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ABSTRACT

Gene expression data for multiple biological and environmental

conditions is being collected for multiple species. Functional mod-

ules and subnetwork biomarkers discovery have traditionally been

based on analyzing a single gene expression dataset. Research has

focused on discovering modules from multiple gene expression

datasets. Gene coexpression network mining methods have been

proposed for mining frequent functional modules. Moreover, bi-

clustering algorithms have been proposed to allow for missing co-

expression links. Existing approaches report a large number of

edgesets that have high overlap. In this work, we propose an algo-

rithm to mine frequent dense modules from multiple coexpression

networks using a post-processing data summarizationmethod. Our

algorithm mines a succinct set of representative subgraphs that

have little overlap which reduce the downstream analysis of the

reported modules. Experiments on human gene expression data

show that the reported modules are biologically significant as evi-

dent by Gene Ontology molecular functions and KEGG pathways

enrichment.
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1 INTRODUCTION

Breakthroughs in RNA-sequencing and high-throughput technolo-

gies have made it possible to collect and analyze massive amount

of gene expression data. Gene expression data analysis is an effec-

tive way to understand gene function and gene regulation. Con-

ventional clustering methods such as k-means, hierarchical, and

biclustering approaches have been used with limited success [11].

Clustering approaches designed specifically for gene expression
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data have been proposed and were shown to be more effective

than conventional methods on some datasets [10, 19]. Recent re-

search focus on the analysis of gene coexpression networks. One

of the common approaches for gene expression data anaylsis is to

cluster genes based on coexpression, as coexpressed genes tend to

be co-functional and co-regulated and clustering genes based on

coexpression has proven useful in gene function prediction and

regulatory motif identification [2, 4].

Gene expression data often contain a lot of noise due to the com-

plex procedure ofmicroarray experiments, resulting in a high num-

ber of spurious coexpression links [7]. Additionally, the simultane-

ous perturbation of multiple biological pathways in the particular

experiment may cause coexpressions that have no biological rele-

vance [8]. The spurious coexpression links often cause the discov-

ery of false gene modules. To overcome this problem, recent stud-

ies have focused on integrating multiple gene expression datasets.

The goal of these studies is to mine gene clusters that appear in

multiple datasets, based on the expectation that biological modules

are active acrossmultiple datasets. Graph-theoretic approaches are

often used in these studies. Each gene expression dataset is repre-

sented as a gene coexpression network, which is a graph where

the nodes correspond to genes and the edges correspond to coex-

pression links between the genes. One approach to extract gene

modules from multiple gene expression networks is to mine fre-

quently occurring subnetworks in the set of multiple coexpression

networks.

Gene coexpression networks have a property that each node has

a unique label. This property can be utilized to design algorithms to

avoid the subgraph isomorphism problem, which introduces chal-

lenges for the general subgraph mining methods. A number of pat-

tern enumeration algorithms to mine frequent modules from a set

of graphs have been proposed [9, 12, 20]. The pattern enumeration

algorithms, however, do not scale well when applied to large bio-

logical networks, especially when the size of the frequent modules

are themselves large. Moreover, the edges must appear in the same

supporting networks and missing edges are not allowed, which

introduce additional challenges in mining frequent subnetworks.

To address these issues, several studies have focused on combin-

ing the networks into a summary graph and mining modules in

the summary graph. Lee et al. [13] proposed a method to build a

summary graph by combining coexpression links that appear fre-

quently accross multiple coexpression networks, and applied hier-

archical clustering and the MCODE [1] algorithm to mine highly

connected modules in the summary graph. It was shown that the

coexpression links that appear in multiple datasets are more likely

to represent known functional modules. However, clustering the

https://doi.org/10.1145/3388440.3415989
https://doi.org/10.1145/3388440.3415989


BCB ’20, September 21–24, 2020, Virtual Event, USA Seo and Salem

summary graph directly may result in mining false positive mod-

ules. The edges in the false positive modules may be scattered

across the graphs such that these modules are neither frequent nor

dense in any of the original graphs, and yet they are frequent and

dense in the summary graph [7].

Several algorithms have been proposed to overcome these limi-

tations. The CODENSE [7] algorithm is a two-step approach that

mines coherent dense subgraphs across a set of multiple graphs. It

mines dense subgraphs from the summary graph, similar to the ap-

proach in [13]. A second order graph is generated for each dense

graph where edges in the second order graph denote high occur-

rence similarity. In the second step, dense subgraphs are mined

from the second-order graphs. Due to the property that a coher-

ent subgraph’s second-order graph must be dense, the CODENSE

algorithm is not affected by the false positive module problem.

Huang et al. [8] proposed an algorithm to mine frequent sub-

graphs in a set of multiple graphs using frequent itemset mining

approach. Frequent edgesets are mined using an approach similar

to itemset mining and then each frequent edgeset serve as a seed

for a simulated annealing based biclustering algorithmwhich max-

imizes an objective function such that the extracted biclusters are

large and have high density of ones. Finally, the connected com-

ponents in the subgraphs induced by the biclusters are returned as

the final output. These modules are frequent but may not be dense.

The MFMS [16] algorithm mines maximal frequent collections

of cliques and percolated cliques from a set of multiple graphs.

A hybrid graph approach is used in [15, 17], where a weighted

graph is constructed. In the hybrid graph, nodes correspond to

the original edges in the coexpression networks, and a combined

score based on the topological similarity between the edges and

the occurrence similarity is used to determine the weight between

two edges. Dense subgraphs are then extracted from the weighted

graph.

In [18], we have proposed a two-step algorithm that mines ap-

proximate frequent dense subgraphs across a set of multiple gene

coexpression networks. An approximate frequent dense subgraph

is a frequent dense subgraph that may contain noise. The first step

is to construct a binary edge occurrence matrix from a set of gene

coexpression networks and mine biclusters with high density of

ones in the matrix. Each bicluster corresponds to an approximate

frequent edgeset. The second step is to mine dense modules from

the subgraphs induced by the approximate frequent edgesets. The

biclustering step in the algorithm returns a huge number of fre-

quent edgesets, especially for lower support threshold values. The

large number of edgesets poses a challenge in analysis. Further-

more, the algorithm produces a large number of duplicate modules

in the final set of frequent dense modules due to the edgesets hav-

ing high overlap with each other.

In this work, we propose an algorithm to address this problem.

An overview of the steps of our proposed approach is shown in

Figure 1. Our algorithm mines approximate frequent dense sub-

graphs from a set of multiple gene coexpression networks using

a post-processing data summarization to reduce the number of re-

ported edgesets. In the first step, we mine approximate frequent

edgesets using a biclustering algorithm; This is similar to the same

the first step in [18]. To reduce the number of frequent edgesets,

we mine a set of representative frequent edgesets from the set of

all frequent edgesets with a post-processing data summarization

approach, which uses the concept of dominating set. In the sec-

ond step, we mine dense modules from the subgraphs induced by

the representative frequent edgesets. By mining representative fre-

quent edgesets, we significantly reduce the number of reported

edgesets and modules while not losing much information. We con-

ducted experiments on human gene expression data and the ex-

tracted modules are shown to be biologically significant.

2 PROBLEM DESCRIPTION

We model gene coexpression networks as undirected, unweighted

graphs. Since each gene occurs at most once in a gene coexpression

network, a coexpression network is modelled as a relation graph,

where each node has a unique label. A relation graph set is a set of

graphs that share a common set of nodes.

Relation Graph Set: A relation graph set is a set of �푛 graphs G =

{�퐺1,�퐺2, . . . ,�퐺�푛} where �퐺�푖 = (�푉 , �퐸�푖 ), �푉 is the set of vertices, �퐸�푖 is

the set of edges for �퐺�푖 , and �퐸�푖 ⊆ �푉 × �푉 . All the graphs in the set

share the same set of vertices �푉 .

Summary Graph and Edge Occurrence Matrix: Given a rela-

tion graph set G = {�퐺1,�퐺2, . . . ,�퐺�푛} where�퐺�푖 = (�푉 , �퐸�푖 ). The union

of all the edges in the graphs is denoted as �퐸, �퐸 = {�푒1, �푒2, . . . , �푒�푚} =
�푛
⋃

�푖=1
�퐸�푖 . The edge occurrence matrix B is an �푚 × �푛 binary matrix

where B�푖 �푗 = 1 if �푒�푖 ∈ �퐸 �푗 ; 0 otherwise. The relation graph set is

represented as G = (�푉 , �퐸,B). The graph set is represented as a

summary graph (�푉 , �퐸) and an associated edge attribute matrix B,

whose rows correspond to the edges’ attributes.

Edge-Induced Subgraph: Given a graph �퐺 (�푉 , �퐸) and an edgeset

�퐸 ′ ⊆ �퐸, the edge-induced subgraph �퐺 ′(�푉 ′, �퐸 ′) of �퐺 (induced by

edgeset �퐸 ′ and denoted as �퐺 [�퐸 ′]) is a graph whose edgeset is �퐸 ′

and the node set is all the nodes that are the endpoints of the edges.

Note that an edge-induced subgraph does not have isolated nodes

since each node that is present in the induced subgraph is an end-

point of at least one edge. Since an edge-induced subgraph is uniquely

identified by its edgeset, we refer to the frequent edge-induced sub-

graph as a frequent edgeset.

Frequent Subgraph: Given a graph set G = {�퐺1,�퐺2, . . . ,�퐺�푛}, a

minimum support threshold�푚�푖�푛�푠�푢�푝 , an edge-induced subgraph�퐺 ′

is a frequent subgraph if it is a subgraph of at least�푚�푖�푛�푠�푢�푝 graphs.

A subgraph�퐺 ′(�푉 ′, �퐸 ′) is a subgraph of�퐺 = (�푉 , �퐸), denoted as�퐺 ′ ⊆

�퐺 , if �푉 ′ ⊆ �푉 and �퐸 ′ ⊆ �퐸. The supporting graphs of a subgraph is

the set of graphs in which the subgraph appears.

�푠�푢�푝 (�퐺 ′,G) = {�퐺�푖1,�퐺�푖2, · · · ,�퐺�푖�푘 }

such that �퐺 ′ is a subgraph of �퐺�푖 for each �퐺�푖 in �푠�푢�푝 (�퐺 ′,G) and �푘

is the number of graphs in which the subgraph appears. When the

graph dataset is understood from the context, we denote �푠�푢�푝 (�퐺 ′,G)

simply as �푠�푢�푝 (�퐺 ′). A subgraph �퐺 ′ is frequent in a graph set G if
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Figure 1: Steps to mine frequent dense modules from a relation graph set: (a) A relation graph set of �푛 graphs; (b) Set of all

frequent edgesets/subgraphs mined using the modified BiBit algorithm; (c) Set of representative frequent edgesets/subgraphs

mined using post-processing summarization (dominating set); (d) Final set of frequent dense modules mined using DME algo-

rithm

the number of supporting graphs is at least �푚�푖�푛�푠�푢�푝 graphs, i.e.,

|�푠�푢�푝 (�퐺 ′,G)| >=�푚�푖�푛�푠�푢�푝 .

The definition of frequent subgraphs requires all the edges of a sub-

graph to appear in all the supporting graphs. Given that some of

edges might be missing from a coexpression network due to noise

and correlation cutoff, we should change the definition of the oc-

currence of a subgraph in a coexpression network. Thus we relax

the occurrence constraint and introduce the approximate frequent

subgraph that is a relaxed form of the frequent subgraph by allow-

ing missing edges (noise). An edge is approximately supported by

a graph set if the edge appears in most of the graphs, and a sub-

graph is approximately supported by a graph set if all the edges of

the subgraph are approximately supported by the same graph set.

Approximate Frequent Subgraph: Given a relation graph set

G = {�퐺1,�퐺2, . . . ,�퐺�푛}, a minimum support threshold�푚�푖�푛�푠�푢�푝 , and a

noise ratio �푟 , an edge-induced subgraph�퐺 ′[�퐸 ′] is an approximate

frequent subgraph if and only if there exists a graph set �퐷 ⊆ G
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Figure 2: Steps in mining representative frequent subgraphs from set of all frequent subgraphs: (a) Set of all frequent edge-

sets/subgraphs; (b) Similarity graph for the set in (a) with similarity threshold 0.5 (Jaccard similarity coefficient); (c) Dominat-

ing set of the similarity graph in (b); (d) Set of representative frequent edgesets/subgraphs

such that |�퐷 | >=�푚�푖�푛�푠�푢�푝 and for every edge �푒 ∈ �퐸 ′, �푒 occurs in at

least
⌊

|�퐷 | ∗ (1− �푟 )
⌉

graphs in �퐷 , the nearest integer to |�퐷 | ∗ (1− �푟 ).

The noise ratio �푟 is a real number between 0 and 1, controlling the

ratio of the supporting graphs an edge can be missed. An edge �푒

need not be present in every graph in �퐷 . For the remainder of this

paper, we refer to the approximate frequent edgesets/subgraphs

simply as frequent edgesets/subgraphs.

The set of all frequent subgraphs is large considering the com-

binatorial nature of the frequent subgraphs. Moreover, these sub-

graphs have high overlap since two frequent subgraphs can differ

by only one or two edges. Therefore, we mine a representative set

of these approximate frequent subgraphs.

In the proposed algorithm, we mine a set of representative edge-

sets. A set of representative edgesets is a subset of the set of edge-

sets such that every edgeset not included in the representative set

has at least one similar edgeset in the representative set. Moreover,

we are interested in dense subgraphs in these representative fre-

quent subgraphs as these edge-induced subgraphs are not neces-

sarily dense.

Set of Representative Edgesets: Given a set of edgeset patterns

�푃 and an edgeset similarity threshold �푠 , a subset �푃 ′ ⊆ �푃 is a set of

representative edgesets if for every edgeset �퐸 ∈ �푃 \�푃 ′, there exists

an edgeset �퐸 ′ ∈ �푃 ′ such that �푠�푖�푚(�퐸, �퐸 ′) ≥ �푠 , where �푠�푖�푚(�퐸, �퐸 ′) is

the similarity between the two sets. Each edgeset in �푃 is either in

�푃 ′ or is similar to an edgeset in �푃 ′.

Graph Density: The density of a graph�퐺 is 2�푚/(�푛(�푛 − 1)) where

�푚 is the number of edges and �푛 is the number of nodes in�퐺 . Given

a density threshold �훼 , a subgraph�퐺 is dense if its density is greater

than or equal to �훼 .

Dense Frequent Subgraphs: Each representative frequent edge-

set induces a graph from the summary graph. This subgraph is

approximately frequent. The dense subgraphs in the induced sub-

graph are the reported modules. These modules are also frequent

since they are extracted from the frequent subgraph whose edges

are approximately frequent.

3 MINING FREQUENT DENSE MODULES

In this work, we mine frequent dense subgraphs from a set of gene

coexpression networks. Given a relation graph set G, minimum

support threshold, noise threshold, edgeset similarity threshold,

and density threshold, our task is to find subgraphs that are both

approximate frequent and dense. One approach for mining repre-

sentative pattern is online data summarization where the data is

processed as they are produced. In this case, the edgesets are pro-

cessed as they are mined by the biclustering algorithm. Beginning

with an empty set of representative edgesets, when the bicluster-

ing algorithm encounters a frequent edgeset, the edgeset is added
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to the representative set if there is no similar edgeset (based on

a user-defined similarity threshold) already in the set. As a result,

the final set contains edgesets such that every frequent edgeset

not in the set has at least one similar edgeset in the set. While

the online data summarization approach is efficient, it does not

return the optimal result since it depends on the order in which

the edgesets are discovered. We propose a two-step approach to

mine approximate frequent dense subgraphs. In the first step, we

mine frequent edgesets using a biclustering approach. In order to

reduce the number of reported patterns and decrease the overlap

between the reported patterns, we use a post-processing data sum-

marization method to mine a set of representative frequent edge-

sets. In the proposed post-processing data summarization method,

all frequent edgesets are first mined and then a subset of these fre-

quent edgesets is chosen such that every edgeset not in the set has

at least one similar edgeset in the set. The summarization method

uses the concept of similarity graph and dominating set to choose

the representative frequent edgesets [6].

3.1 Mining Representative Frequent Edgesets

We employ the modified BiBit algorithm described in [18] to mine

all frequent edgesets from a relation graph set. The modified BiBit

algorithm is a biclustering algorithm which mines biclusters with

high density of ones from a binary matrix. Each bicluster corre-

sponds to an approximate frequent edgeset that allows missing

edges. The modified Bibit procedure is called in line 1 in Algo-

rithm 1. The procedure takes an �푚 × �푛 binary edge occurrence

matrix B in which the rows correspond to edges and the columns

correspond to graphs. Theminimum number of rows,�푚�푖�푛�푆�푖�푧�푒 , cor-

repsonds to the minimum edgeset size, and the minimum number

of columns,�푚�푖�푛�푠�푢�푝 , corresponds to the minimum number of sup-

porting graphs threshold. The result is a bicluster with density of

ones greater than or equal to 1 − �푟 . The row set of the bicluster

represents a frequent edgeset.

3.2 Similarity Measure

We use the Jaccard similarity coefficient to measure the similarity

between edgesets. The Jaccard similarity coefficient between two

sets is defined as the cardinality of the intersection of the two sets

divided by the cardinality of the union of the two sets. More pre-

cisely, the Jaccard similarity coefficient of the two sets �퐴 and �퐵 is

�푠�푖�푚(�퐴, �퐵) =
|�퐴 ∩ �퐵 |

|�퐴 ∪ �퐵 |

The similarity score ranges between 0 and 1. Roughly, it is the mea-

sure of the degree of overlap between the two sets, with 0 indicat-

ing no similarity and 1 indicating identical sets. In general, the size

of the representative set is smaller for lower value of edgeset simi-

larity threshold. For the special case when the similarity threshold

is set to 1, the set of representative frequent edgesets is the same

as the set of all frequent edgesets. And for the special case when

the similarity threshold is set to 0, the first encountered frequent

edgeset is the only pattern in the set, as it is ‘similar’ to all other

edgesets.

Algorithm 1: Mining Representative Frequent Dense

Modules
Input :G = (�푉 , �퐸, B) : A relation graph set of �푛 graphs

�푚�푖�푛�푆�푖�푧�푒 : minimum number of rows

�푚�푖�푛�푠�푢�푝 : minimum number of columns

�푟 : noise ratio

�푠 : edgeset similarity threshold

�훼 : module density threshold

Output :X: Dense Frequent Modules

/* Mining Approximate Frequent Edgesets */

1 �푃 = runModifiedBibit(B,�푚�푖�푛�푆�푖�푧�푒,�푚�푖�푛�푠�푢�푝, �푟 )

/* Constructing Similarity Graph */

2 �푉% ← {1, 2, · · · , |�푃 | }

3 �퐸% ← ∅

4 for �푖 ← 1 to |�푃 | do

5 for �푗 ← �푖 + 1 to |�푃 | do

6 if sim(�푃8 , �푃 9) ≥ �푠 then

7 �퐸% = �퐸% ∪ {(�푖, �푗) }

8 �퐺 = (�푉% , �퐸% )

/* Extracting Dominating Set of �퐺 */

/* Initially each node dominates all neighbors */

9 �푆 ← ∅

10 �푑�푢 (�푣) = |�푁�푒�푖�푔ℎ�푏�표�푟�푠 (�푣) |, for each �푣 ∈ �푉%

11 while there exists undominated nodes do

12 v ← the vertex that dominates the most nodes

13 �푆 = �푆 ∪ {�푣 }

14 mark all neighbors of �푣 as dominated

15 update the number of undominated nodes that each node

dominates

/* Extracting Dense Modules */

16 X ← ∅

17 for �푖 ← 1 to |�푆 | do

18 �푔8 = �퐺 [�푆8 ] // edge Induce Subgraph

19 X = X∪ DME(�푔8 , �훼)

20 return X

3.3 Similarity Graph

Once we mine the set of all frequent edgesets, we construct the

similarity graph to represent the similarities between the edge-

sets. In the similarity graph, each node corresponds to an edgeset,

and there is an edge between two nodes if the similarity between

the two corresponding edgesets exceeds a user-defined similarity

threshold. More formally, given a set of �푚 frequent edgeset pat-

terns �푃 = {�푃1, �푃2, · · · , �푃�푚} and a user-defined similarity thresh-

old �푠 , the similarity graph �퐺�푃 (�푉�푃 , �퐸�푃 ) is a graph such that each

node �푣�푖 ∈ �푉�푃 corresponds to pattern �푃�푖 ∈ �푃 and there is an edge

(�푣�푖 , �푣 �푗 ) ∈ �퐸�푃 if �푠�푖�푚(�푃�푖 , �푃 �푗 ) ≥ �푠 , where �푠�푖�푚(�푃�푖 , �푃 �푗 ) is the similar-

ity between patterns �푃�푖 and �푃 �푗 . Figure 2 (b) shows the similarity

graph constructed from the set of edgeset patterns in (a) with simi-

larity threshold 0.5. For example, the similarity graph in (b) has the

edge (�푃1, �푃2) because the similarity between edgesets �푃1 and �푃2 is

0.5. Constructing the similarity graph for the frequent edgesets is

described in lines 2-8 in Algorithm 1.
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Figure 3: Number of frequent edgesets and average edgeset size for varying edgeset similarity threshold values

3.4 Dominating Set

A dominating set of a graph �퐺 (�푉 , �퐸) is a subset �푆 ⊆ �푉 such that

every node not in �푆 is connected to at least one node in �푆 . A min-

imum dominating set is the smallest such set. A graph can have

multiple minimum dominating sets. Since the similarity graph for

the set of all frequent edgesets represents edgeset similarities, a

minimum dominating set of the similarity graph is the smallest

node set which corresponds to the set of representative frequent

edgesets. Figure 2 (c) shows a minimum dominating set for the the

similarity graph in (b). The corresponding representative frequent

edgesets are shown in (d). For the similarity graph�퐺�푃 (�푉�푃 , �퐸�푃 ), the

goal is to find a subset of vertices (patterns) �푆�푃 ⊆ �푉�푃 that domi-

nates all the remaining vertices (patterns). The problem of finding

a minimum dominating set of a graph is NP-hard. There are linear

reductions between the set cover problem, a well-known NP-hard

problem, and the minimum dominating set problem [3]. Therefore,

we employ an approximation greedy algorithm whose solution is

optimal up to a certain factor. The greedy algorithm starts with an

empty set, �푆 = ∅, and adds vertices to �푆 until �푆 is a dominating

set of the graph. The most common greedy algorithm is to select

the vertex that has the maximum number of neighbors that are

not dominated. The number of undominated vertices that a vertex

�푣 dominates is denoted by �푑�푢 (�푣). Initially each vertex dominates

itself and its neighbors. So the vertex with the largest degree is

chosen as the first vertex to add to �푆 . Lines 9-15 in Algorithm 1

shows the greedy approach for finding the dominating set. Next

the �푑�푢 score is updated for all vertices and the algorithm selects

the vertex with the largest �푑�푢 score. If there are multiple vertices

with the largest score, a vertex is chosen randomly. This process is

repeated until all vertices are dominated. For the similarity graph

in Figure 2 (b), the greedy algorithm selects �푃2 as the first vertex in

the dominating set �푆 since �푃2 dominates four vertices including it-

self. After updating the �푑�푢 score, both �푃3, and �푃5 have the same

score of 1. The algorithm chooses one of them randomly. Note

that �푃3 is still a candidate to be added to the dominating set even

though it is dominated. The algorithm then selects �푃5 and termi-

nates since all vertices are dominated now. The final dominating

set is �푆 = {�푃2, �푃5}, indicating that the corresponding patterns are

the representative frequent edgesets.

3.5 Extracting Dense Modules

The final step is to extract the dense subgraphs for each represen-

tative edgeset. We employ the dense module enumeration (DME)

algorithm on the edge-induced subgraph for each representative

edgeset [5]; the DME algorithm is called in lines 16-19 in Algo-

rithm 1.

4 EXPERIMENTS

In order to assess the effectiveness of our algorithm, we mined the

representative frequent edgesets and frequent dense modules from

35 tissue gene coexpression networks constructed by the Genetic

NetworkAnalysis Tool [14]. The gene coexpression networkswere

constructed from the gene expression of non-diseased tissue sam-

ples from Genotype-Tissue Expression (GTEx) data 1. Each coex-

pression network contains 9, 998 genes and 14, 415 links on aver-

age. In total, there are 1, 548, 622 unique links that appear in at least

one network and 4, 127 edges that appear in at least 20 networks.

On average, each link appears in 3.28 networks.

4.1 Effect of Data Summarization

To assess the effectiveness of the proposed approach, we first ran

the modified BiBit algorithm on the binary edge occurrence matrix

constructed from the 35 gene coexpression networks for support

thresholds�푚�푖�푛�푠�푢�푝 = 16, 17, 18, 19, 20 and noise threshold �푟 = 0.1.

Then we applied the post-processingmethod on the discovered fre-

quent edgesets for edgeset similarity thresholds �푠 = 0.5, 0.6, 0.7, 0.8.

Figure 3 shows how the number and the average size of the repre-

sentative frequent edgesets change with various edgeset similarity

and support threshold values. As shown in the figure, the number

of representative frequent edgesets increases as the support thresh-

old decreases and as the edgeset similarity threshold increases. The

average size of the representative frequent edgesets increases as

the edgeset similarity threshold increases.

To evaluate the effect of the post-processing summarization for

frequent edgesets, we mined the frequent frequent edgesets for

�푚�푖�푛�푠�푢�푝 = 20, and used edgeset similarity thresholds 0.5 to 0.8

for mining representative frequent edgesets. The number of re-

ported frequent edgesets for various edgeset similarity thresholds

1https://www.gtexportal.org/

https://www.gtexportal.org/
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Figure 4: Number of frequent edgesets and average edgeset size for varying noise ratio values

Table 1: Comparison of the number of edgesets for support

20 for varying similarity thresholds

noise 0 0.1 0.2 0.3

Without summarization 3,004 3,153 3,224 3,244

With summarization (�푠 = 0.5) 113 73 62 81

With summarization (�푠 = 0.6) 407 360 341 453

With summarization (�푠 = 0.7) 1,226 2,044 2,310 2,894

With summarization (�푠 = 0.8) 2,693 3,131 3,220 3,243

is shown in Table 1. It shows that the number of representative

frequent edgesets increases with increasing similarity threshold.

For a large similarity threshold, fewer edgesets are similar to each

other and therefore the number of representative patterns is larger.

For a small similarity threshold, less number of patterns is needed

to represent the entire set.

4.2 Topological Analysis of Frequent Edgesets
and Frequent Dense Modules

To perform the topological analysis of the representative frequent

edgesets, we mined representative frequent edgesets for for sup-

port thresholds �푚�푖�푛�푠�푢�푝 = 16, 17, 18, 19, 20, noise thresholds �푟 =

0, 0.1, 0.2, 0.3, and edgeset similarity threshold �푠 = 0.6. Figure 4

shows how the number and the average size of representative fre-

quent edgesets changewith various noise threshold values. It shows

that both the number and the average size of the representative fre-

quent edgesets increase as the noise increases. For a larger noise,

more edges can be added to the edgeset without violating the noise

constraint.

From the subgraphs induced by the frequent edgesets, wemined

dense modules using the DME [5] algorithm with density thresh-

olds 0.5 and 0.6. We only considered modules of size four or larger.

Table 2 shows the topological properties of the frequent densemod-

ules for support thresholds �푚�푖�푛�푠�푢�푝 = 17, 18, 19, 20, noise thresh-

olds �푟 = 0, 0.1, 0.2, and edgeset similarity threshold �푠 = 0.6. The

number of edgesets that induces a subgraph that has at least one

module is denoted as �푀 ′. The average number of dense modules

per frequent subgraph is denoted as�퐷�푀 . Finally,�푉 ′ denotes the av-

erage size of the densemodules. The results show that less edgesets

contain dense modules and the average number of dense modules

is lower for a larger support threshold. At higher support thresh-

olds, edgesets induce sparse graphs that are less likely to contain

dense modules.

4.3 Gene Ontology Enrichment Analysis

To evaluate the biological significance of the reported modules, we

conducted Gene Ontology enrichment analysis on the reported

unique frequent dense modules. The results show that the mod-

ules are enriched with known KEGG pathways and Gene Ontology

molecular functions. A module is enriched if it overlaps with the

geneset of a knownmolecular signature.We used the overrepresen-

tation of genes with a specific annotation in a gene set using the hy-

bergeometric test with �푝�푣�푎�푙�푢�푒 = 0.01. For biological terms, we used

the KEGG pathway database, which has 186 sets covering 5, 241

genes, and the GO Molecular Function Ontology, which has 1, 645

sets covering 15, 599 genes. Table 3 shows the percentage of fre-

quent dense modules that are biologically enriched. The percent-

age of enriched modules with GO molecular functions and KEGG

pathways is denoted by �퐸�푀 and �퐸�퐾 , respectively. It shows that

frequent dense modules with smaller noise ratio have higher per-

centage of enrichment. The GO molecular functions have higher

enrichment than KEGG pathways, as there are much more molec-

ular functions than KEGG pathways. The frequent dense modules

can be enriched with multiple biological annotations, and an anno-

tation can be enriched in multiple frequent dense modules. Table 4

shows the top enriched biological signatures in the reported mod-

ules for �푠�푢�푝 = 17, �푛�표�푖�푠�푒 = 0.1, and �푑�푒�푛�푠�푖�푡~ = 0.5, and the number

of frequent dense modules in which the annotation is enriched.

Figure 5 shows an example of a frequent edgeset for �푠�푢�푝 = 19,

�푛�표�푖�푠�푒 = 0.2. (a) show the submatrix of the binary edge occurrence

matrix which represents the edge occurrences in the frequent edge-

set in the 35 networks. Each row corresponds to an edge in the

edgeset, and each column corresponds to a gene coexpression net-

work. (b) shows the dense modules mined from the subgraph in-

duced by the edgeset for density threshold 0.5. Nodes are labeled

by their corresponding gene identifiers. The genes in this represen-

tative approximate edgeset are enrichedwith five KEGG pathways;



BCB ’20, September 21–24, 2020, Virtual Event, USA Seo and Salem

Table 2: Topological properties of the frequent dense modules

noise 0 0.1 0.2

minsup density �푀 ′ �퐷�푀 �푉 ′ �푀 ′ �퐷�푀 �푉 ′ �푀 ′ �퐷�푀 �푉 ′

17
0.5 250 10.2 4 1.3 K 43.6 4.2 1.4 K 181.8 4.3

0.6 9 1 4 312 4.4 4.2 751 15.3 4.4

18
0.5 164 8.8 4 780 35.5 4.1 949 211.7 4.3

0.6 1 1 4 162 4 4.1 509 17.6 4.4

19
0.5 107 7.1 4 515 28.1 4.1 526 171.1 4.3

0.6 1 1 4 79 3.3 4.2 262 15.4 4.4

20
0.5 66 7.4 4 269 23.5 4.1 291 130.4 4.2

0.6 1 1 4 36 2.6 4 128 11.5 4.3

(a) Submatrix for Frequent Edgeset (b) Frequent Dense Modules

Figure 5: Sample frequent edgeset for�푚�푖�푛�푠�푢�푝 = 19 and �푛�표�푖�푠�푒 = 0.2, and dense modules in the edgeset for �푑�푒�푛�푠�푖�푡~ = 0.5

Table 3: GO term enrichment analysis for frequent dense

modules

noise 0 0.1 0.2

minsup density �퐸�푀 �퐸�퐾 �퐸�푀 �퐸�퐾 �퐸�푀 �퐸�퐾

17
0.5 81.5 61.3 66.8 56.7 51.7 44.2

0.6 100 33.3 79.8 59.1 71.5 52.7

18
0.5 82.4 62.4 72.7 60.9 52.3 44.2

0.6 100 0 79.5 56.8 70.2 51.8

19
0.5 86.5 62.5 75.1 63.1 55.6 47

0.6 100 0 87.5 62.5 74.4 54.2

20
0.5 80.3 57.7 80.3 67.1 62.7 52.2

0.6 100 0 89.3 75 78.9 56.5

Oxidative Phosphorylation, CardiacMuscle Contraction, Alzheimers

Disease, Parkinsons Disease, and Huntingtons Disease, and two

molecular functions; Electron Transfer Activity, and Oxidoreduc-

tase Activity.

5 CONCLUSION

Gene Coexpression subnetworks that are present in multiple gene

expression datasets improves the functional modules and biomark-

ers discovery tasks. Mining frequent subnetworks is computation-

ally challenging and results in a large number of overlapping sub-

networks. We have proposed a post-processing approach for min-

ing representative frequent dense modules. First, we mine all fre-

quent edgesets. We then construct a similarity graph that captures

the similarity between edgesets. We employ a greedy algorithm

for extracting the minimum dominating set in the similarity graph.

The frequent edgesets corresponding to the nodes in the dominat-

ing set are the final representative edgesets. The final step is to

mine dense modules from these the induced subgraphs of these fre-

quent edgesets. Because this is a post-processing summarization,

it is not dependent on the order in which frequent edgesets are

mined. Gene Ontology molecular functions and KEGG pathways

enrichment analysis reveals that the frequent dense modules are

highly enriched with known biological knowledge. We plan to ex-

plore different summarization and clustering technique control the

size and quality of the representative set of patterns.
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Table 4: Top enriched biological signatures in the reported

modules for�푚�푖�푛�푠�푢�푝 = 17, �푛�표�푖�푠�푒 = 0.1, and �푑�푒�푛�푠�푖�푡~ = 0.5

GO Molecular Function Count

Structural Constituent Of Ribosome 1509

Rrna Binding 389

5s Rrna Binding 219

Electron Transfer Activity 187

Antigen Binding 149

Ubiquitin Protein Transferase Regulator Activity 146

Oxidoreductase Activity Acting On Nad P H 137

Immunoglobulin Receptor Binding 135

Nadh Dehydrogenase Activity 132

KEGG Pathway Count

Ribosome 1511

Huntingtons Disease 368

Oxidative Phosphorylation 362

Parkinsons Disease 344

Alzheimers Disease 337

Cardiac Muscle Contraction 167

Autoimmune Thyroid Disease 50

Aminoacyl Trna Biosynthesis 46

Mapk Signaling Pathway 43

Leishmania Infection 30
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