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ABSTRACT

With the rapid collection of large network data such as biological
networks and social networks, it has become very important to de-
velop efficient techniques for network analysis. In many domains,
additional attribute data can be associated with entities and rela-
tionships in the network, where the network data represents rela-
tionships among entities in the network and the attribute data rep-
resents various characteristics of the corresponding entities and
relationships in the network. Simultaneous analysis of both net-
work and attribute data results in detection of subnetworks that
are contextually meaningful. We propose an efficient algorithm for
enumerating all connected vertex sets in an undirected graph. Ex-
tending this enumeration approach, an algorithm for enumerating
all maximal cohesive connected vertex sets in a vertex-attributed
graph is proposed. To prune search branches that will not yield
maximal patterns, we also present three pruning techniques for ef-
ficient enumeration of the maximal cohesive connected vertex sets.
Our comparative runtime analyses show the efficiency and effec-
tiveness of our proposed approaches. Gene set enrichment analysis
shows that protein-protein interaction subnetworks with similar
cancer dysregulation attributes are biologically significant.

Availability: The implementation of the algorithm is available at
http://www.cs.ndsu.nodak.edu/~ssalem/richsubgraphs.html
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1 INTRODUCTION

Recent studies have focused on learning from graphs. Extracting
and analyzing highly interacting vertices in dense subgraphs and
percolated cliques improve understanding of functional building
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blocks in complex systems. Vertices and edges in graphs can be
annotated with additional information, giving rise to the notion of
rich graphs. The integration of attribute similarity while mining
connected subgraphs with certain topological properties allows
for the identification of context-specific connected subgraphs. To
discover interesting patterns in a graph, it is often necessary to
find connected subgraphs that satisfy some additional constraints.
In many applications, the constraint may be defined based on the
number of common attributes shared by the vertices of a subgraph.
For example, in a protein—protein interaction (PPI) network, a con-
nected set of proteins that are dysregulated in certain types of dis-
eases might be particularly interesting to medical scientists [10].
Mining biologically relevant interaction subnetworks by integrat-
ing gene expression similarity with protein-protein interaction net-
works has been shown to improve identification of biological func-
tional modules [6], subnetwork biomarkers [3, 5], and active sub-
networks [4, 7]. In a social network, a connected group of people
who share certain common interests might be the target of specific
marketing campaigns [11]. In all of these applications, the goal is
to mine sets of vertices such that vertices in each set are connected
and have high attribute similarity; such vertex sets are referred to
as cohesive connected vertex sets. A challenging aspect of min-
ing these cohesive patterns is that the number of connected vertex
sets may increase exponentially with the number of vertices in the
graph and thus the enumeration process must be efficient in both
time and memory usage.

In pattern mining, anti-monotone constraints are useful for prun-
ing out the search space because of the fact that if a pattern does
not satisfy an anti-monotone constraint, then none of its super-
patterns will satisfy that constraint. We say that a vertex set and its
induced subgraph are rich with respect to a given anti-monotone
constraint, if and only if the vertex set satisfies that anti-monotone
constraint. All the subgraphs of a rich subgraph are also rich due
to the down-closure property of the constraint, resulting in an ex-
ponential number of rich subgraphs that have high overlap. It is
often desirable to mine a representative set of all rich subgraphs to
facilitate downstream analysis of these patterns. In a given graph,
arich connected vertex set and its induced subgraph are maximal
if the vertex set is not a subset of another rich connected vertex set.
The set of all maximal rich connected vertex sets is much smaller
than the set of all rich connected vertex sets. Moreover, enumer-
ating just maximal rich connected vertex sets, instead of all rich
connected vertex sets, may enable us to prune large branches of
the search space by developing pruning strategies with respect to
the given anti-monotone constraint.

To enumerate all maximal rich connected vertex sets in a given
graph, Maxwell et al. [10] introduced the BDDE algorithm. The
BDDE algorithm relies on the given anti-monotone constraint to
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prune out the search space by considering all subsets of a con-
nected vertex set for enumeration before the vertex set itself is
considered. However, the limitation of BDDE is that it requires
exponential space in the number of vertices in the graph and is
not suitable for enumerating all maximal rich connected vertex
sets in a large graph [10]. Wernicke [16] introduced the ESU al-
gorithm for enumerating connected vertex sets. Starting from a
single vertex, ESU exhaustively search the graph in depth-first or-
der for connected vertex sets. Even though ESU is an efficient al-
gorithm for connected vertex set enumeration, the algorithm has
not been employed for mining rich connected vertex sets from a
vertex-attributed graph. Moreover, the algorithm does not provide
any mechanism to efficiently check the maximality of leaf nodes in
the search tree. An approach to mining all maximal rich connected
vertex sets using ESU would be to maintain a list of encountered
maximal rich connected vertex sets and every time a new leaf node
is encountered, check if that leaf connected vertex set has a super-
set or subset in the maximal list and update the list accordingly.
Given the large number of maximal rich connected vertex sets and
the much larger number of leaf nodes, the ESU algorithm would be
inefficient for the purpose of mining maximal rich connected ver-
tex sets. Another algorithm for enumerating all connected vertex
sets is the TGE algorithm introduced by Uno [15]. Starting by se-
lecting a single vertex r, TGE enumerates all connected vertex sets
that include r. To do this, the algorithm chooses a vertex v adjacent
to r and partitions the search space of connected vertex sets that in-
clude r into those that include v by unifying the vertex v with r and
those that do not include v by removing the vertex v. The algorithm
recursively carries out the process until the vertex r does not have
any adjacent vertex and then outputs the set of unified vertices at
the leaf node as a connected vertex set. The TGE algorithm also has
not been employed for mining attributed graphs. Moreover, it does
not provide any mechanism to efficiently check the maximality of
those leaf nodes in the search tree and would be inefficient for the
purpose of mining maximal rich connected vertex sets. Recently,
Alokshiya et al. [1] introduced the RS-SP algorithm for enumer-
ating connected vertex sets. The RS-SP algorithm has been used
to enumerate maximal rich connected vertex sets. However, since
RS-SP is based on the reverse search principle introduced by Avis
and Fukuda [2], the algorithm needs to check all neighbors of the
current connected vertex set to find valid extensions of the cur-
rent connected vertex set and thus checking for invalid extensions
impacts the overall performance of the algorithm. The RS-SP al-
gorithm has been shown to outperform the BDDE and the TGE
algorithms on mining all connected vertex sets [1].

In this paper, we propose an algorithm to enumerate all con-
nected vertex sets in an undirected graph that takes linear time
per output and linear space in the number of vertices in the graph.
We extend this enumeration approach and propose an algorithm to
enumerate all maximal cohesive connected vertex sets in a vertex-
attributed graph. We also present three pruning techniques for fast
enumeration of the cohesive connected vertex sets. We demon-
strate the efficiency and effectiveness of our proposed approach
and the pruning techniques on a protein-protein interaction net-
work with gene expression dysregulation in multiple cancer types
as attributes.
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2 METHOD

Let G = (V, E) be an undirected graph, where V = {1, ...,n} is the
vertex set and E is the edge set of graph G. The number of vertices
|V|is called order of the graph G. For a vertex set U C V, its induced
subgraph G[U] is the graph whose vertex set is U and whose edge
set consists of all of the edges in E that have both endpoints in U.
We refer to an induced subgraph that is connected as a connected
subgraph. A vertex set U C V is a connected vertex set if its induced
subgraph G[U] is connected. The adjacent vertex set of a vertex
v € V, denoted Adj(v), is the set of all vertices adjacent to vertex
v. The open neighborhood of a vertex set U C V, denoted NOP(U),
is the set of all vertices from V \ U that are adjacent to at least
one vertex in U [16]. The Ny, (U) can be obtained by taking union
of adjacent vertex sets of all vertices in U and then excluding the
vertices that are in U from the union.

Nop(U) = {| ] Adj()}\U

velU

2.1 Mining Connected Vertex Sets

PrROBLEM DEFINITION 1. Given an undirected graph G = (V,E),
enumerate all connected vertex sets in G. The set of all connected
vertex sets in G is defined as:

CVS(G)={U:U CV, U is connected}

The set of all connected vertex sets forms a search graph whose
search nodes represent connected vertex sets and there is an edge
between two search nodes if the two search nodes differ by only
one vertex. An efficient approach for enumerating all connected
vertex sets is to only traverse a minimum spanning tree of this
search graph. A key feature of such an algorithm is to avoid vis-
iting the same search node multiple times and to devise a strat-
egy for obtaining a vertex set by extending only one vertex set.
This is achieved by carefully defining the search nodes that can be
reached from a given search node. This is done by designating a
set of neighbors to extend the current vertex set.

Algorithm 1 shows the pseudo-code of the Miner algorithm that
enumerates all connected vertex sets in an undirected graph. All
list-like data structures are assumed to be indexed from 1. The
Miner algorithm maintains two globally accessible lists U and N.
The list U represents the current connected vertex set being enu-
merated, and N is the neighbor list of U. The open neighborhood of
the connected vertex set U is essentially the neighbor list N minus
the current connected vertex set U, i.e., NOP(U) =N\ U.BothU
and N can be implemented with a fixed-size array and a size vari-
able indicating the actual number of elements in the array. The list
U can contain at most n elements, and N can contain at most n—1
elements, where n is the number of vertices in the graph.

We start exploring the given graph from each vertex in the graph
(lines 3-7). We denote the first vertex in the enumeration subtree as
an anchor vertex. Starting from an anchor vertex u, we explore ver-
tices in the graph in depth-first order, and when we explore a new
vertex, we output the path from the anchor vertex to the newly
explored vertex as a connected vertex set. This way, we enumerate
all connected vertex sets that include vertex u. Next we move to an-
other anchor vertex v to start a new search branch. Starting from
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Figure 1: Connected vertex set enumeration. (a) a sample graph, (b) enumeration tree of the sample graph. Every node repre-

sents a unique connected vertex set.

anchor vertex v, we again explore vertices in the graph in depth-
first order. However, this time we only enumerate connected vertex
sets that include vertex v but not vertex u. We skip connected ver-
tex sets with vertex u as those are already enumerated under the
search branch rooted at anchor vertex u. The second exploration
process is essentially the same as the first one except that this time
when we encounter vertex u, we do not recursively explore the
search subtree. In general, every time a vertex v is selected for
anchoring, all vertices smaller than v are considered previously
anchored (pre-anchored), and the depth-first exploration will enu-
merate all connected vertex sets that include the anchor vertex and
none of the pre-anchored vertices.

For the depth-first exploration of the graph, we maintain just a
single list N that stores both explored and unexplored neighbors.
When we select a vertex from N to explore, instead of removing it
from N, we just maintain an index variable start that marks the be-
ginning of the unexplored neighbors in N, which is very efficient
in comparison with maintaining two separate lists. Each vertex lo-
cated before the start index in N is an explored neighbor and each
vertex located at or after the start index in N is an unexplored
neighbor. An unexplored neighbor v in N is considered explored
if either U was extended by v or the extension was skipped be-
cause v is a pre-anchored neighbor (lines 12-15). Each unexplored
neighbor in N that is larger than the anchor vertex is considered
a valid neighbor for extension. Extending U only with valid neigh-
bors eliminates the need to check for duplicate connected vertex
sets.

Figure 1 shows the enumeration tree of our approach for a sam-
ple graph. We refer to the vertices of the enumeration tree as nodes,
to avoid confusion with the vertices of the graph. Nodes are labeled
with connected vertex set U. Beside each node, we also show the
corresponding neighbor list N in which explored neighbors are in
gray background, pre-anchored neighbors are underlined, and all
other neighbors are valid neighbors.

Algorithm 1: Miner

Input :G = (V,E): An undirected graph
Output: All connected vertex sets in G

1 U« [N« ][]

2 Visited[1] « false,...,Visited[n] « false

3 for each vertexv € V do

4 Visited|v] « true

5 Append(U, v)

6 DepthFirstExplore(o, 1)

7 Visited|v] « false

8 function DepthFirstExplore(lo, start)

9 output U

10 Nexer < {u € Adj(lv): Visited[u] = false}
1 AddNeighbors(Nexcr)

12 for i « start to Size(N) do

13 w « N[i]

14 if w> U[1] then

15 Append (U, w)

16 L DepthFirstExplore(w, i+ 1)
17 Pop(U)

18 RemoveNeighbors(|Nexcr|)

19 function AddNeighbors(Neighbors)

20 for each vertexu € Neighbors do

21 Append(N, u)

22 L Visited|u] « true

23 function RemoveNeighbors(count)

24 for i < 1 to count do

25 Visited[N[Size(N)]] « false
26 L Pop(N)
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Complexity Analysis: An enumeration algorithm is said to
have linear delay if the time between two consecutive outputs is
bounded by a linear function of the input size, in the worst case. In
our approach, the time between two consecutive outputs is domi-
nated by the operations: adding neighbors (lines 10 — 11), remov-
ing neighbors (line 18), and the number of times the comparison
w > NJ1] fails at a stretch (line 14) - each of which takes O(n)
time in the worst case scenario. Hence, the running time per out-
put is O(n). Therefore, the complexity of the algorithm is output
polynomial time in the number of connected vertex sets. The algo-
rithm uses three globally accessible lists/arrays U, N, and Visited
of a maximum size of n elements. Moreover, the space required for
the local variables, e.g., lv, start, etc. is O(n) as the depth of the
enumeration tree is bounded by n. Hence, the total space required
by the algorithm, excluding the space required for the input graph,
is O(n).

2.2 Mining Cohesive Connected Vertex Sets

Given an undirected graph G = (V,E) and an attribute set F =
{fi, fo. - -+, fa}, let G = (V, E, f) be a vertex-attributed graph where
f : V> P(F) is a function that maps each vertex to an element
in the power set of attributes, indicating the associated attributes
of the vertex. Each vertex v € V has an associated set of attributes
f(v). The association between the vertices and attributes can be
represented by an n X |F| binary attribute matrix, M = (my,;) such
that my; = 1if vertex o has the i’ h attribute and my,; = 0 otherwise,
foralll1 <v<nand1<i<|F|

A vertex set U C V shares the it? attribute f; if all vertices in
U have the i attribute in common, i.e., fi € Nyev f(v). The com-
mon attribute set of a vertex set U, denoted A(U), is the set of all
common attributes the vertex set U shares, i.e., A(U) = Nyep f(0).
Given a user-defined threshold §, we say that a vertex set U and its
induced graph G[U] are cohesive, if the number of the common at-
tributes of the vertex set is at least §, i.e., JA(U)| > 8. The cohesive
property is an anti-monotone constraint, which follows from the
fact that if a vertex set is not cohesive then none of its supersets
can be cohesive.

Given a vertex-attributed graph G = (V,E, f) and a threshold
6 for the minimum number of common attributes, the set of all
cohesive connected vertex sets with respect to § is defined as:

CCVS(G,8) ={U :U CV, U is connected, |A(U)| = 6}

A major challenge for mining all cohesive connected vertex sets
is that the number of all cohesive connected vertex sets can be
very large, specially when § is small. Moreover, there is an inherent
overlap between the cohesive connected vertex sets since all the
subsets of a cohesive vertex set are also cohesive. Therefore, we
propose to enumerate all maximal cohesive connected vertex sets.

A cohesive connected vertex set is maximal if and only if it does
not have a super vertex set that is also a cohesive connected vertex
set, 1.e., a cohesive connected vertex set U C V is maximal if and
only if (AU’ C V)[U’ 2 U and U’ € CCVS(G, ) |. To check for
the supersets of the vertex set, we only need to check the immedi-
ate supersets that result by extending the set U with a neighboring
vertex. So, a cohesive connected vertex set U is maximal if and only
if Av € Nop(U) such that |A(U U {v})| > 6.
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PROBLEM DEFINITION 2. Given a vertex-attributed graph G =
(V,E, f) and a threshold § for the minimum number of common at-
tributes, enumerate all maximal cohesive connected vertex sets in G
with respect to 8. The set of all maximal cohesive connected vertex
sets in G with respect to § is defined as:

MCCVS(G,8) ={U :U CV, U is connected,
|A(U)| = 6, and U is maximal}

To enumerate all cohesive connected vertex sets, we could just
use the Miner algorithm and perform constraint checking while
adding a vertex to the connected vertex set U. However, as we are
only interested in maximal cohesive connected vertex sets, we also
need an efficient way to check if a node in the enumeration tree
is maximal or not. It is obvious that a non-leaf node in the enu-
meration tree can never be maximal, as every non-leaf node must
have at least one valid neighbor that can extend it while maintain-
ing the given constraint, otherwise it would become a leaf node.
So only a leaf node in the enumeration tree has the potential to
be maximal. However, even a leaf node in the enumeration tree is
not maximal if it can be extended with an already explored or pre-
anchored neighbor while maintaining the given constraint. Using
this principle, we can efficiently check the maximality of any node
in the enumeration tree. We represent the maximality principle be-
low:

Maximality Principle: A cohesive connected vertex setU is max-
imal with respect to a given threshold 8, if and only if there is no
vertex v in the open neighborhood of U, irrespective of whether the
vertex is an explored, pre-anchored or valid neighbor, that could be
added to U such that |A(U U {v})| > 6.

We cannot directly incorporate maximality checking using the
maximality principle in existing enumeration algorithms such as
ESU. The first problem with the ESU is that ESU removes the ver-
tices from its neighbor set when they are added to the connected
vertex set. The second problem with the ESU is that ESU never
adds the pre-anchored neighbors to its neighbor set. But to de-
termine the maximality of a given cohesive connected vertex set
using maximality principle, all neighbors, including explored and
pre-anchored neighbors, need to be present.

In the Miner algorithm, however, we do not remove the explored
neighbors from its neighbor list N. Moreover, when we add neigh-
bors to our neighbor list N, we include the pre-anchored neigh-
bors. As a result, maximality principle can easily be incorporated
into the Miner algorithm. So, we can address the problem of enu-
merating all maximal cohesive connected vertex sets by utilizing
the Miner algorithm as a backbone of the enumeration process, im-
posing constraint checking while extending a connected vertex set,
and reporting only those leaf nodes of the enumeration tree that
cannot be extended with any neighbor in the open neighborhood
of U maintaining the given constraint.

Figure 2 shows the enumeration tree of all maximal cohesive
connected vertex sets for a sample graph with § = 2. Nodes are
labeled with connected vertex set U. Beside each node, we also
show the corresponding neighbor list N and below each search
node we show the binary vector indicating the common attributes
of the vertices of the search node.
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Figure 2: Maximal cohesive connected vertex set enumeration. (a) sample vertex-attributed graph, (b) enumeration tree of the
sample graph with § = 2. The dotted portions are not part of the enumeration tree, they are for illustration purpose only. Every
node with thick border represents a maximal cohesive connected vertex set. Nodes marked with X are pruned using pruning
covered and pruning at level one techniques, and nodes marked with X...X are pruned using pruning rest technique.

Optimizing Neighbor Generation: We can further optimize
the algorithm if, while adding the neighbors to N, we just add those
unvisited neighbors to N that can extend U maintaining the given
constraint. We can do this because if adding a neighbor to the cur-
rent state of U does not generate a cohesive connected vertex set
then adding that neighbor will not generate a cohesive connected
vertex set after adding even more vertices to U.

For a large vertex-attributed graph and a relaxed cohesive con-
straint, exploring the entire enumeration tree of cohesive patterns
is computationally expensive. Not all subtrees in the enumeration
tree would generate maximal cohesive patterns. These futile sub-
trees constitute a large part of the enumeration tree, and thus early
pruning of these subtrees results in a drastic reduction of the num-
ber of cohesive search nodes explored and improves the perfor-
mance of the algorithm. We propose three pruning techniques that
result in significant performance improvement while maintaining
the completeness of the result.

Pruning Covered: Given a cohesive connected vertex set U, a
neighbor x € Ny (U), and a threshold 6, we say that U U {x} is a
cohesive child of U if |[A(UU{x})| = §.Let UU {x} and U U{y} be
two cohesive children of U. We say that the cohesive child U U {x}
precedes another cohesive child U U {y} if x is located before y in

the neighbor list N. We also say that the cohesive child U U {x}
covers another cohesive child U U {y} if A(U U {y}) € A(U U{x}).

LEmMA 1. IfU U {x} and U U {y} are two cohesive children of
connected vertex set U, U U{x} precedes UU{y}, and UU{x} covers
U U {y}, then neither U U {y} nor any descendant of U U {y} is a
maximal cohesive connected vertex set, and hence the search branch
rooted at U U {y} can be safely pruned.

Proor. We begin with the first part. It is clear that U U {y} is
not a maximal cohesive connected vertex set as it has a cohesive
connected superset U U {y} U {x} because A(U U {y} U {x}) =
A(UU{y}) and U U {y} is cohesive. For the second part, we utilize
the fact that once U is extended with y, U U {y} is only extended
with neighbors in N that succeeds y. As x precedes y and a vertex
does not appear more than once in N, x will never be found in N
after y. So no descendant of U U {y} will include x in its vertex
set. However, x could be added to every descendant of U U {y}
maintaining cohesiveness. So, none of the descendants of U U {y}
is a maximal cohesive connected vertex set. O

In Figure 2, the cohesive child {1, 3} is pruned because it is cov-
ered by the preceding cohesive child {1, 2} (A({1,3}) € A({1,2})).
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Similarly, the search subtree rooted at {4, 6} is pruned because it
is covered by the preceding cohesive child {4, 5}.

Pruning at Level One: With a little change, we can apply the
concept of pruning covered technique to level one of the enumer-
ation tree where each node is a cohesive vertex set consisting of
just a single vertex. Applying a similar approach used in the proof
of lemma 1, it can be shown that given two adjacent vertices x
and y, if both {x} and {y} are cohesive, x < y, and {x} covers
{y} (A(y) € A(x)), then neither {y} nor any descendant of {y}
is a maximal cohesive connected vertex set and the entire branch
rooted at {y} can be safely pruned. In Figure 2, node {3} is pruned
because it is covered by the smaller neighbor {2}. Similarly, nodes
{5} and {7} are pruned because they are covered by nodes {4} and
{2} respectively.

Pruning Rest: This technique is an extension of the pruning
covered technique. Given a cohesive connected vertex set U, if U
has a cohesive child UU{x} that has the same set of attributes as its
parent U, i.e., A(U) = A(U U {x}), then all cohesive children of U
succeeding UU{x} can be pruned as they all will be covered by the
preceding cohesive child U U {x}. By applying this technique, we
can prune the remaining cohesive children of U at once instead of
applying the pruning covered technique to each of them separately.
In Figure 2, all cohesive children of {1,2} succeeding {1, 2,3} are
pruned because {1, 2,3} has the same set of attributes as its parent
{1,2}. Similarly, all cohesive children of {2} succeeding {2, 3} are
pruned because {2, 3} has the same set of attributes as its parent
{2}.

Algorithm 2 shows the pseudo-code of the CSMiner algorithm
that enumerates all maximal cohesive connected vertex sets. We

start a search subtree for each cohesive vertex that cannot be pruned.

Lines 5-7 handle level one pruning, and lines 21-23 handle the prun-
ing covered strategy. Lines 26-27 prune rest of the succeeding co-
hesive children. Line 19 marks U as not maximal if the neighbor
that is currently being explored could be added to U while main-
taining cohesiveness. Similarly, line 31 marks U as not maximal
if there is a previously explored neighbor in the open neighbor-
hood of U that could be added to U without violating the cohesive
constraint. In line 21 and line 29, we need to make sure that the ver-
tex selected from N is not already an element of U, which can be
checked in constant time as, except the anchor vertex, all vertices
in U are added sequentially from N. Finally, the algorithm reports
only those leaf nodes that do not have any cohesive super vertex
set.

3 RESULTS

We evaluated the performance of our algorithm with respect to ex-
isting algorithms for enumerating connected vertex sets on both
random and real graphs. We also evaluated the performance of
our algorithm for enumerating maximal cohesive connected ver-
tex sets on a large real vertex-attributed graph. All experiments
were conducted on a machine with Intel Xeon E5-2670 v2 proces-
sor and 32 GB memory, running linux operating system. We imple-
mented our algorithms in C++. To evaluate the runtime of existing
algorithms, we used the C/C++ implementations provided by the
respective authors.
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Algorithm 2: Cohesive Subgraph Miner (CSMiner)

Input :G = (V,E, f): An undirected vertex-attributed graph,
6: Minimum number of common attributes
Output: All maximal cohesive connected vertex sets in G
1 U« [],N«[]
2 Visited[1] « false, ... ,Visited|[n] « false

3 for each vertexv € V do

4 if |A({o})| > & then
5 for each vertex u € Adj(v) do

6 if u < vand A({v}) € A({u}) then
7 L L goto line 3

8 Visited|[v] « true

9 Append(U, v)

10 DepthFirstExplore(o, 1)
1 Visited[v] « false

12 function DepthFirstExplore(lo, start)

13 maximal «— true

14 Nexcl < {u € Adj(Iv): Visited[u] = false,
AU U {u})| > &}

15 AddNeighbors (Nexc)

16 for i « start to Size(N) do

17 w « NJ[i]

18 if [A(UU {w})| > 6 then

19 maximal «— false

20 if w> U[1] then

21 for each vertexx € N[1: (i—1)]\ U do
22 if ACU U {w}) CA(UU {x}) then
23 L goto line 16

24 Append (U, w)

25 DepthFirstExplore(w, i+ 1)

26 if A(U) =AU U {w}) then

27 L break

28 if maximal then

29 for each vertexz € N[1: (start —1)] \ U do
30 if JA(CUU {z})| > 6 then

31 maximal < false

32 break

33 if maximal then

34 L output U

35 Pop(U)

36 RemoveNeighbors(|Nexer )

3.1 Mining Connected Vertex Sets from
Random Graphs

To compare the runtime of our Miner algorithm on randomly gen-
erated graphs, we chose two of the fastest existing algorithms (as
shown in [1]) for enumerating connected vertex sets, i.e., RS-SP
and TGE. We ran the algorithms on randomly generated graphs
of different orders and densities. We generated random graphs ac-
cording to the G(n, m) Erdos-Renyi model. Results in Figure 3 show
that our algorithm runs significantly faster than both RS-SP and
TGE. On average, the Miner algorithm was three times faster than
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Figure 3: Runtime for enumerating connected vertex sets in random graphs. (a) Graphs of varying orders with fixed density,

(b) Graphs of varying densities with fixed order.

the RS-SP algorithm across all input random graphs. The TGE al-
gorithm was too slow in comparison with the proposed algorithm.

3.2 Mining Connected Vertex Sets from Real
Graphs

We compared the runtime of our Miner algorithm on real graphs
with that of RS-SP. We applied the algorithms on real chemical
graphs from the network data repository [13]. Table 1 shows again
that our algorithm runs much faster than RS-SP. Since the max-
imum number of chemical bonds an atom can form is restricted
by the number of valence electrons in the atom’s outer shell, large
chemical graphs are usually not dense. We chose 10 enzyme graphs
with orders between 40 and 49 and densities between 0.079 and
0.101. On average, the Miner algorithm was 5.75 times faster than
RS-SP across all input real graphs.

3.3 Mining Cohesive Connected Vertex Sets
from Real Graph

To evaluate the performance of our CSMiner algorithm, we used
the BioGRID human protein-protein interaction (PPI) network, ver-
sion 3.5.182 [12]. The network has 24, 052 genes (vertices) and 389, 245
physical interactions (edges). We used the gene dysregulation bi-
nary profile across 13 cancer types as attributes of the vertices. We
generated the profiles from the gene expression data in 13 can-
cer types [8]. Genes that are not present in the cancer data were
given profiles of all zeros. We applied the algorithm on the vertex-
attributed graph with & values from 1 to 13. For § values 1, 2, 3,
and 4, the algorithm took only 10.63, 4.95, 2.54, and 1.31 seconds
respectively, and for § > 5, the algorithm took less than 1 second
to complete the enumeration.

Table 1: Runtime for enumerating connected vertex sets in
real chemical graphs

GraphID |V| Density |CVS(G)| Miner(s) RS-SP(s)
(in billions)
E-g564 40 0.095 5.06 50.74 255.20
E-g303 41 0.101 22.53 238.53 1,260.39
E-g308 42 0.095 31.47 310.62 1,769.07
E-g538 43 0.098 128.26 1,320.20 7,587.90
E-g569 44 0.090 135.61 1,500.56 8,546.11
E-g101 45 0.089 161.88 1,599.11 9,874.30
E-g117 46 0.087 321.14 3,276.33 19,813.74
E-g195 47 0.085 372.32 3,620.53 20,289.20
E-g171 48 0.088 1,276.57 14,497.35 79,858.06
E-g300 49 0.079 1,987.98 19,096.20 127,369.58

3.3.1 Effectiveness of Pruning Techniques. To evaluate the effec-
tiveness of the proposed pruning techniques, we also ran the CSMiner
algorithm with each pruning technique disabled one at a time. Fig-
ure 4 shows the effects of disabling the pruning techniques for §
values from 1 to 4. With the pruning covered technique disabled,
the algorithm did not finish in 48 hours, hence omitted in the figure.
For a very relaxed constraint, the number of cohesive connected
vertex sets in a graph may be exponentially large in the number
of vertices in the graph. To mine all maximal cohesive connected
vertex sets without pruning, the algorithm will explore the entire
search tree of cohesive connected vertex sets. However, with prun-
ing, large branches of this search tree are pruned based on the prun-
ing criteria, hence the improved performance. It is evident from our
experiment that the proposed algorithm with constraint-specific
pruning strategies improves the performance.
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Table 2: Enrichment analysis of extracted gene sets

6 Pattern#  Avg. Avg.  Hallmark% CM% BP% CC% MF%
Size  Density
2 196 179.07 0.336 67.86 70.92 9184 83.16 97.96
3 578 72.88 0.266 70.24 7595 93.60 83.56 93.60
4 865 48.11 0.226 76.18 81.73 92.02 87.51 93.06
5 801 39.52 0.197 83.77 87.39 9438 91.89 94.76
6 519 32.82 0.192 88.44 91.33 9576 9345 94.99
7 242 26.79 0.209 88.84 94.63 95.87 9421 94.21
8 95 21.41 0.242 87.37 92.63 9579 9579  95.79
9 38 16.08 0.296 89.47 92.11 100.00 94.74 100.00
10 15 11.80 0.342 100.00 93.33  100.00 93.33 100.00
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Figure 4: Effectiveness of Pruning Techniques.

3.3.2  Analysis of Extracted Gene Sets. We analyzed the topologi-
cal properties and biological significance of the gene sets (maxi-
mal cohesive connected vertex sets) extracted from the BioGRID
network by the CSMiner algorithm for § values from 2 to 10. The
goal of the enrichment analysis is to check if the extracted gene
sets have association with known biological processes, molecular
functions, or disease phenotypes. The enrichment was assessed by
the overlap of the extracted gene sets with predefined collection
of gene sets. For this analysis, we only assessed the cohesive pat-
terns with at least three genes. As predefined collection of gene
sets, we used the Hallmark, Cancer Modules (CM), GO Biologi-
cal Process (BP), GO Cellular Component (CC), and GO Molecu-
lar Function (MF) gene set collections from Molecular Signatures
Database (MSigDB) [9, 14]. These collections have been grouped to-
gether based on their involvement in the same biological pathway,
molecular process, molecular function, or by proximal location on
a chromosome.

An extracted gene set is considered enriched with a signature
collection if it has a significant overlap with at least one gene set in

that collection. The overlap is assessed with an over-representation
test. The hypergeometric test with p-value = 0.05 is used for over-
representation testing. Table 2 shows the total number, average
size, and average density of the extracted gene sets along with
the percentage of the patterns that are enriched with the signa-
ture gene set collections. The results show that the average size
of the extracted gene sets decreases when § is increased. After an
initial decrease for § values up to 6, the average density of the ex-
tracted gene sets increases when § is increased. This is expected
as the subnetworks whose genes are dysregulated in a large num-
ber of cancers tend to be smaller and denser compared with the
subnetworks dysregulated in a small number of cancers.

4 DISCUSSION AND CONCLUSIONS

We proposed an algorithm for enumerating all connected vertex

setsin a graph. The algorithm constructs an enumeration tree where
each connected vertex set appears only once. Extending this enu-
meration approach, we proposed an algorithm to enumerate all

maximal cohesive connected vertex sets in a given vertex-attributed
graph. We also incorporated pruning strategies into the algorithm

that drastically reduced the number of explored search nodes. Ex-
periments conducted on both real and synthetic data sets show

the effectiveness of the proposed approaches. Gene set enrichment

analysis shows that the gene sets extracted are biologically signif-
icant. In the future, we would like to develop a parallel implemen-
tation of the algorithm.
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