The well-known learning function U [31] is used to

measure how accurate the sign at a point is predicted. It is given
by

G0

Ux,t) = D) (7N

where o(X,t) is the square root of the Kriging prediction error.
The Kriging model predicts G(x,t) as a normal variable
N(G(x,t),02(x,t) ). If G(x,t) >0, the sign of G(x,t) is
predicted to be positive. The probability that G(x,t) > 0 is
G(x,t)
(a(x,t)
(CDF) of a standard normal variable. Therefore, the probability
é(x,t))

oxt)/)’
Similarly, if G(x,t) < 0, the sign of G(x,t) is predicted to be
negative, and the probability that the prediction is accurate is

—G(xt) .. |G (x,t)]|
dD(U(X't)). Combining both cases, CIJ(U(U)) the

probability that the sign of G(x,t) is accurately predicted. It is

Gt
why U(x,t) = o (;t)

predicted. (Note that ®(+) is an increasing function.)

To refine the Kriging model G (X, t), we should add training
points where the accuracy is poor or U is small since a small U
means that the chance of correctly predicting the sign of G (X, t)
is small. If X is fixed to X, the next training point (X, t"**) is
determined by

), where ®(-) is the cumulative distribution function

that the sign of G(x,t) is predicted accurately is CIJ(

can measure how accurately the sign is
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(%, t"XY) = argmin U (X, t) (8)

tett<(x)

Since there are ng samples of X, Eq. (8) determines ng points.
Among them, the point with minimal U is finally selected as the
next training point (X", t"®X) which is determined by

(xnext tnexty — grg mln{ min U(x, t)} ©)

xexS (tet,t<t(x)

With the learning function given in Eq. (9), we can add training
points to update (x'™,t"",y'™) and G(X,t) sequentially
until a stopping criterion is satisfied.

The direct use of U(x,t) and hence Eq. (9), however, may
result in duplicate training points. In other words, the next
training point determined by Eq. (9) may be the one among
(xtm, 1 vty Once this happens, the adaptive training fails.
Theoretically, because Kriging is an exact interpolator, if a point
(x*,t*,y*) is among the training set (x'®,t"",y"™)  the
Kriging model G(X,t) will predict G(x*,t*) exactly as y*,
ie, Gx,t)=y" and o&x,t")=0 . As a result,
U, t*) = +oo, (x*,t*) will never be selected by Eq. (9) as
the next training point, and the duplicate training points will
never be encountered. However, due to the numerical error,
o(x*,t*) is not exactly zero but a small positive number. In this
case, if G(x*t*) is smaller than o(x* t*), we will have
Ux*,t*) <1, and Eq. (9) may select (x*,t*) as the next
training point, leading to the duplicate training points.

Another problem caused by U is that added training points
may cluster together [19]. It will make the correlation matrix of
the Kriging model ill-conditioned. If this happens, some of the
clustered training points will have negligible effect on the
refinement of G(X,t), and the adaptive training may not
converge. Hu and Mahadevan [19] proposed to disqualify those
points to be candidate training points if they are highly correlated
with any one of the existing training points. Specifically, the
candidate training points are shrunk from point set X° X t to

S
{(x, t) € x5 X t|( ’t’)E(xtr“ ttm)p[(x t),x, t)]< } , where
p(+) is the correlation coefficient used in Kriging model to
describe the correlation of two points, and 7 is a
hyperparameter. It guarantees that the candidate training points
are sufficiently far away from the current training points, and
thereby that the newly selected training point will not overlap or
cluster with any one of the current training points.

We employ this method and then the learning function

proposed in Eq. (9) is updated to

(Xnext’ tnext) — rg

Ux,t) (10)

t<‘r(x) (x t)eC

where
= X, € XS X | X n}
{( t) t ( , t’)e(xtrn ttl"l‘l) [( t) ( t ) ] <

In addition to the learning function, the other important
component of the adaptive training is the stopping criterion.

Since the learning function can add training points iteratively to
update G(X,t), and hence #(x) in Eq. (5), a stopping criterion
is necessary to terminate the iteration. Once the model 7(X) is
accurate on all the samples x°, we no longer add new training
points. Therefore, the iteration ends if the following condition is
satisfied

W>w (11)

where W = U(x,t), and w is a hyperparameter

ts%(g)l,%)r(l,t)ec
and is recommended to set to 2. Generally, the larger is w, the
more accurate will T be. Larger w, however, will lower the
efficiency, so the selection of w needs a tradeoff. There is no
rigorous theory to determine the best w, and we recommend 2
based on both our experience from many experiments and [31].

3.4. Adaptive sample size

Since the random sampling method is used to estimate T
through Eq. (6), it is desirable to select a good sample size n.
We use an initial sample size n, and then adaptively increase
the sample size until T is obtained with a sufficiently high
fidelity [32].

Since 7(X) is a random variable, the sample size needed to
estimate its mean value T is dependent on its standard deviation
o,. With the sample size ng, the deviation coefficient I' of T is
given by

I =

Oz
/s (12)

where T is estimated by Eq. (6) and o, is estimated by

Ns

o, = ilz[f(x(i)) 7P (13)

n
s i=1

Eq. (12) shows that the larger is ng, the smaller will I we have.
A smaller I' means that 7 is more accurately estimated by Eq.
(6). T issaidto be accurate if the following condition is satisfied

r<y (14)

where y is a threshold, which usually takes a small positive
number, such as 0.005.

Ifthe current ng cannot satisfy Eq. (14), we should increase
it. Combining Eq. (12) and Eq. (14), we have

ng = (:—;)2 (15)

2
It means that at least a sample size of (:—;) is necessary to

2
guarantee Eq. (14). Let n; = ceil [(;—;) ] , where ceil(+)
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represents the operation to get the nearest larger integer. Then the
number n,4qq by which ng should be increased is given by

Naqq = Ny — N (16)

However, when G (X,t) is too rough at the first several adaptive
training iterations, both 7 and o, may have poor accuracy, and
N,qq given in Eq. (16) may be misleading. To deal with this
problem, we set a threshold 7,44 for n,qq. Then Eq. (16) is
updated to

Tladd, if 1y — N > Tlagq
n, — ng, otherwise

amn

Nada = {

3.5. Implementation

In this subsection, we give the detailed procedure of the
proposed method. The full flowchart is shown in Fig. 3. The total
number n. of function evaluations of G(X,t) is used to
measure the main computational cost of the proposed method.

[Generate ng random samples XS]

[

Generate n;, initial training points (x"", t'™ )
and compute y"™ with Eq. (1); ne = Ny,

]
[ Build G (X, t) using (x™™, t7™, yT™) ]<—
]

—'[ Compute 7(X) at x5 with Eq. (5) ]
)

[Compute T with Eq. (6) ]

Generate ng
random samples of X,
add them into x5,
and update
Ng = Ng + Nadd

Compute 1,499

/Flnd (xnext, tnext) \
with Eq. (10),
compute ymext

with Eq. (1),

updaten, =n, + 1,

and add
(Xnext tnext ynext)

into

k (Xtrn‘ ttrn’ ytrn) /
Yes —

FIGURE 3: DETAILED FLOWCHART OF THE PROPOSED METHOD

4. EXTENSION TO PROBLEMS WITH INPUT RANDOM
PROCESSES

When the limit-state function G(-) has input random
processes, it is straightforward to employ the series expansion
methods of the random processes, so that the above
implementation of the proposed method can still work.

Let H(t) represents a vector of random processes, then the
limit-state function is given by

Y =GX H(t),t) (18)

To easily present the idea, we assume there is only one random
process H(t). Widely used series expansions for random fields
include, the Karhunen-Loeve series expansion (K-L), the
orthogonal series expansion (OSE), and the expansion optimal
linear estimation method (EOLE) [33]. Since t is discretized

into t, the autocorrelation coefficient function of H(t) is
discretized into the autocorrelation coefficient matrix My with
dimension m X m. Then the EOLE expansion H(E,t) of
H(t) is given by

HEO =i (O +ou(©) ) 1j—§_kaH<:.k).t et (19)
= k

where py(t) is the mean value function of H(t), oy (t) is the
standard deviation function of H(t), &,k = 1,2,..,m are m
independent standard Gaussian variables, A, is the k -th
eigenvalue of My, V; is the k-th (row) eigenvector of My,
and My(:, k) is the k-th column of Mj . Note that the
eigenvalues are sorted from the largest to the smallest. Usually
only the first m' (m’' <m) eigenvalues are significant.
Therefore, Eq. (19) is practically truncated, and only the first m'
orders are kept:
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HEO =m0 +0y(©) ) 1j—;_kaH(:,k).t et (20)
= k

With the truncated expansion in Eq. (20), Eq. (18) is rewritten as

Y=GXHE,0) €2y
or equivalently as

Y=6(X1t) (22)

where X = (&, X). Eq. (22) shares the same format with Eq. (1)
and hence the implementation given in Subsection 4.4 also
works.

The direct implementation this way, however, may suffer
from the curse of dimensionality. Since there are many random
variables, i.e. &, in the series expansion H(E,t), the dimension
of & and hence that of G(X, t) is high. As a result, the
dimension of the Kriging model G (X t) is also high. The high
dimensionality has as least two drawbacks. First, it is not
computationally cheap anymore, losing its expected advantages.
Second, more training points are needed to train the Kriging
model. To overcome the drawbacks, we build a Kriging model
G(X,H,t) with respect to X, H, and t. Note that the entire
random process H is treated as only one variable for
G(X, H,t). Then the surrogate model G(X,t) with respectto X
and t is obtained through

G(Xt) = GIX,H(E 1), t] 23)

Since the truncated series expansion H(¥,Z) in Eq. (20)
has a simple closed-form expression, if G (X,H,t) is accurate
and efficient, so will be GA(X, t) in Eq. Error! Reference
source not found.. Since the dimension of G(X,H,t) is
(m' — 1) lower than that of G (X, t), it is more efficient to train
G(X,H,t). Tobuild G(X, H,t), we need the training points h™
of H. h'™ can be obtained simply by substituting (', t"™)
into Eq. (20). Similarly, when (&%®@X9,¢®ex0) js determined
by Eq. (10), the next training point h™*® of H is obtained by
substituting (MY, z(exV) into Eq. (20). Note that XXV =
(E(“eXt),x(neXt)). When multiple input random processes are
involved, the procedure of building and updating the surrogate
model G is similar.

5. EXAMPLES

In this section, we use three examples to illustrate the
proposed method. The first one is a math example with only one
input random variable. It is designed to graphically show the
procedure of the proposed method. The second one is an
engineering example with both input random variables and a
random process. The third one is an engineering example where
the limit-state function is a black box using the finite element
method (FEM) and there are many input random variables.

All the three examples share the same values of the
following parameters: m =100, w=2, n=095, y=
0.005, and 7,499 = 1,000. MCS is also used to evaluate MTTF;
it calls the original limit-state function in Eq. (1) directly to get
samples of 7(X), and hence the mean lifetime 7. The sample
size nycs of MCSissetto 10°. The results of MCS are treated
as the exact ones for the accuracy comparison. Both the proposed
method and MCS share the same discretization of t € [0, T].

5.1. Example 1: A math example
The limit-state function is given by
Y = exp(—0.05¢t)cos(0.25t + X), t € [0,40] (24)
where X is a standard uniform variable. With the Hammersley

sampling method, we get n;, =5 initial training points in
[0,1]2. They are assembled in a matrix M

0 05
0.2 025
M=|04 0.75 25
0.6 0.125
0.8 0.625

The first column of M is mapped to the interval [0,T] of ¢t
and then we get the initial training points ti" =
(0,8,16,24,32)" of t. The second column of M is mapped to
the interval [0,1] of X and then we get the initial training
points x™ = (0.5,0.25,0.75,0.125,0.625)7of X. Substituting
the five training points (x'*,t") into Eq. (1), we get the 5
training points
y'" = (0.8776,—0.4211,0.0169, 0.2974, —0.1407)T of Y.
Eq. (1) has been evaluated 5 times so far, and therefore
currently n, = 5. With the training points (x'™, t'0, y"m)T =
(x, 1", yi™)T the Kriging model G(X,t) is built. Then more
and more training points determined by the learning function in
Eq. (10) are added one by one into the training set
(xtm, ¢t yt™)T o refine G (X, t). The sample size ng is also
increased adaptively from the initial value n, = 1,000. After
the algorithm converges, 8 training points are added and n, is
finally updated to 5+ 8 =13. ng is finally increased to
2,701.

Fig. 4 shows the actual contours of the limit-state function,
as well as the training points. There are three contours indicating
Y = 0. For each value of X, Eq. (3) has three roots. However,
we only need the first root. In other words, we only need the
Kriging model to accurately predict the first contour. Thanks to
the proposed learning function in Eq. (10), almost all adaptive
training points are added near the first contour. It helps the
Kriging model efficiently find the first root, i.e., T(X), without
putting unnecessary computational effort in improving
unimportant area of the Kriging model. This is an expected good
property of the task-oriented adaptive training.
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TABLE 1: RESULTS OF EXAMPLE 1

Methods Proposed MCS
T 4.51 4.49
Relative error 0.6% -
Ne 13 107

The relative error is 0.6%, showing the high accuracy of the
proposed method. In addition, the proposed method only
evaluated the limit-state function 13 times, far less than 107
times by MCS, showing the high efficiency of the proposed
method.

5.2. Example 2: A simply supported beam

This example is modified from an example in [34]. Shown
in Fig. 5 is a simply supported beam subjected to two random
loads. The cross-section A-A is rectangular with width a and
height b. Due to corrosion, both a and b decrease with time
t and are given by

a = ayexp(—0.02t) (26)
and

b = byexp(—0.02t) 27)
where a, and b, are their initial values. A stationary random
process load F(t) acts at the midpoint of the beam. The beam
is also subjected to a constant weight load and a load g, which

is uniformly distributed on the top surface of the beam. The
autocorrelation coefficient functions of F(t) is given by

3 t1 — t2\°
Results are given in Table 1. MTTF estimated by the p(ty,t;) = exp [_( 5 ) ] (28)
proposed method is 4.51, and that estimated by MCS is 4.49.
L
L/Z F(t) A-—A

o
Dlmnne

FIGURE 5: A SIMPLY SUPPORTED BEAM

A failure occurs once the stress exceeds the ultimate
strength. The limit-state function is given by

Y = —0.25F ()L — 0.125qL* — 0.125pay b, L? 29
+0.25(ap — 2kt)(ap — 2kt)2s )

where o is the ultimate strength, p = 78.5 kg/m3 is the
density of the beam, L = 5 m is the length of the beam, and t €
[0,20 ] yr. Table 2 gives all random variables. n;, and n, are
setto 10 and 1,000, respectively. We use six random variables
for the EOLE expansion of F(t).

Results are given in Table 3. The beam’s mean lifetime
evaluated by the proposed method is 11.64 years, with a
relative error of —0.1%. In addition, the proposed method only

costed 89 limit-state function evaluations, which is way cheaper
than MCS.

5.3. Example 3: A 52-bar space truss

This example is modified from an example in [35]. Shown
in Fig. 6 is a 52-bar space truss with 21 nodes. All the nodes are
located on the surface of an imaginary hemisphere whose radius
is v = 240 in. The cross-sectional areas of Bars 1~8 and 29~36
are 2 in? The cross-sectional areas of Bars 9~16 and other bars
are 1.2 in? and 0.6 in?, respectively. The Young’s modulus of
all bars is E. To distinguish the node numbers and the bar
numbers, we add a decimal point after all node numbers in Fig.
6. Nodes 1~13 are subjected to external loads F;~F;3, all in the
—z direction. E and F;~F;3 are random variables, whose

7 © 2020 by ASME



distribution information is given in Table 4. Note that the mean
value of F; is a function of time t € [0,10] yr.

TABLE 2: VARIABLES OF EXAMPLE 2

Standard

Variable Mean .. Distribution Autocorrelation
deviation
a 0.2m 0.002 m Gaussian N/A
by 0.04 m 0.004 m Gaussian N/A
o 0.24 GPa 0.0024 GPa Gaussian N/A
F(b) 5,000 N 500 N Stationary Gaussian Eq. (28)
process
q 450 N/m 50 N/m Gaussian N/A
TABLE 3: RESULTS OF EXAMPLE 2
Methods Proposed  MCS
T 11.64yr 11.66yr
Relative error —0.1% -
Ng 89 107
. ][ y
X
o /2 A
L V3r/2
(A) TOP VIEW (B) LEFT VIEW
FIGURE 6: A 52-BAR SPACE TRUSS
TABLE 4: VARIABLES OF EXAMPLE 3
Variable Mean Star.lde.lrd Distribution
deviation
E 2.5 x 10* ksi 25 ksi Gaussian
F, 40exp (0.05¢t) kip 0.4 kip Lognormal
F,~F5 50 kip 0.5 kip Lognormal
Fg~Fi3 60 kip 0.6 kip Lognormal
8 © 2020 by ASME



A failure occurs when the displacement § of Node 1 along
—z direction exceeds the threshold &, = 1.3 in. The limit-state
function is given by

Y(t) = 8, — 8(E,F) (30)

where F = [F,, F,, F;, ..., Fi3] is the vector all loads. §(E,F)
is calculated by FEM and the linear bar element is used.

niy, and n, are set to 30 and 100, respectively. Results
are given in Table 5. The mean lifetime evaluated by the
proposed method is 6.65 years, with a relative error of —0.7%.
In addition, the proposed method only costs 107 limit-state
function evaluations, which is much cheaper than MCS.

TABLE 5: RESULTS OF EXAMPLE 3

Methods Proposed  MCS
T 6.65 6.69 yr
Relative error  —0.7% -
Ne 107 107

6. CONCLUSIONS

The mean time to failure (MTTF) is an important measure of
product reliability. This study demonstrates that MTTF can be
predicted computationally by physics-based method. If a failure
mode of the product is well understood and can be modelled
mathematically, a limit-state function is available, and the
physics-based method can then be used. It is in general much
more efficient and cheaper than the statistics-based methods.

This study also demonstrates that machine learning is a
powerful tool to assist the prediction of MTTF, which requires a
large number of calls of the limit-state function. The results
indicate that the proposed Gaussian process based adaptive
training is effective to predict MTTF. The key of the learning
algorithm is the learning function that is especially designed for
the adaptive training. Three examples have shown the high
accuracy and efficiency of the proposed method.

The proposed method can only accommodate one failure
mode. If there are multiple failure modes, MTTF will depend on
the limit-state functions of the failure modes and their
relationships, for instance, whether they are in parallel or in
series, and this will involve time-dependent system reliability
analysis, where machine learning can play a more significant
role. Our future work will include developing physics-based
machine learning algorithms for multiple Gaussian process
responses so that multiple limit-state functions can be handled.
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