
Efficiently mining rich subgraphs from vertex-a�ributed graphs

Riyad Hakim
Department of Computer Science

North Dakota State University

Fargo, North Dakota, USA

riyad.hakim@ndsu.edu

Saeed Salem
Department of Computer Science

North Dakota State University

Fargo, North Dakota, USA

saeed.salem@ndsu.edu

ABSTRACT

With the rapid collection of large network data such as biological

networks and social networks, it has become very important to de-

velop efficient techniques for network analysis. In many domains,

additional attribute data can be associated with entities and rela-

tionships in the network, where the network data represents rela-

tionships among entities in the network and the attribute data rep-

resents various characteristics of the corresponding entities and

relationships in the network. Simultaneous analysis of both net-

work and attribute data results in detection of subnetworks that

are contextually meaningful. We propose an efficient algorithm for

enumerating all connected vertex sets in an undirected graph. Ex-

tending this enumeration approach, an algorithm for enumerating

all maximal cohesive connected vertex sets in a vertex-attributed

graph is proposed. To prune search branches that will not yield

maximal patterns, we also present three pruning techniques for ef-

ficient enumeration of the maximal cohesive connected vertex sets.

Our comparative runtime analyses show the efficiency and effec-

tiveness of our proposed approaches. Gene set enrichment analysis

shows that protein-protein interaction subnetworks with similar

cancer dysregulation attributes are biologically significant.

Availability: The implementation of the algorithm is available at

http://www.cs.ndsu.nodak.edu/~ssalem/richsubgraphs.html

KEYWORDS

Cohesive connected subgraphs, attributed graphs, enumeration al-

gorithms

ACM Reference Format:

Riyad Hakim and Saeed Salem. 2020. Efficiently mining rich subgraphs

from vertex-attributed graphs. In Proceedings of the 11th ACM International

Conference on Bioinformatics, Computational Biology and Health Informat-

ics (BCB ’20), September 21–24, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3388440.3412423

1 INTRODUCTION

Recent studies have focused on learning from graphs. Extracting

and analyzing highly interacting vertices in dense subgraphs and

percolated cliques improve understanding of functional building

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BCB ’20, September 21–24, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7964-9/20/09. . . $15.00
https://doi.org/10.1145/3388440.3412423

blocks in complex systems. Vertices and edges in graphs can be

annotated with additional information, giving rise to the notion of

rich graphs. The integration of attribute similarity while mining

connected subgraphs with certain topological properties allows

for the identification of context-specific connected subgraphs. To

discover interesting patterns in a graph, it is often necessary to

find connected subgraphs that satisfy some additional constraints.

In many applications, the constraint may be defined based on the

number of common attributes shared by the vertices of a subgraph.

For example, in a protein–protein interaction (PPI) network, a con-

nected set of proteins that are dysregulated in certain types of dis-

eases might be particularly interesting to medical scientists [10].

Mining biologically relevant interaction subnetworks by integrat-

ing gene expression similaritywith protein-protein interaction net-

works has been shown to improve identification of biological func-

tional modules [6], subnetwork biomarkers [3, 5], and active sub-

networks [4, 7]. In a social network, a connected group of people

who share certain common interests might be the target of specific

marketing campaigns [11]. In all of these applications, the goal is

to mine sets of vertices such that vertices in each set are connected

and have high attribute similarity; such vertex sets are referred to

as cohesive connected vertex sets. A challenging aspect of min-

ing these cohesive patterns is that the number of connected vertex

sets may increase exponentially with the number of vertices in the

graph and thus the enumeration process must be efficient in both

time and memory usage.

In patternmining, anti-monotone constraints are useful for prun-

ing out the search space because of the fact that if a pattern does

not satisfy an anti-monotone constraint, then none of its super-

patterns will satisfy that constraint. We say that a vertex set and its

induced subgraph are rich with respect to a given anti-monotone

constraint, if and only if the vertex set satisfies that anti-monotone

constraint. All the subgraphs of a rich subgraph are also rich due

to the down-closure property of the constraint, resulting in an ex-

ponential number of rich subgraphs that have high overlap. It is

often desirable to mine a representative set of all rich subgraphs to

facilitate downstream analysis of these patterns. In a given graph,

a rich connected vertex set and its induced subgraph are maximal

if the vertex set is not a subset of another rich connected vertex set.

The set of all maximal rich connected vertex sets is much smaller

than the set of all rich connected vertex sets. Moreover, enumer-

ating just maximal rich connected vertex sets, instead of all rich

connected vertex sets, may enable us to prune large branches of

the search space by developing pruning strategies with respect to

the given anti-monotone constraint.

To enumerate all maximal rich connected vertex sets in a given

graph, Maxwell et al. [10] introduced the BDDE algorithm. The

BDDE algorithm relies on the given anti-monotone constraint to

http://www.cs.ndsu.nodak.edu/~ssalem/richsubgraphs.html
https://doi.org/10.1145/3388440.3412423
https://doi.org/10.1145/3388440.3412423

BCB ’20, September 21–24, 2020, Virtual Event, USA Hakim and Salem

prune out the search space by considering all subsets of a con-

nected vertex set for enumeration before the vertex set itself is

considered. However, the limitation of BDDE is that it requires

exponential space in the number of vertices in the graph and is

not suitable for enumerating all maximal rich connected vertex

sets in a large graph [10]. Wernicke [16] introduced the ESU al-

gorithm for enumerating connected vertex sets. Starting from a

single vertex, ESU exhaustively search the graph in depth-first or-

der for connected vertex sets. Even though ESU is an efficient al-

gorithm for connected vertex set enumeration, the algorithm has

not been employed for mining rich connected vertex sets from a

vertex-attributed graph. Moreover, the algorithm does not provide

any mechanism to efficiently check the maximality of leaf nodes in

the search tree. An approach to mining all maximal rich connected

vertex sets using ESU would be to maintain a list of encountered

maximal rich connected vertex sets and every time a new leaf node

is encountered, check if that leaf connected vertex set has a super-

set or subset in the maximal list and update the list accordingly.

Given the large number of maximal rich connected vertex sets and

the much larger number of leaf nodes, the ESU algorithmwould be

inefficient for the purpose of mining maximal rich connected ver-

tex sets. Another algorithm for enumerating all connected vertex

sets is the TGE algorithm introduced by Uno [15]. Starting by se-

lecting a single vertex �푟 , TGE enumerates all connected vertex sets

that include �푟 . To do this, the algorithm chooses a vertex �푣 adjacent

to �푟 and partitions the search space of connected vertex sets that in-

clude �푟 into those that include �푣 by unifying the vertex �푣 with �푟 and

those that do not include �푣 by removing the vertex �푣 . The algorithm

recursively carries out the process until the vertex �푟 does not have

any adjacent vertex and then outputs the set of unified vertices at

the leaf node as a connected vertex set. The TGE algorithm also has

not been employed for mining attributed graphs. Moreover, it does

not provide any mechanism to efficiently check the maximality of

those leaf nodes in the search tree and would be inefficient for the

purpose of mining maximal rich connected vertex sets. Recently,

Alokshiya et al. [1] introduced the RS-SP algorithm for enumer-

ating connected vertex sets. The RS-SP algorithm has been used

to enumerate maximal rich connected vertex sets. However, since

RS-SP is based on the reverse search principle introduced by Avis

and Fukuda [2], the algorithm needs to check all neighbors of the

current connected vertex set to find valid extensions of the cur-

rent connected vertex set and thus checking for invalid extensions

impacts the overall performance of the algorithm. The RS-SP al-

gorithm has been shown to outperform the BDDE and the TGE

algorithms on mining all connected vertex sets [1].

In this paper, we propose an algorithm to enumerate all con-

nected vertex sets in an undirected graph that takes linear time

per output and linear space in the number of vertices in the graph.

We extend this enumeration approach and propose an algorithm to

enumerate all maximal cohesive connected vertex sets in a vertex-

attributed graph.We also present three pruning techniques for fast

enumeration of the cohesive connected vertex sets. We demon-

strate the efficiency and effectiveness of our proposed approach

and the pruning techniques on a protein-protein interaction net-

work with gene expression dysregulation in multiple cancer types

as attributes.

2 METHOD

Let �퐺 = (�푉 , �퐸) be an undirected graph, where �푉 = {1, . . . , �푛} is the
vertex set and �퐸 is the edge set of graph�퐺 . The number of vertices

|�푉 | is called order of the graph�퐺 . For a vertex set�푈 ⊆ �푉 , its induced

subgraph�퐺 [�푈] is the graph whose vertex set is�푈 and whose edge

set consists of all of the edges in �퐸 that have both endpoints in �푈 .

We refer to an induced subgraph that is connected as a connected

subgraph. A vertex set�푈 ⊆ �푉 is a connected vertex set if its induced

subgraph �퐺 [�푈] is connected. The adjacent vertex set of a vertex

�푣 ∈ �푉 , denoted �퐴�푑 �푗 (�푣), is the set of all vertices adjacent to vertex

�푣 . The open neighborhood of a vertex set �푈 ⊆ �푉 , denoted �푁�표�푝 (�푈),
is the set of all vertices from �푉 \ �푈 that are adjacent to at least

one vertex in�푈 [16]. The �푁�표�푝 (�푈) can be obtained by taking union

of adjacent vertex sets of all vertices in �푈 and then excluding the

vertices that are in�푈 from the union.

�푁�표�푝 (�푈) = {
⋃

�푣∈�푈

�퐴�푑 �푗 (�푣)} \�푈

2.1 Mining Connected Vertex Sets

Problem Definition 1. Given an undirected graph �퐺 = (�푉 , �퐸),
enumerate all connected vertex sets in �퐺 . The set of all connected

vertex sets in �퐺 is defined as:

CVS(�퐺) = {�푈 : �푈 ⊆ �푉 , �푈 �푖�푠 �푐�표�푛�푛�푒�푐�푡�푒�푑}

The set of all connected vertex sets forms a search graph whose

search nodes represent connected vertex sets and there is an edge

between two search nodes if the two search nodes differ by only

one vertex. An efficient approach for enumerating all connected

vertex sets is to only traverse a minimum spanning tree of this

search graph. A key feature of such an algorithm is to avoid vis-

iting the same search node multiple times and to devise a strat-

egy for obtaining a vertex set by extending only one vertex set.

This is achieved by carefully defining the search nodes that can be

reached from a given search node. This is done by designating a

set of neighbors to extend the current vertex set.

Algorithm 1 shows the pseudo-code of the Miner algorithm that

enumerates all connected vertex sets in an undirected graph. All

list-like data structures are assumed to be indexed from 1. The

Miner algorithm maintains two globally accessible lists �푈 and �푁 .

The list �푈 represents the current connected vertex set being enu-

merated, and�푁 is the neighbor list of�푈 . The open neighborhood of

the connected vertex set�푈 is essentially the neighbor list �푁 minus

the current connected vertex set �푈 , i.e., �푁�표�푝 (�푈) = �푁 \�푈 . Both �푈

and �푁 can be implemented with a fixed-size array and a �푠�푖�푧�푒 vari-

able indicating the actual number of elements in the array. The list

�푈 can contain at most �푛 elements, and �푁 can contain at most �푛 − 1

elements, where �푛 is the number of vertices in the graph.

We start exploring the given graph from each vertex in the graph

(lines 3-7). We denote the first vertex in the enumeration subtree as

an anchor vertex. Starting from an anchor vertex �푢, we explore ver-

tices in the graph in depth-first order, and when we explore a new

vertex, we output the path from the anchor vertex to the newly

explored vertex as a connected vertex set. This way, we enumerate

all connected vertex sets that include vertex�푢. Next wemove to an-

other anchor vertex �푣 to start a new search branch. Starting from

Efficiently mining rich subgraphs from vertex-a�ributed graphs BCB ’20, September 21–24, 2020, Virtual Event, USA

Figure 1: Connected vertex set enumeration. (a) a sample graph, (b) enumeration tree of the sample graph. Every node repre-

sents a unique connected vertex set.

anchor vertex �푣 , we again explore vertices in the graph in depth-

first order. However, this timewe only enumerate connected vertex

sets that include vertex �푣 but not vertex �푢. We skip connected ver-

tex sets with vertex �푢 as those are already enumerated under the

search branch rooted at anchor vertex �푢. The second exploration

process is essentially the same as the first one except that this time

when we encounter vertex �푢, we do not recursively explore the

search subtree. In general, every time a vertex �푣 is selected for

anchoring, all vertices smaller than �푣 are considered previously

anchored (pre-anchored), and the depth-first exploration will enu-

merate all connected vertex sets that include the anchor vertex and

none of the pre-anchored vertices.

For the depth-first exploration of the graph, we maintain just a

single list �푁 that stores both explored and unexplored neighbors.

When we select a vertex from �푁 to explore, instead of removing it

from �푁 , we just maintain an index variable �푠�푡�푎�푟�푡 that marks the be-

ginning of the unexplored neighbors in �푁 , which is very efficient

in comparison with maintaining two separate lists. Each vertex lo-

cated before the �푠�푡�푎�푟�푡 index in �푁 is an explored neighbor and each

vertex located at or after the �푠�푡�푎�푟�푡 index in �푁 is an unexplored

neighbor. An unexplored neighbor �푣 in �푁 is considered explored

if either �푈 was extended by �푣 or the extension was skipped be-

cause �푣 is a pre-anchored neighbor (lines 12-15). Each unexplored

neighbor in �푁 that is larger than the anchor vertex is considered

a valid neighbor for extension. Extending�푈 only with valid neigh-

bors eliminates the need to check for duplicate connected vertex

sets.

Figure 1 shows the enumeration tree of our approach for a sam-

ple graph.We refer to the vertices of the enumeration tree as nodes,

to avoid confusionwith the vertices of the graph. Nodes are labeled

with connected vertex set �푈 . Beside each node, we also show the

corresponding neighbor list �푁 in which explored neighbors are in

gray background, pre-anchored neighbors are underlined, and all

other neighbors are valid neighbors.

Algorithm 1: Miner

Input :�퐺 = (�푉 , �퐸) : An undirected graph

Output :All connected vertex sets in�퐺

1 �푈 ← [], �푁 ← []

2 �푉�푖�푠�푖�푡�푒�푑 [1] ← �푓 �푎�푙�푠�푒, . . . ,�푉 �푖�푠�푖�푡�푒�푑 [�푛] ← �푓 �푎�푙�푠�푒

3 for each vertex �푣 ∈ �푉 do

4 �푉�푖�푠�푖�푡�푒�푑 [�푣] ← �푡�푟�푢�푒

5 Append(�푈 , �푣)

6 DepthFirstExplore(�푣, 1)

7 �푉�푖�푠�푖�푡�푒�푑 [�푣] ← �푓 �푎�푙�푠�푒

8 function DepthFirstExplore(�푙�푣, �푠�푡�푎�푟�푡)

9 output�푈

10 �푁4G2; ← {�푢 ∈ Adj(�푙�푣): �푉�푖�푠�푖�푡�푒�푑 [�푢] = �푓 �푎�푙�푠�푒}

11 AddNeighbors(�푁4G2;)

12 for �푖 ← �푠�푡�푎�푟�푡 to Size(N) do

13 �푤 ← �푁 [�푖]

14 if �푤 > �푈 [1] then

15 Append(�푈 , �푤)

16 DepthFirstExplore(�푤, �푖 + 1)

17 Pop(�푈)

18 RemoveNeighbors(|�푁4G2; |)

19 function AddNeighbors(�푁�푒�푖�푔ℎ�푏�표�푟�푠)

20 for each vertex �푢 ∈ �푁�푒�푖�푔ℎ�푏�표�푟�푠 do

21 Append(�푁 , �푢)

22 �푉�푖�푠�푖�푡�푒�푑 [�푢] ← �푡�푟�푢�푒

23 function RemoveNeighbors(�푐�표�푢�푛�푡)

24 for �푖 ← 1 to �푐�표�푢�푛�푡 do

25 �푉�푖�푠�푖�푡�푒�푑 [�푁 [Size(N)]] ← �푓 �푎�푙�푠�푒

26 Pop(�푁)

BCB ’20, September 21–24, 2020, Virtual Event, USA Hakim and Salem

Complexity Analysis: An enumeration algorithm is said to

have linear delay if the time between two consecutive outputs is

bounded by a linear function of the input size, in the worst case. In

our approach, the time between two consecutive outputs is domi-

nated by the operations: adding neighbors (lines 10 − 11), remov-

ing neighbors (line 18), and the number of times the comparison

�푤 > �푁 [1] fails at a stretch (line 14) - each of which takes �푂 (�푛)
time in the worst case scenario. Hence, the running time per out-

put is �푂 (�푛). Therefore, the complexity of the algorithm is output

polynomial time in the number of connected vertex sets. The algo-

rithm uses three globally accessible lists/arrays �푈 , �푁 , and �푉�푖�푠�푖�푡�푒�푑

of a maximum size of �푛 elements. Moreover, the space required for

the local variables, e.g., �푙�푣 , �푠�푡�푎�푟�푡 , etc. is �푂 (�푛) as the depth of the

enumeration tree is bounded by �푛. Hence, the total space required

by the algorithm, excluding the space required for the input graph,

is �푂 (�푛).

2.2 Mining Cohesive Connected Vertex Sets

Given an undirected graph �퐺 = (�푉 , �퐸) and an attribute set �퐹 =

{�푓1, �푓2, · · · , �푓�푑 }, let�퐺 = (�푉 , �퐸, �푓) be a vertex-attributed graphwhere
�푓 : �푉 ↦→ P(�퐹) is a function that maps each vertex to an element

in the power set of attributes, indicating the associated attributes

of the vertex. Each vertex �푣 ∈ �푉 has an associated set of attributes

�푓 (�푣). The association between the vertices and attributes can be

represented by an �푛 × |�퐹 | binary attribute matrix,�푀 = (�푚�푣,�푖) such

that�푚�푣,�푖 = 1 if vertex �푣 has the �푖�푡ℎ attribute and�푚�푣,�푖 = 0 otherwise,

for all 1 ≤ �푣 ≤ �푛 and 1 ≤ �푖 ≤ |�퐹 |.
A vertex set �푈 ⊆ �푉 shares the �푖�푡ℎ attribute �푓�푖 if all vertices in

�푈 have the �푖�푡ℎ attribute in common, i.e., �푓�푖 ∈ ∩�푣∈�푈 �푓 (�푣). The com-

mon attribute set of a vertex set �푈 , denoted �퐴(�푈), is the set of all
common attributes the vertex set�푈 shares, i.e.,�퐴(�푈) = ∩�푣∈�푈 �푓 (�푣).
Given a user-defined threshold �훿 , we say that a vertex set�푈 and its

induced graph�퐺 [�푈] are cohesive, if the number of the common at-

tributes of the vertex set is at least �훿 , i.e., |�퐴(�푈) | ≥ �훿 . The cohesive

property is an anti-monotone constraint, which follows from the

fact that if a vertex set is not cohesive then none of its supersets

can be cohesive.

Given a vertex-attributed graph �퐺 = (�푉 , �퐸, �푓) and a threshold

�훿 for the minimum number of common attributes, the set of all

cohesive connected vertex sets with respect to �훿 is defined as:

CCVS(�퐺, �훿) = {�푈 : �푈 ⊆ �푉 , �푈 �푖�푠 �푐�표�푛�푛�푒�푐�푡�푒�푑, |�퐴(�푈) | ≥ �훿}

Amajor challenge for mining all cohesive connected vertex sets

is that the number of all cohesive connected vertex sets can be

very large, specially when �훿 is small. Moreover, there is an inherent

overlap between the cohesive connected vertex sets since all the

subsets of a cohesive vertex set are also cohesive. Therefore, we

propose to enumerate all maximal cohesive connected vertex sets.

A cohesive connected vertex set is maximal if and only if it does

not have a super vertex set that is also a cohesive connected vertex

set, i.e., a cohesive connected vertex set �푈 ⊆ �푉 is maximal if and

only if (��푈 ′ ⊆ �푉) [�푈 ′) �푈 �푎�푛�푑 �푈 ′ ∈ CCVS(�퐺, �훿)]. To check for
the supersets of the vertex set, we only need to check the immedi-

ate supersets that result by extending the set�푈 with a neighboring

vertex. So, a cohesive connected vertex set�푈 is maximal if and only

if ��푣 ∈ �푁�표�푝 (�푈) such that |�퐴(�푈 ∪ {�푣}) | ≥ �훿 .

Problem Definition 2. Given a vertex-attributed graph �퐺 =

(�푉 , �퐸, �푓) and a threshold �훿 for the minimum number of common at-

tributes, enumerate all maximal cohesive connected vertex sets in �퐺

with respect to �훿 . The set of all maximal cohesive connected vertex

sets in �퐺 with respect to �훿 is defined as:

MCCVS(�퐺, �훿) = {�푈 : �푈 ⊆ �푉 , �푈 �푖�푠 �푐�표�푛�푛�푒�푐�푡�푒�푑,

|�퐴(�푈) | ≥ �훿, �푎�푛�푑 �푈 �푖�푠 �푚�푎�푥�푖�푚�푎�푙}

To enumerate all cohesive connected vertex sets, we could just

use the Miner algorithm and perform constraint checking while

adding a vertex to the connected vertex set�푈 . However, as we are

only interested in maximal cohesive connected vertex sets, we also

need an efficient way to check if a node in the enumeration tree

is maximal or not. It is obvious that a non-leaf node in the enu-

meration tree can never be maximal, as every non-leaf node must

have at least one valid neighbor that can extend it while maintain-

ing the given constraint, otherwise it would become a leaf node.

So only a leaf node in the enumeration tree has the potential to

be maximal. However, even a leaf node in the enumeration tree is

not maximal if it can be extended with an already explored or pre-

anchored neighbor while maintaining the given constraint. Using

this principle, we can efficiently check the maximality of any node

in the enumeration tree. We represent the maximality principle be-

low:

Maximality Principle:A cohesive connected vertex set�푈 is max-

imal with respect to a given threshold �훿 , if and only if there is no

vertex �푣 in the open neighborhood of �푈 , irrespective of whether the

vertex is an explored, pre-anchored or valid neighbor, that could be

added to�푈 such that |�퐴(�푈 ∪ {�푣}) | ≥ �훿 .

We cannot directly incorporate maximality checking using the

maximality principle in existing enumeration algorithms such as

ESU. The first problem with the ESU is that ESU removes the ver-

tices from its neighbor set when they are added to the connected

vertex set. The second problem with the ESU is that ESU never

adds the pre-anchored neighbors to its neighbor set. But to de-

termine the maximality of a given cohesive connected vertex set

using maximality principle, all neighbors, including explored and

pre-anchored neighbors, need to be present.

In theMiner algorithm, however, we do not remove the explored

neighbors from its neighbor list �푁 . Moreover, when we add neigh-

bors to our neighbor list �푁 , we include the pre-anchored neigh-

bors. As a result, maximality principle can easily be incorporated

into the Miner algorithm. So, we can address the problem of enu-

merating all maximal cohesive connected vertex sets by utilizing

the Miner algorithm as a backbone of the enumeration process, im-

posing constraint checking while extending a connected vertex set,

and reporting only those leaf nodes of the enumeration tree that

cannot be extended with any neighbor in the open neighborhood

of�푈 maintaining the given constraint.

Figure 2 shows the enumeration tree of all maximal cohesive

connected vertex sets for a sample graph with �훿 = 2. Nodes are

labeled with connected vertex set �푈 . Beside each node, we also

show the corresponding neighbor list �푁 and below each search

node we show the binary vector indicating the common attributes

of the vertices of the search node.

Efficiently mining rich subgraphs from vertex-a�ributed graphs BCB ’20, September 21–24, 2020, Virtual Event, USA

Figure 2: Maximal cohesive connected vertex set enumeration. (a) sample vertex-attributed graph, (b) enumeration tree of the

sample graphwith �훿 = 2. The dotted portions are not part of the enumeration tree, they are for illustration purpose only. Every

node with thick border represents a maximal cohesive connected vertex set. Nodes marked with X are pruned using pruning

covered and pruning at level one techniques, and nodes marked with X...X are pruned using pruning rest technique.

Optimizing Neighbor Generation: We can further optimize

the algorithm if, while adding the neighbors to�푁 , we just add those

unvisited neighbors to �푁 that can extend�푈 maintaining the given

constraint. We can do this because if adding a neighbor to the cur-

rent state of �푈 does not generate a cohesive connected vertex set

then adding that neighbor will not generate a cohesive connected

vertex set after adding even more vertices to�푈 .

For a large vertex-attributed graph and a relaxed cohesive con-

straint, exploring the entire enumeration tree of cohesive patterns

is computationally expensive. Not all subtrees in the enumeration

tree would generate maximal cohesive patterns. These futile sub-

trees constitute a large part of the enumeration tree, and thus early

pruning of these subtrees results in a drastic reduction of the num-

ber of cohesive search nodes explored and improves the perfor-

mance of the algorithm.We propose three pruning techniques that

result in significant performance improvement while maintaining

the completeness of the result.

Pruning Covered: Given a cohesive connected vertex set �푈 , a

neighbor �푥 ∈ �푁�표�푝 (�푈), and a threshold �훿 , we say that �푈 ∪ {�푥} is a
cohesive child of�푈 if |�퐴(�푈 ∪{�푥}) | ≥ �훿 . Let�푈 ∪{�푥} and�푈 ∪{~} be
two cohesive children of�푈 . We say that the cohesive child�푈 ∪{�푥}
precedes another cohesive child �푈 ∪ {~} if �푥 is located before ~ in

the neighbor list �푁 . We also say that the cohesive child �푈 ∪ {�푥}
covers another cohesive child�푈 ∪ {~} if�퐴(�푈 ∪ {~}) ⊆ �퐴(�푈 ∪ {�푥}).

Lemma 1. If �푈 ∪ {�푥} and �푈 ∪ {~} are two cohesive children of

connected vertex set�푈 ,�푈 ∪{�푥} precedes�푈 ∪{~}, and�푈 ∪{�푥} covers
�푈 ∪ {~}, then neither �푈 ∪ {~} nor any descendant of �푈 ∪ {~} is a
maximal cohesive connected vertex set, and hence the search branch

rooted at�푈 ∪ {~} can be safely pruned.

Proof. We begin with the first part. It is clear that �푈 ∪ {~} is
not a maximal cohesive connected vertex set as it has a cohesive

connected superset �푈 ∪ {~} ∪ {�푥} because �퐴(�푈 ∪ {~} ∪ {�푥}) =
�퐴(�푈 ∪ {~}) and�푈 ∪ {~} is cohesive. For the second part, we utilize
the fact that once �푈 is extended with ~, �푈 ∪ {~} is only extended

with neighbors in �푁 that succeeds ~. As �푥 precedes ~ and a vertex

does not appear more than once in �푁 , �푥 will never be found in �푁

after ~. So no descendant of �푈 ∪ {~} will include �푥 in its vertex

set. However, �푥 could be added to every descendant of �푈 ∪ {~}
maintaining cohesiveness. So, none of the descendants of�푈 ∪ {~}
is a maximal cohesive connected vertex set. �

In Figure 2, the cohesive child {1, 3} is pruned because it is cov-
ered by the preceding cohesive child {1, 2} (�퐴({1, 3}) ⊆ �퐴({1, 2})).

BCB ’20, September 21–24, 2020, Virtual Event, USA Hakim and Salem

Similarly, the search subtree rooted at {4, 6} is pruned because it

is covered by the preceding cohesive child {4, 5}.
Pruning at Level One: With a little change, we can apply the

concept of pruning covered technique to level one of the enumer-

ation tree where each node is a cohesive vertex set consisting of

just a single vertex. Applying a similar approach used in the proof

of lemma 1, it can be shown that given two adjacent vertices �푥

and ~, if both {�푥} and {~} are cohesive, �푥 < ~, and {�푥} covers

{~} (�퐴(~) ⊆ �퐴(�푥)), then neither {~} nor any descendant of {~}
is a maximal cohesive connected vertex set and the entire branch

rooted at {~} can be safely pruned. In Figure 2, node {3} is pruned
because it is covered by the smaller neighbor {2}. Similarly, nodes

{5} and {7} are pruned because they are covered by nodes {4} and
{2} respectively.

Pruning Rest: This technique is an extension of the pruning

covered technique. Given a cohesive connected vertex set �푈 , if �푈

has a cohesive child�푈 ∪{�푥} that has the same set of attributes as its

parent �푈 , i.e., �퐴(�푈) = �퐴(�푈 ∪ {�푥}), then all cohesive children of�푈

succeeding�푈 ∪{�푥} can be pruned as they all will be covered by the
preceding cohesive child �푈 ∪ {�푥}. By applying this technique, we

can prune the remaining cohesive children of�푈 at once instead of

applying the pruning covered technique to each of them separately.

In Figure 2, all cohesive children of {1, 2} succeeding {1, 2, 3} are
pruned because {1, 2, 3} has the same set of attributes as its parent

{1, 2}. Similarly, all cohesive children of {2} succeeding {2, 3} are
pruned because {2, 3} has the same set of attributes as its parent

{2}.
Algorithm 2 shows the pseudo-code of the CSMiner algorithm

that enumerates all maximal cohesive connected vertex sets. We

start a search subtree for each cohesive vertex that cannot be pruned.

Lines 5-7 handle level one pruning, and lines 21-23 handle the prun-

ing covered strategy. Lines 26-27 prune rest of the succeeding co-

hesive children. Line 19 marks �푈 as not maximal if the neighbor

that is currently being explored could be added to �푈 while main-

taining cohesiveness. Similarly, line 31 marks �푈 as not maximal

if there is a previously explored neighbor in the open neighbor-

hood of�푈 that could be added to�푈 without violating the cohesive

constraint. In line 21 and line 29, we need to make sure that the ver-

tex selected from �푁 is not already an element of �푈 , which can be

checked in constant time as, except the anchor vertex, all vertices

in�푈 are added sequentially from �푁 . Finally, the algorithm reports

only those leaf nodes that do not have any cohesive super vertex

set.

3 RESULTS

We evaluated the performance of our algorithm with respect to ex-

isting algorithms for enumerating connected vertex sets on both

random and real graphs. We also evaluated the performance of

our algorithm for enumerating maximal cohesive connected ver-

tex sets on a large real vertex-attributed graph. All experiments

were conducted on a machine with Intel Xeon E5-2670 v2 proces-

sor and 32 GBmemory, running linux operating system. We imple-

mented our algorithms in C++. To evaluate the runtime of existing

algorithms, we used the C/C++ implementations provided by the

respective authors.

Algorithm 2: Cohesive Subgraph Miner (CSMiner)

Input :�퐺 = (�푉 , �퐸, �푓) : An undirected vertex-attributed graph,

�훿 : Minimum number of common attributes

Output :All maximal cohesive connected vertex sets in�퐺

1 �푈 ← [], �푁 ← []

2 �푉�푖�푠�푖�푡�푒�푑 [1] ← �푓 �푎�푙�푠�푒 , . . . ,�푉�푖�푠�푖�푡�푒�푑 [�푛] ← �푓 �푎�푙�푠�푒

3 for each vertex �푣 ∈ �푉 do

4 if |A({�푣 }) | ≥ �훿 then

5 for each vertex �푢 ∈ Adj(�푣) do

6 if �푢 < �푣 and A({�푣 }) ⊆ A({�푢 }) then

7 goto line 3

8 �푉�푖�푠�푖�푡�푒�푑 [�푣] ← �푡�푟�푢�푒

9 Append(�푈 , �푣)

10 DepthFirstExplore(�푣, 1)

11 �푉�푖�푠�푖�푡�푒�푑 [�푣] ← �푓 �푎�푙�푠�푒

12 function DepthFirstExplore(�푙�푣, �푠�푡�푎�푟�푡)

13 �푚�푎�푥�푖�푚�푎�푙 ← �푡�푟�푢�푒

14 �푁4G2; ← {�푢 ∈ Adj(�푙�푣): �푉�푖�푠�푖�푡�푒�푑 [�푢] = �푓 �푎�푙�푠�푒 ,

|A(�푈 ∪ {�푢 }) | ≥ �훿 }

15 AddNeighbors(�푁4G2;)

16 for �푖 ← �푠�푡�푎�푟�푡 to Size(N) do

17 �푤 ← �푁 [�푖]

18 if |A(�푈 ∪ {�푤 }) | ≥ �훿 then

19 �푚�푎�푥�푖�푚�푎�푙 ← �푓 �푎�푙�푠�푒

20 if �푤 > �푈 [1] then

21 for each vertex �푥 ∈ �푁 [1 : (�푖 − 1)] \�푈 do

22 if A(�푈 ∪ {�푤 }) ⊆ A(�푈 ∪ {�푥 }) then

23 goto line 16

24 Append(�푈 , �푤)

25 DepthFirstExplore(�푤, �푖 + 1)

26 if A(�푈) = A(�푈 ∪ {�푤 }) then

27 break

28 if�푚�푎�푥�푖�푚�푎�푙 then

29 for each vertex �푧 ∈ �푁 [1 : (�푠�푡�푎�푟�푡 − 1)] \�푈 do

30 if |A(�푈 ∪ {�푧 }) | ≥ �훿 then

31 �푚�푎�푥�푖�푚�푎�푙 ← �푓 �푎�푙�푠�푒

32 break

33 if�푚�푎�푥�푖�푚�푎�푙 then

34 output�푈

35 Pop(�푈)

36 RemoveNeighbors(|�푁4G2; |)

3.1 Mining Connected Vertex Sets from
Random Graphs

To compare the runtime of our Miner algorithm on randomly gen-

erated graphs, we chose two of the fastest existing algorithms (as

shown in [1]) for enumerating connected vertex sets, i.e., RS-SP

and TGE. We ran the algorithms on randomly generated graphs

of different orders and densities. We generated random graphs ac-

cording to the�퐺 (�푛,�푚) Erdos-Renyimodel. Results in Figure 3 show

that our algorithm runs significantly faster than both RS-SP and

TGE. On average, the Miner algorithm was three times faster than

Efficiently mining rich subgraphs from vertex-a�ributed graphs BCB ’20, September 21–24, 2020, Virtual Event, USA

10
0

10
1

10
2

10
3

10
4

10
5

10
6

27 28 29 30 31 32 33 34 35 36

R
u
n
n
in

g
 T

im
e

(i
n
 s

ec
o
n
d
s)

Graph Order

(a)

Random Graphs with Density 0.4

10
0

10
1

10
2

10
3

10
4

0.2 0.4 0.6 0.8 1

Graph Density

(b)

Random Graphs with Order 28

Miner
RS−SP

TGE

Figure 3: Runtime for enumerating connected vertex sets in random graphs. (a) Graphs of varying orders with fixed density,

(b) Graphs of varying densities with fixed order.

the RS-SP algorithm across all input random graphs. The TGE al-

gorithm was too slow in comparison with the proposed algorithm.

3.2 Mining Connected Vertex Sets from Real
Graphs

We compared the runtime of our Miner algorithm on real graphs

with that of RS-SP. We applied the algorithms on real chemical

graphs from the network data repository [13]. Table 1 shows again

that our algorithm runs much faster than RS-SP. Since the max-

imum number of chemical bonds an atom can form is restricted

by the number of valence electrons in the atom’s outer shell, large

chemical graphs are usually not dense.We chose 10 enzyme graphs

with orders between 40 and 49 and densities between 0.079 and

0.101. On average, the Miner algorithm was 5.75 times faster than

RS-SP across all input real graphs.

3.3 Mining Cohesive Connected Vertex Sets
from Real Graph

To evaluate the performance of our CSMiner algorithm, we used

the BioGRID human protein-protein interaction (PPI) network, ver-

sion 3.5.182 [12]. The network has 24, 052 genes (vertices) and 389, 245

physical interactions (edges). We used the gene dysregulation bi-

nary profile across 13 cancer types as attributes of the vertices. We

generated the profiles from the gene expression data in 13 can-

cer types [8]. Genes that are not present in the cancer data were

given profiles of all zeros. We applied the algorithm on the vertex-

attributed graph with �훿 values from 1 to 13. For �훿 values 1, 2, 3,

and 4, the algorithm took only 10.63, 4.95, 2.54, and 1.31 seconds

respectively, and for �훿 ≥ 5, the algorithm took less than 1 second

to complete the enumeration.

Table 1: Runtime for enumerating connected vertex sets in

real chemical graphs

Graph ID |�푉 | Density |CVS(�퐺) | Miner (s) RS-SP (s)

(in billions)

E-g564 40 0.095 5.06 50.74 255.20

E-g303 41 0.101 22.53 238.53 1,260.39

E-g308 42 0.095 31.47 310.62 1,769.07

E-g538 43 0.098 128.26 1,320.20 7,587.90

E-g569 44 0.090 135.61 1,500.56 8,546.11

E-g101 45 0.089 161.88 1,599.11 9,874.30

E-g117 46 0.087 321.14 3,276.33 19,813.74

E-g195 47 0.085 372.32 3,620.53 20,289.20

E-g171 48 0.088 1,276.57 14,497.35 79,858.06

E-g300 49 0.079 1,987.98 19,096.20 127,369.58

3.3.1 Effectiveness of Pruning Techniques. To evaluate the effec-

tiveness of the proposed pruning techniques, we also ran the CSMiner

algorithm with each pruning technique disabled one at a time. Fig-

ure 4 shows the effects of disabling the pruning techniques for �훿

values from 1 to 4. With the pruning covered technique disabled,

the algorithm did not finish in 48 hours, hence omitted in the figure.

For a very relaxed constraint, the number of cohesive connected

vertex sets in a graph may be exponentially large in the number

of vertices in the graph. To mine all maximal cohesive connected

vertex sets without pruning, the algorithm will explore the entire

search tree of cohesive connected vertex sets. However, with prun-

ing, large branches of this search tree are pruned based on the prun-

ing criteria, hence the improved performance. It is evident from our

experiment that the proposed algorithm with constraint-specific

pruning strategies improves the performance.

BCB ’20, September 21–24, 2020, Virtual Event, USA Hakim and Salem

Table 2: Enrichment analysis of extracted gene sets

�훿 Pattern# Avg. Avg. Hallmark% CM% BP% CC% MF%

Size Density

2 196 179.07 0.336 67.86 70.92 91.84 83.16 97.96

3 578 72.88 0.266 70.24 75.95 93.60 83.56 93.60

4 865 48.11 0.226 76.18 81.73 92.02 87.51 93.06

5 801 39.52 0.197 83.77 87.39 94.38 91.89 94.76

6 519 32.82 0.192 88.44 91.33 95.76 93.45 94.99

7 242 26.79 0.209 88.84 94.63 95.87 94.21 94.21

8 95 21.41 0.242 87.37 92.63 95.79 95.79 95.79

9 38 16.08 0.296 89.47 92.11 100.00 94.74 100.00

10 15 11.80 0.342 100.00 93.33 100.00 93.33 100.00

10
0

10
1

10
2

10
3

1 2 3 4

R
u
n
n
in

g
 T

im
e

(i
n
 s

ec
o
n
d
s)

Threshold

All Prunings On
Level 1 Pruning Off

Pruning Rest Off

Figure 4: Effectiveness of Pruning Techniques.

3.3.2 Analysis of Extracted Gene Sets. We analyzed the topologi-

cal properties and biological significance of the gene sets (maxi-

mal cohesive connected vertex sets) extracted from the BioGRID

network by the CSMiner algorithm for �훿 values from 2 to 10. The

goal of the enrichment analysis is to check if the extracted gene

sets have association with known biological processes, molecular

functions, or disease phenotypes. The enrichment was assessed by

the overlap of the extracted gene sets with predefined collection

of gene sets. For this analysis, we only assessed the cohesive pat-

terns with at least three genes. As predefined collection of gene

sets, we used the Hallmark, Cancer Modules (CM), GO Biologi-

cal Process (BP), GO Cellular Component (CC), and GO Molecu-

lar Function (MF) gene set collections from Molecular Signatures

Database (MSigDB) [9, 14]. These collections have been grouped to-

gether based on their involvement in the same biological pathway,

molecular process, molecular function, or by proximal location on

a chromosome.

An extracted gene set is considered enriched with a signature

collection if it has a significant overlap with at least one gene set in

that collection. The overlap is assessedwith an over-representation

test. The hypergeometric test with p-value = 0.05 is used for over-

representation testing. Table 2 shows the total number, average

size, and average density of the extracted gene sets along with

the percentage of the patterns that are enriched with the signa-

ture gene set collections. The results show that the average size

of the extracted gene sets decreases when �훿 is increased. After an

initial decrease for �훿 values up to 6, the average density of the ex-

tracted gene sets increases when �훿 is increased. This is expected

as the subnetworks whose genes are dysregulated in a large num-

ber of cancers tend to be smaller and denser compared with the

subnetworks dysregulated in a small number of cancers.

4 DISCUSSION AND CONCLUSIONS

We proposed an algorithm for enumerating all connected vertex

sets in a graph. The algorithm constructs an enumeration treewhere

each connected vertex set appears only once. Extending this enu-

meration approach, we proposed an algorithm to enumerate all

maximal cohesive connected vertex sets in a given vertex-attributed

graph. We also incorporated pruning strategies into the algorithm

that drastically reduced the number of explored search nodes. Ex-

periments conducted on both real and synthetic data sets show

the effectiveness of the proposed approaches. Gene set enrichment

analysis shows that the gene sets extracted are biologically signif-

icant. In the future, we would like to develop a parallel implemen-

tation of the algorithm.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation under Grant No. RII Track-2 FEC 1826834.

REFERENCES
[1] Mohammed Alokshiya, Saeed Salem, and Fidaa Abed. 2019. A linear delay al-

gorithm for enumerating all connected induced subgraphs. BMC Bioinformatics
20, 12 (2019), 319.

[2] David Avis and Komei Fukuda. 1996. Reverse search for enumeration. Discrete
Applied Mathematics 65, 1 (1996), 21–46.

[3] Salim A Chowdhury, Rod K Nibbe, Mark R Chance, and Mehmet Koyutürk. 2011.
Subnetwork state functions define dysregulated subnetworks in cancer. Journal
of Computational Biology 18, 3 (2011), 263–281.

[4] Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee, and Trey Ideker.
2007. Network-based classification of breast cancer metastasis. Mol Syst Biol.
3 (2007), 140.

Efficiently mining rich subgraphs from vertex-a�ributed graphs BCB ’20, September 21–24, 2020, Virtual Event, USA

[5] Han-Yu Chuang, Eunjung Lee, Yu-Tsueng Liu, Doheon Lee, and Trey Ideker.
2007. Network-based classification of breast cancer metastasis. Molecular sys-
tems biology 3, 1 (2007).

[6] Elisabeth Georgii, Sabine Dietmann, Takeaki Uno, Philipp Pagel, and Koji Tsuda.
2009. Enumeration of condition-dependent densemodules in protein interaction
networks. Bioinformatics 25, 7 (2009), 933–940.

[7] Trey Ideker, Owen Ozier, Benno Schwikowski, and Andrew F. Siegel. 2002. Dis-
covering regulatory and signalling circuits in molecular interaction networks.
Bioinformatics 18, Suppl 1 (2002), S233–40.

[8] Wei Jiang, Ramkrishna Mitra, Chen-Ching Lin, Quan Wang, Feixiong Cheng,
and Zhongming Zhao. 2016. Systematic dissection of dysregulated transcription
factor–miRNA feed-forward loops across tumor types. Brief Bioinform. 17, 6
(2016), 996–1008.

[9] Arthur Liberzon, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P.
Mesirov, and Pablo Tamayo. 2015. The Molecular Signatures Database Hallmark
Gene Set Collection. Cell Systems 1, 6 (2015), 417 – 425.

[10] Sean Maxwell, Mark R Chance, and Mehmet Koyutürk. 2014. Efficiently Enu-
merating All Connected Induced Subgraphs of a Large Molecular Network. In
International Conference on Algorithms for Computational Biology (Lecture Notes
in Computer Science, vol 8542). Springer, Cham, 171–182.

[11] Flavia Moser, Recep Colak, Arash Rafiey, and Martin Ester. 2009. Mining Cohe-
sive Patterns from Graphs with Feature Vectors.. In SDM, Vol. 9. 593–604.

[12] Rose Oughtred et al. 2018. The BioGRID interaction database: 2019 update. Nu-
cleic Acids Research 47, D1 (11 2018), D529–D541.

[13] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence. http://networkrepository.com

[14] Aravind Subramanian, Pablo Tamayo, Vamsi K. Mootha, Sayan Mukherjee, Ben-
jamin L. Ebert, Michael A. Gillette, Amanda Paulovich, Scott L. Pomeroy, Todd R.
Golub, Eric S. Lander, and Jill P. Mesirov. 2005. Gene set enrichment analysis:
A knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences 102, 43 (2005), 15545 – 15550.
http://www.pnas.org/content/102/43/15545

[15] Takeaki Uno. 2015. Constant Time Enumeration by Amortization. InAlgorithms
and Data Structures. WADS 2015. Lecture Notes in Computer Science, Vol 9214,
Frank Dehne, Jörg-Rüdiger, and SackUlrike Stege (Eds.). Springer, Cham, 593–
605.

[16] S. Wernicke. 2006. Efficient Detection of Network Motifs. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics 3, 4 (2006), 347–359.

http://networkrepository.com
http://www.pnas.org/content/102/43/15545

	Abstract
	1 Introduction
	2 Method
	2.1 Mining Connected Vertex Sets
	2.2 Mining Cohesive Connected Vertex Sets

	3 Results
	3.1 Mining Connected Vertex Sets from Random Graphs
	3.2 Mining Connected Vertex Sets from Real Graphs
	3.3 Mining Cohesive Connected Vertex Sets from Real Graph

	4 Discussion and Conclusions
	Acknowledgments
	References

