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ABSTRACT

Advances in high-throughputmicroarray and RNA-sequencing tech-

nologies have lead to a rapid accumulation of gene expression data

for various biological conditions across multiple species. Mining

frequent gene modules from a set of multiple gene coexpression

networks has applications in functional gene annotation and biomarker

discovery. Biclustering algorithms have been proposed to allow

for missing coexpression links. Existing approaches report a large

number of edgesets which are computationally intensive to ana-

lyze, and have high overlap among the reported subnetworks. In

this work, we propose an algorithm to mine frequent dense mod-

ules from multiple coexpression networks using an online data

summarization method. Our algorithm mines a succinct set of rep-

resentative subgraphs that have little overlap which reduces the

downstream analysis of the reported modules. Experiments on hu-

man gene expression data show that the reported modules are bi-

ologically significant as evident by the high enrichment of GO

molecular functions and KEGG pathways in the reported modules.
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1 INTRODUCTION

Advancements in high-throughputmicroarray and RNA-sequencing

technologies enabled the collection and analysis of large amount

of gene expression data. Analysis of gene expression data is use-

ful in understanding gene function and gene regulation. Various

conventional clustering techniques, including k-means, hierarchi-

cal, and biclustering approaches, have been employed with limited

success [9]. Several clustering approaches designed specifically for

gene expression data have been proposed, and were shown to be

more effective than the conventional clustering methods on some
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datasets [8, 17]. Recent research has focused on analyzing gene

coexpression networks. A common approach for analyzing gene

expression data is clustering genes based on coexpression. It is be-

lieved that coexpressed genes are likely to be co-functional and co-

regulated, and clustering genes based on coexpression has proven

helpful in predicting unknown gene functions and identifying reg-

ulatory motifs [2, 3].

The complex procedure of microarray experiments often causes

gene expression data to contain a lot of noise, leading to a sig-

nificant number of spurious coexpression links [5]. Additionally,

some coexpression may be caused by the simultaneous perturba-

tion of multiple biological pathways in the particular experiment

rather than by biological relevance [6]. These spurious coexpres-

sion links often result in the discovery of false modules (sets of

coexpressed genes). To address this problem, recent studies have

focused on integrating multiple gene expression datasets for anal-

ysis. Based on the expectation that biological modules are active

acrossmultiple datasets, these studies aim to discover gene clusters

that appear across multiple datasets. Graph-theoretic approaches

are commonly used in these studies. Each gene expression dataset

is represented as a gene coexpression network, in which nodes cor-

respond to genes and edges correspond to coexpression links be-

tween genes. One approach for extracting gene modules frommul-

tiple networks ismining frequently occurring coexpression subnet-

works in the set of multiple gene coexpression networks.

The gene coexpression networks have unique node labels and

this feature has been exploited to design algorithms that avoid the

subgraph isomorphism problem that introduces challenges for the

general subgraphminingmethods. Several pattern enumeration al-

gorithms for mining frequent modules in a set of graphs have been

proposed [7, 10, 18]. However, the pattern enumeration algorithms

do not scale well when applied to massive biological networks, es-

pecially when there are large frequent modules. Moreover, another

challenge in mining for frequent subnetworks is that edges have

to appear in the same supporting networks and does not allow

for missing edges. To overcome the scalability issue, many studies

have focused on aggregating the networks into a summary graph

and discovering modules in the summary graph. Lee et al. [11]

proposed a method that combines frequent coexpression links in

multiple coexpression networks to build a summary graph, and

applied hierarchical clustering and the MCODE [1] algorithms to

mine highly connected modules from the summary graph. The co-

expression links that occur across multiple datasets were shown

to be more likely to represent known functional modules. Directly

clustering the summary graph, however, may lead to the discovery

of false positive modules. The edges in these modules may be scat-

tered across the graphs such that they are frequent and dense in
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the summary graph, but neither frequent nor dense in any of the

original graphs [5].

Numerous algorithms have been proposed to address these lim-

itations. Hu et al. [5] proposed the CODENSE algorithm, a two-

step approach that mines coherent dense subgraphs across a set of

multiple graphs. The CODENSE algorithm mines dense subgraphs

from the summary graph, similar to the approach in [11]. Each

dense subgraph is thenmapped to a second-order graph, which is a

graphwhose nodes correspond to the edges of the input graph, and

there is an edge between two nodes if there is a high correlation

between occurrence of the two corresponding edges across the en-

tire graph set. In the second step, dense subgraphs are mined from

the second-order graphs. The CODENSE algorithm overcomes the

false positive module problem due to the property that a coherent

subgraph’s second-order graph must be dense.

Huang et al. [6] proposed an algorithm that mines frequent sub-

graphs across a set of multiple graphs by using frequent itemset

mining approach. The problem is mapped to a frequent itemset

mining problem by representing each graph by transactions and

each edge by items. Frequent itemset mining technique is used to

mine frequent edgesets from the graph set. The frequent edgesets

serve as seeds for a biclustering algorithm that uses simulated an-

nealing to maximize an objective function such that the discovered

biclusters are large and have high density of ones. The algorithm

returns the connected components in the biclusters as the final out-

put. The output modules are frequent but not necessarily dense.

Salem et al. [14] proposed the MFMS algorithm, which mines

maximal frequent collections of k-cliques and percolated k-cliques

across a set of multiple graphs. The graph set is first mapped to a

summary graph with edge attributes. The edge attributes are cap-

tured in a binary edge occurrence matrix, where each row corre-

sponds to an edge in the summary graph and each column corre-

sponds to a graph in the graph set, and each entry indicates the

presence of the edge in the graph. Maximal frequent edgesets are

mined from the graph set using maximal itemset mining approach,

and then cliques and percolated cliques are mined from subgraphs

induced by the maximal frequent edgesets. In [13, 15], they pro-

posed an approach that constructs a weighted graph whose nodes

corresponds to the original edges in the coexpression networks.

The weight between two edges is calculated as a combined score

based on the topological similarity between the edges and the oc-

currence similarity.

In Seo et al. [16], we have proposed a two-step algorithm tomine

approximate frequent dense subgraphs from a set of multiple coex-

pression networks. The approximate frequent dense subgraphs are

frequent dense subgraphs that may contain some noise. In the first

step, a binary edge occurrence matrix is constructed from the set

of coexpression networks, and then biclusters with high density

of ones are mined from the edge occurrence matrix. Each edgeset

bicluster corresponds to a approximate frequent edgeset. In the sec-

ond step, dense modules are extracted from the subgraphs induced

by the frequent edgesets. The first step of the algorithm (bicluster-

ing) reports huge number of edgesets, especially for low support

thresholds. This makes the analysis very difficult. Moreover, many

edgesets have large overlap with each other, producing many du-

plicate modules in the final set of frequent dense modules.

In this work, we propose an algorithm to mine representative

approximate frequent dense subgraphs. The proposed approach

integrates the summarization task into the mining process. After

the representative frequent edgesets are mined, dense modules are

extracted from the subgraphs induced by the representative fre-

quent edgesets. The number of representative frequent edgesets is

much less than the number of all frequent edgeset. Experiments on

Human gene coexpression networks show that representative fre-

quent dense modules are highly enriched with known biological

knowledge.

2 PROBLEM DESCRIPTION

We model gene coexpression networks as undirected, unweighted

graphs. Since each gene occurs at most once in a gene coexpression

network, a coexpression network is modelled as a relation graph,

where each node has a unique label. A relation graph set is a set of

graphs that share a common set of nodes.

Relation Graph Set: A relation graph set is a set of �푛 graphs G =

{�퐺1,�퐺2, . . . ,�퐺=} where �퐺8 = (�푉 , �퐸8 ) and �퐸8 ⊆ �푉 × �푉 . A common

set of nodes �푉 is shared by all graphs.

Figure 1 (a) shows an example of a relation graph set of six graphs.

Note they share a common set of nodes. We represent the �푛 graphs

as a summary graph�퐺 (�푉 , �퐸) and an associated binary edge occur-

rence matrix, B. Each row of the matrix is a binary vector whose

entries represent the presence of the edge in the corresponding

graphs.

Summary Graph and Edge Occurrence Matrix: Given a rela-

tion graph set G = {�퐺1,�퐺2, . . . ,�퐺=} where �퐺8 = (�푉 , �퐸8 ), the set of

the union of all edges in the graphs is denoted by�퐸 = {�푒1, �푒2, . . . , �푒<} =
=
⋃

8=1
�퐸8 . The edge occurrence matrix B is an �푚 × �푛 binary matrix

where B8 9 = 1 if �푒8 ∈ �퐸 9 ; 0 otherwise. The relation graph set can

be represented as G = (�푉 , �퐸,B).

Figure 1 (b) illustrates the summary graph and the associated bi-

nary edge occurrence matrix for the relation graph set in (a). For

example, the first row of the edge occurrence matrix shows that

the edge (�푎,�푏) is present in graphs {�퐺1,�퐺2,�퐺5,�퐺6}.

Edge-Induced Subgraph: Given a graph �퐺 (�푉 , �퐸) and an edgeset

�퐸 ′ ⊆ �퐸, the edge-induced subgraph �퐺 ′(�푉 ′, �퐸 ′) of �퐺 (induced by

edgeset �퐸 ′ and written as �퐺 [�퐸 ′]) is a graph whose edgeset is �퐸 ′

and the node set is all the nodes that constitute the endpoints of

the edges, i.e., �푉 ′
=

⋃

�푉 (�푒) for all �푒 ∈ �퐸 ′ where �푉 (�푒) denotes the

endpoints of �푒 .

Note that an edge-induced subgraph does not have isolated nodes

since each node that is present in the induced subgraph has at least

one edge. Since an edge-induced subgraph is uniquely identified

by its edgeset, we refer to the frequent edge-induced subgraph as

a frequent edgeset.

A frequent subgraph of a graph set is a subgraph that occurs in

at least�푚�푖�푛�푠�푢�푝 (support threshold) graphs. The supporting graphs
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Figure 1: Steps inmining frequent dense subgraphs: (a) Relation graph set; (b) Summary graph and the binary edge occurrence

matrix generated from the relation graph set; (c) Representative frequent edgesets and subgraphs induced by them; (d) Dense

modules mined from edge-induced subgraphs

of a subgraph is the set of graphs in which the subgraph appears.

�푠�푢�푝 (�퐺 ′,G) = {�퐺81,�퐺82, · · · ,�퐺8: }

such that�퐺 ′ is a subgraph of�퐺 for each�퐺 in �푠�푢�푝 (�퐺 ′,G) and�푘 is the

number of graphs in which the subgraph appears. When the graph

dataset in understood from the context, we refer to �푠�푢�푝 (�퐺 ′,G) sim-

ply as �푠�푢�푝 (�퐺 ′).

Frequent Subgraph:Given a relation graph setG = {�퐺1,�퐺2, . . . ,�퐺=},

a minimum support threshold�푚�푖�푛�푠�푢�푝 , an edge-induced subgraph

�퐺 ′ is a frequent subgraph if the number of graphs in �푠�푢�푝 (�퐺 ′) is at

least�푚�푖�푛�푠�푢�푝 graphs, i.e., |�푠�푢�푝 (�퐺 ′) | >=�푚�푖�푛�푠�푢�푝 .

The definition of subgraph requires all the edges to appear in the

supporting graph. This is a strict requirement and in gene coex-

pression networks, some links might be dropped due to correlation

cutoff or the links might not show strong correlation becuase of

experimental noise. Thus we relax the constraints and introduce

the approximate frequent subgraph that is a relaxed form of the

frequent subgraph by allowing missing edges (noise).

Approximate Frequent Subgraph: Given a relation graph set

G = {�퐺1,�퐺2, . . . ,�퐺=}, a minimum support threshold�푚�푖�푛�푠�푢�푝 , and

a noise ratio �푟 , the subgraph induced by an edgeset �퐸 ′ is an ap-

proximate frequent subgraph if and only if there exists a graph set

�퐷 ⊆ G such that |�퐷 | ≥ �푚�푖�푛�푠�푢�푝 and for every edge �푒 ∈ �퐸 ′, �푒 oc-

curs in at least
⌊

|�퐷 | ∗ (1 − �푟 )
⌉

graphs in �퐷 , the nearest integer to

|�퐷 | ∗ (1 − �푟 ).

To ensure that the subgraph appears in a large enough set of

graphs, we require that the subgraph be supported by at least�푚�푖�푛�푠�푢�푝

graphs. The minimum support threshold�푚�푖�푛�푠�푢�푝 is essentially the
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number of columns in the binary matrix that support the edgetset.

Moreover, we only mine large edgeset with at least�푚�푖�푛�푠�푖�푧�푒 edges.

The noise ratio �푟 is a real number between 0 and 1, which repre-

sents howmuch noise is allowed. An edge �푒 need not be present in

every graph in �퐷 . For example, the graph in the left side of Figure

1 (c) is an approximate frequent subgraph of the relation graph set

in (a) for�푚�푖�푛�푠�푢�푝 = 4 and �푟 = 0.25, because every edge in the graph

occurs in at least three out of the four graphs in {�퐺1,�퐺2,�퐺5,�퐺6}.

The set of all approximate frequent subgraphs is large consider-

ing the combinatorial nature of the frequent subgraphs. Moreover,

these subgraphs have high overlap since two frequent subgraphs

can differ by only one or two edges. Therefore, we mine a represen-

tative set of these approximate frequent subgraphs. In the first step

of our algorithm, we mine a set of representative edgesets. A set of

representative edgesets is a subset of the set of edgesets such that

every edgeset not included in the representative set has at least

one similar edgeset in the representative set.

Set of Representative Edgesets: Given a set of edgesets F and

edgeset similarity threshold �푠 , a subset F ′ ⊆ F is a set of repre-

sentative edgesets if for every edgeset �퐸 ∈ F \ F ′, there exists an

edgeset �퐸 ′ ∈ F ′ such that �푠�푖�푚(�퐸, �퐸 ′) ≥ �푠 , where �푠�푖�푚(�퐸, �퐸 ′) is the

similarity between the two sets.

We are interested in dense subgraphs in these approximate fre-

quent subgraphs as these edge-induced subgraphs are not neces-

sarily dense.

Graph Density: The density of a graph�퐺 is 2�푚/(�푛(�푛 − 1)) where

�푚 is the number of edges and �푛 is the number of nodes in �퐺 . �퐺 is

dense if its density is greater than or equal to a minimum density

threshold.

In this work we mine dense subgraphs from representative fre-

quent subgraphs. We follow a two-step approach to mine approx-

imate frequent dense subgraphs as illustrated in Figure 1. In the

first step, we mine a set of representative frequent edgesets us-

ing an online data summarization method, as shown in (b-c). In

(c), the frequent edgesets pruned in the summarization process are

omitted, and only the representative frequent edgesets are shown.

In the second step, we mine dense modules from the subgraphs

induced by the edgesets, as shown (d). For this step, we use the

Dense Module Enumeration (DME) algorithm [4]. We first discuss

the method for mining the set of representative frequent edgesets

from the binary edge occurrence matrix.

3 MINING REPRESENTATIVE FREQUENT
EDGESETS

There are mainly two approaches for mining representative ap-

proximate frequent edgesets. The first approach is to mine all fre-

quent edgesets and then cluster these edgesets and choose a repre-

sentative pattern for each group. The traditional k-medoids algo-

rithm can be employed for clustering. The major challenge with

clustering-based approaches is the need to calculate the pairwise

distance measure between every pair of frequent edgesets. Given

the size of the set of frequent edgesets, this can be computation-

ally intractable. In order to mine a set of representative frequent

edgesets from a relation graph set, we employ the modified BiBit

algorithm described in [16] and integrate an on-line data summa-

rization method while mining these edgesets. The modified BiBit

algorithm is a biclustering algorithm which mines biclusters with

high density of ones from a binary matrix. The row set of each

bicluster corresponds to a frequent edgeset.

The online data summarization is a data summarization method

in which the data is processed as they are produced. In this case,

the edgesets are processed as they are mined by the biclustering

algorithm. We begin with an empty set of representative edgesets.

When an approximate frequent edgeset is found, we checkwhether

it has a similar edgeset (based on a user-defined threshold) in the

representative set. If there is no similar edgeset, we add the edgeset

to the set of representative edgesets. As a result, the final set con-

tains edgesets such that every edgeset not in the set has at least one

similar edgeset in the representative set. Moreover, no two edge-

sets in the representative set are similar.

3.1 Similarity Measure

We use the Jaccard similarity coefficient to measure the similarity

between edgesets. The Jaccard similarity coefficient between two

sets is defined as the cardinality of the intersection of the two set

divided by the cardinality of the union of the two sets. More pre-

cisely, the Jaccard similarity coefficient of the two sets �퐴 and �퐵 is

�푠�푖�푚(�퐴, �퐵) =
|�퐴 ∩ �퐵 |

|�퐴 ∪ �퐵 |

The similarity score ranges between 0 and 1. Roughly, it is the mea-

sure of the degree of overlap between the two sets, with 0 indicat-

ing no similarity and 1 indicating identical sets. In general, the size

of the representative set is smaller for lower value of edgeset simi-

larity threshold. For the special case when the similarity threshold

is set to 1, the set of representative frequent subgraphs is the same

as the set of frequent subgraphs. And for the special case when

the similarity threshold is set to 0, the first encountered frequent

edgeset is the only pattern in the approximate as it is ‘similar’ to

all other edgesets.

3.2 Algorithm

Our algorithm for mining representative frequent edgesets is illus-

trated in Algorithm 1. The algorithm takes a relation graph set that

has the�푚 ×�푛 binary edge occurrence matrix B in which the rows

correspond to edges and the columns correspond to graphs. In the

algorithm, �푆 (�푖) denotes the set of columns (graph) that are set to 1

for row �푗 (edge �푗 ), i.e., �푆 (�푖) = { �푗 | B8 9 = 1}, and �푆 (�푖, �푗) = �푆 (�푖)∩�푆 ( �푗)

denotes the set of columns that are set to 1 for both edges �푖 and

�푗 . For example, in the matrix in Figure 1 (b), �푆 (1) = {1, 2, 5, 6}.

The algorithm selects a pair of rows �푖 and �푗 and generates the

bit-pattern ({�푖, �푗}, �푆 (�푖, �푗)), which is a tuple of two rows and its

supporting columns. The bit-pattern ({�푖, �푗}, �푆 (�푖, �푗)) is used as a

seed for a bicluster if |�푆 (�푖, �푗) | ≥ �푚�푖�푛�푠�푢�푝 , and �푆 (�푖, �푗) represents

the column set for the bicluster. Only edgepairs that appear in at

least�푚�푖�푛�푠�푢�푝 graphs are extended (line 4). The algorithm extends

each edge pairs with edges that can be added without violating
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Algorithm 1: Mining Representative Frequent Dense

Modules

Input :G = (�푉 , �퐸,B)): A relation graph set of �푛 graphs

�푚�푖�푛�푆�푖�푧�푒 : minimum number of rows

�푚�푖�푛�푠�푢�푝: minimum number of columns

�푟 : noise ratio

�푠: edgeset similarity threshold

�훼 : module density threshold

Output :X: Dense Frequent Modules

/* Mining Representative Frequent Edgesets */

1 F ← ∅

2 for every edge pair (�푖, �푗) ∈ �퐸 do

3 �푆 (�푖, �푗) = �푆 (�푖) ∩ �푆 ( �푗) // common graphs

4 if �푆 (�푖, �푗) is new and |�푆 (�푖, �푗) | ≥ �푚�푖�푛�푠�푢�푝 then

5 �퐼 ← {�푖, �푗}

6 for every remainder edge, �푞 ∈ �퐸 \ �퐼 do

7 if |�푆 (�푞) ∩ �푆 (�푖, �푗) |/|�푆 (�푖, �푗) | ≥ 1 − �푟 then

8 �퐼 = �퐼 ∪ {�푞}

9 if |�퐼 | < �푚�푖�푛�푠�푖�푧�푒 then

10 continue

11 �푠�푖�푚�푖�푙�푎�푟 ← �퐹�퐴�퐿�푆�퐸

12 for every edgeset �퐼 ′ ∈ F do

13 if �푠�푖�푚(�퐼 , �퐼 ′) ≥ �푠 then

14 �푠�푖�푚�푖�푙�푎�푟 ← �푇�푅�푈�퐸

15 break

16 if �푠�푖�푚�푖�푙�푎�푟 is �퐹�퐴�퐿�푆�퐸 then

17 F = F ∪ �퐼

/* Extracting Dense Modules */

18 X ← ∅

19 foreach frequent edgeset �퐹8 ∈ F do

20 �푔8 = �퐺 [�퐹8 ] // edge Induce Subgraph

21 X = X∪ DME(�푔8 , �훼)

22 return X

the noise threshold. Each remaining row �푞 is added to the biclus-

ter if |�푆 (�푞) ∩ �푆 (�푖, �푗) |/|�푆 (�푖, �푗) | ≥ 1 − �푟 , that is, if �푆 (�푞) contains some

entries of �푆 (�푖, �푗) in such a way that the noise constraint is not vio-

lated (lines 6-8). The result is a bicluster with density greater than

or equal to 1− �푟 . The row set of the bicluster represents a frequent

edgeset. If the number of rows for a bicluster is less than the min-

imum size threshold, the bicluster is not added to the result (lines

9-10). Before adding the bicluster to the set of representative fre-

quent edgesets X (lines 16-17), the algorithm ensures that no simi-

lar edgeset is already in the representative set (lines 12-15). Finally

dense modules are extracted from the edge-induced subgraph of

the summary graph for each representative frequent edgeset (lines

18-21).

4 EXPERIMENTS

To evaluate the effectiveness of our method, we mined the set of

representative approximate frequent edgesets and the associated

dense modules from 35 tissue gene coexpression networks con-

structed by the Genetic Network Analysis Tool [12]. The gene co-

expression networks were constructed from Genotype-Tissue Ex-

pression (GTEx) data 1. Each coexpression network is constructed

from the gene expression of non-diseased tissue samples. On aver-

age, each coexpression network contains 9, 998 genes and 14, 415

links. There are total of 1, 548, 622 unique links that appear in at

least one network and 4, 127 edges that appear in at least 20 net-

works, and each link appears in 3.28 networks on average.

4.1 Effect of Data Summarization

To evaluate the effectiveness of the proposed approach, we ran

the algorithm on the binary edge occurrence matrix constructed

from the 35 gene coexpression networks, for support threshold

�푚�푖�푛�푠�푢�푝 ∈ {16, 17, 18, 19, 20}, noise threshold �푟 = 0.1, and edge-

set similarity threshold �푠 ∈ {0.5, 0.6, 0.7, 0.8}. Figure 2 (a) shows

how the number of frequent edgesets varies for different edgeset

similarity threshold values. We can see that the number of fre-

quent edgesets decreases with increasing support threshold and

increases with increasing the edgeset similarity threshold. This is

expected because less number of representative edgesets is needed

for lower similarity threshold. Figure 2 (b) shows how the average

edgeset size varies for different edgeset similarity threshold val-

ues. We see that the average edgeset size increases with increasing

edgeset similarity threshold.

Table 1: Comparison of the number of edgesets for support

20 for varying similarity thresholds

noise 0 0.1 0.2 0.3

Without summarization 3,004 3,153 3,224 3,244

With summarization (�푠 = 0.3) 17 13 14 16

With summarization (�푠 = 0.4) 61 38 31 38

With summarization (�푠 = 0.5) 215 141 127 145

With summarization (�푠 = 0.6) 579 613 599 826

With summarization (�푠 = 0.7) 1,546 2,341 2,569 2,993

With summarization (�푠 = 0.8) 2,789 3,138 3,221 3,244

To evaluate the effect of online frequent edgeset summariza-

tion, we mined approximate frequent edgesets and representative

frequent edgesets for �푚�푖�푛�푠�푢�푝 = 20 We used edgeset similarity

thresholds 0.3 to 0.8 for mining representative approximate fre-

quent edgesets. Tables 1 shows the reported number of frequent

edgesets for various similarity thresholds. The number of repre-

sentative frequent edgeset increases as we increase the similar-

ity thresholds. For a small similarity threshold, a small number of

edgesets can claim to represent the entire set of approximate fre-

quent edgesets. And for a large similarity threshold, fewer edgesets

are similar to each other and thus the number of representative pat-

terns is larger.

1https://www.gtexportal.org/

https://www.gtexportal.org/
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(a) Number ofEdgesets vs. Similarity Threshold (b) AverageEdgeset Size vs. Similarity Threshold

Figure 2: Number of frequent edgesets and average edgeset size for varying edgeset similarity threshold values

4.2 Topological Analysis of Frequent Edgesets
and Frequent Dense Modules

We ran the algorithm on the binary edge occurrence matrix for

support threshold�푚�푖�푛�푠�푢�푝 ∈ {16, 17, 18, 19, 20}, noise threshold �푟 ∈

{0, 0.1, 0.2, 0.3}, and edgeset similarity threshold �푠 = 0.6. Figure 3

shows how the number of frequent edgesets and the average edge-

set size vary for different noise threshold values. We see that the

number of frequent edgesets and the average edgeset size both in-

crease with increasing noise because for larger noise. For a large

noise, a seed edgepair has more candidate edges that can be added

without violating the noise threshold.

We then mined dense modules from the subgraphs induced by

the frequent edgesets, using the DME algorithm [4], with density

thresholds 0.5 and 0.6, and only modules of size four or larger were

considered. Table 2 shows the topological properties of the fre-

quent dense modules for �푚�푖�푛�푠�푢�푝 = 17, 18, 19, 20, noise threshold

�푟 = 0, 0.1, 0.2, and edgeset similarity threshold �푠 = 0.6. �푀 ′ denotes

the number of frequent edgesets that have at least one dense mod-

ule for the specified density threshold, �퐷�푀 denotes the average

number of dense modules in the edge-induced subgraph of each

edgeset, and �푉 ′ denotes the average size of the dense modules. It

shows that the number of edgesets with at least one dense mod-

ule and the average number of dense modules both decrease as the

support threshold is increased.

4.3 Gene Ontology Enrichment Analysis

To assess the biological significance of the reported modules, we

conductedGeneOntology enrichment analysis of the reported unique

frequent dense modules. The analysis shows that the modules are

enriched with KEGG pathways and molecular functions. A fre-

quent dense module is enriched if it overlaps with the geneset of

a known molecular signature. We used the overrepresentation of

genes with a specific annotation in a gene set using the hybergeo-

metric test with �푝�푣�푎�푙�푢�푒 = 0.01. For biological terms, we used the

KEGG pathway database, which has 186 sets covering 5, 241 genes,

and the GO Molecular Function Ontology, which has 1, 645 sets

covering 15, 599 genes. Table 3 shows the percentage of frequent

dense modules that are biologically enriched. �퐸" and �퐸 denote

the percent enriched in GO molecular functions and KEGG path-

ways respectively. The results show that frequent dense modules

with smaller noise ratios are more likely to be enriched. The GO

molecular functions have higher enrichment than KEGG pathways

since there are much more molecular functions than KEGG path-

ways and they cover more genes from the graph dataset. The set

of genes in a frequent dense module can be enriched with multiple

biological annotations. Also, an annotation can be enriched in mul-

tiple frequent dense modules. Table 4 shows the top enriched bio-

logical signatures in the reportedmodules for �푠�푢�푝 = 17,�푛�표�푖�푠�푒 = 0.1,

and �푑�푒�푛�푠�푖�푡~ = 0.5; count indicates the number of frequent dense

modules in which the annotation is enriched.

Figure 4 shows an example of an approximate frequent edgeset

for �푠�푢�푝 = 17, �푛�표�푖�푠�푒 = 0.1. (a) show the submatrix of the edge oc-

currence matrix that shows the occurrences of edges of the edge-

set in the 35 networks. The rows correspond to the edges in the

edgeset, and the columns correspond to coexpression networks.

(b) shows the dense modules mined from the subgraph induced

by the edgeset, using density 0.5. Nodes are labeled by their cor-

responding gene identifiers. The genes in this representative ap-

proximate edgeset are enriched with five KEGG pathways: OXIDA-

TIVE_PHOSPHORYLATION, CARDIAC_MUSCLE_CONTRACTION,

ALZHEIMERS_DISEASE, PARKINSONS_DISEASE, andHUNTING-

TONS_DISEASE. Moreover, two Gene Ontology terms were en-

riched in this edgeset: ELECTRON_TRANSFER_ACTIVITY, and

OXIDOREDUCTASE_ACTIVITY.

5 CONCLUSION

Mining gene modules that are recurrent in multiple gene coex-

pression networks has applications in functional gene annotation

and biomarker discovery. We have proposed a two-step algorithm

to mine frequent dense modules from a set of multiple coexpres-

sion networks. First, we mine a set of representative frequent edge-

sets from the binary edge occurrence matrix constructed from the

set of coexpression networks, using an online data summarization

method. Second, dense modules are extracted from the subgraphs

induced by the frequent edgesets. The key contribution of this

work is that by mining representative edgesets, we addressed the

problem of the large number of edgesets being reported and the
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(a) Number of Edgesets vs. Noise Ratio (b) AverageEdgeset Size vs. Noise Ratio

Figure 3: Number of frequent edgesets and average edgeset size for varying noise ratio values

Table 2: Topological properties of the frequent dense modules

noise 0 0.1 0.2

minsup density �푀 ′ �퐷�푀 �푉 ′ �푀 ′ �퐷�푀 �푉 ′ �푀 ′ �퐷�푀 �푉 ′

17
0.5 513 11.2 4 2.3 K 51.8 4.2 2.9 K 206.7 4.3

0.6 20 1.2 4 646 4.7 4.2 1.7 K 15.2 4.4

18
0.5 346 10.6 4 1.4 K 42.8 4.1 1.8 K 252 4.3

0.6 6 1.2 4.2 362 4 4.2 1.1 K 18.9 4.4

19
0.5 238 9.3 4 941 32.7 4.1 1.1 K 187.8 4.3

0.6 6 1 4 190 3.2 4.2 579 14.6 4.4

20
0.5 134 9.9 4 499 29.5 4.1 540 153.6 4.2

0.6 3 1 4 84 3.3 4.2 265 13.1 4.3

(a) Submatrix for Frequent Edgeset (b) Frequent Dense Modules

Figure 4: Sample frequent edgeset for�푚�푖�푛�푠�푢�푝 = 17 and �푛�표�푖�푠�푒 = 0.1, and dense modules in the edgeset for �푑�푒�푛�푠�푖�푡~ = 0.5

high overlap between the edgesets. As a result, the analysis is com-

putationally less intensive and the redundancy between the re-

poted modules in reduced. Experiments on human gene coexpres-

sion networks show that the reported modules are enriched with

known GO molecular functions and KEGG pathways.
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Table 3: GO term enrichment analysis for frequent dense

modules

noise 0 0.1 0.2

minsup density �퐸" �퐸 �퐸" �퐸 �퐸" �퐸 

17
0.5 80.4 64.3 65.5 55.7 51 43.4

0.6 90.9 45.5 80.5 60.3 68.9 49.8

18
0.5 81.6 62.6 71.1 59.6 51.3 43

0.6 100 50 83.9 56.7 68.5 49.5

19
0.5 87.2 66.5 75 61.9 55.2 46.7

0.6 100 50 83.8 54.1 71.7 53.3

20
0.5 85.8 67.1 77.5 66.5 61.6 52

0.6 100 33.3 91.2 66.7 76.4 56.1

Table 4: Top enriched biological signatures in the reported

modules for�푚�푖�푛�푠�푢�푝 = 17, �푛�표�푖�푠�푒 = 0.1, and �푑�푒�푛�푠�푖�푡~ = 0.5

GO Molecular Function Count

Structural Constituent Of Ribosome 1996

Rrna Binding 503

5s Rrna Binding 277

Electron Transfer Activity 271

Oxidoreductase Activity Acting On Nad P H 214

Nadh Dehydrogenase Activity 208

Antigen Binding 194

Immunoglobulin Receptor Binding 175

KEGG Pathway Count

Ribosome 2001

Huntingtons Disease 503

Oxidative Phosphorylation 493

Parkinsons Disease 472

Alzheimers Disease 464

Cardiac Muscle Contraction 240

Autoimmune Thyroid Disease 58

Mapk Signaling Pathway 54

Aminoacyl Trna Biosynthesis 52

Protein Export 41
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