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ABSTRACT

This paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the
photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper
and lower bounds of the electric potential and that of dust levitation height, given the intervals of model
parameters in the 1-D photoelectron sheath model. To improve the calculation efficiency, we employ the widely
used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to
train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate

and efficient.
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1. INTRODUCTION

The Moon is directly exposed to solar radiation and solar wind plasma (drifting protons
and electrons) lacking an atmosphere and a global magnetic field. Consequently, the lunar
surface is electrically charged by the bombardment of solar wind plasma and
emission/collection of photoelectrons. Near the illuminated lunar surface, the plasma sheath is
dominated by photoelectrons, thus usually referred to as “photoelectron sheath”. Additionally,
dust grains on the lunar surface may get charged and levitated from the surface under the
influence of the electric field within the plasma sheath as well as gravity. This work is motivated
by the high computational cost associated with uncertainty quantification (UQ) analysis of
plasma simulations using high-fidelity kinetic models such as particle-in-cell (PIC). The main
guantities of interest (Qol) of this study is the vertical structure of the photoelectron sheath
and its effects on levitation of dust grains with different sizes and electric charges.

Both the electric potential (¢) and the electric field (E') on lunar surface are determined
by many parameters, such as solar wind drifting velocity (v4), electron temperature (Tg),
photoelectron temperature (Tj,), density of ions at infinity (n; ), and density of photoelectrons
(np), etc. Due to uncertain factors in lunar environment, the electric potential, electric field, and
the dust levitation height, etc., are also uncertain. While many sources uncertainty may exist,
they are generally categorized as either aleatory or epistemic. Uncertainties are characterized
as epistemic, if the modeler sees a possibility to reduce them by gathering more data or by
refining models. Uncertainties are categorized as aleatory if the modeler does not foresee the
possibility of reducing them [1]. An example of the aleatory uncertainty in lunar environment is

the solar wind parameters, and an example of the epistemic uncertainty is the photoelectron
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temperature which is obtained by limited measurement data from Apollo missions. For lunar
landing missions, one needs to take into consideration the uncertainties of the electrostatic and
dust environment near the lunar surface. For example, the upper and lower bounds of the
electric field and dust grain levitation heights in the photoelectron sheath should be considered
when determining whether it is safe for a certain area to land a spacecraft.

Determining the bounds of the electric potential, electric field, and dust levitation height,
however, is computationally expensive, because the particle-based kinetic models such as
particle-in-cell simulations are time-consuming to evaluate. To address this issue, we develop
an adaptive Kriging method (AKM) which can determine those bounds with a small number of
calculations of the model. It is straightforward to train and obtain an accurate Kriging model [2]
to replace the actual model and then calculate the bounds with the model. However, it is not
necessary for the Kriging model to be accurate everywhere in its input space, because it will
need more training samples and hence decrease the efficiency. Since the objective is to
determine those bounds, we only need the Kriging model to be partially accurate near the
regions of interest, as long as it can help find those bounds accurately. This way, we can save
more computational efforts. To this end, we develop a task-oriented learning function and a
stopping criterion to adaptively train the Kriging model. We start with an analytic model for the
1-D photoelectron sheath near the lunar surface [3, 4]. This model is computationally cheap
and hence the accurate results can be obtained by brute force. With the accurate results, we
can test the accuracy of the proposed method. It is noted here that the ultimate application of
this method is not the simple 1-D problem presented in this work, but more complicated or

computationally expensive models such as 3-D fully kinetic particle-in-cell plasma simulations.
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The rest of this paper is organized as follows. Section 2 presents the 1-D photoelectron
sheath and dust levitation problem on lunar surface, as well as the 1-D analytic model. Section
3 briefly introduces the Kriging method and general AKM. Section 4 presents the proposed

AKM. Section 5 presents the results. Conclusions are given in Section 6.

2. PROBLEM STATEMENT
2.1. 1-D Photoelectron Sheath Model on the Lunar Surface

We employ the recently derived 1-D photoelectron sheath model for the lunar surface
[3, 4]. As given in detail in [3, 4], there are three types of electric potential profiles [3-6] in the
photoelectron sheath: Type A, Type B, and Type C, as shown in Fig. 1, where ¢ is the electric
potential and Z is the vertical coordinate. In this study, we focus on Type C sheath profile as it is
expected at the polar regions of the Moon, where the next lunar landing mission will likely
occur.

Both the electrical potential ¢p and corresponding electric field E are functions of Z with
a series of parameters P = (vd, Te, Ty, M oo, np). To obtain ¢(Z; P) and E(Z; P), we need to
solve an ordinary differential equation (ODE) [3]. Once the potential profile ¢ is obtained, it is
straightforward to calculate electric field E by

d¢(Z; P)

7 (1)

E(Z;P) = —

A typical Type C sample curve of E(Z; P) is shown in Fig. 2. Note that both ¢ and E
converge to zero at large values of Z where it is used as the electric potential reference (zero

potential and zero field).
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2.2. Dust Levitation

Subjected to the electric field force, a charged dust on lunar surface may be levitated [7,
8]. Above the lunar surface, there is a position where the upward electric field force balances
the downward gravity [4]. This position is referred to as equilibrium levitation height, denoted
as Z*. Z* can be solved through the following equation of static equilibrium of a charged dust in
an electric field:
qE(Z;P) = mg (2)
where q is the dust charge, m is the mass of the dust, and g = 1.62 m/s? is the gravity

acceleration on lunar surface [9]. With the assumption of spherical dust grains, m is given by

4
m= §nr3p (3)

where 7 is the radius of the lunar dust grain, and p = 1.8 g/cm?3 is the mass density of dust
grains [10].
For simplicity, Eq. (2) is rewritten as

E(Z;P) =w (4)
where w = mg/q. Once both E(Z; P) and w have been given or determined, a root-finding
scheme is employed to solve Eq. (4) for Z*. Fig. 3 shows an example of how to obtain Z*

graphically.

2.3. Objective

Due to the lack of information, it is almost impossible to obtain the distribution

functions of P. The bounds of P, however, are much easier to obtain. In some work designs on
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lunar surface, we need to determine the bounds of ¢(Z; P) and/or E(Z; P), given the bounds
of P. In this study, all the parameters in P are modeled as interval variables, whose domain is
denoted as Q. For a given realization p of P, both ¢(Z; p) and E(Z; p),Z € [Zin, Zmax] are

obtained by solving the ODE.

The upper bound ¢(Z) of the electric potential is defined as

$(z) = max d(z;p) (5)

where z is a given value of variable Z. Note that the entire upper bound curve 5(2) is not

necessarily determined by a specific p. In other words, at different values of z, a(z) may be

determined by different realizations of P. Similarly, the lower bound ¢(Z) of the electric

potential, the upper bound E (Z) of the electric field, and the lower bound E(Z) are defined as

¢(2) = min ¢(z; p) (6)
E(2) = rgleag E(z;p) (7)
E(z) = min E(zp) (8)

Since P are modeled as interval variables and the intervals (lower and upper bounds) of

output are desired, we in fact cope with interval propagation problems in this work. The most
straightforward method to determine ¢(2),¢(Z), E(Z) and E(Z) is through Monte Carlo

Simulation (MCS) [11] in the following steps. First, evenly generate a large number Ny;cs of
samples of P. For convenience, we denote those samples as pM®S. Second, obtain
corresponding Nycs samples of ¢(Z; P) and E(Z; P) by solving the ODE Ny;cg times. Finally,

calculate a(Z),g(Z), E(Z) and E(Z) using the Nycs samples of ¢(Z; P) and E(Z; P):

7
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$(2) = max_ ¢(zp) 9)
pEp

¢(z) = min_¢(z;p) (10)

- pEp

E(z) = max_E(z; p) (11)
pEp

E(z) = min E(zp) (12)
pPEp

However, this method is too expensive or even unaffordable. One reason is that solving
the ODE a large number Ny, cs of times is time-consuming, even when the analytic solution to
the ODE is available for the 1-D problem. Another reason is that there is no analytic solution to
complex 2-D or 3-D problems where kinetic particle-in-cell simulations are usually employed to

solve the electrostatic field through Poisson’s equation.
The objective of this study is to develop a method to determine ¢(Z2), $(Z), E(Z) and

E(Z) accurately and then calculate Z* of dust grains. It is noted here that the ultimate
application of this method is not the relatively simple 1-D problem presented in this work, but
more complicated or computationally expensive models such as 3-D fully kinetic particle-in-cell
plasma simulations. For computationally expensive models, evaluating the model consumes the
majority of computational resource, so we will use the number Ngpg of ODEs that we need to

solve as a measure of the computational cost.

3. INTRODUCTION TO KRIGING MODEL AND AKM

Before presenting the proposed method, we briefly introduce the Kriging model [12, 13]

and AKM [13-28], on which the proposed method is based.

8
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3.1. Overview of Kriging Model

Kriging model makes regression to a black-box function (BBF) using a training sample
set, or a design of experiment (DoE). The main idea of Kriging is to treat the BBF as a realization
of a Gaussian random field indexed by the input variables of the BBF. The theoretical
foundation of Kriging model is exactly the Bayesian inference [29] . From the perspective of
Bayesian interface, a prior Gaussian random field is trained by the DoE and hence a posterior
Gaussian random field is generated. Then the mean value function, also indexed by the input
variables of the BBF, of the posterior random field is the Kriging prediction to the BBF. Besides,
the variance function, also indexed by the input variables of the BBF, of the posterior random
field quantifies the local prediction uncertainty or prediction error.

The randomness, or uncertainty, of the posterior random field mainly comes from the
fact that only a limit number of samples of the BBF are used to train the prior random field. In
other words, only part of the information of the BBF is available, and the missing part of
information leads to the epistemic uncertainty in the random field. Generally, the more training
samples we use, the less epistemic uncertainty will result and with stronger confidence will we

predict the BBF.

3.2. Formulation for Kriging Model

A simple yet widely used prior random field is the stationary Gaussian random field
given by

KX) =p+n(X:§%0) (13)
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where u is an unknown parameter representing the mean value of the random field K (X) and
n(X; £2,0) is a zero-mean stationary Gaussian random field indexed by X, the input variables of
a BBF k(X). Both the variance parameter é2 and correlation parameters 0 of n(X; £2,0) are
unknown. The parameters 1, £2 and 0 fully define the prior random field K (X). A DoE, or a
training sample set, of k(X) is used to train K(X) and then determine those parameters.
The correlation function C(x(i),x(j)) of n(X; £2,0) is given by

C(X(i),x(j)) — EZR(X(i),X(j); 9) (14)
where R(x(i),x(j); (-)) is the correlation coefficient function of n(X; £2, @) at two points x® and
x) of X. There are many models for R(x(i),x(j); 9). A widely used model is known as the

Gaussian model, or squared exponential model, given by

D
R(x®,x); 0) = 1_[ exp [—Hd (xc(ii) - xéj))z] (15)
d=1

where D is the dimension of X, xc(ii) is the d™ component of x®, and 0, is the d™ component
of 0.

For a BBF k(X), the Kriging model predicts k(x) as k(x), which is a normal variable
whose mean value and variance are k(x) and a2 (X), respectively. Note that a2(X) is also
termed as mean squared error (MSE). Generally, k(X) is regarded as the deterministic
prediction to k(x), since a deterministic prediction is usually needed. 0 (x) measures the
prediction uncertainty, or prediction error, and therefore we can validate a Kriging model
simply using k(x) and o%(x) without employing traditional validation methods, such as the
cross validation [30]. Because of this advantage, many algorithms have been proposed to
adaptively train a Kriging model for expensive BBFs [14-27, 31-36]. When sufficient training

10
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samples have been used for training, o2 (x) converges to 0 and the normal variable k(x)

degenerates to a deterministic value, i.e., the exact value of k(x).

3.3. An Example of Kriging Model

Fig. 4 shows a 1-D example of Kriging model. In total five initial training samples are
used to train the Kriging. The vertical distance between k(x) + o(x) graphically quantify the
prediction error at x. The larger the distance, the larger the prediction error. On interval [0, 2],
the training samples are denser than that on [2, 10]. Consequently, the prediction error is
smaller on [0, 2] than that on [2, 10]. It is noted that the prediction error is not only dependent
on the density of the training samples but also the nonlinearity of the BBF. With the prediction
error shown in Fig. 4, it is obvious that in order to improve the prediction accuracy, we need to
add training samples somewhere near x = 4 and x = 8. Fig. 5 shows the updated Kriging
model with one more training sample added at x = 8. The overall prediction accuracy is

improved significantly.

3.4. AKM

The main idea of AKM is to adaptively add training samples to update the Kriging model

iteratively until an expected accuracy is achieved. Fig. 6 shows a brief flowchart of AKM. The
Qol is what we aim to calculate, such as ¢(Z) and ¢(Z). Since the Qol is calculated through the

Kriging model instead of the BBF itself, there is an inevitable error caused by the Kriging model.

The error metric is used to measure the error. The stopping criterion, which is based on the

11
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error metric, is used to determine when to stop adding training samples. Once the error of Qol
is sufficiently small, it is reasonable to return the Qol and stop the algorithm. If the error is large
in an iteration, we must add one or more training samples to update the Kriging model. How to
determine new training samples is the task of the learning function. A good learning function
should be robust and lead to a high convergence rate.

Given a specific engineering problem, the key of employing an AKM is to make good use
of all available information, such as the features of the BBF and Qol, and then design a
customized or task-oriented error metric, stopping criterion and learning function.

In the UQ community, a great number of AKMs have been developed to solve varies
kinds of problems, such as reliability analysis [15, 17-24, 26, 31-33, 36], robustness analysis [14],

sensitivity analysis [34], robust design [25, 35], and reliability-based design [16, 27], etc.

4. THE PROPOSED METHOD

In this section, we present detailed procedures of calculating ¢(Z) and ¢(Z). Similar

procedures can also apply to calculate E(Z) and E(2).

4.1. Overview of the Proposed Method

The main idea of the proposed method is to employ the framework of AKM and
customize it to calculate E(Z) and ¢(Z) (as well as E(Z) and E(Z)). Fig. 7 shows the brief

flowchart of the proposed method. In Step 1, we evenly generate Nj, initial samples of P.

Generally, Nj, is much smaller than Nycs. Details of this step will be given in Subsection 4.2. In

12
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Step 2, the ODE (1-D Poisson’s equation) is solved Nj, times, with the N;, samples of P, to
obtain N;, samples of ¢(Z; P). In Step 3, the samples of ¢(Z; P) are used to build a Kriging

model ¢(Z; P). Both Z and P are treated as input variables so the dimension of ¢(Z; P) is 1 +

5=6.InStep4, ¢(Z) and ¢(Z) are estimated through

¢(z) = max $(zp) (16)
peEp

¢(z) = min_$(zp) (17)

- pPEp

In Step 5, an error metric is developed to measure the error of ¢(Z) and ¢(Z) estimated by Eq.

(16) and Eqg. (17). Step 6 is about a stopping criterion. Details about Steps 5 and 6 will be given
in Subsection 4.4. The learning function involved in Step 7 will be given in Subsection 4.3. The
implementation of the proposed method will be given in Subsection 4.5.

There are two significant differences between most existing AKMs and the proposed

method. First, the former aims at estimating a constant value, such as the structural reliability
and robustness, while the latter aims at estimating two functions, i.e., $(Z) and ¢(Z). Second,

when given a specific value of input, the output of the BBFs involved in the former methods is a
single value. However, in this work, with a given realization p of P, the output of solving the
ODE is a function ¢p(Z; p). With those differences, we cannot use the existing error metrics,
stopping criteria or learning functions. Instead, we take into consideration those differences
and design a new error metric, stopping criterion and learning function to fit the problem. This

is the main contribution of the proposed algorithm.

13
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4.2. Candidate Samples and Initial Training Samples

For numerical computation, we need to evenly discretize () into a few points. Suppose
P;, the jth component of P, is discretized into N; points, then () will be discretized into in total
Np = ]_[;-r;l N; points. For convenience, we denote the set of those points as pMCS. Similarly, Z
is discretized into N points (denoted as zM®) in its range [Zmin, Zmax]-Theoretically, any p € Q
could be selected as a training sample for ¢3(Z; P). However, we do not want any two training
samples to be clustering together, because we use the exact interpolation in Kriging and
clustered training samples may impact the training and the convergence rate of the proposed

MCS candidate

AKM. Therefore, we only select training samples of P from pMCS and call p
samples or candidate points.

The Ny, initial training samples p'™ of P are selected such that they are distributed in Q
as even as possible. Commonly used sampling methods include random sampling, Latin
hypercube sampling and Hammersley sampling [37]. In this study, we employ the Hammersley
sampling method because it has better uniformity properties over a multidimensional space
[38]. The Hammersley sampling method firstly generates initial training samples in a 5-
dimensional hypercube [0,1]° and then they are mapped into () to get the initial training
samples of P. Note that the five dimensions of the hypercube are assumed to be independent,
with the assumption that all variables in P are independent. Those initial training samples,
however, are not necessarily among pM®S, so we need to round them to the nearest ones in

pMCS. Since the components of P do not necessarily share the same dimension unit, the

distances which we use to find the nearest samples should be normalized. For example, the

14
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distance d between a sample p(h) generated by Hammersley and a candidate sample p(c) in

pMCS is given by

5 ) _ _© \?
d(p®™,p©) = Z(M) (18)

‘ I%Jnax'_finﬁn
i=1

where pl.(h) is the ith component of p®, p{©

;i isthe i™ component of p©, P; max is the maximal

value of P; which is the i™" component of P, and P; min is the minimal value of P;. Then p(h) is

rounded to p* = arg min d(p(h), p(c)). When all the initial training samples generated by
pEp

Hammersley have been rounded to the nearest ones in pMCS, we get the initial training sample
set pi" c pMCS of P.

Solving the ODE Nj, times, each with a sample in pi“, we get N;, samples of ¢(Z; P).
Note that each sample of ¢(Z; P) has N points, since we discretized Z into N, points. Then we
have N,N;, input training points zZM®S x p'™. Except the Nj, points at Z,,.x, We select the other
(N, — 1)Nj,, points to form the first part of input training sample set of ¢(Z; P). We denote
those (N, — 1)Nj, input training points as x"P1 \where superscript inp of X represents input,

inp1

and the superscript 1 means that x is only the first part of the entire input training sample

set. The other part x™P? is given below.

MCS

Since forany p € p"'*>, it is known that ¢ (Z .4 P) = O (Fig. 1), theoretically we also

need to add all the Np points Zy,., X pM©S

as input training samples so that we make good use
of all known information. However, it is not practical to do so. For example, if N; = 10,i =

1,2, ...,5, we need to add N, = 10° points as input training samples. So many training samples

will make 43(2; P) complex, expensive and not accurate, losing its expected properties. To

15



Journal of Verification, Validation and Uncertainty Quantification

balance the need to add them and the drawback of adding all of them, we add part of them.
Specifically, we evenly generate Ny samples p’ of P using procedures similar to what we used
to generate p'™. Then x'"PZ is given by

X" = {(Zmax, P)IP € P’} (19)
The input training sample set x!"P = x!"P1 (J x!"P2_ Denote the corresponding electric potential
¢ at x'"P as p°Ut. The input-output training sample pairs (xi“p, ¢°“t) are used to build the

initial ¢(Z; P). More training samples will be added to update ¢(Z; P) later.

4.3. Learning Function

Generally, the initial Kriging model is not accurate enough to get 5(2) or Q(Z)
accurately through Eq. (5) and Eq. (6). To improve the accuracy of ¢(Z; P) and hence of E(Z)
and Q(Z), we need to add training samples of ¢ (Z; P) to refine ¢(Z; P). A learning function is
used to determine which sample of P, and hence of ¢(Z; P), should be added.

In our previous work [3], we used the learning function given by

a(z;p)
$(z; p)

(next) _
p = arg mox Z (20)
zezMCS

where p("¢* js the next to-be-added sample of P, ¢(z; p) is the predicted value of ¢(z; p) by
the Kriging model ¢(Z; P), and o(z; p) is the standard deviation of the prediction. Both ¢(z; p)

o(zD;p)

3C0p) is the deviation coefficient of the

and a(z; p) are calculated by the Kriging toolbox.

prediction at (z; p), and thus the learning function in Eq. (20) determines the training sample

16
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p(“eXt) at which the summation of the absolute deviation coefficients of the predictions along Z
coordinate is maximal. The summation )}, mcs |%| measures the overall prediction error at

a(z;p)
é(zp)

p. Adding a sample of ¢(Z; P) at p to update ¢(Z; P) will let ¥ mcs | become zero, and

therefore adding a sample of ¢(Z; P) at p™e*Y to update ¢(Z; P) will decrease the overall
prediction error of ¢(Z; P) by the largest extent. This is the basic mechanism of the learning
function in Eq. (20).

However, we do not necessarily need 43(2; P) to be overall accurate. Since the objective

is to estimate ¢(Z) and ¢(Z) accurately and efficiently, we only need ¢(Z; P) to be partially or
locally accurate enough so that it can help estimate ¢(Z) and ¢(Z) accurately. With this idea,

we can further improve the efficiency of updating ¢3(Z; P) by adding training samples more
skillfully.

A widely used learning function in an AKM which aims at calculating extreme values is
the expected improvement function [28]. The expected improvement function E(z, p) of ¢(2)

is given by

P(zp) — $(Z)>

{zp) = (dzp) - $(2)) <I>< g

(21)

¢(zp) - 5(Z)>

+ o(z; p)cp< oz )

where ®(+) and @(-) are the cumulative distribution function and probability density function

of the standard Gaussian variable, respectively. A simple explanation to the expected
improvement function &(z, p) is that if we added a training point at (z, p), we could expect to

improve current E(z) to a(z)+ E(z, p), with an improvement rate of E(z, p)/a(z). If the

17
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objective is to estimate ¢(z), which is a maximal value, instead of ¢(Z), which is an entire
function, we can determine the next training sample p(“e"t) of P using the learning function

givell by
( o — 22
pEpMCS|§( ’ )/ ( )| ( )

However, since the objective is to determine the entire function E(Z) and one ODE
solution has Ny training points, we must have a learning function which aims at improving the
calculation accuracy of the entire function a(Z). Therefore, we propose a learning function

given by

(next) _ z b
p arg max, Z £(2,p)/9(2)] (23)

zezMCS

where we sum up the absolute values of the improvement rate. This learning function means
that if we added a training sample gb(Z; p(“eXt)), which has N; points, to update ¢(Z; P), we
could expect to get the best improvement of ¢ (Z).

Similarly, the expected improvement function &(z, p) of ¢(2) is given by

i $(2) - $@p)
£p = (00 - bz p))cb(— - )

o(z;p)
(24)

+ oty [ 22— 2ED)

o(z;
pye a(z;p)
To estimate Q(Z), we also propose a learning function given by
(next) _

p e = arg max. Z |§(z, p)/ Q(Z)| (25)

zezMCS

18
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In order to estimate both ¢(Z) and ¢ (Z) simultaneously, we combine Eq. (23) and Eg. (25) to

s ), } (26)

Once p™e*Y has been determined, we solve the ODE to numerically get a function

propose a learning function given by

$(z,p)
$(2)

&z, p)|
(2

pepMcs

p(®exY — arg max{ max Z

gb(Z; p(“eXt)), from which we get (N; — 1) points (the remaining one at Z,,,x, where ¢ = 0, is

excluded) and add them into (xi“p, ¢°“t) to enrich the training samples.

4.4. Error Metric and Stopping Criterion

Since Eq. (16) and Eq. (17) cannot obtain absolutely accurate ¢(Z) and ¢(Z) due to the

prediction error of ¢3(Z; P), we need an error metric to measure the error of currently

estimated ¢ (Z) and Q(Z). Since

—%Eﬂ measures the absolute expected improvement rate of

o (2), if |%(+Zp))| is small for any z € zMCS and p € pMSS, $(Z) is expected to sufficiently

&z §(zp)

o to quantify the error of ¢(2).

accurate. Therefore, we propose to use
7€zMCS pepMCs

)
¢(:) is used to quantify the error of d)(Z) Combining both, we have

Similarly,
7€zMCS pepMCs

the error metric I', which measures the error of both ¢(Z) and ¢(Z), given by

} (27)

$(z,p)
$(2)

&(z,p)
o(2)

max
’ 7€2MCS pepMCs

r= max{

m
2€zMCS pepMCs
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Once I is small enough, the estimated ¢(Z) and ¢(Z) are expected to be sufficiently

accurate. Therefore, the stopping criterion shown in Fig. 7 is defined as
r<y (28)
where y is a threshold that controls the efficiency and accuracy of the proposed AKM. Generally

speaking, a smaller y will lead to higher accuracy but lower efficiency.

4.5. Implementation

As shown in Fig. 1, ¢(Z; P) approaches zero when Z takes large value. As a result, ¢ (2)

and ¢(z) in Eq. (26) and Eq. (27) are likely to take very small values close to zero. It leads to the

singularity of the calculation of Eqg. (26) and Eq. (27), doing harm to the robustness of the
proposed algorithm. To solve this issue, we translate all training samples of ¢(Z; P) simply by
adding a negative constant €. This way, the translated ¢(Z; P) will never approach zero and the
singularity issue is evitable. Trained by the translated samples of ¢ (Z; P), the Kriging model
$(Z; P) will also lead to the translation of ¢(Z) and Q(Z). We can translate ¢(Z) and Q(Z)
back simply by subtracting € from them. Note that there is no rigorous theory to quantify how €
affect the properties of the proposed AKM. We suggest determining € using

e = mean{¢(0; p)|p € p'"} (29)
where mean(-) represents mean value.

Based on all the procedures given above, we generate the pseudo codes of the

proposed AKM given in Algorithm 1.
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4.6. Validation discussion

Theoretically, it is vital to validate the Kriging model to make sure that it has been
trained accurately. An explicit validation, however, is not involved in the proposed AKM. There
are two main reasons. First, the adaptive training focuses on the accuracy of Qol instead of the
accuracy of the Kriging model. Once there is an indication that the accuracy of Qol in current
training iteration is sufficient, i.e., the stopping criterion in Eq. (27) is satisfied, the algorithm
stops adding more training samples, no matter the Kriging model is globally accurate or not. As
a result, when the algorithm has converged, it is very likely that the Kriging model is accurate
only on some subdomains but not accurate on other domains. Therefore, it is not suitable to do
explicit cross validation. Second, the error metric I' can measure the accuracy of Qol, and
therefore we in fact do validation implicitly. As long as the accuracy of Qol is sufficient, it does

not matter if the Kriging model is or not accurate on the entire domain.

5. RESULTS

In this section, we illustrate the proposed AKM. MCS is used to solve the same problems
with brute force. Results by MCS are treated as standard to verify the proposed AKM. We build
the Kriging model and calculate the Kriging predictions using the DACE toolbox [39]. The

anisotropic Gaussian kernel is used.

5.1. Sheath Profile
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We consider the 1-D photoelectron sheath problem discussed in Section 2. The sun
elevation angle is given as 9 degrees. The maximal and minimal values of P =

(vd, Te, Ty, ni,m,np) are given in Table 1. We use both MCS and the proposed AKM to estimate
¢(2) and ¢(Z). The values of all involved parameters are given in Table 2.

The domain Q of P is discretized into Np = 5° points, which are assembled into pM®S.
The N;, = 5 samples in hypercube space [0,1]°, generated by Hammersley sampling method,
are given in Table 3. Then the 5 samples are mapped into (), as given in Table 4. Rounding the 5
samples in () to the nearest ones in pMCS, we get the initial samples pirl of P, as given in Table
5. Solving the ODE five times, each with a sample in pin, we get five samples of ¢(Z; P) as
shown in Fig. 8.

Each sample of ¢(Z; P) contains N, = 50 numerical points. Excluding the five points at
Zmax, We have N;N;,, — 5 = 245 training points in (Xi“pl,(bo“tl). With Hammersley sampling
method, we generate Nj = 100 samples of P and hence 100 training points in (xi“pz, ¢°“t2).
Note that all points in (x'"P2, $°Ut2) have Z = Zy,,, and ¢ = 0. Combining ( x!"P?, $°ut) and
(xi“pz, ¢°“t2), we have 345 training points in (xinp, ¢°“t). To do the translation mentioned in
Subsection 4.5, we update ¢°Ut simply by ¢p°Ut = p°Ut + €, where e = —6.97 V is obtained

with Eq. (29). With the updated (xinp, ¢°“t), we build an initial Kriging model and then
estimate ¢(Z) and Q(Z) through Eq. (16) and Eq. (17). Finally, we translate ¢ (Z) and Q(Z)
back by ¢(Z2) = ¢(Z) — € and Q(Z) = Q(Z) — €. Fig. 9 shows the ¢(Z) and Q(Z) estimated
by both MCS and the proposed AKM (with the initial Kriging model). It shows that the initial

Kriging model is not able to predict ¢(Z) or ¢(Z) with sufficient accuracy.
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To improve the accuracy, the proposed method indicates adding a sample at p™exY =
(514800,13.2,2.2,9.57,57.6). With the p(neXt), we solve the ODE and get a new sample of
¢(Z; P). This sample contains N, = 50 numerical points. We translate all the numerical points
and add them, excluding the one at Z,,, to update (xinp, <|>°ut). The reason why we abandon
the point at Z,;,, is that there are already enough points at Z,,,, in (xi“pz, (|>°“t2). With the
updated (x"P, $°Ut), we build a new ¢ (Z; P). With the new ¢(Z; P) another p(exV js
indicated. With similar procedures, more and more samples of ¢ (Z; P) are added to refine
(]S(Z; P) until the stopping criterion given in Eq. (28) is satisfied.

The final estimation of ¢(Z) and ¢(Z) is shown in Fig. 10. It shows that the proposed

AKM can estimate ¢ (Z) and ¢ (Z) very accurately. 16 more samples of ¢(Z; P) have been

added to refine ¢(Z; P), and therefore in total Nopg = Ni, + 16 = 21 ODE solutions are
needed. Compared to Np = 3,125 ODE solutions needed in MCS, the proposed method is very

efficient.

5.2. Dust Levitation

In this example, we still consider the same 1-D photoelectron sheath problem in

Subsection 5.1, but the objective is to estimate E (Z) and E(Z) and then calculate the dust

levitation height. The values of all involved parameters are given in Table 6.
The procedures used to estimate E(Z) and E(Z) are almost the same as that used to

estimate ¢(Z) and ¢(Z). The only difference is that the samples of E(Z; P) instead of ¢(Z; P)

are used. The final estimation of E(Z) and E(Z) is shown in Fig. 11. It shows that the proposed
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AKM method is very accurate. As for the efficiency, the proposed method needs only Nopg =
Njn, + 18 = 23 ODE solutions. Compared to Np = 3,125 ODE solutions needed in MCS, the
proposed method is very efficient.

When the upper and lower bounds of the electric field have been determined, we can
use the them to determine the levitation heights of the dust grains. Assuming there are two
types of dust grains, A and B, in the electric field. The relevant parameters of the grains are
given in Table 7, where e = 1.062 x 1071°C is the electric charge of an electron. The dust
levitation heights are shown in Fig. 12 and given in Table 8. Due to the uncertainty of P, the
levitation heights of both A and B are also uncertain. The levitation height of A may be any
value in the interval [0 m, 9.33 m], which is estimated by the proposed method. The interval
determined by MCS is [0 m, 9.26 m]. It shows that the proposed method can estimate the
levitation height of Grain A with sufficient accuracy. Similar conclusion applies to the levitation
height of Grain B.

Given any dust grain with known w value, we can easily determine its levitation height
interval using the method shown in Fig. 12. This will help to evaluate the risk or damage caused

by the levitated dust grains for lunar exploration missions.

6. CONCLUSIONS

We presented an adaptive Kriging based method to perform UQ analysis of the 1-D
photoelectron sheath and dust levitation on the lunar surface. A recently derived 1-D
photoelectron sheath model was used as the high-fidelity physics-based model and the black-

box function. Adaptive Kriging method, with a task-oriented learning function and stopping
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criterion, was utilized to improve the efficiency in calculating the upper and lower bounds of
electric potential as well as dust levitation height, given the intervals of model parameters.
Experiment analysis shows that the proposed AKM method is both accurate and efficient.
Current and ongoing efforts are focused on building adaptive Kriging model for 2-D and 3-D

kinetic particle simulations of lunar plasma/dust environment and perform UQ analysis.
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Fig. 1: Three types of sheath potential profiles in the analytic 1-D photoelectron sheath

model [2]
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Fig. 2: A typical Type C sample of E(Z; P)
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Fig. 3: Method to solve for the equilibrium height of dust levitation
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Fig. 4: Original Kriging model: Prediction error is large nearx = 4 and x = 8
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[ Generate initial input training samples of the BBF ]

}

[ Evaluate the BBF to obtain corresponding initial output training samples ]

}

[ Build an Kriging model using the available input-output sample pairs ]'—

}

[ Calculate Qol with the Kriging model ]

}

[ Calculate error metric ]
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the new training
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existing ones.

Fig. 6: Brief flowchart of AKM
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[ Step 1: Generate initial training samples of P ]
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[ Step 3: Build an Kriging model ¢(Z; P) l1’15ing the training sample set of ¢ (Z; P) ]'—
[ Step 4: Calculate E(Z ) tmd 9 (Z) using ¢(Z; P) ]
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Fig. 7: Brief flowchart of the proposed method
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Fig. 9: Results by initial Kriging model: Predicted electric potential bounds are not
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Algorithm 1: Pseudo codes of the proposed method

Row Pseudo codes
1  Evenly discretize Q into Np points pM©S.
2 Evenly discretize interval [Zin, Zmax] into N, points zMCS,
3 Generate N;, samples p'™ of P with procedures given in Subsection 4.2.
Solve ODE Ny, times to get N;, samples ¢(Z;p),p € p™ of ¢(Z;P);
4 Calculate e with Eq. (29); Nopg = Nij.
g Determine (xinp, ¢°“t) with procedures given in Subsection 4.2; ¢p°Ut =

POUt + €.
6 WHILE TRUE DO

7  Build Kriging model ¢(Z; P) using (x'"P, ¢°ut).
Calculate ¢(Z) and ¢(Z) with Eq. (16) and Eq. (17); ¢(Z) = ¢(2) —¢;
$(2)=$(2) - €.
9 Calculate I' with Eq. (27).
10 IF(">y)DO
11 Solve Eq. (20) for p™*9; Nope = Nopg + 1.
Solve ODE to get a new sample ¢(Z;p™®V); ¢(Z;p®exV) =
12 ¢(Z; pexV) + € All points of ¢(Z; p@®*V) excluding the one at Zp,,
are added into (x'"P, p°Ut).

8

13 ELSE
14 BREAK WHILE
15 ENDIF

16  END WHILE
17  RETURN ¢(2), ¢(Z), and Nop.
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Table 1: Variables of uncertainty

Variables vq(m/s) T.(eV) Ty(eV) N oo (Ccm™3) np(cm_3)

Minimum 421,200 10.8 1.8 7.83 57.6
Maximum 414,800 13.2 2.2 9.57 70.4

43



Journal of Verification, Validation and Uncertainty Quantification

Table 2: Parameter values

Parameters N;~N: N, N;, Np N, vy

Values 5 55 5 100 50 0.01
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Table 3: Samples generated by Hammersley sampling method

Sample Dimension  Dimension Dimension  Dimension Dimension

number 1 2 3 4 5
1 0 0.5000 0.3333 0.2000 0.1429
2 0.2 0.2500 0.6667 0.4000 0.2857
3 0.4 0.7500 0.1111 0.6000 0.4286
4 0.6 0.1250 0.4444 0.8000 0.5714
5 0.8 0.6250 0.7778 0.0400 0.7143
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Table 4: Samples mapped into ()

sjzgleer vq(m/s) T.(eV) Ty (eV) N oo (cm™3) 1, ( cm™3)
1 421,200 12.0000 1.9333 8.1780 59.4286
2 439,920 11.4000 2.0667 8.5260 61.2571
3 458,640 12.6000 1.8444 8.8740 63.0857
4 477,360 11.1000 1.9778 9.2220 64.9143
5 496,080 12.3000 2.1111 7.8996 66.7429
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Table 5: Initial samples of P

sjzgleer vq(m/s) T.(eV) Ty (eV) N oo (cm™3) 1, ( cm™3)
1 421,200 12.0000 1.9000 8.2650 60.8000
2 444,600 11.4000 2.1000 8.7000 60.8000
3 468,000 12.6000 1.8000 8.7000 64.0000
4 468,000 11.4000 2.0000 9.1350 64.0000
5 491,400 12.0000 2.1000 7.8300 67.2000
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Table 6: Parameter values

Parameters N;~N: N, N;, Np N, vy

Values 5 55 5 100 50 0.01

48



Journal of Verification, Validation and Uncertainty Quantification

Table 7: Parameters of Grains A and B

Grains 1 (um) m (g) q/e w(V/m)

A 0.5 15268 x 10712 50,000 —0.4658
B 03 3.2979x 1071 45000 —0.1118
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Table 8: Dust levitation heights: The proposed AKM obtained accurate levitation heights

Grains AKM MCS Relative error
(%)
A Z in(m) 0.00 0.00 0.0
Z5 ax(m) 9.33 9.26 0.8
8 Z i (m) 10.88 11.00 -1.1
77 ax(m) 25.55 25.55 0.0
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