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ABSTRACT

It is common to evaluate high-dimensional normal probabilities in many uncertainty-
related applications such as system and time-dependent reliability analysis. An accurate
method is proposed to evaluate high-dimensional normal probabilities, especially when
they reside in tail areas. The normal probability is at first converted into the cumulative
distribution function of the extreme value of the involved normal variables. Then the series
expansion method is employed to approximate the extreme value with respect to a smaller

number of mutually independent standard normal variables. The moment generating
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function of the extreme value is obtained using the Gauss-Hermite quadrature method. The
saddlepoint approximation method is finally used to estimate the cumulative distribution
function of the extreme value, thereby the desired normal probability. The proposed
method is then applied to time-dependent reliability analysis where a large number of
dependent normal variables are involved with the use of the First Order Reliability Method.
Examples show that the proposed method is generally more accurate and robust than the

widely used randomized quasi Monte Carlo method and equivalent component method.

Keywords: Multivariate normal distribution, Extreme value distribution, Dimension

reduction, Saddlepoint approximation, Gauss-Hermite quadrature, Reliability



1. Introduction

Many uncertainty-related applications require the evaluation of multivariate normal
probabilities, for instance, the system reliability analysis [1-3] and time-dependent
reliability analysis [4-26]. Both analyses predict the reliability by integrating a multivariate
normal density in the safe region if the First Order Reliability Method (FORM) [27] is
employed. Other areas requiring a multivariate normal probability include the extreme
value distribution [28], multivariate probit model [29], multiple comparisons [30], and
multiple ordinal response models [31].

No methods exist for the exact computation of the multivariate normal probability, and
many numerical and sampling methods have been developed to produce approximations
[32]. The existing methods can be roughly grouped into two categories: random methods
and deterministic methods.

Random methods generate a large number of samples of the involved random variables
and then calculate the probability based on the statistical information of the samples. The
most straightforward method is the crude Monte Carlo simulation (MCS) [33]. Other
random methods are more or less based on the crude MCS. They include the quasi MCS
[34, 35], the importance sampling method [36-38], the subset simulation method [39], and
the Bayesian MCS [40]. The random methods are generally robust, easy to use, and
accurate if the sample size is large enough. But they also have some shortcomings. First,
samples are usually generated randomly and hence the result is not deterministic, resulting

in unrepeatable results when different seed numbers, software, or computer platforms are



used. Second, they are inefficient to estimate a small probability. This makes reliability
analysis difficult since engineering applications usually require a low probability of failure
or high reliability. Note that some advanced random methods, such as importance sampling
method [36-38] and the subset simulation method [39], can get over this shortcoming to
some extent.

Deterministic methods do not need random sampling. The equivalent component
methods [41-43] are widely used. They sequentially compound two components, i.e., two
of the involved normal variables, into an equivalent one, and the multivariate normal
probability is eventually estimated by a univariate normal probability. The methods differ
from one another mainly in the way of evaluating the correlation coefficients between the
equivalent component and the other components. The correlation coefficients are
determined by the sensitivity equivalency and the finite difference method [41, 43]. The
finite difference method is replaced by an analytical approach [42], resulting in better
accuracy and efficiency. The correlation coefficients can also be evaluated by conditional
probabilities [3]. Generally, the equivalent component methods are efficient, even for high-
dimensional problems. They may not be accurate when solving high-dimensional problems
with small probabilities. One reason is that the equivalent component is not necessarily a
normal variable and the error accumulates with the increase of the dimensionality. In
addition, other deterministic methods are also available, including the first-order methods
[44, 45], the product of conditional marginal probabilities [46, 47], and conditioning
approximation methods [32, 48]. Their accuracy still needs to be improved when solving

high-dimensional problems with small probabilities.



Overall, evaluating a multivariate normal probability is challenging in terms of
accuracy and efficiency when the dimension is large and the probability is small. The
objective of this work is to develop a new method to improve both accuracy and efficiency.
The proposed method involves the integration of dimension reduction, the expansion
optimal linear estimation (EOLE) [49], the Gauss-Hermite quadrature method [50], and the
saddlepoint approximation (SPA) [51, 52]. The proposed method is then applied to and
evaluated by the time-dependent reliability analysis with a large number of dependent
normal variables and small probabilities.

The remaining parts of the paper are organized as follows. Section 2 gives the problem
statement. Section 3 reviews the existing methods. An overview of the proposed method is
given in Section 4, followed by the detailed formulations in Section 5. Section 6 gives the
application to time-dependent reliability analysis. Four examples are given in Section 7 to

demonstrate the proposed method. Section 8 provides conclusions.

2. Problem statement

Suppose Y is a vector of N normal random variables with the mean vector p and the

correlation matrix X. The joint probability density function (PDF) fy(y) of Y is given by

1
f(y;nE) = exp <—§ y-wz(y- lu)> (1)

1
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The cumulative distribution function (CDF) Fy(¥; w, ) of Y is given by

9
Fy(§;w2) = f_ fr(y; w, Z)dy (2)

Note that Eq. (2) shows an N-dimensional integral.



Without losing generality, we assume that § = 0. We also assume that all components

of'Y have a variance of 1. Then we only focus on calculating the following integral

0
ﬂwmo=f.mymow 3)

where C is the correlation coefficient matrix of Y. A general problem can be solved by Eq.
(3) using the following transformation

Fy(¥;w,2) = Fy(0; (n—§)./0,0) 4)
where o is the standard deviation vector of Y, and the operator ./ represents the
elementwise division. Fy(0; (n — §)./0,C) shares the same format with Fy(0;p, C) .

Introducing the indicator function I(+), Eq. (4) is written as

ﬂ®m®=j1®<®ﬂ&w0® 5)

1,y<0
0, otherwise’

where I(y < 0) = {

In practical applications, high dimensions are commonly encountered. For example,
in system reliability analysis, the dimensionality may be dozens or hundreds. Many
existing methods require C to be full-rank. However, a non-full-rank C is also frequently

encountered in engineering problems. The objective of the study is to calculate the high-

dimensional normal probabilities with a C being full-rank or not.

3. Review of existing methods

In this section, we briefly review four commonly used methods: the crude MCS, the

sequential conditioned importance sampling method (SCIS) [38], the randomized quasi



MCS method [35], and the equivalent component method [42]. The first three are random

methods while the last one is a deterministic method.

3.1. Crude MCS

Crude MCS is the origin of other random methods. It first randomly generates ng
samples of Y using fy(y; u, C) and then approximates Eq. (5) by
-1
RO 0 ~F=—>"1y*<0) (©6)
nS
k=1
where F represents the approximation, and y* is the k™ sample of Y. F itself is a random
variable. Therefore, different runs of crudes MCS lead to different realizations of F. This
is known as random error. The variation coefficient Vy;cs of F is used to measure the

random error and is given by

1-F
12 = _ 7
MCS ‘I’lSF ()

It shows that the convergence rate of crude MCS is 0(1 / \/n—s) [35], which is independent

of N. With this feature, crude MCS does not suffer from the curse of dimensionality. The
convergence rate, however, is thought to be low. For example, if the exact value of
Fy(0; w, €) is 1075 and Vycg is required to be no more than 1072, then according to Eq.
(7), the sample size ng must be at least about 10°.

Despite its low convergence rate, MCS is widely used and is especially treated as a
benchmark method for an accuracy comparison study when an exact solution is not

available.



3.2. Sequential conditioned importance sampling (SCIS) method

SCIS is based on the importance sampling method and makes use of the property that
conditioned on given values of arbitrary components of Y, the remaining components also

follow (univariate or multivariate) normal distribution [38].

k=k+1

i=i+1

Randomly generate a sample ¥ using the conditional
POFof Y;l{Y; <0n(Y; = yf,j =1.2,..,i — 1)}

4 N ™

Dy =1_[Pr Y, < oﬂ(yj =yFji=12,..,i—1)

\ i=1 y,

Y

Fig. 1 Flowchart of SCIS
The flowchart of SCIS is shown in Fig. 1, where P.{-} represents probability. Because
of the property of multivariate normal variables, derivations of the conditional PDF and of
D, (in Fig. 1) are obtained easily. More details are given in Ref. [38]. Similar to crude
MCS, the approximation F calculated by SCIS is also a random variable, with its variation

coefficient Vgcig given by



(8)

Compared to Eq. (7), Eq. (8) shows that the convergence rate of SCIS is significantly better

than that of crude MCS.

3.3. Randomized quasi MCS

An effective way to improve the convergence rate of MCS is to replace the randomly
generated samples by carefully selected, deterministic sequences of samples [35]. This

approach is known as quasi MCS, and those samples are called low-discrepancy samples.

Fig. 2 shows 103 random samples and 103 low-discrepancy samples of Y, given p = [8]

and C = [(1) (1)] The low-discrepancy samples are generated by Halton sequences [53].

The low discrepancy samples are regularly even while the random samples have irregular

clusters. The evenness improves the convergence rate of the quasi MCS.

Fig. 2 Random samples (left) and low-discrepancy samples (right)



A drawback of quasi MCS is that it is hard to estimate the error. In order to estimate
the error with the way similar to crude MCS, the deterministic low-discrepancy samples
are randomized and the randomized quasi MCS was developed [35, 54]. It is worth
mentioning that the quasi MCS developed by Genz and Bretz [35] is commonly used. This

method has been coded into pmvnorm(), an R [55] function in R package mvtnorm.

3.4. Equivalent component methods

The equivalent component methods compound a pair of component normal variables
into an equivalent normal variable sequentially so that the multivariate normal probability
is finally estimated by a univariate normal probability. Fig. 3 shows the compounding
procedure. Y, is the equivalent component obtained by compounding Y; and Y,. Then Y5,
and Y3 are compounded into Y}55. This process continues until N normal variables have
been compounded into one equivalent normal variable Y55 . Eq. (3) is then

approximated by

Fy(0;n,C) = f_ (;ﬁ:(y; He,0¢) dy = @ (— ?) )

e
where f,(y; te, 02), te and 62 are the PDF, mean, and variance of Y55 , respectively,
and ®(+) is the CDF of the standard normal variable.

The latest equivalent component method [42] has been proven to be effective for many
problems. Assuming all the equivalent components to be normal variables, however, may

introduce an unmeasurable error and hence compromise the accuracy of the method.
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Fig. 3 Compounding procedures of the equivalent component method

4. Overview of the proposed method

The main idea of the proposed method is to convert the multidimensional probability

into an equivalent extreme value probability. Eq. (3) is equivalent to
N
Fy(0; 1, C) = Pr{ﬂ Y, < o} — pr{max(Y) < 0} = Pr{Z < 0} = F,(0)  (10)
i=1

where Z = max(Y) is the maximum value of Y. Note that Z itself is a random variable, and

we denote it by Z(Y) since it is a function of Y.
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Fig. 4 Functions that fully define the distribution of Z

The distribution of Z can be determined from its PDF f;(z), CDF F,(z), moment
generating function (MGF) M;(s), cumulant generating function (CGF) K,(s), or
characteristic function (CF) C,(s). The relationships among those functions are shown in
Fig. 4. A solid line means a theoretically rigorous transformation between the two functions
connected by the line, while a dotted line means an approximate transformation.
Theoretically, once any of the five functions is obtained, the other four can also be obtained
using the transformation indicated above or below a line.

The easiest starting point is the MGF given by

Mz (s) = f exp(sz)fz(z) dz = f exp[sz(y)]fy(y; n, Ody (11)

Although Eq. (11) is also a high-dimensional integral similar to Eq. (5), it is much easier

to calculate. The reason is that the integrand exp[sz(y)] is generally a continuous function,

12



which can be calculated effectively using quadrature methods, while the integrand
I(y < 0) in Eq. (5) is not. This is also the reason why we convert the multidimensional
probability in Eq. (5) into the extreme value probability in Eq. (10).

Once M,(s) is obtained, there are at least two ways to get F;(z) or Eq. (10). As shown
in Fig. 4, the first way is M;(s) - C;(s) = f;(z) = F;(z) and the second way is
My (s) » K;(s) = F;(z). The first way, however, is not practical, and there are two
reasons. First, M;(s) calculated by the quadrature method is not exact, and neither is C(s),
which generally has complex output values and may suffer from large errors. Second,
currently there are no robust and effective methods to transform C,(s) into f;(z) using the
inverse Fourier transform, especially when C,(s) is not exact. In contrast, the second way
is effective. The reason is that a simple logarithm is needed to obtain K;(s) from M,(s),
and SPA is an accurate and efficient method to approximate F,(z) from K;(s), especially
at the tails of F;(z). Therefore, we use the latter way to calculate F,(z).

Calculating Eq. (11), however, needs a heavy computational effort, since it may be a
high-dimensional integral. To solve this problem, we propose two approaches to reduce
the dimension of the integral. The first approach is to screen the random variables in Y and
remove the ones that barely contribute to the desired Fy(0; p, C). The second approach is
to transform the integral from the Y space, or physical space, into the eigenspace, using
truncated series expansion of Y. With the latter approach, we can further reduce the
dimension of the integral. This approach can usually reduce the dimension significantly

because C is a low-rank matrix in many engineering problems.
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Fig. 5 Abstract flowchart of the proposed method

An abstract flowchart of the proposed method is given in Fig. 5. Step 1 screens random
variables in Y. (See Subsection 5.1.) Note that after the screening step, we still use Y for
the remaining random variables for convenience of presentation. In Step 2, we use EOLE
to expand Y and then truncate the expansion to N’ orders. This step transforms the integral
in Eq. (11) from the Y space into the U space (the eigenspace). (See Subsection 5.2.) In
Step 3, the Gauss-Hermite quadrature is used to calculate the MGF of Z in the eigenspace.
(See Subsection 5.3.) In Step 4, SPA is employed to transform the MGF into CDF of Z,
and finally the desired Fy(0; p, C) is obtained through Eq. (18). (See Subsection 5.4)

There are four advantages of the proposed method. First, it can calculate
multidimensional normal probabilities with arbitrary dimension N, as long as the
dimension N’ of the truncated eigenspace is not large. This is practical for dealing with

engineering problems where the number of basic random variables is not large. Second,
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the method is accurate even when calculating very small probabilities because SPA is able
to recover CDF from MGF with sufficient accuracy, especially at tails of CDF. Third, it is
generally more efficient than the abovementioned random methods, when Fy(0; p, C) is
small, such as 10~° and smaller. The reason is that random methods need large sample size
to guarantee the accuracy when calculating small probabilities. Fourth, the result calculated

by the proposed method is deterministic, instead of random by a random method.

5. Formulation of the proposed method

In this section we give all details involved in the steps shown in Fig. 5.

5.1. Step1l: Screening random variables

The screening procedure is aimed at reducing the dimension by removing those
components of Y that are not important to Fy(0; p, C). If Pr{Y; < 0} is almost equal to 1,
or equivalently if Pr{Y; > 0} is sufficiently small, then removing Y; will not significantly
affect the accuracy.

Since Pr{Y; > 0} measures the importance of ¥; to Fy(0; u, C), the most important
component Y, is determined by

Y, = argmax Pr{Y; > 0} (12)
l

and Pr{Y, > 0} is used as a benchmark to screen the other components of Y. The screening
criterion is given by

Pr{Y; > 0} < cPr{Y, > 0} (13)

15



where c is a hyperparameter taking a small value, such as 10™*. Theoretically, the smaller
is ¢, the higher accuracy will we have. However, if ¢ is too small, the screening step will
not effectively screen out unimportant normal random variables. If Y; meets the criterion,
it will be removed. Since Y are normal variables, Eq. (13) is equivalent to
D () < c@(p.) (14)

where u, 1s the mean value of Y,. Note that we have assumed in Section 2 that all
components of Y have variance of 1, so Eq. (14) does not involve the variance of Y. Fig. 6
shows an example of the screening of Y. Initially, there are N = 300 components in Y.
Only 68 components shown by the circles, however, do not satisfy the criterion in Eq. (13).
Therefore, only 68 components are kept and the other 232 ones are removed, reducing the
dimensionality from N = 300 to N = 68. Note that after the screening step, we also use Y

to denote the remaining random variables for convenience.

%107

+ Before screening
25| | © After screening

OOQIQ ®

0.5 ?
0
0 50 100 150 200 250 300

i

Fig. 6 An example of the screening step
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5.2. Step 2: Series expansion with EOLE

The purpose of EOLE [49] is to transform the integral in Eq. (11) from the Y space
into the eigenspace. A key step of EOLE is the eigendecompositon [56] of C. In linear
algebra, eigendecomposition, or spectral decomposition, is the factorization of a matrix
into a canonical form. With the decomposition, a square matrix C is represented in terms
of its eigenvalues and eigenvectors. A (non-zero) vector V is an eigenvector of C if it
satisfies the linear equation

CV=2V (15)
where A is the eigenvalue corresponding to V. The eigenvalues are obtained though solving
the following equation

det(C—AI) =0 (16)
where det(-) represents determinant, and I is an identity matrix with the same size as C.
The number of eigenvalues obtained by solving Eq. (16) is Ny4pk, the rank of C. Once an
eigenvalue is obtained, we can calculate its corresponding eigenvector by substituting it
into Eq. (15).
With the eigendecomposition, we obtain Ny, eigenvalues A and Ny, eigenvectors

V;,j =1,2,..., Nrank. Note that the eigenvalues are sorted from the largest to the smallest.

Then the EOLE expansion of Y is given by

Nran
) Uj T N
Y,(U) = py + Z ﬁvj cG,j)i=12..,N (17)
j=1 V"I
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where U = [Ul, Uy, ..., U;, ..U Nrank] are Ny, mutually independent standard normal
variables, 4; is the j* eigenvalue, and C(:, j) is the j™ column of C. The j* eigenvalue 4;
measures how sensitive Y is to U;.

For a full-rank C, N,,,x = N, and hence there are N + 1 terms in the expansion. For a
non-full-rank C, with N,,x < N, there are only N,,,x non-zero eigenvalues, and therefore
there are less than N + 1 terms in the expansion. In practical engineering, however, not all
the N,k eigenvalues are at the same level of magnitude. Excluding the y; term, we only
keep the first N’ terms that have large eigenvalues, because they contribute most to the
expansion. Hereafter, we let U denote [Ul, Uy, ..., Uj, .U N’] . The uncertainty of Y is
mainly propagated from the uncertainty of U, and hence we call U significant basic random
variables.

Specifically, N' is determined as the smallest integer that meets the criterion as follows

N’ Nrank
ZAJ- / Z 2] =n (18)
= =

where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value
close to, but not larger than, 1. The smaller is 7, the less accurate is the expansion. Ifn =
1, the expansion is exact. Typically, 7 is set to 0.9999. When N’ has been determined by

Eq. (18), the truncated EOLE expansion is given by
NI
Uj T N
v,(U) = g +Z7vj cC,)i=12..,N (19)
j=1V"

With the truncated EOLE expansion, each Y; is a function of U, and hence Z(Y) =

max(Y) is also a function of U. Then Eq. (11) is converted into

18



My (s) = f explsz(w)]fy (w)du (20)

where fy(u) is the PDF of U, i.e., the PDF of N’-dimensional mutually independent
standard normal variables.

Eq. (20) shows an N'-dimensional integral. Compared to Eq. (11) for an N -
dimensional integral, Eq. (20) is more efficient because of the dimension reduction. With
the dimension reduction, the efficiency of the proposed method mainly depends on N’
instead of N. Intuitively, a larger N will lead to a larger N'. However, there is no direct
relationship between N’ and N. It is the number of significant eigenvalues of C that
directly determines N'. A C with a dimension of 1,000 by 1,000 may have only two
significant eigenvalues and hence N’ = 2, while another C with a dimension of 5 by 5

may have up to 5 significant eigenvalues and hence N’ = 5.

5.3. Step 3: Calculate MGF with Gauss-Hermite quadrature

The purpose of this step is to calculate the multidimensional integral in Eq. (20)
efficiently. Gauss-Hermite quadrature is a form of Gaussian quadrature for approximating

the integrals with the following format

sz oog(u)exp(—uz)du (21)

where I is the integral result, g(u) is a smooth and continuous function of u, and
exp(—u?) is called a weight function. With the Gauss-Hermite quadrature, Eq. (21) is

approximated by
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Q
[ = z w@ g[u@] (22)
q=1

where Q, the quadrature order, is the number of quadrature points used, w(® is the g™
weight, and u(® is the g™ quadrature point. Table 1 shows the quadrature points and
weights for some quadrature orders.

When the weight function is the PDF of the standard normal variable, i.e.,

2
\/%_nexp (—u?), instead of exp(—u?), the quadrature weights and points should be
modified accordingly. The modification rule is simply multiplying the weights by iﬂ, and

the points by V2. For example, the weights and points in Table 1 are modified to that in
Table 2.

Table 1 Guass-Hermite quadrature points and weights

Quadrature order Q  Quadrature point u(® Quadrature weight w,

1 0 1.772453
2 +0.707107 0.886227
3 0 1.81635
+1.22474 0.295409
4 +0.524648 0.804914
+1.65068 0.081312

Table 2 Modified Guass-Hermite quadrature weights and points

Quadrature order Q  Quadrature point u(@  Quadrature weight w,

1 0 1.772453 /\/r
2 +0.707107v/2 0.886227/\1
3 0 1.81635/\Vm
+1.22474+2 0.295409/\1
4 +0.524648+/2 0.804914 /v
+1.65068v2 0.081312 /1

20



The integral in Eq. (20) is N'-dimensional, and the unidimensional formulation in Eq.
(22) is extended to its multidimensional counterpart using the tensor product rule. The N'-
dimensional Gauss-Hermite quadrature formulation is given by

Q1 Q2 Qn’

qn! qpn’
= Z z z Wy, (Q2)“W15,N)g M) __,ul(V,N) 23)

q1=1q2=1 qu=1

where Q; is the quadrature order in the j th dimension. Therefore, Eq. (20) is approximated

by

Q1 Q2 Qs

MZ(S)_Z z z ICMCD) W(LZN)eXp{SZ[ugql) §q2),-..,u1(v'f”')]} (24)

41=1q2=1 qur=1
Note that the weight function f;(u) in Eq. (20) is the PDF of N’ mutually independent
standard normal variables, and Eq. (24) should use the modified quadrature weights and
points. The total number N, of quadrature points is equal to H?’;l Q;.

Generally, the higher are the quadrature orders Qj,j = 1,2,..., N', the higher is the
accuracy. Higher quadrature orders, however, mean lower efficiency. Therefore, a good
tradeoff is needed. Since the j' eigenvalue A; of C measures how sensitive Y is to Uj, as
mentioned in Subsection 5.2, A; also measures how sensitive Z is to U;. Hence, we assign
values to Q nj=12,..,N ', according to the corresponding eigenvalues.

To determine Q i J=12,..,N ", we need the maximum and minimum allowable
values Qmax and Qi . Since 4, is the largest eigenvalue, we set Q; t0 Qmax- Qj,j =

2,3, ..., N', are determined by
4
Q; = max round (£0: ), Qmin (25)
1

21



where round(-) rounds its input value to the nearest integer. Eq. (25) shows that the larger
. Aj . .
is /1_1’ the larger is Q;, but Q; cannot be smaller than Qp;,. The specific values of the two

hyperparameters Qp,.x and Qni, are dependent on the requirement of the calculation

accuracy and efficiency.

5.4. Step 4: Transform MGF to CDF using SPA

SPA is a powerful tool to transform MGF to CDF as well as to PDF. Although the
theory behind SPA is complicated, its implementation is straightforward.
First, the MGF M, (s) is transformed to CGF K, (s) through
K;(s) = In[M,(s)] (26)

Then the first derivative K, (s) of K,(s) is given by

; MZ (s)
K. (s) = (27)
Z( ) MZ (S)
where M, (s) is the first derivative of M,(s) and is given by
Q & Qy
M,(s) = Z Z Z qul)wqu) ...WI(VL,IN,)Z ugql),uqu), ...,ul(v(,{"’l)]
q;=1q,=1 q,=1 (28)
* exp {sz [uiql), ung), s ul(vq,"”)]}
The second derivative K, (s) of K,(s) is given by
. MZ(s) M,(s
i,(s) = 7(s)  Mz(s) (29)

OO

where M (s) is the second derivative of M,(s) and is given by
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Q @ Qy

Mz(S) = z z z qul)wqu) ...WI(V(,IN,)ZZ lugql),ug%), ""uz(v?N,)]

q;=1q,=1 q,/=1 (30)

i‘“),ug"z), ---:u,(vq,”')]}

* exp {sz [u

Daniels [57] derived the SPA to the PDF f;(z) of Z as

1
2
- - *) _ o* 31
anz(s*)l PG = 7] .

1
f2(2) = [
where s*, known as the saddlepoint, is the solution to the equation given by
K(s) =z (32)
The bisection method [58] is employed to solve Eq. (32). Apart from f;(z), the CDF F,(z)

is given by

Fo(@) = olw(@)] + plw) (7 ) 63)

w(z) v
where ¢ () is the PDF of the standard normal variable,
1
w(z) = sign(s*){2[s*z — K;(s*)]}2 (34)

and

v= s*[kz(s*)]% (35)
Since we only need to calculate F,(0), we can simply set z = 0 in Egs. (32), (33) and (34).
Once F(0) is obtained, we also obtain the desired multivariate normal probability
Fy(0; n, ©) = F,(0).
An important property of SPA is that it is able to convert MGF to CDF with sufficient

accuracy, especially at the tails of CDF [51, 57]. Some studies showed that in some cases,
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SPA has tail exactness [59]. This property makes the proposed method able to calculate

very small probabilities with high accuracy.

6. Application in time-dependent reliability analysis

Time-dependent reliability measures the probability that a component or system does
not fail within a given period of time. With different theories, existing methods to time-
dependent reliability analysis are roughly grouped into simulation methods [16, 17, 21, 33],
surrogate model methods [6, 11, 12, 18-20], extreme value methods [13, 22, 23, 25],
outcrossing rate methods [4, 7, 10, 15], and equivalent Gaussian process methods [5, 8, 14],
etc.

Simulation methods are straightforward. A large number of samples of Y are generated
first, whose statistic information is then used to estimate the reliability or the probability
of failure. This group of methods are generally accurate as long as the sample size is
sufficiently large. Generating a large number of samples, however, is usually expensive or
even unaffordable, especially when the limit-state function is an expensive black-box
function. To deal with this problem, surrogate model methods train a computationally
cheap surrogate model to replace the original expensive limit-state function. Once the
surrogate model is well trained, the time-dependent reliability may be estimated accurately
and efficiently. This group of methods, however, introduce some additional issues, such as
the design of experiment, training scheme, learning function, and convergence criteria, etc.

Extreme value methods convert the time-dependent problems into static ones by

calculating the extreme values of the limit-state function with respect to time. Generally,
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the calculation of extreme values needs a global optimization with respect to time. It limits
the application of this group of methods since global optimization may not be efficient.

Outcrossing rate methods are traditional methods for time-dependent reliability
analysis and are widely used. The methods are efficient if they are used with FORM. Their
accuracy may not be good for problems with low reliability because the dependence among
crossing events is neglected. On the contrary, the autocorrelation of the limit-state function
is considered in equivalent Gaussian process methods, and hence more accurate results can
be obtained. The procedures of equivalent Gaussian process methods are straightforward.
FORM is first employed to convert the limit-state function into a Gaussian process whose
discretization is a vector of correlated normal variables, and then a high-dimensional
normal integral is used to calculate the reliability.

The existing equivalent Gaussian process methods mainly differ in the way the high-
dimensional normal integral is estimated. Hu and Du [5] employed the crude MCS. Jiang
et al. [14] employed the quasi MCS [35]. Gong and Frangopol [8] employed the equivalent
component method. In this study, we apply the proposed method to improve the accuracy
of equivalent Gaussian process methods without a random sampling method.

The reliability is predicted by a limit-state function given by
Y =GX P(t),t) (36)
where X are the basic input random variables, P(t) are the input random processes, and t

is time. Generally, Y is a random process. The time-dependent reliability R over the time
interval [t, ] is given by

R =Pr{y <o,vt€ [t 1]} (37)
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To calculate R numerically, we need to discrete [g, f] into N points t;,i = 1,2, ...,N,
where t; =t and ty = t. Then the random process Y is discretized into N random
variables Y; = G(X, P(¢t;),t;),i = 1,2, ..., N. With the discretization, Eq. (37) is rewritten

as

R = Pr{ﬂilyi < o} (38)

Although Y; is in general not a normal variable, we can use FORM to transform it into an
equivalent normal variable with a unit variance [5]. Therefore, we always assume that Y; is
normally distributed with a unit variance without losing generality. Then Eq. (38) is
equivalent to

R = Fy(0; n, ©) (39)
The details of how to calculate C using FORM 1is given in [5]. The time dependent
probability of failure Pr =1 — R.

For general time-dependent reliability problems, N can be hundreds. Although N is
large, the number of significant basic random variables, i.e., N', is not necessarily large. If
there are no random processes in Eq. (36), N4,k Will be exactly equal to the dimension of
X, i.e., the number of basic random variables. N’ is no larger than Ny . N’ = Npapk only
if Y is sensitive to all the basic random variables. N’ < N, When Y is not sensitive to at
least one basic random variable. If there are input random processes, Ny, 1S dependent
on not only the number of basic random variables and random processes, but also the

autocorrelation functions of the input random processes.
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From response Y, N’ is generally determined by the correlation length Iy of Y and the

length [, = (f — g) of time interval [g, f]. More specifically, the largerll—y is, the smaller N’
t

will we have. For problems with small ll—Y, N’ is large and hence the proposed method may
t

not be efficient or may even fail.

7. Numerical examples

In this section, we demonstrate the effectiveness of the proposed method using four
time-dependent reliability analysis examples. The first example has the exact solution and
hence we can easily test the accuracy of the proposed method. In the second example, the
limit-state function is given as a Gaussian random process. The third example involves a
mechanism whose inputs only contain several random variables without a random process.
The last example has an implicit limit-state function, which is a black-box model evaluated
by the finite element method (FEM) [60]. Exact solutions are not available for the last three
examples, and hence we employ the crude MCS, using a sufficiently large sample size, to
obtain accurate results, which are treated as benchmarks. In all the examples, the
hyperparameters ¢, 17, Qmax, and Quax are set to 107*, 0.9999, 35, and 5, respectively.
Note that there are no criteria for selecting specific values for those hyperparameters. We
set those values based on our experience from many experiments. Note that all the reported
results and error are about the calculation of the multinormal probabilities, so the error due
to FORM approximation is not included.

The proposed method is also compared with two widely used methods. The first one

is the latest version of the equivalent component method [42], which is a deterministic
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method. For convenience, we denote this method by IECA (improved equivalent
component method). The second one is the randomized quasi MCS developed by Genz and
Bretz [35], which has been implemented in the R programming language and has been
widely used to calculate the high-dimensional normal probabilities. We can simply call the
R function pmvnorm() to calculate the desired probability. Since it is a random method
whose result is dependent on the seed of the random number generator, we will run this
method three times to see the differences. For convenience, we denote the three solutions

from the method by RQ1, RQ2, and RQ3.

7.1. Example 1: A math example with exact solution

The limit-state function Y (t) is a stationary Gaussian process with mean value u(t) =
b and standard deviation o(t) = 1. Its autocorrelation coefficient function p(tq,t,) is
given by
p(ty,t;) = cos(t; — t;) (40)

The time interval [g, f] = [0,2m] s. Y(t) is a function of U = [U;, U, ] given by

U
Y(t) = b + Uycos(t) + U,sin(t) = b + /Uf + U2sin [t + tan™? (U—l)] (41)
2

Therefore, the maximum value Z of Y (t) is given by

Z=b+ /U12+U22 (42)

Since U# + UZ is a chi-square variable with freedom 2, the exact R is given by
R = Pr{Z < 0} = Prob{U} + UZ < b?} = ¥(b?,2) (43)

where W(-,2) represents the chi-square CDF with the degree of freedom being 2.
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[g, f] = [0, 27] is evenly discretized into N = 500 points, hence a 500-dimensional
normal probability is to be calculated. With Eq. (40), we get the correlation coefficient
matrix C whose dimension is 500 x 500. Since Y (t) is a stationary Gaussian process, after
discretization, Y = (Y, Y5, ..., Ys5q0) share the same mean value b and standard deviation 1.
As a result, no components in Y are removed during the variable screening procedure.

Since there are only two input random variables in Eq. (41), Nyagnk = 2. The
corresponding two eigenvalues of C are 250.5 and 249.5, both of which are significant,
and therefore there are N' = 2 significant basic random variables. Since Qpax = 35 and
Qmin = 5, we use Q; = 35 and Q, = 35 quadrature points for U; and U,, respectively,
and hence there are in total Ny = Q;Q, = 1225 quadrature points. To test how the
proposed method performs at different levels of P¢, we vary b. The values of Py calculated
by the proposed method, IECA, and RQ are given in Table 3. Note that the values in the
parentheses under Pr are relative errors with respect to the accurate solutions and that the
values in the square brackets are the estimated absolute errors (EAE) given by the RQ
method.

When b takes —2, —4, —6, and —8, all the relative errors of the proposed method are
less than 1%. It shows that the proposed method is accurate even when we calculate an
extremely small Py, such as 1.27 x 107'*. The reason for the high accuracy is that there
are only two significant basic random variables, and hence the Gauss-Hermite quadrature
can obtain accurate MGF using Eq. (24). SPA can also produce an accurate CDF, and hence

accurate Py. In addition, this example shows that although N = 500, N is only 2.
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IECA is less accurate. When b is —2,—4,—6, and —8, the errors of IECA are
57.3%,34.7%, 15.4%, and 4.4%, respectively. When b = —2, RQ gets stable and
accurate results. However, when calculating small probabilities (b = —4,—6,0r — 8),

RQ1, RQ2 and RQ3 produce different results, showing instability. It is a typical feature of

a random method.

Table 3 Results for Example 1

b -
Methods | =2 —4 —6 -8
Proposed 1.35x 1071 3.34 x 107* 1.52 x 1078 1.27 x 10714
(0.0%) (—=0.5%) (—0.2%) (0.0%)
[ECA 2.13x 1071 452 %x 107 1.76 x 1078 1.32 x 10714
(57.3%) (34.7%) (15.4%) (4.4%)
1.35x 1071 431x 107 1.60 x 1078 1.48 x 10714
RQI (0.0%) (28.5%) (5.1%) (16.7%)
[7.80 x 107°] [2.92 x 107%] [1.84 x 1078] [1.18 x 10714]
1.35x 1071 3.39 x 107* 8.78 x 107° 9.66 x 10715
RQ2 (0.0%) (1.1%) (—42.4%) (—23.7%)
[6.77 x 107°] [1.93 x 107%] [3.48 x 1077] [3.83 x 10715]
1.35x 1071 2.84 x107* 7.77 x 107° 9.66 x 10715
RQ3 (0.0%) (—15.3%) (—49.0%) (—23.7%)
[5.40 x 107°] [5.29 x 1075] [9.98 x 10~10] [1.94 x 10715]
Exact 1.35 x 107! 3.35x 107* 1.52 x 1078 1.27 x 1071

7.2. Example 2: A math example without an exact solution

The limit-state function Y (t) is a nonstationary Gaussian process. The standard

deviation is o (t) = 1 and the mean u(t) is given by

u(t) = —6 — tcos(t)

(44)

where t € [E, f] = [0,5] s. We consider three different correlation coefficient functions,

given by Eq. (45), Eq. (46), and Eq. (47).

Case 1: p(ty,t,) = sin(m|t; — t,|) /(m|t; — t,])

(45)
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Case 2: p(t;, t,) = exp[—0.25(t; — t,)?] (46)
Case 3: p(tll tz) = eXp(—025|t1 - tzl)(l + 025|t1 - tzl) (47)

%107

3.5

+ Before screening
31| o After screening

0 50 100 150 200 250 300
i

Fig. 7 Variable screening for Example 2

For numerical calculation, [t, t] is evenly discretized into N = 300 points, and hence
the dimension is 300. Fig. 7 shows the variable screening. 176 points among the 300
points do not contribute to Pr significantly and hence are removed. N is updated to 124.
Note that the physical meaning of ®(u;) in Eq. (14) is the instantaneous probability of
failure, and the variable screening procedure in fact removes those time points with low
instantaneous probabilities of failure.

In Case 1, there are N' = 5 significant basic random variables. The numbers of
quadrature points for them are 35, 31, 15, 5, and 5, and hence there are in total 406,875
quadrature points. The results are given in Table 4, where ¢ represents the relative error

with respect to MCS. The sample size of MCS is 8 x 10°.
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Py calculated by the proposed method is 6.42 X 10~* with a relative error of —0.1%,
while IECA yields a P value of 6.93 x 1073 with a relative error of 7.9%. The proposed
method is significantly more accurate than IECA. RQ is more accurate than IECA, but not

stable due to randomness.

Table 4 Results for Case 1 of Example 2

Methods  Proposed IECA RQ1 RQ2 RQ3 MCS
P/(x107%) 642  6.93 6.76 5.94 6.54 6.42
(%) -0.1 7.9 5.3 -7.5 1.8 -
EAE - - 637x107* 590x107* 340x107* -

In Case 2, there are N' = 4 significant basic random variables. The numbers of
quadrature points for them are 35, 7, 5, and 5, respectively, and hence there are in total
6125 quadrature points. The results are given in Table 5. The sample size of MCS is
1.2 x 107. Again, the proposed method is more accurate than both IECA and RQ.

Table 5 Results for Case 2 of Example 2

Methods  Proposed IECA RQI1 RQ2 RQ3 MCS
Py (X 1073) 3.96 3.60 3.76 4.17 4.17 3.99
(%) -0.8 -9.7 -5.8 4.6 4.5 -
EAE - - 449x10™* 581x10"* 4.69x107* -

In Case 3, there are N' = 4 significant basic random variables. The numbers of
quadrature points for them are 35, 5, 5, and 5, and hence there are in total 4,375
quadrature points. The results are given in Table 6. The sample size of MCS is 1.2 X 107.
All the three methods are accurate, and the proposed method is slightly more accurate.

Table 6 Results for Case 3 of Example 2

Methods  Proposed IECA RQI1 RQ2 RQ3 MCS
Pr(x 1073) 3.42 3.35 3.48 3.35 3.48 3.43
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£(%) —0.2 -2.3 1.6 -2.3 1.7 -
EAE - - 231x10™* 854x1077 234x107* -

7.3. Example 3: A slider-crank mechanism

Shown in Fig. 8 is a slider-crank mechanism. The link with lengths R; and R; rotates
with an angular velocity of w = m rad/s. The motion output is the difference between the
displacements of two sliders 4 and B. The mechanism is supposed to work with small
motion errors during time period [g, f] = [0, 2] seconds. The motion error is defined as the
difference between the desired motion output and the actual motion output. A failure occurs

when the motion error is larger than 0.94 mm. The actual motion output AS,crya) 1S given

by

Fig. 8 A slider-crank mechanism
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ASactual = RlCOS(Q - 90) + \[Rg - R%Sinz(g — 90)

- R3COS(01 + 90 - 0 - 60) (48)

- \[RZ - R%Sinz(el + 90 - 9 - 60)

where 8 = wt. The desired motion output ASgesireq 1S given by

ASgesired = 108c0s(8 — 6,) + /2112 — 1082sin2(6 — 6,)

- 1OOCOS(01 + 90 - 9 - 60) (49)

— /2132 — 1002sin%(8; + 6, — 6 — &,)
Then the limit-state function Y (t) is given by
Y(t) = (ASgesired — ASactual) — 0.94 (50)
Table 7 shows the random variables and other parameters.

Table 7 Variables and parameters of Example 3

Variable Mean Standard deviation Distribution
Ry 108 mm 0.05 mm Gaussian
R, 211 mm 0.2 mm Gaussian
R; 100 mm 0.05 mm Gaussian
R, 213 mm 0.2 mm Gaussian
0, 45° 0 Deterministic
6, 60° 0 Deterministic
5o 10° 0 Deterministic
W m rad/s 0 Deterministic

The time interval [E, f] is evenly discretized into N = 300 points. Since Y(t) is not a

Gaussian random process, we need to transform it into an equivalent Gaussian process by
applying FORM at each time point. After that we need to calculate a 300-dimensional

normal probability to obtain Pr. Fig. 9 shows the variable screening step. No points among
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the 300 points are removed because the instantaneous probabilities of failure at all the 300

points contribute to P significantly.

%107

2.5

+ Before screening
O After screening

Fig. 9 Variable screening for Example 3

There are four significant basic random variables in U after the dimension reduction is

performed. The numbers of quadrature points for U are 35, 5, 5, and 5, and hence there

are in total 4,375 quadrature points. The results are given in Table 8. The sample size of

MCS is 1.8 x 107.

Table 8 Results of Example 3

Methods  Proposed IECA RQ1 RQ2 RQ3 MCS
Pr(x 1073) 2.38 2.11 2.48 2.39 2.48 2.38
(%) 0.1 -11.4 4.1 0.5 4.1 -

EAE - - 3.24x10™* 3.82x107* 4.62x10°*
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Py calculated by the proposed method is 2.38 X 10~ with a relative error of 0.1%,
while P calculated by IECA is 2.11 x 1073 with a relative error of —11.4%. RQ is more
accurate than IECA but less accurate than the proposed method.

Note that there is no input random process in this example and hence the number N’
of significant basic random variables is at most the number of input random variables. If
Y (t) was not sensitive to some input random variables, N’ would be less than the number

of input random variables.

7.4. Example 4: A 52-bar space truss

This example is modified from an example in [61]. Shown in Fig. 13 is a 52-bar space
truss with 21 nodes. All the nodes are located on the surface of an imaginary hemisphere
whose radius is r = 240 in. The cross-sectional areas of Bars 1~8 and 29~36 are 2 in?.
The cross-sectional areas of Bars 9~16 and other bars are 1.2 in? and 0.6 in?, respectively.
The Young’s modulus of all bars is E. To distinguish the node numbers and the bar
numbers, we add a decimal point after all node numbers in Fig. 13. Nodes 1~13 are
subjected to external loads F;~F;3, all in the —z direction. F; is a stationary Gaussian
process whose autocorrelation coefficient function is given by

p(ty,t;) = exp[—0.25(t; — t;)?] (51

E and F,~F,; are random variables, and their distributions are given in Table 9.
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(a) Top view (b) Left view
Fig. 13 A 52-bar space truss

Table 9 Variables and parameters of Example 4

Variable Mean Stagdgrd Distribution Autocorrelation
deviation
E 25x10%ksi 2.5 x 102 ksi Gaussian N/A
F,(t) 40 kip 4 kip Gfli’s‘;ﬁtll;’gaggss Eq. (51)
Fy~Fs 50 kip 5 kip Lognormal N/A
Fe~F, s 60 kip 6 kip Lognormal N/A

A failure occurs when the displacement § of Node 1 along —z direction exceeds the
threshold §, = 1.3 in at any instant of time in the period [g, f] = [0,5] years. The limit-
state function is given by

Y(t) =6, — 8(E,F) (52)
where F = [F,(t),F,, F;, ..., F13 | is the vector all the loads.8(E, F) is calculated by FEM.
The linear bar element is used.

The time interval [E, f] is evenly discretized into N = 500 points. Since Y (t) is not a
Gaussian random process, we need to transform it into an equivalent Gaussian process by
applying FORM at each time point. After that we need to calculate a 500-dimensional

normal probability to obtain Pr. Since Y (t) becomes a stationary Gaussian process after
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the transformation, Y = (Y, Y, ..., Ys00) share the same mean value and standard deviation.
As a result, no components in Y are removed during the variable screening procedure.

There are only N’ = 7 significant basic random variables after the dimension
reduction. The numbers of quadrature points for them are 35, 18, 6,5 5, 5, and 5, and
hence there are in total 2,362,500 quadrature points. The sample size of MCS is 1.2 X 108,
The results are given in Table 10. The proposed method is significantly more accurate than
both RQ and IECA.

Table 10 Results for Example 4

Methods  Proposed IECA RQ1 RQ2 RQ3 MCS
P/(x107*) 335  4.07 411 4.25 2.72 3.36
(%) -0.6 21.0 22.3 26.4 -19.1 -
EAE - - 251x10™* 472x10™* 213x10~* -

The four examples have demonstrated the high accuracy and robustness of the
proposed method. IECA is accurate for some examples but less accurate for the others, and
RQ is not robust for some problems because of large randomness in the solutions with
different sampling seeds. The proposed method works particularly well for a time-
dependent reliability analysis for which the limit-state function has been approximated by

a Gaussian process.

8. Conclusions

Evaluating a multivariate normal probability is widely encountered in many
engineering problems. It is a challenging task when the dimension is high and the

probability is low. The proposed method addresses the problem by using the extreme value
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of all the normal variables. Its moment generating function (MGF) is obtained by the
Gauss-Hermite quadrature method, and the dimension is also reduced by screening out
variables in both the physical space and the eigenspace. The saddlepoint approximation is
used to recover the multivariate normal probability from MGF.

The main computational effort is the calculation of MGF by a multidimensional
quadrature method. The efficiency depends on the dimension of the integral, or the reduced
dimension. Therefore, the efficiency of the proposed method mainly depends on the
number of the significant basic random variables after the dimension reduction, instead of
the dimension of the original normal variables. This is a good feature for many engineering
problems where the dimension can be reduced significantly because not all normal
variables contribute significantly to the multivariate normal probability and the
multivariate normal probability is not sensitive to all coordinates of the eigenspace.

Another advantage of the proposed method is its ability to calculate extremely small
probabilities. The accuracy is achieved by the accurate generation of MGF, as well as
saddlepoint approximation with its well-known accuracy for small probabilities. This
feature makes the proposed method suitable for reliability applications where the
probability of failure is inevitably small. The proposed method is also numerically stable,
and the result is repeatable.

The method, however, may not work well if the reduced dimension is still high. For
example, in time-dependent reliability problems, if the correlation length of the limit-state
function is short and/or the time interval of interest is long, the reduced dimension will be
high and the proposed method may not work well or may even fail. Our future work will

focus on accommodating larger dimension in the reduced space.

39



Acknowledgements

We would like to acknowledge the support from the National Science Foundation under

Grant No 1923799 (formerly 1727329).

Reference

[1] Rausand M, Heyland A. System reliability theory: models, statistical methods, and
applications. Hoboken: John Wiley & Sons; 2003.

[2] Du X. System reliability analysis with saddlepoint approximation. Structural and
Multidisciplinary Optimization. 2010;42:193-208.

[3] Kang W-H, Song J. Evaluation of multivariate normal integrals for general systems by
sequential compounding. Structural Safety. 2010;32:35-41.

[4] Hu Z, Du X. Time-dependent reliability analysis with joint upcrossing rates. Structural
and Multidisciplinary Optimization. 2013;48:893-907.

[5] Hu Z, Du X. First order reliability method for time-variant problems using series
expansions. Structural and Multidisciplinary Optimization. 2015;51:1-21.

[6] Hu Z, Mahadevan S. A single-loop kriging surrogate modeling for time-dependent
reliability analysis. Journal of Mechanical Design. 2016;138:061406.

[7] Jiang C, Wei XP, Huang ZL, Liu J. An outcrossing rate model and tts efficient
calculation for time-dependent system reliability analysis. Journal of Mechanical Design.
2017;139:041402.

[8] Gong C, Frangopol DM. An efficient time-dependent reliability method. Structural
Safety. 2019;81:101864.

[9] Wei X, Du X. Uncertainty Analysis for Time-and Space-Dependent Responses With
Random Variables. Journal of Mechanical Design. 2019;141:021402.

[10] Andrieu-Renaud C, Sudret B, Lemaire M. The PHI2 method: a way to compute time-
variant reliability. Reliability Engineering & System Safety. 2004;84:75-86.

[11] Wang Z, Chen W. Time-variant reliability assessment through equivalent stochastic
process transformation. Reliability Engineering & System Safety. 2016;152:166-75.

[12] Hu Z, Du X. Mixed efficient global optimization for time-dependent reliability
analysis. Journal of Mechanical Design. 2015;137:051401.

[13] Hu Z, Du X. A sampling approach to extreme value distribution for time-dependent
reliability analysis. Journal of Mechanical Design. 2013;135:071003.

[14] Jiang C, Wei XP, Wu B, Huang ZL. An improved TRPD method for time-variant
reliability analysis. Structural and Multidisciplinary Optimization. 2018.

40



[15] Sudret B. Analytical derivation of the outcrossing rate in time-variant reliability
problems. Structure and Infrastructure Engineering. 2008;4:353-62.

[16] Wang Z, Mourelatos ZP, Li J, Baseski I, Singh A. Time-dependent reliability of
dynamic systems using subset simulation with splitting over a series of correlated time
intervals. Journal of Mechanical Design. 2014;136:061008.

[17] Singh A, Mourelatos Z, Nikolaidis E. Time-dependent reliability of random dynamic
systems using time-series modeling and importance sampling. SAE International Journal
of Materials and Manufacturing. 2011;4:929-46.

[18] Wang Z, Wang P. A Nested Extreme Response Surface Approach for Time-
Dependent Reliability-Based Design Optimization. Journal of Mechanical Design.
2012;134:121007-14.

[19] Shi Y, Lu Z, Xu L, Chen S. An adaptive multiple-Kriging-surrogate method for time-
dependent reliability analysis. Applied Mathematical Modelling. 2019;70:545-71.

[20] Wang D, Jiang C, Qiu H, Zhang J, Gao L. Time-dependent reliability analysis through
projection outline-based adaptive Kriging. Structural and Multidisciplinary Optimization.
2020:1-20.

[21] Du W, Luo Y, Wang Y. Time-variant reliability analysis using the parallel subset
simulation. Reliability Engineering & System Safety. 2019;182:250-7.

[22] Shi Y, Lu Z, Cheng K, Zhou Y. Temporal and spatial multi-parameter dynamic
reliability and global reliability sensitivity analysis based on the extreme value moments.
Structural and Multidisciplinary Optimization. 2017;56:117-29.

[23] Chen J-B, Li J. The extreme value distribution and dynamic reliability analysis of
nonlinear structures with uncertain parameters. Structural Safety. 2007;29:77-93.

[24] Yu S, Wang Z. A general decoupling approach for time-and space-variant system
reliability-based design optimization. Computer Methods in Applied Mechanics and
Engineering. 2019;357:112608.

[25] YuS, Wang Z, Meng D. Time-variant reliability assessment for multiple failure modes
and temporal parameters. Structural and Multidisciplinary Optimization. 2018;58:1705-17.
[26] Zhang D, Han X, Jiang C, Liu J, Li Q. Time-dependent reliability analysis through
response surface method. Journal of Mechanical Design. 2017;139.

[27] Madsen HO, Krenk S, Lind NC. Methods of structural safety. Englewood Cliffs:
Prentice-Hall; 2003.

[28] De Haan L, Ferreira A. Extreme value theory: an introduction. New York: Springer
Science & Business Media; 2007.

[29] Ochi Y, Prentice RL. Likelihood inference in a correlated probit regression model.
Biometrika. 1984;71:531-43.

[30] Dunnett CW. A multiple comparison procedure for comparing several treatments with
a control. Journal of the American Statistical Association. 1955;50:1096-121.

[31] Anderson JA, Pemberton J. The grouped continuous model for multivariate ordered
categorical variables and covariate adjustment. Biometrics. 1985:875-85.

[32] Trinh G, Genz A. Bivariate conditioning approximations for multivariate normal
probabilities. Statistics and Computing. 2015;25:989-96.

[33] Mooney CZ. Monte carlo simulation. Thousand Oaks: Sage Publications; 1997.

[34] Sobol I. Quasi-monte carlo methods. Progress in Nuclear Energy. 1990;24:55-61.

41



[35] Genz A, Bretz F. Computation of multivariate normal and t probabilities. Heidelberg:
Springer Science & Business Media; 2009.

[36] Melchers R. Importance sampling in structural systems. Structural Safety. 1989;6:3-
10.

[37] Phinikettos I, Gandy A. Fast computation of high-dimensional multivariate normal
probabilities. Computational Statistics & Data Analysis. 2011;55:1521-9.

[38] Ambartzumian R, Der Kiureghian A, Ohaniana V, Sukiasiana H. Multinormal
probability by sequential conditioned importance sampling: theory and application.
Probabilistic Engineering Mechanics. 1998;13:299-308.

[39] Au S-K, Beck JL. Estimation of small failure probabilities in high dimensions by
subset simulation. Probabilistic engineering mechanics. 2001;16:263-77.

[40] Cadini F, Gioletta A. A Bayesian Monte Carlo-based algorithm for the estimation of
small failure probabilities of systems affected by uncertainties. Reliability Engineering &
System Safety. 2016;153:15-27.

[41] Roscoe K, Diermanse F, Vrouwenvelder T. System reliability with correlated
components: Accuracy of the Equivalent Planes method. Structural Safety. 2015;57:53-64.
[42] Gong C, Zhou W. Improvement of equivalent component approach for reliability
analyses of series systems. Structural Safety. 2017;68:65-72.

[43] Gollwitzer S, Rackwitz R. Equivalent components in first-order system reliability.
Reliability Engineering. 1983;5:99-115.

[44] Hohenbichler M, Rackwitz R. First-order concepts in system reliability. Structural
Safety. 1982;1:177-88.

[45] Tang L, Melchers R. Improved approximation for multinormal integral. Structural
Safety. 1986;4:81-93.

[46] Pandey M. An effective approximation to evaluate multinormal integrals. Structural
Safety. 1998;20:51-67.

[47] Yuan X-X, Pandey M. Analysis of approximations for multinormal integration in
system reliability computation. Structural Safety. 2006;28:361-77.

[48] Mendell NR, Elston R. Multifactorial qualitative traits: genetic analysis and prediction
of recurrence risks. Biometrics. 1974:41-57.

[49] Li C-C, Der Kiureghian A. Optimal discretization of random fields. Journal of
Engineering Mechanics. 1993;119:1136-54.

[50] Liu Q, Pierce DA. A note on Gauss—Hermite quadrature. Biometrika. 1994;81:624-
9.

[51] Butler RW. Saddlepoint approximations with applications. Cambridge: Cambridge
University Press; 2007.

[52] Hu Z, Du X. Saddlepoint approximation reliability method for quadratic functions in
normal variables. Structural Safety. 2018;71:24-32.

[53] Chi H, Mascagni M, Warnock T. On the optimal Halton sequence. Mathematics and
computers in simulation. 2005;70:9-21.

[54] Tuffin B. Randomization of quasi-monte carlo methods for error estimation: Survey
and normal approximation. Monte Carlo Methods and Applications. 2004;10:617-28.

[55] Thaka R, Gentleman R. R: a language for data analysis and graphics. Journal of
Computational and Graphical Statistics. 1996;5:299-314.

42



[56] Abdi H, statistics. The eigen-decomposition: Eigenvalues and eigenvectors.
Encyclopedia of measurement and statistics. 2007:304-8.

[57] Daniels HE. Saddlepoint Approximations in Statistics. The Annals of Mathematical
Statistics. 1954;25:631-50.

[58] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes 3rd
edition: The art of scientific computing. Cambridge: Cambridge university press; 2007.
[59] Barndorff - Nielsen OE, Kluppelberg CJSjos. Tail exactness of multivariate
saddlepoint approximations. 1999;26:253-64.

[60] Zienkiewicz OC, Taylor RL, Nithiarasu P, Zhu J. The finite element method. London:
McGraw-hill; 1977.

[61] Zhang Z, Jiang C, Han X, Ruan X. A high-precision probabilistic uncertainty
propagation method for problems involving multimodal distributions. Mechanical Sysems
& Signal Processing. 2019;126:21-41.

43



