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ABSTRACT 
Average lifetime, or mean time to failure (MTTF), of a 

product is an important metric to measure the product reliability. 

Current methods of evaluating MTTF are mainly statistics or 

data based. They need lifetime testing on a number of products 

to get the lifetime samples, which are then used to estimate 

MTTF. The lifetime testing, however, is expensive in terms of 

both time and cost. The efficiency is also low because it cannot 

be effectively incorporated in the early design stage where many 

physics-based models are available. We propose to predict 

MTTF in the design stage by means of physics-based models. 

The advantage is that the design can be continually improved by 

changing design variables until reliability measures, including 

MTTF, are satisfied. Since the physics-based models are usually 

computationally demanding, we face a problem with both big 

data (on the model input side) and small data (on the model 

output side). We develop an adaptive supervised training method 

based on Gaussian process regression, and the method can then 

quickly predict MTTF with minimized number of calling the 

physics-based models. The effectiveness of the method is 

demonstrated by two examples.  

 

1. INRODUCTION 

In reliability engineering [1-5], the average lifetime, or mean 

time to failure (MTTF), is an important metric of product 

reliability [1, 6]. Statistics-based methods [7, 8] are widely used 

to estimate MTTF. The methods need lifetime testing on a 

number of products to obtain the lifetime samples, which are 

then used to estimate the average lifetime by statistical analysis. 

The methods are generally expensive in three aspects. First, 

lifetime testing is time-consuming when the actual product 

lifetime is very long such as years. Although the accelerated life 
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testing [9] can reduce the testing time, the results may not reflect 

the reliability of the product in normal use conditions. Second, 

the budget of the testing is expensive and even unaffordable 

when the products themselves are expensive. Third, testing is 

performed or lifetime data are collected from field after the 

product was made. It is too late and more costly to fix reliability 

issues if MTTF is shorter than expected. It is desirable to predict 

MTTF during the early design stage.  

Direct lifetime data, however, are rarely available during the 

design stage. Physics-based methods [10] then play an important 

role to deal with this problem. The methods use limit-state 

functions, which are computational models derived from 

physical principles, to predict the states of the components and 

subsystems of the product with respect to potential failure modes 

[11]. With the computational models for the failure modes, 

physics-based methods are much more efficient than the 

statistics-based methods. They can predict reliability 

performance for a given design. If the reliability measures, 

including MTTF, do not meet the design requirements, design 

variables will be changed until the reliability requirements are 

met. Physics-based methods are therefore a powerful tool to 

support design for reliability [12-16]. 

Physics-based methods were originally developed for 

structural reliability analysis [10]. In the last decades, many new 

physics-based reliability methods have been developed. These 

methods cover a wide range of applications, from component 

reliability to system reliability [10], and from time-independent 

reliability to time-dependent reliability [17-19] and time- and 

space-dependent reliability [20]. 

Computational models, such as a finite element analysis 

model [21], are usually computationally expensive. We usually 

know distributions of random input variables, and it is possible 

for us to generate many random samples for the input variables. 

In this sense we have big data. On the other hand, we can afford 
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to run the computational models only a limited number of times, 

and then we have small data for the responses. For this reason, 

machine learning methodologies have been increasingly used for 

reliability analysis. For example, Gaussian process (GP) method 

for quantifying model structure uncertainty [22, 23]; the support 

vector machine (SVM) method for estimating rare event 

probabilities [11], and other methods for predicting component 

and system reliability [24].  

In this study, we extend the physics-based methods to 

predict MTTF for a product. Since this task needs more calls of 

the computational model than a regular reliability analysis, we 

also rely on machine learning to maintain computational 

efficiency. Specifically, we employ the supervised machine 

learning method [25] and adaptively train a Gaussian process 

regression model [26] to approximate the computational function 

with respect to the basic random input variables. A learning 

function is developed to guide adding training points. Once the 

learning is finished, the MTTF of the product is obtained. 

The problem statement is given in Section 2. The proposed 

method is discussed in Section 3. In Section 4, we extend the 

proposed method to deal with problems involving random 

processes. Three examples are provided in Section 5, followed 

by conclusions in Section 6. 

2. PROBLEM STATEMENT 

The computational function for reliability analysis is called 

a limit-state function, which is given by 

 

 𝑌 = 𝐺(𝐗, 𝑡) (1) 

 

where 𝐗 = (𝑋1, 𝑋2 … ,𝑋𝑁)𝑇  are 𝑁  basic input random 

variables and 𝑡 is time. Note that the input of 𝐺(∙) may also 

include random processes, which can be transformed into 

functions with respect to random variables and 𝑡. Thus Eq. (1) 

does not lose generality. 𝑌 is in general a random process. The 

product fails once its response 𝑌 takes a negative value.  

 
FIGURE 1: A SAMPLE OF THE LIMIT-STATE FUNCTION 

 

Fig. 1 shows a sample of 𝑌  when 𝐗  is fixed to a 

realization 𝐱. When 𝑡 = 𝜏(𝐱), 𝑌 takes a negative value at the 

first time, and hence 𝜏(𝐱) is called the first time to failure. If 

the product is non-repairable, 𝜏(𝐱)  is the lifetime (given that 

𝐗 = 𝐱 ), and afterwards 𝑌(𝐱, 𝑡), 𝑡 > 𝜏  has no any physical 

meaning. Since 𝜏(𝐗)  is dependent on the input random 

variables 𝐗 , it is also a random variable. The product’s mean 

lifetime 𝜏̅ or MTTF, is given by 

 

 𝜏̅ = E[𝜏(𝐗)] (2) 

 

where E(∙) represents an expectation. 

The task of this study is to predict 𝜏̅  efficiently and 

accurately. Mathematically, 𝜏(𝐗) is the first (or minimum) root 

of the following equation 

 

 𝐺(𝐗, 𝑡) = 0 (3) 

 

Finding the minimum root of Eq. (3), however, may be 

computationally expensive when the limit-state function 𝐺(𝐗, 𝑡) 

is an expensive black-box function. Therefore, developing an 

accurate and efficient first-root finder is a challenge. 

3. THE PROPOSED METHOD 

3.1. Overview of the proposed method 
The main idea of the proposed method is to adaptively train 

a Gaussian process model (or Kriging model [27]) 𝐺̂(𝐗, 𝑡) for 

𝐺(𝐗, 𝑡). With 𝐺̂(𝐗, 𝑡), we can obtain the surrogate model 𝜏̂(𝐗) 

of 𝜏(𝐗)  at the same time. Since 𝜏̂(𝐗)  is computationally 

cheap, we can calculate 𝜏̅ using Monte Carlo simulation (MCS) 

[28]. 

 

 
FIGURE 2: BRIEF FLOWCHART OF THE PROPOSED 

METHOD 

 

Training 𝐺̂(𝐗, 𝑡)  should be task-oriented in order to 

improve efficiency. We develop a learning function and a 

stopping criterion to fulfill the task-oriented training. Fig. 2 

shows a brief flowchart of the proposed method. There are 
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mainly three steps. Step 1 is the design of experiments. It 

generates the initial training points for 𝐺̂(𝐗, 𝑡) . In Step 2, 

𝐺̂(𝐗, 𝑡) is adaptively refined by adding new training points. A 

learning function and a stopping criterion are developed to find 

the new training points and judge when to terminate the training. 

In Step 3, the sample size of 𝐗, and hence of 𝜏̂(𝐗), is adaptively 

enlarged until 𝜏̅ is estimated with sufficiently high fidelity. The 

three steps are discussed in details in Subsections 3.2 through 

3.4. 

 

3.2. Design of experiments for initial surrogate model 
The principle of the design of experiments for building a 

Kriging model is to spread the initial training points evenly. 

Commonly used sampling methods include random sampling, 

Latin hypercube sampling, and Hammersley sampling [29]. In 

this study, we employ the Hammersley sampling method because 

it has better uniformity properties over a multidimensional space 

[30]. Since the dimension of the entire input vector (𝐗, 𝑡)  is 

𝑁 + 1 , the Hammersley sampling method generates initial 

training points in a hypercube [0,1]𝑁+1. To get initial training 

points of 𝐗, we can simply use the inverse probability method 

to transform the training points from the hypercube space to the 

X-space. As for the initial training points of 𝑡, we treat 𝑡 as if 

it was a uniform random variable and could also be transformed 

the interval [0,1] to the time interval [0, 𝑇]. We assume that 𝑇 

is sufficiently large so that Eq. (3) has at least a root in [0, 𝑇]. 
The initial training points 𝐱in of 𝐗 = (𝑋1, 𝑋2 … ,𝑋𝑁)𝑇 are 

 

 𝐱in =

[
 
 
 
 𝑥1

(1)
𝑥2

(1) ⋱ 𝑥𝑁
(1)

𝑥1
(2)

𝑥2
(2) ⋱ 𝑥𝑁

(2)

⋮

𝑥1

(𝑛in)
⋮

𝑥2

(𝑛in)
⋱
⋱

⋮

𝑥𝑁

(𝑛in)
]
 
 
 
 

 (4) 

 

where 𝑛in is the total number of initial training points. With 𝐱in 

and the initial training points 𝐭in  of 𝑡 , we then obtain initial 

training points 𝐲in of 𝑌 by calling Eq. (1). Finally, we get the 

initial training set (𝐱trn; 𝐭trn; 𝐲trn) = (𝐱in; 𝐭in; 𝐲in), where the 

superscript trn and in represents the general training points and 

initial training points, respectively. 

 

3.3. Adaptive training 

With the initial training points (𝐱in; 𝐭in; 𝐲in), we can build an 

initial Kriging model 𝐺̂(𝐗, 𝑡)  to approximate 𝐺(𝐗, 𝑡) . The 

initial 𝐺̂(𝐗, 𝑡) is generally not accurate. The task of the adaptive 

training is to add training points to refine 𝐺̂(𝐗, 𝑡) sequentially 

and adaptively. Specifically, a task-oriented learning function 

and stopping criterion are developed. 
For numerical computation, [0, 𝑇]  is evenly discretized 

into 𝑚  points 𝐭 = (𝑡1, 𝑡2, … , 𝑡𝑚 )𝑇  . Then 𝜏(𝐱)  is 

approximated by 

 

 𝜏̂(𝐱) = min{𝑡 ∈ 𝐭|𝐺̂(𝐱, 𝑡) ≤ 0} (5) 

 

To estimate 𝜏̅ , we first randomly generate 𝑛s  samples 𝐱s  of 

𝐗. Then 𝜏̅ is approximated by 

 

 𝜏̅ =
1

𝑛s

∑ 𝜏̂(𝐱(𝑖))

𝑛s

𝑖=1

 (6) 

 

where 𝐱(𝑖) is the 𝑖th sample of 𝐗. Eq. (6) can yield accurate 𝜏̅ 
only when two conditions are satisfied. First, the sample size 𝑛s 

is sufficiently large. How to determine 𝑛s  will be given in 

Subsection 4.3. Second, the model 𝜏̂(𝐗) is accurate at all the 

samples 𝐱s. How to add training samples to refine 𝐺̂(𝐱, 𝑡) so 

that the second condition is satisfied is the key of the adaptive 

training. 

Intuitively, 𝜏̂(𝐗)  is accurate as long as 𝐺̂(𝐗, 𝑡) 

approximates 𝐺(𝐗, 𝑡) accurately. However, training 𝐺̂(𝐗, 𝑡) in 

this way is not efficient and it disobeys the task-oriented rule. In 

fact, 𝑡∗ ∈ 𝐭 is an accurate solution to Eq. (5) as long as the signs 

of {𝐺(𝐱, 𝑡)|, 𝑡 ∈ 𝐭, 𝑡 ≤ 𝑡∗ }  are predicted accurately. For 

example, if 𝐺̂(𝐱, 𝑡)  can accurately predict the signs of 

𝐺(𝐱, 𝑡𝑗), 𝑗 = 1,2,3,4,5 as (+,+,+, +,−), then 𝑡5 is definitely 

the accurate solution to Eq. (5). We do not need to care if 𝐺̂(𝐱, 𝑡) 

predicts the specific values of 𝐺(𝐱, 𝑡𝑗), 𝑗 = 1,2,3,4,5  or the 

signs of 𝐺(𝐱, 𝑡𝑗), 𝑗 ≥ 6 accurately.  

The well-known learning function 𝑈  [31] is used to 

measure how accurate the sign at a point is predicted. It is given 

by 

 

 𝑈(𝐱, 𝑡) =
|𝐺̂(𝐱, 𝑡)|

𝜎(𝐱, 𝑡)
 (7) 

 

where 𝜎(𝐱, 𝑡) is the square root of the Kriging prediction error. 

The Kriging model predicts 𝐺(𝐱, 𝑡)  as a normal variable 

𝑁(𝐺̂(𝐱, 𝑡), 𝜎2(𝐱, 𝑡) ) . If 𝐺̂(𝐱, 𝑡) > 0 , the sign of 𝐺(𝐱, 𝑡)  is 

predicted to be positive. The probability that 𝐺̂(𝐱, 𝑡) > 0  is 

Φ(
𝐺̂(𝐱,𝑡)

𝜎(𝐱,𝑡)
) , where Φ(∙)  is the cumulative distribution function 

(CDF) of a standard normal variable. Therefore, the probability 

that the sign of 𝐺(𝐱, 𝑡)  is predicted accurately is Φ(
𝐺̂(𝐱,𝑡)

𝜎(𝐱,𝑡)
) . 

Similarly, if 𝐺̂(𝐱, 𝑡) < 0, the sign of 𝐺(𝐱, 𝑡) is predicted to be 

negative, and the probability that the prediction is accurate is 

Φ(
−𝐺̂(𝐱,𝑡)

𝜎(𝐱,𝑡)
) . Combining both cases, Φ (

|𝐺̂(𝐱,𝑡)|

𝜎(𝐱,𝑡)
)  is the 

probability that the sign of 𝐺(𝐱, 𝑡) is accurately predicted. It is 

why 𝑈(𝐱, 𝑡) =
|𝐺̂(𝐱,𝑡)|

𝜎(𝐱,𝑡)
  can measure how accurately the sign is 

predicted. (Note that Φ(⋅) is an increasing function.) 

To refine the Kriging model 𝐺̂(𝐗, 𝑡), we should add training 

points where the accuracy is poor or 𝑈 is small since a small 𝑈 

means that the chance of correctly predicting the sign of 𝐺(𝐱, 𝑡) 

is small. If 𝐗 is fixed to 𝐱, the next training point (𝐱, 𝑡next) is 

determined by 
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 (𝐱, 𝑡next) = argmin
𝑡∈𝐭,𝑡≤𝜏̂(𝐱)

𝑈(𝐱, 𝑡) (8) 

 

Since there are 𝑛s samples of 𝐗, Eq. (8) determines 𝑛s points. 

Among them, the point with minimal 𝑈 is finally selected as the 

next training point (𝐱next, 𝑡next), which is determined by 

 

 (𝐱next, 𝑡next) = argmin
𝐱∈𝐱s

{ min
𝑡∈𝐭,𝑡≤𝜏̂(𝐱)

𝑈(𝐱, 𝑡)} (9) 

 

With the learning function given in Eq. (9), we can add training 

points to update (𝐱trn, 𝐭trn, 𝐲trn)  and 𝐺̂(𝐗, 𝑡)  sequentially 

until a stopping criterion is satisfied. 

The direct use of 𝑈(𝐱, 𝑡) and hence Eq. (9), however, may 

result in duplicate training points. In other words, the next 

training point determined by Eq. (9) may be the one among 
(𝐱trn, 𝐭trn, 𝐲trn). Once this happens, the adaptive training fails. 

Theoretically, because Kriging is an exact interpolator, if a point 
(𝐱∗, 𝑡∗, 𝑦∗)  is among the training set (𝐱trn, 𝐭trn, 𝐲trn) , the 

Kriging model 𝐺̂(𝐗, 𝑡)  will predict 𝐺(𝐱∗, 𝑡∗)  exactly as 𝑦∗ , 

i.e., 𝐺̂(𝐱∗, 𝑡∗) = 𝑦∗  and 𝜎(𝐱∗, 𝑡∗) = 0 . As a result, 

𝑈(𝐱∗, 𝑡∗) = +∞,  (𝐱∗, 𝑡∗) will never be selected by Eq. (9) as 

the next training point, and the duplicate training points will 

never be encountered. However, due to the numerical error, 

𝜎(𝐱∗, 𝑡∗) is not exactly zero but a small positive number. In this 

case, if 𝐺̂(𝐱∗, 𝑡∗)  is smaller than 𝜎(𝐱∗, 𝑡∗) , we will have 

𝑈(𝐱∗, 𝑡∗) < 1 , and Eq. (9) may select (𝐱∗, 𝑡∗)  as the next 

training point, leading to the duplicate training points.  

Another problem caused by 𝑈 is that added training points 

may cluster together [19]. It will make the correlation matrix of 

the Kriging model ill-conditioned. If this happens, some of the 

clustered training points will have negligible effect on the 

refinement of 𝐺̂(𝐗, 𝑡) , and the adaptive training may not 

converge. Hu and Mahadevan [19] proposed to disqualify those 

points to be candidate training points if they are highly correlated 

with any one of the existing training points. Specifically, the 

candidate training points are shrunk from point set 𝐱s × 𝐭  to 

{(𝐱, 𝑡) ∈ 𝐱s × 𝐭| max
(𝐱′,𝑡′)∈(𝐱trn,𝐭trn)

𝜌[(𝐱, 𝑡), (𝐱′, 𝑡′) ] < 𝜂} , where 

𝜌(∙,∙)  is the correlation coefficient used in Kriging model to 

describe the correlation of two points, and 𝜂  is a 

hyperparameter. It guarantees that the candidate training points 

are sufficiently far away from the current training points, and 

thereby that the newly selected training point will not overlap or 

cluster with any one of the current training points. 

We employ this method and then the learning function 

proposed in Eq. (9) is updated to 

 

 (𝐱next , 𝑡next) = arg min
𝑡≤𝜏̂(𝐱),(𝐱,𝑡)∈𝐂

𝑈(𝐱, 𝑡) (10) 

 

where 

 𝐂 = {(𝐱, 𝑡) ∈ 𝐱s × 𝐭| max
(𝐱′,𝑡′)∈(𝐱trn,𝐭trn)

𝜌[(𝐱, 𝑡), (𝐱′, 𝑡′) ] < 𝜂}. 

In addition to the learning function, the other important 

component of the adaptive training is the stopping criterion. 

Since the learning function can add training points iteratively to 

update 𝐺̂(𝐗, 𝑡), and hence 𝜏̂(𝐱) in Eq. (5), a stopping criterion 

is necessary to terminate the iteration. Once the model 𝜏̂(𝐗) is 

accurate on all the samples 𝐱s, we no longer add new training 

points. Therefore, the iteration ends if the following condition is 

satisfied 

 

 𝑊 > 𝑤 (11) 

 

where 𝑊 = min
𝑡≤𝜏̂(𝐱),(𝐱,𝑡)∈𝐂

𝑈(𝐱, 𝑡) , and 𝑤  is a hyperparameter 

and is recommended to set to 2. Generally, the larger is 𝑤, the 

more accurate will 𝜏̅  be. Larger 𝑤 , however, will lower the 

efficiency, so the selection of 𝑤 needs a tradeoff. There is no 

rigorous theory to determine the best 𝑤, and we recommend 2 

based on both our experience from many experiments and [31]. 

 

3.4. Adaptive sample size 
Since the random sampling method is used to estimate 𝜏̅ 

through Eq. (6), it is desirable to select a good sample size 𝑛s. 

We use an initial sample size 𝑛0 and then adaptively increase 

the sample size until 𝜏̅  is obtained with a sufficiently high 

fidelity [32]. 

Since 𝜏(𝐗) is a random variable, the sample size needed to 

estimate its mean value 𝜏̅ is dependent on its standard deviation 

𝜎𝜏. With the sample size 𝑛s, the deviation coefficient 𝛤 of 𝜏̅ is 

given by 

 

 𝛤 =
𝜎𝜏

𝜏̅√𝑛s

 (12) 

 

where 𝜏̅ is estimated by Eq. (6) and 𝜎𝜏 is estimated by 

 

 𝜎𝜏 = √
1

𝑛s − 1
∑[𝜏̂(𝐱(𝑖)) − 𝜏̅]2

𝑛s

𝑖=1

 (13) 

 

Eq. (12) shows that the larger is 𝑛s, the smaller will 𝛤 we have. 

A smaller 𝛤 means that 𝜏̅ is more accurately estimated by Eq. 

(6). 𝜏̅ is said to be accurate if the following condition is satisfied 

 

 𝛤 ≤ 𝛾 (14) 

 

 

where 𝛾  is a threshold, which usually takes a small positive 

number, such as 0.005. 

If the current 𝑛s cannot satisfy Eq. (14), we should increase 

it. Combining Eq. (12) and Eq. (14), we have 

 

 𝑛s ≥ (
𝜎𝜏

𝜏̅𝛾
)

2

 (15) 

It means that at least a sample size of (
𝜎𝜏

𝜏̅𝛾
)

2

 is necessary to 

guarantee Eq. (14). Let 𝑛1 = ceil [(
𝜎𝜏

𝜏̅𝛾
)

2

] , where ceil(∙) 
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represents the operation to get the nearest larger integer. Then the 

number 𝑛add by which 𝑛s should be increased is given by 

 

 𝑛add = 𝑛1 − 𝑛s (16) 

 

However, when 𝐺̂(𝐗, 𝑡) is too rough at the first several adaptive 

training iterations, both 𝜏̅ and 𝜎𝜏 may have poor accuracy, and 

𝑛add  given in Eq. (16) may be misleading. To deal with this 

problem, we set a threshold 𝑛̃add  for 𝑛add . Then Eq. (16) is 

updated to 

 

 𝑛add = {
𝑛̃add, if 𝑛1 − 𝑛s > 𝑛̃add

𝑛1 − 𝑛s, otherwise
 (17) 

 

3.5. Implementation 
In this subsection, we give the detailed procedure of the 

proposed method. The full flowchart is shown in Fig. 3. The total 

number 𝑛e  of function evaluations of 𝐺(𝐗, 𝑡)  is used to 

measure the main computational cost of the proposed method. 

 

 
FIGURE 3: DETAILED FLOWCHART OF THE PROPOSED METHOD 

 

4. EXTENSION TO PROBLEMS WITH INPUT RANDOM 
PROCESSES  

When the limit-state function 𝐺(∙)  has input random 

processes, it is straightforward to employ the series expansion 

methods of the random processes, so that the above 

implementation of the proposed method can still work.  

Let 𝐇(𝑡) represents a vector of random processes, then the 

limit-state function is given by 

 

 𝑌 = 𝐺(𝐗,𝐇(𝑡), 𝑡) (18) 

 

To easily present the idea, we assume there is only one random 

process 𝐻(𝑡). Widely used series expansions for random fields 

include, the Karhunen-Loeve series expansion (K-L), the 

orthogonal series expansion (OSE), and the expansion optimal 

linear estimation method (EOLE) [33]. Since 𝑡  is discretized 

into 𝐭 , the autocorrelation coefficient function of 𝐻(𝑡)  is 

discretized into the autocorrelation coefficient matrix 𝐌𝐻  with 

dimension  𝑚 × 𝑚 . Then the EOLE expansion 𝐻(𝛏, 𝑡)  of 

𝐻(𝑡) is given by 

 

 𝐻(𝛏, 𝑡) = 𝜇𝐻(𝑡) + 𝜎𝐻(𝑡)∑
𝜉𝑘

√𝜆𝑘

𝐕𝑘𝐌𝐻(: , 𝑘)
𝑚

𝑘=1
, 𝑡 ∈ 𝐭 (19) 

where 𝜇𝐻(𝑡) is the mean value function of 𝐻(𝑡), 𝜎𝐻(𝑡) is the 

standard deviation function of 𝐻(𝑡), 𝜉𝑘 , 𝑘 = 1,2, … ,𝑚 are 𝑚 

independent standard Gaussian variables, 𝜆𝑘  is the 𝑘 -th 

eigenvalue of 𝐌𝐻  , 𝐕𝑘  is the 𝑘 -th (row) eigenvector of 𝐌𝐻  , 

and 𝐌𝐻(: , 𝑘)  is the 𝑘 -th column of 𝐌𝐻  . Note that the 

eigenvalues are sorted from the largest to the smallest. Usually 

only the first 𝑚′ (𝑚′ ≤ 𝑚)  eigenvalues are significant. 

Therefore, Eq. (19) is practically truncated, and only the first 𝑚′ 

orders are kept: 
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 𝐻(𝛏, 𝑡) = 𝜇𝐻(𝑡) + 𝜎𝐻(𝑡)∑
𝜉𝑘

√𝜆𝑘

𝐕𝑘𝐌𝐻(: , 𝑘)
𝑚′

𝑘=1
, 𝑡 ∈ 𝐭 (20) 

With the truncated expansion in Eq. (20), Eq. (18) is rewritten as 

 

 𝑌 = 𝐺(𝐗, 𝐻(𝛏, 𝑡), 𝑡) (21) 

or equivalently as 

 

 𝑌 = 𝐺(𝐗, 𝑡) (22) 

 

where 𝐗 = (𝛏, 𝐗). Eq. (22) shares the same format with Eq. (1) 

and hence the implementation given in Subsection 4.4 also 

works. 

The direct implementation this way, however, may suffer 

from the curse of dimensionality. Since there are many random 

variables, i.e. 𝛏, in the series expansion 𝐻(𝛏, 𝑡), the dimension 

of 𝛏  and hence that of 𝐺(𝐗, 𝑡)  is high. As a result, the 

dimension of the Kriging model 𝐺̂(𝐗̃, 𝑡) is also high. The high 

dimensionality has as least two drawbacks. First, it is not 

computationally cheap anymore, losing its expected advantages. 

Second, more training points are needed to train the Kriging 

model. To overcome the drawbacks, we build a Kriging model 

𝐺̂(𝐗, 𝐻, 𝑡)  with respect to 𝐗 , 𝐻 , and 𝑡 . Note that the entire 

random process 𝐻  is treated as only one variable for 

𝐺̂(𝐗, 𝐻, 𝑡). Then the surrogate model 𝐺̂(𝐗, 𝑡) with respect to 𝐗 

and 𝑡 is obtained through 

 

 𝐺̂(𝐗̃, 𝑡) = 𝐺̂[𝐗, 𝐻(𝛏, 𝑡), 𝑡] (23) 

 

Since the truncated series expansion 𝐻(𝛏, 𝐙)  in Eq. (20) 

has a simple closed-form expression, if 𝐺̂(𝐗, 𝐻, 𝑡) is accurate 

and efficient, so will be 𝐺̂(𝐗, 𝑡)  in Eq. Error! Reference 

source not found.. Since the dimension of 𝐺̂(𝐗, 𝐻, 𝑡)  is 

(𝑚′ − 1) lower than that of 𝐺̂(𝐗, 𝑡), it is more efficient to train 

𝐺̂(𝐗, 𝐻, 𝑡). To build 𝐺̂(𝐗, 𝐻, 𝑡), we need the training points 𝐡trn 

of 𝐻. 𝐡trn can be obtained simply by substituting (𝛏trn, 𝐭trn) 

into Eq. (20). Similarly, when (𝐱̃(next) , 𝑡(next))  is determined 

by Eq. (10), the next training point ℎ(next) of 𝐻 is obtained by 

substituting (𝛏(next), 𝐳(next)) into Eq. (20). Note that 𝐱̃(next) =

(𝛏(next), 𝐱(next)) . When multiple input random processes are 

involved, the procedure of building and updating the surrogate 

model 𝐺̂ is similar. 

5. EXAMPLES 

In this section, we use three examples to illustrate the 

proposed method. The first one is a math example with only one 

input random variable. It is designed to graphically show the 

procedure of the proposed method. The second one is an 

engineering example with both input random variables and a 

random process. The third one is an engineering example where 

the limit-state function is a black box using the finite element 

method (FEM) and there are many input random variables. 

All the three examples share the same values of the 

following parameters: 𝑚 = 100 , 𝑤 = 2 , 𝜂 = 0.95 , 𝛾 =
0.005, and 𝑛̃add = 1,000. MCS is also used to evaluate MTTF; 

it calls the original limit-state function in Eq. (1) directly to get 

samples of 𝜏(𝐗) , and hence the mean lifetime 𝜏̅ . The sample 

size 𝑛MCS of MCS is set to 105. The results of MCS are treated 

as the exact ones for the accuracy comparison. Both the proposed 

method and MCS share the same discretization of 𝑡 ∈ [0, 𝑇]. 
 

5.1. Example 1: A math example 

The limit-state function is given by 

 

 𝑌 = exp(−0.05𝑡)cos(0.25𝑡 + 𝑋), 𝑡 ∈ [0,40] (24) 

 

where 𝑋 is a standard uniform variable. With the Hammersley 

sampling method, we get 𝑛in = 5  initial training points in 

[0,1]2. They are assembled in a matrix 𝐌 

 

 𝐌 =

[
 
 
 
 

0 0.5
0.2 0.25
0.4
0.6
0.8

0.75
0.125
0.625]

 
 
 
 

 (25) 

 

The first column of 𝐌  is mapped to the interval [0, 𝑇]  of 𝑡 

and then we get the initial training points 𝐭in =
(0, 8, 16, 24,32)𝑇 of 𝑡. The second column of 𝐌 is mapped to 

the interval [0,1]  of 𝑋  and then we get the initial training 

points 𝐱in = (0.5, 0.25, 0.75, 0.125,0.625)𝑇 of 𝑋 . Substituting 

the five training points (𝐱in, 𝐭in)  into Eq. (1), we get the 5 

training points  

𝐲in = (0.8776, −0.4211, 0.0169, 0.2974, −0.1407)𝑇  of 𝑌.  

Eq. (1) has been evaluated 5 times so far, and therefore 

currently 𝑛e = 5. With the training points (𝐱trn, 𝐭trn, 𝐲trn)𝑇 =
(𝐱in, 𝐭in, 𝐲in)𝑇 , the Kriging model 𝐺̂(𝑋, 𝑡) is built. Then more 

and more training points determined by the learning function in 

Eq. (10) are added one by one into the training set  

(𝐱trn, 𝐭trn, 𝐲trn)𝑇 to refine 𝐺̂(𝑋, 𝑡). The sample size 𝑛s is also 

increased adaptively from the initial value 𝑛0 = 1,000 . After 

the algorithm converges, 8 training points are added and 𝑛e is 

finally updated to 5 + 8 = 13 . 𝑛s  is finally increased to 

2,701.  

Fig. 4 shows the actual contours of the limit-state function, 

as well as the training points. There are three contours indicating 

𝑌 = 0. For each value of 𝑋, Eq. (3) has three roots. However, 

we only need the first root. In other words, we only need the 

Kriging model to accurately predict the first contour. Thanks to 

the proposed learning function in Eq. (10), almost all adaptive 

training points are added near the first contour. It helps the 

Kriging model efficiently find the first root, i.e., 𝜏(𝑋), without 

putting unnecessary computational effort in improving 

unimportant area of the Kriging model. This is an expected good 

property of the task-oriented adaptive training. 
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FIGURE 4: CONTOURS AND TRAINING POINTS 

 

TABLE 1: RESULTS OF EXAMPLE 1 

Methods Proposed MCS 

𝜏̅ 4.51 4.49 

Relative error 0.6% - 

𝑛e 13 107 

 

Results are given in Table 1. MTTF estimated by the 

proposed method is 4.51, and that estimated by MCS is 4.49. 

The relative error is 0.6% , showing the high accuracy of the 

proposed method. In addition, the proposed method only 

evaluated the limit-state function 13 times, far less than 107 

times by MCS, showing the high efficiency of the proposed 

method. 

 

5.2. Example 2: A simply supported beam 
This example is modified from an example in [34]. Shown 

in Fig. 5 is a simply supported beam subjected to two random 

loads. The cross-section A-A is rectangular with width 𝑎  and 

height 𝑏. Due to corrosion, both 𝑎 and 𝑏 decrease with time 

𝑡 and are given by 

 

 𝑎 = 𝑎0exp(−0.02𝑡) (26) 

 

and 

 

 𝑏 = 𝑏0exp(−0.02𝑡) (27) 

 

where 𝑎0 and 𝑏0 are their initial values. A stationary random 

process load 𝐹(𝑡) acts at the midpoint of the beam. The beam 

is also subjected to a constant weight load and a load 𝑞, which 

is uniformly distributed on the top surface of the beam. The 

autocorrelation coefficient functions of 𝐹(𝑡) is given by 

 

 𝜌(𝑡1, 𝑡2) = exp [− (
𝑡1 − 𝑡2

5
)

2

] (28) 

 

 
FIGURE 5: A SIMPLY SUPPORTED BEAM 

 

A failure occurs once the stress exceeds the ultimate 

strength. The limit-state function is given by 

  

 
𝑌 = −0.25𝐹(𝑡)𝐿 − 0.125𝑞𝐿2 − 0.125ρ𝑎0𝑏0𝐿

2

+ 0.25(𝑎0 − 2𝑘𝑡)(𝑎0 − 2𝑘𝑡)2𝜎 
(29) 

 

where 𝜎  is the ultimate strength, 𝜌 = 78.5 kg/m3  is the 

density of the beam, 𝐿 = 5 m is the length of the beam, and t ∈
[0, 20 ] yr. Table 2 gives all random variables. 𝑛in and 𝑛0 are 

set to 10 and 1,000, respectively. We use six random variables 

for the EOLE expansion of 𝐹(𝑡). 

Results are given in Table 3. The beam’s mean lifetime 

evaluated by the proposed method is 11.64  years, with a 

relative error of −0.1%. In addition, the proposed method only 

costed 89 limit-state function evaluations, which is way cheaper 

than MCS. 

 

5.3. Example 3: A 52-bar space truss 
This example is modified from an example in [35]. Shown 

in Fig. 6 is a 52-bar space truss with 21 nodes. All the nodes are 

located on the surface of an imaginary hemisphere whose radius 

is 𝑟 = 240 in. The cross-sectional areas of Bars 1~8 and 29~36 

are 2 in2. The cross-sectional areas of Bars 9~16 and other bars 

are 1.2 in2 and 0.6 in2, respectively. The Young’s modulus of 

all bars is 𝐸 . To distinguish the node numbers and the bar 

numbers, we add a decimal point after all node numbers in Fig. 

6. Nodes 1~13 are subjected to external loads 𝐹1~𝐹13, all in the 

−𝑧  direction. 𝐸  and 𝐹1~𝐹13  are random variables, whose 
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distribution information is given in Table 4. Note that the mean 

value of 𝐹1 is a function of time 𝑡 ∈ [0, 10] yr. 

TABLE 2: VARIABLES OF EXAMPLE 2 

Variable Mean 
Standard 

deviation 
Distribution Autocorrelation 

𝑎0 0.2 m 0.002 m Gaussian N/A 

𝑏0 0.04 m 0.004 m Gaussian N/A 

𝜎 0.24 GPa 0.0024 GPa Gaussian N/A 

𝐹(𝑡) 5,000 N 500 N 
Stationary Gaussian 

process 
Eq. (28) 

𝑞 450 N/m 50 N/m Gaussian N/A 

 

TABLE 3: RESULTS OF EXAMPLE 2 

Methods Proposed MCS 

𝜏̅ 11.64 yr 11.66 yr 

Relative error  −0.1% - 

𝑛e 89 107 

 
 

(A) TOP VIEW                          (B) LEFT VIEW 

FIGURE 6: A 52-BAR SPACE TRUSS 

 

TABLE 4: VARIABLES OF EXAMPLE 3  

Variable Mean 
Standard 

deviation 
Distribution 

𝐸 2.5 × 104 ksi 25 ksi Gaussian 

𝐹1 40exp (0.05𝑡) kip 0.4 kip Lognormal 

𝐹2~𝐹5 50 kip 0.5 kip Lognormal 

𝐹6~𝐹13 60 kip 0.6 kip Lognormal 
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A failure occurs when the displacement 𝛿 of Node 1 along 

−𝑧 direction exceeds the threshold 𝛿0 = 1.3 in. The limit-state 

function is given by 

 

 𝑌(𝑡) = 𝛿0 −  δ(𝐸, 𝐅) (30) 

 

where 𝐅 = [𝐹1, 𝐹2, 𝐹3, … , 𝐹13 ]  is the vector all loads. 𝛿(𝐸, 𝐅) 

is calculated by FEM and the linear bar element is used.  

𝑛in  and 𝑛0  are set to 30  and 100 , respectively. Results 

are given in Table 5. The mean lifetime evaluated by the 

proposed method is 6.65 years, with a relative error of −0.7%. 

In addition, the proposed method only costs 107 limit-state 

function evaluations, which is much cheaper than MCS. 

 

TABLE 5: RESULTS OF EXAMPLE 3 

Methods Proposed MCS 

𝜏̅ 6.65 6.69 yr 

Relative error −0.7% - 

𝑛e 107 107 

6. CONCLUSIONS 

The mean time to failure (MTTF) is an important measure of 

product reliability. This study demonstrates that MTTF can be 

predicted computationally by physics-based method. If a failure 

mode of the product is well understood and can be modelled 

mathematically, a limit-state function is available, and the 

physics-based method can then be used. It is in general much 

more efficient and cheaper than the statistics-based methods. 

This study also demonstrates that machine learning is a 

powerful tool to assist the prediction of MTTF, which requires a 

large number of calls of the limit-state function. The results 

indicate that the proposed Gaussian process based adaptive 

training is effective to predict MTTF. The key of the learning 

algorithm is the learning function that is especially designed for 

the adaptive training. Three examples have shown the high 

accuracy and efficiency of the proposed method. 

The proposed method can only accommodate one failure 

mode. If there are multiple failure modes, MTTF will depend on 

the limit-state functions of the failure modes and their 

relationships, for instance, whether they are in parallel or in 

series, and this will involve time-dependent system reliability 

analysis, where machine learning can play a more significant 

role. Our future work will include developing physics-based 

machine learning algorithms for multiple Gaussian process 

responses so that multiple limit-state functions can be handled. 
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