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ultrastructure damage showed that laser ablation of biomolecules
was not restricted to specific molecules [5]. Elimination of the
need for sensitizing agents was important as their binding to
DNA would alter chromatin configuration and skew DNA
damage response (DDR).

Short pulsed Nd:YAG lasers with nanosecond pulse durations
became a popular and versatile laser source for inducing DNA
damage [6–8]. Recently, laser technology has progressed with
decreases in pulse duration. Currently the most common laser
utilized in the field is the Ti:Sapphire near-infrared (NIR) laser
with femtosecond pulse duration [9–14]. König et al described
NIR femtosecond laser damage to chromosomes at lower
thresholds (not causing membrane rupture) controlled to sub-
femtoliter volume and caused by optical breakdown and plasma
formation [9]. The most common wavelength used in recent
studies vary between 780–800 nm, due to the efficiency of
femtosecond pulse width Ti:Sapphire laser and the
confinement of the DNA lesion. A comprehensive review by
Gassman and Wilson discussed studies using different laser
sources (UV, visible, and NIR) both with and without
sensitizers [15].

The development of confocal imaging systems brought new
potential, where ingenuity of scientists changed the function of
imaging lasers to selectively damage nuclear regions by increasing
the output power of the lasers. Recently, Gaudreau-Lapierre et al.
[16] describes the methodology behind the use of a laser scanning
confocal microscope to irradiate regions within the nucleus using
the fluorescence-recovery after photobleaching module common
with commercially available software for confocal microscopes.
Studies utilizing confocal systems to induce DNA damage
allowed tracking of the DDR response in 4 dimensions,
conventional 3 dimensions (as optical laser can be focused to
a specific spot, see below) and the temporal response [16, 17].
Ultraviolet A (UVA) laser wavelength (355–365 nm) is also
commonly used for DNA damage induction, including
confocal microscope sources [18–21]. The mechanism of DNA
damage by UVA laser sources is considered to result from single-
photon absorption [22].

Use of lasers to activate compounds is a technique that has
grown in recent popularity. Photodynamic therapy in the past has
utilized photosensitizers, activated by lasers as clinical treatment
for cancer and other diseases. A recent example in this field by
Lan et al utilizes the Killer red compound to generate ROS-
induced DNA damage at specific sites combining with artificially
changing the chromatin states (open and closed) [23]. Yanuk
et al. continues the search for photosensitizers with three
cholorharmine derivates for photo inducible DNA damage
including one that cleanly induces single strand breaks [24].
Efforts to develop tools that can induce specific types of DNA
damage with spatiotemporal control continue in the field.

LASER DAMAGE MECHANISMS

Laser ablation utilizes energy from photons of light interacting
with biomolecules within the targeted cellular structure. A large
population of photons of high energy focused to a small beam

FIGURE 1 | Simple strand breaks and complex damage induced by
NIR laser microirradiation with low and high input power. By adjusting
parameters, laser microirradiation can enrich different types and amounts of
DNA damage with the recruitment of different repair factors. (A)
Suggested mechanisms of laser induced nuclear damage and
corresponding common laser sources for damage induction. Specific
wavelength and other laser parameters are summarized in Supplementary
Table S1. Modified from [22]. (B) Schematic diagram of differential DNA
damage responses to low and high input power NIR laser microirradiation.
For relatively simple strand breaks induced by low power laser (top), efficient
53BP1, Rad51 and SMC1 (cohesin) recruitment occurs while no significant
PARP activation is observed. In contrast, complex damage containing
crosslinking and base damage as well as high-density strand breaks
induces robust PARP activation, spreading of H2AX phosphorylation from
damage sites (γH2AX, the marker of DSBs), and recruitment of repair
factors in NER and BER pathways. Blue box: PAR accumulation [37]. (C)
Fluorescent microscope images of human cells damaged with low and high
input power laser microirradiation. Cohesin (GFP-SMC1) and Rad51
involved in HR repair are preferentially recruited to low input power damage
sites (top) while DNA glycosylase (GFP-NEIL2) and condensin I (hCAP-G)
involved in BER/SSB repair are enriched at high input power damage sites
(bottom). Damage sites are indicated by white arrowheads. Bar � 10 μm
[37, 38].
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diameter result in consistent, and targeted regions of damage.
Laser induced damage is affected by laser parameters including
energy level, pulse duration, number of pulses delivered, and
wavelength. Additionally, variation in the physical mechanism of
light interaction with biological molecules is also dependent on
the laser manufacturer, as well as optimal focusing of the beam
through the optical path. The diameter of the induced damage
can be controlled to a diffraction-limited spot size defined by
1.22 λ/NA. Damage area can be further extended by repositioning
the beam to multiple locations, which in some software is referred
to as “zoom factor”.

The combination of laser parameters used dictates the types of
DNA damage induced by the laser. We previously utilized
multiple laser sources and parameters, such as wavelength,
peak irradiance, input power, pulse frequency and duration of
exposure, to induce DNA damage, and systematically analyzed
the resulting DNA damage by immunofluorescent detection of
crosslinking and base damage, recruitment and modification of
DDR and pathway-specific repair factors [22]. We proposed four
potential mechanisms of laser-induced DNA damage: (i)
temperature rise produced by linear or two photon absorption;
(ii) generation of large thermo-elastic stresses; (iii) various
photochemical processes by linear or two photon absorption
including DNA cross-linking damage and production of free
radicals and reactive oxygen species; and (iv) optical breakdown
(plasma formation) produced by a combination of multiphoton
and cascade ionization processes, leading to thermal, mechanical
and chemical damage (Figure 1A) [22].

Many studies support the mechanism of multiphoton
processes when inducing nuclear damage with short-pulsed
lasers. Göppert-Mayer first defined the nonlinear absorption
mechanism, which allows DNA and other molecules to absorb
multiple photons of lower energy resulting in effects similar to the
absorption of a single photon of higher energy [25]. Early studies
by Calmettes and Berns demonstrated the phase “paling” of
chromosomes and nucleoli suggests this observation was a
result of multiphoton processes by 532 nm laser photons and
two-photon processes for 266 nm UV light [26]. Phase paling as
observed with these multiphotonmechanisms are similar to those
resulting from Ti:Sapphire NIR lasers with femtosecond pulse
widths [13]. Damage mechanisms of NIR are based on low
density plasma formation, and well defined by Vogel and
Venugopalan [27, 28]. Damage mechanisms of continuous
wave (CW) lasers like the blue diode lasers commonly utilized
with confocal imaging systems are based on linear absorption,
similar to longer pulse width UV lasers [28].

INDUCTION AND DETECTION OF
DIFFERENT TYPES OF DNA DAMAGE AND
FACTOR RECRUITMENT
Living cells experience various types of DNA damage that may
lead to gene mutations if not corrected. Correspondingly,
multiple DNA damage signaling and repair pathways are
activated by the damage to maintain genome stability.
Photoproducts such as pyrimidine-pyrimidone (6–4)

photoproducts (6–4PPs) and cyclobutane pyrimidine dimers
(CPDs) caused by UV light are repaired by the nucleotide
excision repair (NER) pathway. Base damage, such as
oxidation damage 8-oxoguanine (8-oxoG), is repaired via the
base excision repair (BER) pathway. DNA double-strand breaks
(DSBs) can be repaired by two major pathways, homologous
recombination (HR), non-homologous end joining (NHEJ), or
alternative/back-up pathways, such as single-strand annealing
(SSA) pathway [29]. DNA single-strand breaks (SSB) repair is
also the downstream step of BER [30], since base damage is
processed by DNA glycosylases and AP endonuclease into a SSB
intermediate [22, 31].

As described above, laser microirradiation became a powerful
tool to analyze DNA repair in vivo at a single cell resolution. The
use of laser ablation with cells expressing fluorescently-tagged
DNA repair-related proteins make it possible to study the
association and dissociation of repair factors at DNA damage
sites with high spatial resolution and tight temporal control. A
laser source integrated into a confocal microscope equipped with
an incubator for temperature and CO2 control allows time-course
analyses of DDR in real time. With advanced fluorescence
imaging techniques, it is also possible to investigate cellular
responses beyond the repair protein accumulation at damage
sites, such as chromatin structural changes andmetabolic changes
in response to DNA damage [21, 32–35].

The NIR laser-induced damage results in a wide variety of
DNA damage types including SSBs, DSBs, and pyrimidine dimers
[36]. It was suggested that the use of visible and NIR laser
wavelengths may be challenging due to the complexity of
induced damage [15]. Complex DNA damage, however, is
what is commonly induced by ionizing radiation and
genotoxic agents, and thus, it is important to understand the
cellular responses to this type of damage. We found that it is
possible to control the complexity of DNA lesions by titration of
NIR laser input power [37, 38]. Unlike UVC lasers [36], we found
that the NIR lasercan generate simple low density SSBs and DSBs
at low input power and complex DNA damage (SSBs, DSBs, 6-
4PP, CPD, and 8-oxoG) with high input power (Figures 1B,C)
[37, 38]. Importantly, complex DNA damage induced by high
input-power NIR laser triggers robust poly (ADP-ribose)
polymerase 1 (PARP1) recruitment and activation [37]. We
found that PARP1 activation at complex damage sites is
required for telomeric repeat binding factor 2 (TRF2)
recruitment, but inhibits 53BP1 recruitment, having
differential effects on DSB repair pathway choice [37, 39]
(Figure 1B). PARP1 is a rapid and sensitive DNA nick sensor
that catalyzes the synthesis of poly (ADP-ribose) (PAR) chains on
itself and target proteins [40]. Local PAR accumulation at
damaged lesions was proposed to cause phase separation and
recruitment of various factors [41, 42]. 53BP1,which restricts
DNA end resection for HR and promotes NHEJ [43, 44], is the
first example of repair factor whose recruitment is inhibited by
PAR, providing one possible explanation for hyperactivation of
NHEJ by PARP inhibitors [37]. Furthermore, we observed
accumulation of BER factors, such as DNA glycosylase NEIL1,
and condensin I [38, 45] at high power damage sites (Figure 1B).
Interestingly, even high-linear energy transfer (LET) α-particles
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irradiation, which can induce up to 90% complex damage [46]
failed to induce robust PARP activation and thus no TRF2
recruitment was observed [47, 48]. This may be due to
differences in damage density and induction mechanism. High
input power NIR also causes pan-nuclear phosphorylation of
H2AX (γH2AX), which disperses MDC1 from damage sites [37].
This is similar to what was reported with high-LET irradiation 49.
Because 53BP1 and Rad51 accumulation at the DNA damage
sites requires MDC1 50, 51 MDC1 dispersion by pan-nuclear
γH2AX also suppresses their clustering at damage sites. Thus,
despite the induction of complex DNA damage, the DDR
patterns can be different between high-LET IR and high input
power NIR. Nevertheless, these studies indicate that with careful
titration of laser parameters and characterization of resulting
DNA damage by immunofluorescent detection of key damage
markers, NIR laser should be a valuable tool to investigate
dynamics of DDRs in response to simple strand breaks and
complex DNA damage, and is particularly suitable for
studying PARP signaling [34, 37–39].

SYSTEMATIC STUDIES OF FACTOR
RECRUITMENT TO LASER-INDUCED
DAMAGE SITES
While laser microirradiation can be used to examine the
dynamics of DDR at the single-cell level with high
spatiotemporal resolution, it is time-consuming to define laser-
irradiated subcellular regions manually and analyze large sets of
images. In early DNA damage studies that utilized a laser beam,
the number of repair factors tested were limited [36, 52]. The
kinetics of individual DNA repair factors at damage sites have
been reported [53, 54], but it is difficult to compare these studies
because the laser parameters were different, which might have
induced different types and amounts of DNA damage [22].
Furthermore, artificial overexpression of the recombinant
tagged proteins used for the analyses may cause these proteins
to behave differently from the endogenous untagged proteins
expressed from their own promoters [37, 55]. To circumvent
these potential problems and compare different factor
recruitment side by side, bacterial artificial chromosome
(BAC)-transduced cell lines expressing EGFP-tagged DNA
repair proteins from their endogenous promoters were used
for recruitment kinetics study [20]. They systematically
measured and mathematically modeled the kinetics of 70
DNA repair proteins to laser-induced DNA damage sites
comparing to co-expressed mCherry-tagged PCNA as a control.

In addition to the studies of known repair factor recruitment,
laser microirradiation has been employed to identify factors that
were not previously known to be involved in DDR and repair.
Those include various histone and chromatin remodeling factors
that appear to promote efficient DNA repair [17, 56, 58].
However, these previous studies were also limited to
investigation of each individual protein factor. Using the
lentivirus expression system, Izhar et al. screened hundreds of
gene products with potential roles in DNA repair and other
nuclear processes, and identified more than 120 proteins that

localized to sites of UVA laser-induced DNA damage [59]. Many
positive hits were transcription factors that were recruited to
DNA damage sites in a PARP-dependent manner. Most of these
had not previously been reported to localize to sites of DNA
damage.

It is challenging to perform quantitative analyses of factor
recruitment kinetics with sufficient statistical power, due to a
limited number of cells that can be analyzed at one time. To
increase through-put, several approaches have been developed to
analyze fluorescence intensity or area under the curve of micro-
irradiated regions [54, 60]. Mistrik et al. [61] exposed a bulk of
cells simultaneously to a UVA laser beam in a defined pattern of
collinear rays. The induced striation pattern was automatically
evaluated by custom-coded software, which provides a
quantitative assessment of laser-induced phenotypes. Oeck
et al. developed an ImageJ-based, high-throughput evaluation
tool to standardize and accelerate the quantitative analysis of local
protein accumulation at sites of DNA damage [62]. The
continuous development of analysis tools will improve high-
throughput data analysis of repair factors dynamics at laser
induced-DNA damage sites.

ANALYSES OF SECONDARY DAMAGE
SIGNALING

Chromatin Dynamics
Chromatin dynamics modulates DNA damage site accessibility of
repair factors. Damage induction at the define subnuclear region
by laser microirradiation allowed tracking of damaged chromatin
movement and change of chromatin compaction [17]. Kruhlak
et al. [17] tracked mobility and structure of chromatin containing
DSBs in living cells by using photoactivatable GFP (PA-GFP)-
tagged histone H2B. Initial studies using photo-activatable GFP
fused to histone H2B revealed that DNA damage triggers the
localized relaxation of chromatin followed by the localized
compaction of chromatin, in an ATP and PARP-dependent
manner [63, 64]. Several advanced fluorescence microscopy
techniques were employed to visualize dynamic chromatin
changes at laser induced damaged and undamaged sites [32,
33, 35]. For example, pair correlation function (pCF) analysis of
EGFP molecular flow in and out of chromatin before and after
damage induction revealed that DNA damage induces a transient
decrease in chromatin compaction at the damage site and an
increase in compaction to adjacent regions [35]. Dispersion and
compaction surrounding the damage site was suggested to
facilitate DNA repair factor recruitment to the lesion [35]. Lou
et al. were able to directly measure nanometer changes in
chromatin compaction at DNA damage sites using a
biophysical method based on phasor image-correlation
spectroscopy of histone fluorescence lifetime imaging
microscopy (FLIM)-Förster resonance energy transfer (FRET)
microscopy on live cells coexpressing H2B-eGFP and H2B-
mCherry [32]. They found that the fraction of compact
chromatin within the NIR laser-induced damage lesion sharply
increased in the first 30 min after DSB induction and persisted for
up to 3 h, while there was no significant change in the percentage
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of compact chromatin nucleus-wide [32]. Another group,
however, demonstrated that 405 nm laser-induced DNA
damage in Hoechst-sensitized cells led to a global compaction
of undamaged chromatin through analysis with fluorescence
anisotropy imaging of histone H2B-EGFP [33]. The
controversial results from different groups may be caused by
the different damage conditions (as discussed above).
Nevertheless, the combination of laser microirradiation and
fluorescence dynamics techniques makes it possible to
distinguish changes of chromosome dynamics at damage sites
and in the rest of the nucleus (with undamaged chromatin) in
response to DNA damage.

Cell-wide Metabolic Response
In addition to studies on DNA damage responses in the nucleus,
use of laser microirradiation in conjunction with fluorescence
imaging allows investigation of cell-wide DDR because it is
possible to distinguish damaged and undamaged cells in the
same field under microscope and to track damage-induced
changes in realtime. Using fluorescence-based ATP and
NAD+ biosensors, pH indicator, and phasor-FLIM capturing
autofluorescence of NADH, we systematically measured
metabolic dynamics in living cells in response to NIR laser-
induced DNA damage with different input power [34]. We
observed a rapid cell-wide increase of the bound NADH fraction
in response to complex DNA damage, which is triggered by
PARP1-dependent transient depletion of NAD+. We found that
this change is linked to the increased cellular metabolic reliance
to oxidative phosphorylation(oxphos) over glycolysis, which is
critical for damaged cell survival [34]. Recent evidence suggests
that other cellular processes are also involved in DDR, such as
autophagy and immune response [65, 66]. Damage-induced
changes in subcellular localization or oligomerization revealed

previously unrecognized roles of proteins in DDR and repair
processes [67, 68]. Thus, combinatorial use of spatiotemporally
defined laser microirradiation and fluorescent imaging will have
many future applications in realtime dissection of cellular
responses to DNA damage.

DISCUSSION AND FUTURE PERSPECTIVE

With careful parameter setting and characterization of induced
damage, laser microirradiation offers valuable opportunities to
study in vivo cellular responses to DNA Damage with high
spatiotemporal resolution. It was highly instrumental in
identifying new factors and modifications involved in DDR,
determining the order of factor recruitment and kinetics,
chromatin and cellular metabolic changes associated with
DNA damage, furthering our knowledge of DNA damage
response in human cells (Figure 2). Precise input power
titration and parameter setting led to better understanding and
control of the types of damage induced, which now allow us to
characterize specific DDR signaling associated with simple strand
breaks and complex damage. With further technology
development and refinement, laser microirradiation will
continue to be a powerful tool to study DDR. For example,
with CRISPR technology, it is now feasible to generate cell lines
that express multiple fluorescently tagged factors from their
endogenous loci (to avoid artifactual overexpression) and
examine their realtime interplay at laser-induced damage sites
using multi-color confocal microscopy. Knowing exactly which
cell is damaged, it is also possible to analyze the DDR signaling in
cell-cell communication. Advanced fluorescence microscopy
techniques, such as number and brightness (N&B) analysis,
fluorescence recovery after photobleaching (FRAP),

FIGURE 2 | Application of laser damage to dissect different aspects of cellular DDRs. Laser microirradiation in combination with a variety of fluorescence dynamics
and imaging techniques allows analyses of cellular DDRs with high spatiotemporal resolution, such as repair factor recruitment and dissociation at the damage sites,
protein modifications, chromatin dynamics, and metabolic signaling. These techniques include (clockwise) real-time kinetics analysis of fluorescently labeled protein
recruitment at laser-induced damage sites, immunofluorescent staining analysis (IFA) of proteins and covalent modifications at damage sites using specific
antibodies in fixed cells; damage site chromatin movement using fluorescently labeled histones; high-resolution fluorescence dynamics analyses of molecular
movements and oligomerization using fluorescently labeled proteins with advanced fluorescence microscopy techniques, such as FLIM-FRET, pCF and N&B; and
analyses of metabolic changes using phasor-FLIM and fluorescence biosensors.
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fluorescence localization after photobleaching (FLAP), and
FLIM-FRET, may be utilized effectively to further dissect
DDR at a single-molecule resolution [69]. Development/
improvement of integrated microscopy systems that allow
automated laser damage and fluorescent image data
acquisition and tracking would allow high-throughput DDR
analyses and screening of small molecules, RNAi, or CRISPR
libraries to identify critical factors and harness DDR and repair
processes, which may be applicable to disease therapy
development.
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