
Train Large, Then Compress:
Rethinking Model Size for Efficient Training and Inference of Transformers

Zhuohan Li * 1 Eric Wallace * 1 Sheng Shen * 1 Kevin Lin * 1

Kurt Keutzer 1 Dan Klein 1 Joseph E. Gonzalez 1

Abstract
Since hardware resources are limited, the ob-
jective of training deep learning models is typ-
ically to maximize accuracy subject to the time
and memory constraints of training and inference.
We study the impact of model size in this set-
ting, focusing on Transformer models for NLP
tasks that are limited by compute: self-supervised
pretraining and high-resource machine transla-
tion. We first show that even though smaller
Transformer models execute faster per iteration,
wider and deeper models converge in significantly
fewer steps. Moreover, this acceleration in conver-
gence typically outpaces the additional computa-
tional overhead of using larger models. Therefore,
the most compute-efficient training strategy is to
counterintuitively train extremely large models
but stop after a small number of iterations.

This leads to an apparent trade-off between the
training efficiency of large Transformer models
and the inference efficiency of small Transformer
models. However, we show that large models
are more robust to compression techniques such
as quantization and pruning than small models.
Consequently, one can get the best of both worlds:
heavily compressed, large models achieve higher
accuracy than lightly compressed, small models.

1. Introduction
In the current deep learning paradigm, using more compute
(e.g., increasing model size, dataset size, or training steps)
typically leads to higher model accuracy (Brock et al., 2019;
Raffel et al., 2019). This phenomenon is exacerbated by
the recent success of self-supervised pretraining (Devlin

*Equal contribution 1UC Berkeley. Correspondence to: Zhuo-
han Li <zhuohan@cs.berkeley.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

Train Small
Model

Optimal

Stop Training
When Converged

Lightly
Compress

Train Large
Model

Stop Training
Early

Heavily
Compress

Common
Practice

Figure 1. Under the usual presumption that models are trained to
convergence, only small models that are fast-to-execute are feasible
in resource-constrained settings. Our work shows that the most
compute-efficient training scheme is instead to train very large
models, stop them well short of convergence, and then heavily
compress them to meet test-time constraints.

et al., 2019; Hnaff et al., 2019), which allows training to
scale to massive amounts of unlabeled data and very large
neural models. Consequently, computational resources are
increasingly the critical constraint on improving model ac-
curacy. This constraint causes the (often implicit) goal of
model training to be maximizing compute efficiency: how
to achieve the highest model accuracy given a fixed amount
of hardware and training time.

Maximizing compute efficiency requires rethinking com-
mon assumptions about model training. In particular, there
is typically an implicit assumption that models must be
trained until convergence, which makes larger models ap-
pear less viable for limited compute budgets. We challenge
this assumption by demonstrating the opportunity to in-
crease model size at the cost of convergence. Concretely,
we show that the fastest way to train Transformer mod-
els (Vaswani et al., 2017) is to substantially increase model
size but stop training very early.

In our experiments, we vary the width and depth of Trans-
former models and evaluate their training time and accu-
racy on self-supervised pretraining (ROBERTA (Liu et al.,
2019b) trained on Wikipedia and BookCorpus) and machine
translation (WMT14 English!French). For these tasks, we
first show that larger models converge to lower validation
error in fewer gradient updates than smaller models (Sec-
tion 3). Moreover, this increase in convergence outpaces the
additional computational overhead of using larger models—
the most compute-efficient models are extremely large and
stopped well short of convergence (e.g., Figure 2, left). We

ar
X

iv
:2

00
2.

11
79

4v
2

 [c
s.C

L]
 2

3
Ju

n
20

20

Rethinking Model Size for Efficient Training and Inference of Transformers

(a) (b)

Figure 2. Increasing Transformer model size results in lower validation error as a function of wall-clock time and better test-time accuracy
for a given inference budget. (a) demonstrates the training speedup for ROBERTA models of different sizes on the masked language
modeling pretraining task. In (b), we take ROBERTA checkpoints that have been pretrained for the same amount of wall-clock time and
finetune them on a downstream dataset (MNLI). We then iteratively prune model weights to zero and find that the best models for a given
test-time memory budget are ones which are trained large and then heavily compressed.

also show that this acceleration in wall-clock convergence
is largely a function of parameter count and only weakly
influenced by model width, depth, and batch size.

Although larger models train faster, they also increase the
computational and memory requirements of inference. This
increased cost is especially problematic in real-world appli-
cations, where the cost of inference dominates the cost of
training (Jouppi et al., 2017; Crankshaw et al., 2017; Metz,
2017). However, we show that for ROBERTA, this apparent
trade-off can be reconciled with compression: large models
are considerably more robust to compression as compared to
small models (Section 4). Thus, large, heavily compressed
models outperform small, lightly compressed models using
comparable inference costs (e.g., Figure 2, right).

We finally analyze when and why large models train fast
and compress well (Section 5). We show that the optimal
model size is closely linked to the dataset size. In particular,
large models perform favorably in big data settings where
overfitting is a limited concern. We then analyze why larger
models are more compressible by measuring the difference
in weights when using quantized or sparse weight matrices.
This error decreases as model size increases, i.e., greater
overparameterization leads to easy-to-compress weights.

2. Experimental Setup
2.1. Tasks, Models, and Datasets

We train state-of-the-art models for two NLP tasks: self-
supervised pretraining using masked language modeling and

high-resource machine translation. We chose these tasks
because accuracy continues to improve as models are made
larger (Shazeer et al., 2018), trained for more steps (Liu
et al., 2019b), and trained using larger batches (Raffel et al.,
2019). Thus, a critical factor in improving accuracy for these
tasks is to maximize the compute efficiency of training.

Self-supervised Pretraining (MLM) We closely follow
the pretraining setup and model from ROBERTA (Liu et al.,
2019b) with a few minor exceptions. We move the model’s
layer normalization layers (Ba et al., 2016) to the input
of every sub-layer (often called pre-norm). This slightly
improves results and stabilizes training (Wang et al., 2019b).
We also use an input sequence length of 128 and a batch
size of 8192, unless otherwise noted. For ROBERTA, we
vary the depth in {3, 6, 12, 18, 24}, and the hidden size in
{256, 512, 768, 1024, 1536}.

The dataset for pretraining ROBERTA is not publicly avail-
able. We instead follow BERT (Devlin et al., 2019) and con-
catenate the BookCorpus (Zhu et al., 2015) and a Wikipedia
dump to use for training. Since the BookCorpus is no longer
publicly available, we follow Devlin et al. (2019) and crawl
http://smashwords.com. Our final dataset is roughly 3.4
billion words in total. We hold out a random 0.5% of the
data for validation and report the masked language model-
ing (MLM) perplexity on this data. We also evaluate the
model by finetuning on MNLI (Williams et al., 2018) and
SST-2 (Socher et al., 2013). We found the variance in accu-
racy for these two tasks to be lower than the other GLUE
tasks (Wang et al., 2019a).

http://smashwords.com

Rethinking Model Size for Efficient Training and Inference of Transformers

Machine Translation For machine translation (MT) we
train the standard Transformer architecture and hyperpa-
rameters on the WMT14 English!French dataset. We
use the standard dataset splits: 36M sentences for train-
ing, newstest2013 for validation, and newstest2014 for
testing. We follow standard practice and report tokenized
case-sensitive BLEU (Papineni et al., 2002) with compound
splitting (Vaswani et al., 2017). We vary the model depth in
{2, 6, 8} and hidden size in {128, 256, 512, 1024, 2048}.

2.2. Evaluation Metrics: FLOPs and Wall-Clock Time

Recent work on resource-constrained training uses the total
number of training steps (Li et al., 2020) or the total num-
ber of training FLOPs (Schwartz et al., 2019; Clark et al.,
2020) as the main evaluation metric. These metrics do not
adequately capture the true training time. In particular, re-
porting gradient steps does not account for the cost of using
bigger batches or models. Moreover, although reporting
FLOPs is useful for comparison as it is hardware-agnostic,
it neglects the fact that parallel operations are significantly
cheaper than sequential operations on modern hardware.

We instead directly report wall-clock time as our main eval-
uation metric.1 Since the runtime varies across machines
(the hardware setups are different, the jobs are not isolated,
etc.), we use a single machine to benchmark the time per
gradient step for each model size. In particular, we train
models and wait for the time per gradient step to stabi-
lize, and then we use the average time over 100 steps to
calculate the training duration. We conduct the timing on
one NVIDIA 16GB V100 GPU and use gradient accumu-
lation to fit larger models and batches. In order to be fair
to smaller models, we increase the batch size to the largest
size that fits in memory. This means that smaller models
use fewer gradient accumulation steps and thus take less
time per gradient step (which we confirmed empirically).
We use Tensor2Tensor (Vaswani et al., 2018) for MT and
fairseq (Ott et al., 2019) for RoBERTa. We train using a mix
of v3-8 TPUs and 8xV100 GPUs for both tasks.

3. Larger Models Train Faster
Wider and deeper Transformer models are more sample-
efficient than small models: they reach the same level of
performance using fewer gradient steps (Figures 3–5). More-
over, this increase in convergence outpaces the additional
computational overhead from increasing model size, even
though we need to use more steps of gradient accumulation.
Consequently, after adjusting for wall-clock time, the larger
models are faster to train than smaller models (Figures 4–5).

1We also report selected learning curves as a function of FLOPs
in Appendix A.1. These curves show that our conclusion that larger
models are faster to train is not specific to our hardware setup.

Figure 3. Deeper ROBERTA models converge faster than shallow
models with respect to the gradient steps (wall-clock time shown
in Figure 2, left).

Increase Model Width and Sometimes Depth For the
masked language modeling task, the validation perplexity
weakly depends on the shape of the model. Instead, the
total number of model parameters is the key determiner of
the convergence rate. Thus, increasing either the width or
the depth is effective at accelerating model training. On the
other hand, the preferred way to scale models for MT is
to increase their width as wider models usually outperform
deep models in final performance (Vaswani et al., 2017;
Shazeer et al., 2018).

Increase Model Size, Not Batch Size Another factor that
affects the training efficiency is the batch size. In particu-
lar, there is a trade-off between using fast-to-execute small
batches and slow-but-accurate large batches. We study the
effect of scaling batch size because it provides an alternative
to scaling model size. In particular, what if we use gradi-
ent accumulation to increase the batch size rather than the
model size? We vary the batch size for the 12 layer, 768H
model and increase the learning rate as is common prac-
tice (Goyal et al., 2017; Liu et al., 2019b). We report the
best found learning rate values in Table 1 in Appendix A.

We show the training curves in Figure 13 in Appendix A.
Bigger batch sizes cause the model to converge in fewer
steps. However, when adjusting for wall-clock time, in-
creasing the batch size beyond a certain point only provides
marginal improvements.2 In particular, varying the batch
size has little impact when training with a batch size in the

2Note that our timing is done by accumulating gradients on a
single GPU machine. For multi-GPU setups, the cost of accumu-
lating gradients is lower as it naturally helps to balance out uneven
runtimes across workers (Ott et al., 2018). In this setup, the wall-
clock improvements from increasing batch sizes by accumulating
gradients may be slightly larger.

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 4. Wider models converge faster than narrower models as function of both gradient steps (left plot) and wall-clock time (right plot).

range from 2048–16384. This aligns with the findings of
McCandlish et al. (2018): training efficiency is maximized
when models are trained near some critical batch size.

An additional downside of increasing the batch size is that
it requires simultaneously tuning the learning rate. On the
other hand, scaling model size provides improvements in
training efficiency without adjusting any hyperparameters.
Overall, our results show that one should increase the batch
size (and learning rate) until the critical batch size region is
reached and then to focus on increasing model size.

Larger Models Are Not Harder to Finetune Although
the larger models minimize validation MLM perplexity
faster, one concern is that they may not minimize down-
stream task error faster. For instance, larger models may
overfit on small downstream datasets. We investigate this by
training ROBERTA models of different sizes and stopping
them when they reach the same MLM perplexity (the larger
models have been trained for less wall-clock time). We
then finetune each model using the ROBERTA finetuning
hyperparameters (Liu et al., 2019b) on MNLI and SST-2.
We report the model accuracies in Table 2 in Appendix B.
All models reach comparable accuracies (in fact, the larger
models typically outperform the smaller ones), which shows
that larger models are not more difficult to finetune.

Returns Diminish As Size Increases For both RoBERTa
and MT, the largest models have reached the point where
they stop improving convergence with respect to wall-clock
time. For example, the largest model for MT (6L, 2048H)
starts to converge slower with respect to wall-clock time than
the second-largest model (6L, 1024H). These diminishing
returns occur because (1) the per-step convergence improve-
ments from using larger models decreases as the model gets
larger and (2) the computational overhead increases as our
hardware becomes increasingly compute-bound. We further
analyze when and why returns diminish in Section 5.

4. Larger Models Compress Better
Although the most compute-efficient training scheme is to
use larger models, this results in models which are less infer-
ence efficient. Here, we demonstrate how to get the best of
both worlds. In particular, we show that since large models
are more compressible than small models, they can outper-
form small models while using similar inference costs.

4.1. Compression Methodology and Evaluation

Compression Methods Model compression methods re-
duce the inference costs of trained models. For example,
model compression can reduce inference latency to enable
real-time applications like simultaneous MT (See et al.,
2016) or reduce memory usage to save energy for mobile de-
vices (Han et al., 2016). We focus on compression methods
which are fast to perform—methods which require signif-
icant amounts of compute will negate the speedup from
using larger models.3 In particular, we consider two com-
pression techniques: quantization (Section 4.2) and pruning
(Section 4.3), as well as their combination.4 Quantization
stores model weights in low precision formats to (1) accel-
erate operations when using hardware with reduced preci-
sion support and (2) reduce overall memory footprint (Han
et al., 2016; Dong et al., 2019). Pruning sets neural network
weights to zero to (1) remove operations and (2) reduce the
memory footprint when models are stored in sparse matrix
formats (LeCun et al., 1990; Han et al., 2015). We apply
both quantization and pruning post-hoc to the finetuned
models to limit the additional computational overhead.

3For example, we avoid using model distillation methods be-
cause they can add a significant computational overhead (Sanh
et al., 2019; Turc et al., 2019) or cause a significant degradation in
accuracy (Liu et al., 2019a; Sun et al., 2019).

4We also experiment with parameter sharing (Lan et al., 2020;
Dehghani et al., 2019)—tying the weights of the Transformer lay-
ers together—and find that it slows convergence (see Appendix C).

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 5. BLEU Scores on the English!French validation set (newstest2013) using models of different sizes. Larger models typically
converge faster as a function of both iterations (left plot) and wall-clock time (right plot). When models become too large (2048H, 6L),
they converge faster per iteration but their overhead on our limited hardware negates their convergence improvements.

Finetuning Setup and Compression Evaluation We fo-
cus on compressing the finetuned ROBERTA models as a
case study. We train models of different sizes for 1,000,000
seconds,5 finetune them on MNLI/SST-2, and then apply
quantization/pruning. For evaluation, even though pruning
and quantization will improve inference latency/throughput,
quantifying these improvements is challenging because they
are highly hardware-dependent. Instead, we follow past
work and report the memory needed to store the model
parameters (Thakker et al., 2019; Shen et al., 2020).

4.2. Larger Models Are More Robust to Quantization

We quantize every parameter, including the embedding ma-
trix, but keep the model activations at full precision. We use
floating point precisions in {4, 6, 8, 32} bits (using lower
than 4-bits resulted in severe accuracy loss). We apply quan-
tization post-hoc which adds no additional time.

We quantize uniformly: the range of floats is equally split
and represented by unsigned integers in {0, . . . , 2k � 1},
where k is the precision. We accomplish this by quantizing
the weights W as:

W
0 = Clamp(W, q0, q2k�1),

W
I = bW

0 � q0

�
e, where � =

q2k�1 � q0

2k � 1
,

Quantize(W) = �W
I + q0,

where Clamp() clamps all elements to the min/max range,
W

I is a set of integer indices, b·e is the round operator, �
is the distance between two adjacent quantized points, and
[q0, q2k�1] indicates the quantization range.

5We expect similar conclusions to hold for other budgets.

Results The quantization results for MNLI are shown on
the left of Figure 6 (SST-2 results are in Appendix D). We
plot each model’s accuracy at different quantization levels
as a function of its total memory usage. The larger models
are more robust to quantization than the smaller models (the
accuracy drop is smaller when the precision is reduced).
Hence, the models which are trained using large parame-
ter counts and then heavily quantized achieve the highest
accuracy for almost all memory budgets.

4.3. Larger Models Are More Robust to Pruning

We use iterative magnitude pruning (Ström, 1997; Han et al.,
2016): we iteratively zero out the smallest magnitude param-
eters and continue finetuning the model on the downstream
task to recover lost accuracy.

Concretely, we consider models with sparsity levels of 15%,
30%, 45%, 60%, 75%, and 90%. We first find the 15% of
weights with the smallest magnitude and set them to zero.6
We then finetune the model on the downstream task until
it reaches within 99.5% of its original validation accuracy
or until we reach one training epoch. We then repeat this
process—we prune another 15% of the smallest magnitude
weights and finetune—stopping when we reach the desired
sparsity level. The additional training overhead from this it-
erative process is small because the model typically recovers
its accuracy in significantly less than one epoch (sometimes
it does not require any retraining to maintain 99.5%). For
example, pruning to 45% can be done with one or two addi-
tional epochs of finetuning on MNLI.

6It also may be possible to remove entire attention heads in
addition to zeroing out weights (Michel et al., 2019; Voita et al.,
2019). This may further improve our compression results.

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 6. We first pretrain ROBERTA models of different sizes for the same total wall-clock time (larger models are trained for fewer
steps). We then finetune each model on MNLI and compress them using quantization (left) and pruning (right). For most budgets (x-axis),
the highest accuracy models are the ones which are trained large and then heavily compressed. The labels above each point indicate the
compression amount (e.g., 4-bit quantization or 45% sparsity); we omit cluttered labels. SST-2 results are shown in Appendix D.

Results The pruning results for MNLI are shown in the
right of Figure 6. We report the model’s accuracy as a
function of the total number of nonzero parameters.7 The
larger models can be pruned more than the smaller models
without significantly hurting accuracy. Consequently, the
large, heavily pruned models provide the best accuracy-
efficiency trade-off. We find that deep networks are more
robust to pruning than wider networks, e.g., the 24 Layer,
768H model outperforms the 12 Layer, 1536H model at
most test budgets.

Combining Quantization and Pruning Results Pruning
and quantization are complementary techniques for com-
pressing Transformer models. We first prune models to
various sparsity levels (e.g., 15%, 30%, etc.) and then apply
varying amounts of quantization (e.g., 8-bit, 4-bit, etc.) to
each model. In Figure 7 we plot combinations of pruning
and quantization that lie at or near the Pareto frontier. Large
models that are heavily compressed still provide the best
trade-off between accuracy and efficiency when leveraging
both pruning and quantization. A particularly strong com-
pression method is to prune 30-40% of the weights and then
quantize the model to 6-8 bits.

4.4. Convergence Does Not Affect Compressibility

Although larger Transformer models are more compress-
ible, there is a confounding factor that our larger models
are also less converged on the pretraining task. Is it the
larger model size or the lack of convergence that causes the
enhanced compressibility? We investigate this by finetun-

7Since the reduction in memory from storing sparse matrices is
highly dependent on the data structure used, we follow past work
and report the number of nonzero model parameters (Luo et al.,
2017; Li et al., 2017).

ing ROBERTA models starting from different pretraining
checkpoints (e.g., 3 epochs, 6 epochs, etc.) on MNLI. We
then quantize the models to 4-bits.

Figure 8 shows the results. Quantization is hardly affected
by pretraining convergence—the drop in accuracy between
the full precision and the 4-bit precision MNLI models is
comparable as the pretrained model becomes more con-
verged. Instead, the factor that determines compressibility
is model size—the drop in accuracy is very large when
compressing smaller models and vice versa.

5. When and Why Are Larger Models Better?
This section presents results and discussion on why larger
Transformer models train faster and compress better.

5.1. Better Sample Efficiency With Larger Models

For larger models to train faster, they must converge faster
(w.r.t. test error) per iteration. While there is a robust
literature studying why larger models achieve better final
test accuracy,8 there is considerably less work exploring
if and why larger models converge faster. One initial step
in this direction is Arora et al. (2018a), who show that for
deep linear neural networks, increasing depth can promote
movement along directions already taken by the optimizer.

8Chiefly, this work seeks to reconcile the conflict between
modern deep learning practice and the classical bias-variance trade-
off. For instance, it studies forms of implicit regularization (Zhang
et al., 2017; Belkin et al., 2018), characterizes the expressivity of
deep models (Raghu et al., 2017; Lu et al., 2017), and bounds the
neural network generalization error (Du et al., 2019; Arora et al.,
2018b).

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 7. We combine pruning and quantization and find their gains
to be complementary. The models which are trained large and then
compressed are the best performing for each test-time budget.

Fast Minimization and the Role of Overfitting One em-
pirical reason for the acceleration in convergence is that
larger Transformer models minimize the training error faster.
And, since the generalization gap is small for our tasks due
to very large training sets, the larger models also converge
faster w.r.t test error. In fact, the challenge in the MLM task
is not overfitting, but instead, it is fitting the data—even 8
billion parameter models do not overfit to large pretraining
corpora (Shoeybi et al., 2019).

When overfitting is a concern, larger models start to con-
verge slower (w.r.t test error). We demonstrate this by ran-
domly subsampling our pretraining dataset to 5% and 1%
of its original size and training ROBERTA models of var-
ious sizes. When subsampling the data to 5% (top row of
Figure 14 in Appendix A), the largest models do not im-
prove on the training time of the smaller models (e.g., 12
layer ROBERTA trains just as fast as a 24 layer ROBERTA).
Moreover, when the data is subsampled to 1% (bottom row
of Figure 14), the largest models are worse in terms of
perplexity due to overfitting. Thus, although our main con-
clusion that increasing model size accelerates convergence
still holds for the smaller models (e.g., the 12 layer model
outperforms the 3 layer one), overfitting causes it to break
down for the largest models.

5.2. Manageable Compute Costs for Large Models

For larger models to train faster with respect to wall-clock
time, their convergence improvements must not be negated
by their slowdown in per-iteration time. Fortunately, par-
allel hardware (e.g., GPUs, TPUs) is usually not compute
bound when training deep learning models. Instead, mem-
ory storage/movement is the limiting factor in image classi-
fication (Gomez et al., 2017), semantic segmentation (Chen

Figure 8. We disentangle whether model size or pretraining con-
vergence causes the enhanced compressibility of larger models.
We finetune ROBERTA models starting from different pretrain-
ing checkpoints on MNLI. We then quantize the models to 4-bits.
Quantization is hardly affected by convergence—the drop in MNLI
accuracy due to quantization is comparable as the pretrained model
becomes more converged. Instead, the factor that determines com-
pressibility is model size—the drop in accuracy is very large when
compressing smaller models and vice versa.

et al., 2017), language modeling (Kitaev et al., 2020), and
other tasks (Jain et al., 2020). Thus, larger models will
more fully utilize the available compute, causing their slow-
down to be sublinear. Moreover, when larger models cause
hardware to run out of memory, gradient accumulation can
trade-off memory for compute while still preserving the
gains of large models, as shown in our experiments.

5.3. Smaller Compression Error for Larger Models

Large transformer models are more compressible than small
transformer models.9 Here, we present initial experiments
to better understand why this occurs.

Quantization Error is Smaller for Larger Models We
first measure the quantization error—the difference between
the full-precision and low-precision weights—for the 4-bit
ROBERTA models. On the left of Figure 9, we plot this
value for models of varying depths (6, 12, and 24 layers)
averaged across different Transformer modules (e.g., in-
projection matrix of the self-attention). The mean and vari-
ance of the quantization error are smaller for deeper models.

Pruning Error is Smaller for Larger Models Similarly,
we measure the pruning error—the difference between the

9Similar findings hold for large but sparse audio synthesis
models (Kalchbrenner et al., 2018) and convolutional models for
computer vision (Zhu & Gupta, 2018; Elsen et al., 2019; Evci et al.,
2020; Kusupati et al., 2020).

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 9. We finetune ROBERTA models of different sizes (6 layers, 12 layers, and 24 layers) on MNLI. We then quantize models to 4-bits
or prune models to 60% sparsity. We plot the difference between the weights of the original and the quantized/pruned models averaged
across different modules in the Transformer. The mean and variance of the weight difference after quantization (left) is consistently lower
for the deeper models compared to the shallower models. The same holds for the difference after pruning (right). This shows that the
larger model’s weights are naturally easier to approximate with low-precision / sparse matrices than smaller models.

original weights and the sparse weights—for the 60% sparse
ROBERTA models. The mean and variance of the pruning
error are smaller for deeper models (Figure 9, right).

These two results show that the larger model’s weights are
more easily approximated by low-precision or sparse matri-
ces. Interestingly, this phenomenon naturally occurs without
directly optimizing for it; an area for future work is to study
why these weight patterns emerge in larger models.

Connection to the Lottery Ticket Hypothesis Our com-
pression findings have deep connections to recent conjec-
tures such as the lottery ticket hypothesis (Frankle & Carbin,
2019). The lottery ticket hypothesis argues that larger mod-
els are preferable as they have a higher chance of finding a
lucky initialization in one of their subnetworks. Our work
shows that, for certain accuracies, as models become in-
creasingly large, they contain increasingly small subnet-
works which achieve that accuracy.

6. Related Work
Improving Training Speed and Efficiency There is a
large body of work on accelerating model training, tradi-
tionally accomplished via improved optimizers (Nesterov,
1983; Kingma & Ba, 2015). More recent work improves
training efficiency by modifying loss functions (Clark et al.,
2020), model structures/sparsities (Louizos et al., 2018;
Gong et al., 2019; Tan & Le, 2019), backpropagation stor-
age requirements (Gruslys et al., 2016), or learning rate
schedules (Loshchilov & Hutter, 2017; Li et al., 2020). We
study the impact of model size, which is largely orthogonal
to these other training efficiency improvements.

Scaling Model Training Another line of work scales model
training to large amounts of distributed hardware and ad-
dresses the associated systems and machine learning chal-

lenges (Goyal et al., 2017; Ott et al., 2018; You et al., 2020).
Our work instead looks to choose the optimal model size
for a fixed (small) hardware budget. Future work can study
whether our conclusion that large models are more compute-
efficient also holds in this highly-distributed setting, where
the “budget” is extremely large.

Hyperparameter Tuning and AutoML In our work, we
have an initial setting for the hyperparameters and optimize
the model size. However, good initial models and hyper-
parameters are unknown when approaching new problems.
For these cases, the optimal training strategy must consider
the cost of experimenting with different architectures and
hyperparameters; future work can study the effect of model
size in this setting. More generally, our findings may impact
the design of automated methods for solving/optimizing
machine learning problems (Feurer et al., 2015; Zoph & Le,
2017; Jaderberg et al., 2017). In particular, the compute-
efficiency of these methods may improve by following our
train large, then compress methodology.

Training Efficiency of Large Models Recent and concur-
rent work also considers the impact of model size on the
compute efficiency of training. Raffel et al. (2019) show that
training a 4x larger Transformer model is a good usage of 4x
more compute. Ardalani et al. (2019) show that larger RNN
models take fewer gradient iterations to converge but do not
consider that larger models are faster when adjusting for
wall-clock time. In concurrent work, Kaplan et al. (2020)
study the impact of model size on the training efficiency of
Transformer language models. They make similar conclu-
sions that large, undertrained models are superior to small,
well-trained models. Our work differs in that we study ma-
chine translation and the impact of training large models on
downstream tasks (model finetuning and compression).

Rethinking Model Size for Efficient Training and Inference of Transformers

7. Conclusion and Future Work
We studied the impact of Transformer model size on the
efficiency of training and inference. We show that increasing
model width and depth accelerates convergence in terms of
both gradient steps and wall-clock time. Moreover, even
though large models appear less efficient during inference,
we demonstrate that they are more robust to compression.
Therefore, we conclude that the best strategy for resource-
constrained training is to train large models and then heavily
compress them.

In the future, we will examine these conclusions on more
domains such as computer vision. Moreover, we look to
answer the questions that are raised by our results: why
do larger transformer models train fast and compress well,
how does model size impact overfitting and hyperparameter
tuning, and more generally, what other common design deci-
sions should be rethought in the compute-efficient setting?

Acknowledgements
This research was supported by the Berkeley RISE Lab.
We would like to thank the Google Cloud TPU team for
their hardware support. We are also grateful to Shi Feng,
Yang Liu, Suchin Gururangan, Nelson Liu, the members of
Berkeley NLP, and the members of the Berkeley RISE Lab
for their valuable feedback.

References
Ardalani, N., Hestness, J., and Diamos, G. Empirically char-

acterizing overparameterization impact on convergence.
OpenReview: S1lPShAqFm, 2019.

Arora, S., Cohen, N., and Hazan, E. On the optimization of
deep networks: Implicit acceleration by overparameteri-
zation. In ICML, 2018a.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger
generalization bounds for deep nets via a compression
approach. In ICML, 2018b.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
In NeurIPS, 2016.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine learning and the bias-variance trade-off.
In PNAS, 2018.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. In ICLR,
2019.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. DeepLab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and
fully connected CRFs. In TPAMI, 2017.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D.
ELECTRA: Pre-training text encoders as discriminators
rather than generators. In ICLR, 2020.

Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gon-
zalez, J. E., and Stoica, I. Clipper: A low-latency online
prediction serving system. In NSDI, 2017.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. In ICLR, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL, 2019.

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W., and
Keutzer, K. HAWQ: Hessian aware quantization of neural
networks with mixed-precision. In ICCV, 2019.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient
descent provably optimizes over-parameterized neural
networks. In ICLR, 2019.

Elsen, E., Dukhan, M., Gale, T., and Simonyan, K. Fast
sparse convnets. arXiv preprint arXiv:1911.09723, 2019.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen, E.
Rigging the lottery: Making all tickets winners. In ICML,
2020.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,
Blum, M., and Hutter, F. Efficient and robust automated
machine learning. In NeurIPS, 2015.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In ICLR, 2019.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
reversible residual network: Backpropagation without
storing activations. In NeurIPS, 2017.

Gong, L., He, D., Li, Z., Qin, T., Wang, L., and Liu, T.
Efficient training of BERT by progressively stacking. In
ICML, 2019.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, large minibatch SGD: Training ImageNet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Gruslys, A., Munos, R., Danihelka, I., Lanctot, M., and
Graves, A. Memory-efficient backpropagation through
time. In NeurIPS, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network. In
NeurIPS, 2015.

Rethinking Model Size for Efficient Training and Inference of Transformers

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In ICLR, 2016.

Hnaff, O. J., Srinivas, A., Fauw, J. D., Razavi, A., Doer-
sch, C., Eslami, S. M. A., and van den Oord, A. Data-
efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272, 2019.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., et al. Population based training of
neural networks. arXiv preprint arXiv:1711.09846, 2017.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Keutzer, K., Stoica, I., and Gonzalez, J. E. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. In MLSys, 2020.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S.,
Casagrande, N., Lockhart, E., Stimberg, F., Oord, A.
v. d., Dieleman, S., and Kavukcuoglu, K. Efficient neural
audio synthesis. In ICML, 2018.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In ICLR, 2020.

Kusupati, A., Ramanujan, V., Somani, R., Wortsman, M.,
Jain, P., Kakade, S., and Farhadi, A. Soft threshold weight
reparameterization for learnable sparsity. In ICML, 2020.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. ALBERT: A lite BERT for self-supervised
learning of language representations. In ICLR, 2020.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain
damage. In NeurIPS, 1990.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
Pruning filters for efficient convnets. In ICLR, 2017.

Li, M., Yumer, E., and Ramanan, D. Budgeted training:
Rethinking deep neural network training under resource
constraints. In ICLR, 2020.

Liu, L., Wang, H., Lin, J., Socher, R., and Xiong, C. Atten-
tive student meets multi-task teacher: Improved knowl-
edge distillation for pretrained models. arXiv preprint
arXiv:1911.03588, 2019a.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019b.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In ICLR, 2017.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through L0 regularization. In
ICLR, 2018.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The expres-
sive power of neural networks: A view from the width.
In NeurIPS, 2017.

Luo, J.-H., Wu, J., and Lin, W. ThiNet: A filter level pruning
method for deep neural network compression. In ICCV,
2017.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162, 2018.

Metz, C. Building an AI chip saved Google from building a
dozen new data centers. Wired, 2017.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? In NeurIPS, 2019.

Nesterov, Y. A method of solving a convex programming
problem with convergence rate O(1/k2). In Soviet Math-
ematics Doklady, 1983.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling
neural machine translation. In WMT, 2018.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N.,
Grangier, D., and Auli, M. Fairseq: A fast, extensible
toolkit for sequence modeling. In NAACL Demo, 2019.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. BLEU:
a method for automatic evaluation of machine translation.
In ACL, 2002.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., and Dick-
stein, J. S. On the expressive power of deep neural net-
works. In ICML, 2017.

Rethinking Model Size for Efficient Training and Inference of Transformers

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of BERT: smaller, faster, cheaper and
lighter. In NeurIPS EMC

2 Workshop, 2019.

Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O. Green
AI. arXiv preprint arXiv:1907.10597, 2019.

See, A., Luong, M.-T., and Manning, C. D. Compression
of neural machine translation models via pruning. In
CoNLL, 2016.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani,
A., Koanantakool, P., Hawkins, P., Lee, H., Hong, M.,
Young, C., et al. Mesh-TensorFlow: Deep learning for
supercomputers. In NeurIPS, 2018.

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A.,
Mahoney, M. W., and Keutzer, K. Q-BERT: Hessian
based ultra low precision quantization of BERT. In AAAI,
2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J.,
and Catanzaro, B. Megatron-LM: Training multi-billion
parameter language models using GPU model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
EMNLP, 2013.

Ström, N. Sparse connection and pruning in large dynamic
artificial neural networks. In EUROSPEECH, 1997.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. Patient knowledge
distillation for BERT model compression. In EMNLP,
2019.

Tan, M. and Le, Q. V. EfficientNet: Rethinking model scal-
ing for convolutional neural networks. In ICML, 2019.

Thakker, U., Beu, J., Gope, D., Zhou, C., Fedorov, I., Dasika,
G., and Mattina, M. Compressing RNNs for IOT de-
vices by 15-38x using kronecker products. arXiv preprint
arXiv:1906.02876, 2019.

Turc, I., Chang, M.-W., Lee, K., and Toutanova, K. Well-
read students learn better: The impact of student ini-
tialization on knowledge distillation. arXiv preprint
arXiv:1908.08962, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez,
A. N., Gouws, S., Jones, L., Kaiser, Ł., Kalchbrenner,
N., Parmar, N., et al. Tensor2Tensor for neural machine
translation. In AMTA, 2018.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In ACL, 2019.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
ICLR, 2019a.

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F.,
and Chao, L. S. Learning deep transformer models for
machine translation. In ACL, 2019b.

Williams, A., Nangia, N., and Bowman, S. R. A broad-
coverage challenge corpus for sentence understanding
through inference. In NAACL, 2018.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-
J. Large batch optimization for deep learning: Training
BERT in 76 minutes. In ICLR, 2020.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. In ICLR, 2017.

Zhu, M. and Gupta, S. To prune, or not to prune: exploring
the efficacy of pruning for model compression. In ICLR
Workshop Track, 2018.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In CVPR, 2015.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. In ICLR, 2017.

Rethinking Model Size for Efficient Training and Inference of Transformers

A. Additional Training Curves
A.1. Training Cost Using FLOPs

In Figure 10, we plot selected learning curves from the
main text as a function of FLOPs rather than seconds. We
compute FLOPs using the code provided by Clark et al.
(2020).

A.2. The Impact of Batch Size

Figure 13 shows the learning curves associated with differ-
ent batch sizes. Table 1 shows the learning rates associated
with each batch size. We use the hyperparameters from Liu
et al. (2019b) as a starting point and then lightly tune them.

Batch Size Learning Rate
256 .0002
2048 .001
4096 .00125
8192 .0015
16384 .001875

Table 1. The learning rate for each batch size in Figure 13.

A.3. The Impact of Dataset Size

Figure 14 shows the learning curves for models trained
using 5% and 1% of the training data.

B. Finetuning Models of Different Sizes
Table 2 shows that models with more parameters are not
harder to finetune.

Model Perplexity MNLI SST-2
12-layer, 768H 4.3 84.3 93.0
18-layer, 768H 4.1 85.4 92.6
24-layer, 768H 4.0 85.2 93.1

12-layer, 768H 4.3 84.3 93.0
12-layer, 1024H 3.9 85.5 93.2
12-layer, 1536H 4.3 85.1 93.8

Table 2. We train ROBERTA models of different sizes and stop
them at roughly the same pretraining perplexity (the bigger models
are trained for less wall-clock time). We then finetune each model
on MNLI and SST-2. All models reach comparable accuracies (in
fact, the big models often outperform small ones), which shows
that larger models are not harder to finetune.

C. Negative Results: Layer Sharing
Sharing weights across transformer layers can provide a
small or negligible degradation in final performance (Lan

et al., 2020; Dehghani et al., 2019) while providing a re-
duction in memory consumption. In addition, models with
shared layers are slightly faster to execute because they
require less memory movement and reduced inter-device
communication. Similar to Lan et al. (2020), we experi-
ment with two types of layer sharing: sharing all layers and
sharing only the attention layers.

Sharing layers reduces the maximum memory requirements,
especially for small batch sizes. For example, sharing all
the layers of a ROBERTA model with batch size 32 re-
duces total memory usage by 41%. However, both forms of
sharing lead to slower training convergence and thus worse
performance in the resource-constrained setting (Figure 11).
Consequently, we do not recommend sharing layers for
compute-efficient training or inference of transformers.

Figure 11. Sharing attention layers reduces the maximum memory
consumption of ROBERTA but causes slower convergence and
worse final accuracy.

D. Compression Results for SST-2
We follow Liu et al. (2019b) and report results on SST-
2 (Socher et al., 2013) in addition to MNLI. Since the
SST-2 dataset is smaller than MNLI it requires a more
significant tuning of the finetuning hyperparameters. We
tune the batch size in {16, 32, 64}, the learning rate in
{5e�4, 3e�4, 1e�4}, the seed which controls the classifier
initialization and training data shuffling in {100, 300, 500},
and the dropout in {0.1, 0.2, 0.3}. We choose the best value
using the validation set for each model size. We then per-
form quantization, pruning, and quantization and pruning
on all finetuned models. Similar to MNLI, the bigger mod-
els provide the highest accuracy for a given test budget
(Figure 12).

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 10. Floating Point Operations. We show Figures 2, 4, and 13 in terms of exaFLOPs instead of wall-clock time. Bigger models
achieve better results than smaller models using the same number of floating point operations.

Figure 12. Compression for SST-2. For most budgets (x-axis), the highest accuracy SST-2 models are the ones which are trained large and
then heavily compressed. We show results for quantization (left), pruning (center), and quantization and pruning (right).

Figure 13. Increasing the batch size and the associated learning rate accelerates convergence in terms of gradient steps. However,
increasing the batch size beyond 2048 provides only marginal improvements with respect to wall-clock time. Note that the wall-clock
time includes the cost of accumulating gradients on a single machine (see Section 2.2). In other words, beyond a certain point increasing
the batch size only provides speedups when additional hardware is available. The 256 batch size result is far to the right in the left plot.

Rethinking Model Size for Efficient Training and Inference of Transformers

Figure 14. Effect of Smaller Datasets. In our experiments on the full dataset (see main text), the largest models we trained are always faster
in terms of wall-clock time. However, when subsampling the data to 5% (top row), the biggest models do not improve on the speed of the
smaller models (e.g., compare 24 Layer ROBERTA and 12 Layer ROBERTA). When the data is subsampled to 1% (bottom row), the
bigger models are worse in terms of perplexity due to overfitting. This illustrates that the optimal model size depends on the dataset size.

