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ABSTRACT

Advances in high-throughput microarray and RNA-sequencing tech-
nologies have lead to a rapid accumulation of gene expression data
for various biological conditions across multiple species. Mining
frequent gene modules from a set of multiple gene coexpression

networks has applications in functional gene annotation and biomarker

discovery. Biclustering algorithms have been proposed to allow
for missing coexpression links. Existing approaches report a large
number of edgesets which are computationally intensive to ana-
lyze, and have high overlap among the reported subnetworks. In
this work, we propose an algorithm to mine frequent dense mod-
ules from multiple coexpression networks using an online data
summarization method. Our algorithm mines a succinct set of rep-
resentative subgraphs that have little overlap which reduces the
downstream analysis of the reported modules. Experiments on hu-
man gene expression data show that the reported modules are bi-
ologically significant as evident by the high enrichment of GO
molecular functions and KEGG pathways in the reported modules.
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1 INTRODUCTION

Advancements in high-throughput microarray and RNA-sequencing
technologies enabled the collection and analysis of large amount
of gene expression data. Analysis of gene expression data is use-
ful in understanding gene function and gene regulation. Various
conventional clustering techniques, including k-means, hierarchi-
cal, and biclustering approaches, have been employed with limited
success [9]. Several clustering approaches designed specifically for
gene expression data have been proposed, and were shown to be
more effective than the conventional clustering methods on some
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datasets [8, 17]. Recent research has focused on analyzing gene
coexpression networks. A common approach for analyzing gene
expression data is clustering genes based on coexpression. It is be-
lieved that coexpressed genes are likely to be co-functional and co-
regulated, and clustering genes based on coexpression has proven
helpful in predicting unknown gene functions and identifying reg-
ulatory motifs [2, 3].

The complex procedure of microarray experiments often causes
gene expression data to contain a lot of noise, leading to a sig-
nificant number of spurious coexpression links [5]. Additionally,
some coexpression may be caused by the simultaneous perturba-
tion of multiple biological pathways in the particular experiment
rather than by biological relevance [6]. These spurious coexpres-
sion links often result in the discovery of false modules (sets of
coexpressed genes). To address this problem, recent studies have
focused on integrating multiple gene expression datasets for anal-
ysis. Based on the expectation that biological modules are active
across multiple datasets, these studies aim to discover gene clusters
that appear across multiple datasets. Graph-theoretic approaches
are commonly used in these studies. Each gene expression dataset
is represented as a gene coexpression network, in which nodes cor-
respond to genes and edges correspond to coexpression links be-
tween genes. One approach for extracting gene modules from mul-
tiple networks is mining frequently occurring coexpression subnet-
works in the set of multiple gene coexpression networks.

The gene coexpression networks have unique node labels and
this feature has been exploited to design algorithms that avoid the
subgraph isomorphism problem that introduces challenges for the
general subgraph mining methods. Several pattern enumeration al-
gorithms for mining frequent modules in a set of graphs have been
proposed [7, 10, 18]. However, the pattern enumeration algorithms
do not scale well when applied to massive biological networks, es-
pecially when there are large frequent modules. Moreover, another
challenge in mining for frequent subnetworks is that edges have
to appear in the same supporting networks and does not allow
for missing edges. To overcome the scalability issue, many studies
have focused on aggregating the networks into a summary graph
and discovering modules in the summary graph. Lee et al. [11]
proposed a method that combines frequent coexpression links in
multiple coexpression networks to build a summary graph, and
applied hierarchical clustering and the MCODE [1] algorithms to
mine highly connected modules from the summary graph. The co-
expression links that occur across multiple datasets were shown
to be more likely to represent known functional modules. Directly
clustering the summary graph, however, may lead to the discovery
of false positive modules. The edges in these modules may be scat-
tered across the graphs such that they are frequent and dense in
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the summary graph, but neither frequent nor dense in any of the
original graphs [5].

Numerous algorithms have been proposed to address these lim-
itations. Hu et al. [5] proposed the CODENSE algorithm, a two-
step approach that mines coherent dense subgraphs across a set of
multiple graphs. The CODENSE algorithm mines dense subgraphs
from the summary graph, similar to the approach in [11]. Each
dense subgraph is then mapped to a second-order graph, which is a
graph whose nodes correspond to the edges of the input graph, and
there is an edge between two nodes if there is a high correlation
between occurrence of the two corresponding edges across the en-
tire graph set. In the second step, dense subgraphs are mined from
the second-order graphs. The CODENSE algorithm overcomes the
false positive module problem due to the property that a coherent
subgraph’s second-order graph must be dense.

Huang et al. [6] proposed an algorithm that mines frequent sub-
graphs across a set of multiple graphs by using frequent itemset
mining approach. The problem is mapped to a frequent itemset
mining problem by representing each graph by transactions and
each edge by items. Frequent itemset mining technique is used to
mine frequent edgesets from the graph set. The frequent edgesets
serve as seeds for a biclustering algorithm that uses simulated an-
nealing to maximize an objective function such that the discovered
biclusters are large and have high density of ones. The algorithm
returns the connected components in the biclusters as the final out-
put. The output modules are frequent but not necessarily dense.

Salem et al. [14] proposed the MFMS algorithm, which mines
maximal frequent collections of k-cliques and percolated k-cliques
across a set of multiple graphs. The graph set is first mapped to a
summary graph with edge attributes. The edge attributes are cap-
tured in a binary edge occurrence matrix, where each row corre-
sponds to an edge in the summary graph and each column corre-
sponds to a graph in the graph set, and each entry indicates the
presence of the edge in the graph. Maximal frequent edgesets are
mined from the graph set using maximal itemset mining approach,
and then cliques and percolated cliques are mined from subgraphs
induced by the maximal frequent edgesets. In [13, 15], they pro-
posed an approach that constructs a weighted graph whose nodes
corresponds to the original edges in the coexpression networks.
The weight between two edges is calculated as a combined score
based on the topological similarity between the edges and the oc-
currence similarity.

In Seo et al. [16], we have proposed a two-step algorithm to mine
approximate frequent dense subgraphs from a set of multiple coex-
pression networks. The approximate frequent dense subgraphs are
frequent dense subgraphs that may contain some noise. In the first
step, a binary edge occurrence matrix is constructed from the set
of coexpression networks, and then biclusters with high density
of ones are mined from the edge occurrence matrix. Each edgeset
bicluster corresponds to a approximate frequent edgeset. In the sec-
ond step, dense modules are extracted from the subgraphs induced
by the frequent edgesets. The first step of the algorithm (bicluster-
ing) reports huge number of edgesets, especially for low support
thresholds. This makes the analysis very difficult. Moreover, many
edgesets have large overlap with each other, producing many du-
plicate modules in the final set of frequent dense modules.
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In this work, we propose an algorithm to mine representative
approximate frequent dense subgraphs. The proposed approach
integrates the summarization task into the mining process. After
the representative frequent edgesets are mined, dense modules are
extracted from the subgraphs induced by the representative fre-
quent edgesets. The number of representative frequent edgesets is
much less than the number of all frequent edgeset. Experiments on
Human gene coexpression networks show that representative fre-
quent dense modules are highly enriched with known biological
knowledge.

2 PROBLEM DESCRIPTION

We model gene coexpression networks as undirected, unweighted
graphs. Since each gene occurs at most once in a gene coexpression
network, a coexpression network is modelled as a relation graph,
where each node has a unique label. A relation graph set is a set of
graphs that share a common set of nodes.

Relation Graph Set: A relation graph set is a set of n graphs G =
{G1,Gy,...,Gp} where G; = (V,E;) and E; C V X V. A common
set of nodes V is shared by all graphs.

Figure 1 (a) shows an example of a relation graph set of six graphs.
Note they share a common set of nodes. We represent the n graphs
as a summary graph G(V, E) and an associated binary edge occur-
rence matrix, 8. Each row of the matrix is a binary vector whose
entries represent the presence of the edge in the corresponding

graphs.

Summary Graph and Edge Occurrence Matrix: Given a rela-
tion graph set G = {G1, Gy, ...,Gp} where G; = (V, E;), the set of
the union of all edges in the graphs is denoted by E = {ej, ez, ..., em}
n

\J Ei. The edge occurrence matrix 8 is an m X n binary matrix
i=1

where B;; = 1if ¢; € Ej; 0 otherwise. The relation graph set can

be represented as G = (V, E, B).

Figure 1 (b) illustrates the summary graph and the associated bi-
nary edge occurrence matrix for the relation graph set in (a). For
example, the first row of the edge occurrence matrix shows that
the edge (a, b) is present in graphs {G1, G2, G5, G6}.

Edge-Induced Subgraph: Given a graph G(V, E) and an edgeset
E’ C E, the edge-induced subgraph G’(V’,E’) of G (induced by
edgeset E’ and written as G[E’]) is a graph whose edgeset is E’
and the node set is all the nodes that constitute the endpoints of
the edges, i.e., V' = [JV(e) for all e € E” where V(e) denotes the
endpoints of e.

Note that an edge-induced subgraph does not have isolated nodes
since each node that is present in the induced subgraph has at least
one edge. Since an edge-induced subgraph is uniquely identified
by its edgeset, we refer to the frequent edge-induced subgraph as
a frequent edgeset.

A frequent subgraph of a graph set is a subgraph that occurs in
at least minsup (support threshold) graphs. The supporting graphs
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Figure 1: Steps in mining frequent dense subgraphs: (a) Relation graph set; (b) Summary graph and the binary edge occurrence
matrix generated from the relation graph set; (c) Representative frequent edgesets and subgraphs induced by them; (d) Dense

modules mined from edge-induced subgraphs

of a subgraph is the set of graphs in which the subgraph appears.
sup(G',G) = {Gi1, Giz. -+ . Gk}

such that G’ is a subgraph of G for each G in sup(G’, G) and k is the
number of graphs in which the subgraph appears. When the graph
dataset in understood from the context, we refer to sup(G’, G) sim-
ply as sup(G’).

Frequent Subgraph: Given arelation graph set G = {G1,Ga, ..., Gn},
a minimum support threshold minsup, an edge-induced subgraph

G’ is a frequent subgraph if the number of graphs in sup(G’) is at
least minsup graphs, i.e., [sup(G’)| >= minsup.

The definition of subgraph requires all the edges to appear in the
supporting graph. This is a strict requirement and in gene coex-
pression networks, some links might be dropped due to correlation
cutoff or the links might not show strong correlation becuase of

experimental noise. Thus we relax the constraints and introduce
the approximate frequent subgraph that is a relaxed form of the
frequent subgraph by allowing missing edges (noise).

Approximate Frequent Subgraph: Given a relation graph set
G = {G1,Gy,...,Gp}, a minimum support threshold minsup, and
a noise ratio r, the subgraph induced by an edgeset E’ is an ap-
proximate frequent subgraph if and only if there exists a graph set
D C G such that |D| > minsup and for every edge e € E’, e oc-
curs in at least |_|D| % (1 - r)-| graphs in D, the nearest integer to
D[ * (1 =r).

To ensure that the subgraph appears in a large enough set of
graphs, we require that the subgraph be supported by at least minsup
graphs. The minimum support threshold minsup is essentially the
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number of columns in the binary matrix that support the edgetset.
Moreover, we only mine large edgeset with at least minsize edges.

The noise ratio r is a real number between 0 and 1, which repre-
sents how much noise is allowed. An edge e need not be present in
every graph in D. For example, the graph in the left side of Figure
1 (c) is an approximate frequent subgraph of the relation graph set
in (a) for minsup = 4 and r = 0.25, because every edge in the graph
occurs in at least three out of the four graphs in {G1, G2, G5, G6}.

The set of all approximate frequent subgraphs is large consider-
ing the combinatorial nature of the frequent subgraphs. Moreover,
these subgraphs have high overlap since two frequent subgraphs
can differ by only one or two edges. Therefore, we mine a represen-
tative set of these approximate frequent subgraphs. In the first step
of our algorithm, we mine a set of representative edgesets. A set of
representative edgesets is a subset of the set of edgesets such that
every edgeset not included in the representative set has at least
one similar edgeset in the representative set.

Set of Representative Edgesets: Given a set of edgesets ¥ and
edgeset similarity threshold s, a subset ¥’ C ¥ is a set of repre-
sentative edgesets if for every edgeset E € ¥ \ ¥, there exists an
edgeset E’ € ¥’ such that sim(E,E’) > s, where sim(E, E’) is the
similarity between the two sets.

We are interested in dense subgraphs in these approximate fre-
quent subgraphs as these edge-induced subgraphs are not neces-
sarily dense.

Graph Density: The density of a graph G is 2m/(n(n— 1)) where
m is the number of edges and n is the number of nodes in G. G is
dense if its density is greater than or equal to a minimum density
threshold.

In this work we mine dense subgraphs from representative fre-
quent subgraphs. We follow a two-step approach to mine approx-
imate frequent dense subgraphs as illustrated in Figure 1. In the
first step, we mine a set of representative frequent edgesets us-
ing an online data summarization method, as shown in (b-c). In
(c), the frequent edgesets pruned in the summarization process are
omitted, and only the representative frequent edgesets are shown.
In the second step, we mine dense modules from the subgraphs
induced by the edgesets, as shown (d). For this step, we use the
Dense Module Enumeration (DME) algorithm [4]. We first discuss
the method for mining the set of representative frequent edgesets
from the binary edge occurrence matrix.

3 MINING REPRESENTATIVE FREQUENT
EDGESETS

There are mainly two approaches for mining representative ap-
proximate frequent edgesets. The first approach is to mine all fre-
quent edgesets and then cluster these edgesets and choose a repre-
sentative pattern for each group. The traditional k-medoids algo-
rithm can be employed for clustering. The major challenge with
clustering-based approaches is the need to calculate the pairwise
distance measure between every pair of frequent edgesets. Given
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the size of the set of frequent edgesets, this can be computation-
ally intractable. In order to mine a set of representative frequent
edgesets from a relation graph set, we employ the modified BiBit
algorithm described in [16] and integrate an on-line data summa-
rization method while mining these edgesets. The modified BiBit
algorithm is a biclustering algorithm which mines biclusters with
high density of ones from a binary matrix. The row set of each
bicluster corresponds to a frequent edgeset.

The online data summarization is a data summarization method
in which the data is processed as they are produced. In this case,
the edgesets are processed as they are mined by the biclustering
algorithm. We begin with an empty set of representative edgesets.
When an approximate frequent edgeset is found, we check whether
it has a similar edgeset (based on a user-defined threshold) in the
representative set. If there is no similar edgeset, we add the edgeset
to the set of representative edgesets. As a result, the final set con-
tains edgesets such that every edgeset not in the set has at least one
similar edgeset in the representative set. Moreover, no two edge-
sets in the representative set are similar.

3.1 Similarity Measure

We use the Jaccard similarity coefficient to measure the similarity
between edgesets. The Jaccard similarity coefficient between two
sets is defined as the cardinality of the intersection of the two set
divided by the cardinality of the union of the two sets. More pre-
cisely, the Jaccard similarity coefficient of the two sets A and B is

|AN B
|AU B|

sim(A,B) =

The similarity score ranges between 0 and 1. Roughly, it is the mea-
sure of the degree of overlap between the two sets, with 0 indicat-
ing no similarity and 1 indicating identical sets. In general, the size
of the representative set is smaller for lower value of edgeset simi-
larity threshold. For the special case when the similarity threshold
is set to 1, the set of representative frequent subgraphs is the same
as the set of frequent subgraphs. And for the special case when
the similarity threshold is set to 0, the first encountered frequent
edgeset is the only pattern in the approximate as it is ‘similar’ to
all other edgesets.

3.2 Algorithm

Our algorithm for mining representative frequent edgesets is illus-
trated in Algorithm 1. The algorithm takes a relation graph set that
has the m X n binary edge occurrence matrix 8 in which the rows
correspond to edges and the columns correspond to graphs. In the
algorithm, S(i) denotes the set of columns (graph) that are set to 1
for row j (edge j),ie., S(i) = {j | Bij = 1},and 5(i, j) = S(i) NS(j)
denotes the set of columns that are set to 1 for both edges i and
Jj. For example, in the matrix in Figure 1 (b), S(1) = {1,2,5,6}.
The algorithm selects a pair of rows i and j and generates the
bit-pattern ({i, j}, S(i, j)), which is a tuple of two rows and its
supporting columns. The bit-pattern ({i, j},S(i, j)) is used as a
seed for a bicluster if |S(i, j)| > minsup, and S(i, j) represents
the column set for the bicluster. Only edgepairs that appear in at
least minsup graphs are extended (line 4). The algorithm extends
each edge pairs with edges that can be added without violating
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Algorithm 1: Mining Representative Frequent Dense
Modules
Input :G = (V,E, B)): A relation graph set of n graphs
minSize: minimum number of rows
minsup: minimum number of columns
r: noise ratio
s: edgeset similarity threshold
a: module density threshold
Output: X: Dense Frequent Modules

/* Mining Representative Frequent Edgesets */
1 F <0
2 for every edge pair (i, j) € E do

3 S(i, j) = S(i) N S(j) // common graphs
4 if S(i, j) is new and |S(i, j)| = minsup then

5 I—{ij}

6 for every remainder edge, q € E\ I do

7 if |S(q) N S(i, j)I/1S(i, j)] = 1 —r then

8 | T=Tu{g}

9 if |I| < minsize then

10 L continue

11 similar « FALSE

12 for every edgeset1’ € F do

13 if sim(I,I’) > s then

14 similar « TRUE

15 break

16 if similar is FALSE then

17 L F=FUI

/* Extracting Dense Modules */

18X «—0

19 foreach frequent edgeset F; € ¥ do
20 gi = G[Fi] // edge Induce Subgraph
21 X = XU DME(g;, @)

22 return X

the noise threshold. Each remaining row q is added to the biclus-
ter if |S(q) N S(i, ))|/1S(i, j)| = 1 —r, that is, if S(g) contains some
entries of S(i, j) in such a way that the noise constraint is not vio-
lated (lines 6-8). The result is a bicluster with density greater than
or equal to 1 —r. The row set of the bicluster represents a frequent
edgeset. If the number of rows for a bicluster is less than the min-
imum size threshold, the bicluster is not added to the result (lines
9-10). Before adding the bicluster to the set of representative fre-
quent edgesets X (lines 16-17), the algorithm ensures that no simi-
lar edgeset is already in the representative set (lines 12-15). Finally
dense modules are extracted from the edge-induced subgraph of
the summary graph for each representative frequent edgeset (lines
18-21).
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4 EXPERIMENTS

To evaluate the effectiveness of our method, we mined the set of
representative approximate frequent edgesets and the associated
dense modules from 35 tissue gene coexpression networks con-
structed by the Genetic Network Analysis Tool [12]. The gene co-
expression networks were constructed from Genotype-Tissue Ex-
pression (GTEx) data !. Each coexpression network is constructed
from the gene expression of non-diseased tissue samples. On aver-
age, each coexpression network contains 9,998 genes and 14, 415
links. There are total of 1,548, 622 unique links that appear in at
least one network and 4, 127 edges that appear in at least 20 net-
works, and each link appears in 3.28 networks on average.

4.1 Effect of Data Summarization

To evaluate the effectiveness of the proposed approach, we ran
the algorithm on the binary edge occurrence matrix constructed
from the 35 gene coexpression networks, for support threshold
minsup € {16,17,18, 19,20}, noise threshold r = 0.1, and edge-
set similarity threshold s € {0.5,0.6,0.7,0.8}. Figure 2 (a) shows
how the number of frequent edgesets varies for different edgeset
similarity threshold values. We can see that the number of fre-
quent edgesets decreases with increasing support threshold and
increases with increasing the edgeset similarity threshold. This is
expected because less number of representative edgesets is needed
for lower similarity threshold. Figure 2 (b) shows how the average
edgeset size varies for different edgeset similarity threshold val-
ues. We see that the average edgeset size increases with increasing
edgeset similarity threshold.

Table 1: Comparison of the number of edgesets for support
20 for varying similarity thresholds

noise 0 0.1 0.2 0.3

Without summarization 3,004 3,153 3,224 3,244
With summarization (s = 0.3) 17 13 14 16
With summarization (s = 0.4) 61 38 31 38
With summarization (s = 0.5) 215 141 127 145
With summarization (s = 0.6) 579 613 599 826
With summarization (s = 0.7) 1,546 2,341 2,569 2,993
With summarization (s = 0.8) 2,789 3,138 3,221 3,244

To evaluate the effect of online frequent edgeset summariza-
tion, we mined approximate frequent edgesets and representative
frequent edgesets for minsup = 20 We used edgeset similarity
thresholds 0.3 to 0.8 for mining representative approximate fre-
quent edgesets. Tables 1 shows the reported number of frequent
edgesets for various similarity thresholds. The number of repre-
sentative frequent edgeset increases as we increase the similar-
ity thresholds. For a small similarity threshold, a small number of
edgesets can claim to represent the entire set of approximate fre-
quent edgesets. And for a large similarity threshold, fewer edgesets
are similar to each other and thus the number of representative pat-
terns is larger.
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Figure 2: Number of frequent edgesets and average edgeset size for varying edgeset similarity threshold values

4.2 Topological Analysis of Frequent Edgesets
and Frequent Dense Modules

We ran the algorithm on the binary edge occurrence matrix for
support threshold minsup € {16,17,18, 19, 20}, noise threshold r €
{0,0.1,0.2,0.3}, and edgeset similarity threshold s = 0.6. Figure 3
shows how the number of frequent edgesets and the average edge-
set size vary for different noise threshold values. We see that the
number of frequent edgesets and the average edgeset size both in-
crease with increasing noise because for larger noise. For a large
noise, a seed edgepair has more candidate edges that can be added
without violating the noise threshold.

We then mined dense modules from the subgraphs induced by
the frequent edgesets, using the DME algorithm [4], with density
thresholds 0.5 and 0.6, and only modules of size four or larger were
considered. Table 2 shows the topological properties of the fre-
quent dense modules for minsup = 17,18, 19, 20, noise threshold
r =0,0.1,0.2, and edgeset similarity threshold s = 0.6. M" denotes
the number of frequent edgesets that have at least one dense mod-
ule for the specified density threshold, DM denotes the average
number of dense modules in the edge-induced subgraph of each
edgeset, and V’ denotes the average size of the dense modules. It
shows that the number of edgesets with at least one dense mod-
ule and the average number of dense modules both decrease as the
support threshold is increased.

4.3 Gene Ontology Enrichment Analysis

To assess the biological significance of the reported modules, we

conducted Gene Ontology enrichment analysis of the reported unique

frequent dense modules. The analysis shows that the modules are
enriched with KEGG pathways and molecular functions. A fre-
quent dense module is enriched if it overlaps with the geneset of
a known molecular signature. We used the overrepresentation of
genes with a specific annotation in a gene set using the hybergeo-
metric test with pvalue = 0.01. For biological terms, we used the
KEGG pathway database, which has 186 sets covering 5, 241 genes,
and the GO Molecular Function Ontology, which has 1, 645 sets
covering 15,599 genes. Table 3 shows the percentage of frequent
dense modules that are biologically enriched. Ep; and Eg denote

the percent enriched in GO molecular functions and KEGG path-
ways respectively. The results show that frequent dense modules
with smaller noise ratios are more likely to be enriched. The GO
molecular functions have higher enrichment than KEGG pathways
since there are much more molecular functions than KEGG path-
ways and they cover more genes from the graph dataset. The set
of genes in a frequent dense module can be enriched with multiple
biological annotations. Also, an annotation can be enriched in mul-
tiple frequent dense modules. Table 4 shows the top enriched bio-
logical signatures in the reported modules for sup = 17, noise = 0.1,
and density = 0.5; count indicates the number of frequent dense
modules in which the annotation is enriched.

Figure 4 shows an example of an approximate frequent edgeset
for sup = 17, noise = 0.1. (a) show the submatrix of the edge oc-
currence matrix that shows the occurrences of edges of the edge-
set in the 35 networks. The rows correspond to the edges in the
edgeset, and the columns correspond to coexpression networks.
(b) shows the dense modules mined from the subgraph induced
by the edgeset, using density 0.5. Nodes are labeled by their cor-
responding gene identifiers. The genes in this representative ap-
proximate edgeset are enriched with five KEGG pathways: OXIDA-
TIVE_PHOSPHORYLATION, CARDIAC_MUSCLE_CONTRACTION,
ALZHEIMERS_DISEASE, PARKINSONS_DISEASE, and HUNTING-
TONS_DISEASE. Moreover, two Gene Ontology terms were en-
riched in this edgeset: ELECTRON_TRANSFER_ACTIVITY, and
OXIDOREDUCTASE_ACTIVITY.

5 CONCLUSION

Mining gene modules that are recurrent in multiple gene coex-
pression networks has applications in functional gene annotation
and biomarker discovery. We have proposed a two-step algorithm
to mine frequent dense modules from a set of multiple coexpres-
sion networks. First, we mine a set of representative frequent edge-
sets from the binary edge occurrence matrix constructed from the
set of coexpression networks, using an online data summarization
method. Second, dense modules are extracted from the subgraphs
induced by the frequent edgesets. The key contribution of this
work is that by mining representative edgesets, we addressed the
problem of the large number of edgesets being reported and the
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Figure 3: Number of frequent edgesets and average edgeset size for varying noise ratio values

Table 2: Topological properties of the frequent dense modules

noise 0 0.1 0.2

minsup | density || M’ ‘ DM ‘ v oM ‘ DM ‘ v oM ‘ DM ‘ v’
17 0.5 513 | 11.2 | 4 | 23K | 51.8 | 4.2 | 29K | 206.7 | 4.3
0.6 20 1.2 4 646 47 |42 | 17K | 152 | 44

18 0.5 346 | 106 | 4 | 14K | 428 | 41| 1.8K | 252 | 43
0.6 6 1.2 | 42| 362 4 42 | 11K | 189 | 44

19 0.5 238 | 9.3 4 941 | 327 | 41| 11K | 1878 | 43
0.6 6 1 4 190 32 | 42| 579 146 | 4.4

20 0.5 134 | 9.9 4 499 | 295 | 4.1 | 540 | 153.6 | 4.2
0.6 3 1 4 84 33 | 42| 265 13.1 | 43
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Figure 4: Sample frequent edgeset for minsup = 17 and noise = 0.1, and dense modules in the edgeset for density = 0.5

high overlap between the edgesets. As a result, the analysis is com- ACKNOWLEDGMENTS
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sion networks show that the reported modules are enriched with

known GO molecular functions and KEGG pathways.
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Table 3: GO term enrichment analysis for frequent dense

modules
noise 0 0.1 0.2

minsup | density | Ey | Ex | Em | Ex | Em | Ex
17 0.5 80.4 | 64.3 | 65.5 | 55.7 51 43.4
0.6 90.9 | 45.5 | 80.5 | 60.3 | 68.9 | 49.8

18 0.5 81.6 | 62.6 | 71.1 | 59.6 | 51.3 43
0.6 100 50 83.9 | 56.7 | 68.5 | 49.5

19 0.5 87.2 | 66.5 75 61.9 | 55.2 | 46.7
0.6 100 50 83.8 | 54.1 | 71.7 | 53.3

20 0.5 85.8 | 67.1 | 77.5 | 66.5 | 61.6 52
0.6 100 | 33.3 | 91.2 | 66.7 | 76.4 | 56.1

Table 4: Top enriched biological signatures in the reported
modules for minsup = 17, noise = 0.1, and density = 0.5

GO Molecular Function Count
Structural Constituent Of Ribosome 1996
Rrna Binding 503
5s Rrna Binding 277
Electron Transfer Activity 271
Oxidoreductase Activity Acting OnNadPH | 214
Nadh Dehydrogenase Activity 208
Antigen Binding 194
Immunoglobulin Receptor Binding 175
KEGG Pathway Count
Ribosome 2001
Huntingtons Disease 503
Oxidative Phosphorylation 493
Parkinsons Disease 472
Alzheimers Disease 464
Cardiac Muscle Contraction 240
Autoimmune Thyroid Disease 58
Mapk Signaling Pathway 54
Aminoacyl Trna Biosynthesis 52
Protein Export 41
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