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A B S T R A C T

The Gulf of Alaska experienced extreme temperatures during 2014–2019, including the four warmest years ever
observed. The goal of this study is to evaluate the ecological consequences of that warming event, across
multiple trophic levels and taxa. We tested for evidence that observed sea surface temperature (SST) anomalies
were outside the envelope of natural climate variability in order to evaluate the risk of novel ecosystem con-
figurations. We also tested for state changes in shared trends of climate (n = 11) and biology (n = 48) time
series, using a Bayesian implementation of Dynamic Factor Analysis (DFA). And we tested for evidence of novel
ecological relationships during 2014–2019. We found that 3-year running mean SST anomalies during
2014–2019 were outside the range of anomalies from preindustrial simulations in CMIP5 models, indicating that
the combined magnitude and duration of the warming event was outside the range of natural variability. A DFA
model of climate variability also returned a shared trend in climate time series that was at unprecedented levels
during 2014–2019. However, DFA models fit to biology data did not show shared trends of variability at un-
precedented levels, and Hidden Markov Models fit to shared trends from the climate and biology models failed to
find evidence of shifts to a new ecosystem state during 2014–2019. Conversely, we did find preliminary in-
dications that community responses to SST variability strengthened during 2014–2019 after decades of a mostly
neutral relationship. Tests for nonstationary patterns of shared variability suggest that covariance between SST
and other ecologically-important climate variables remained weaker than during the 1970s Pacific Decadal
Oscillation shift, suggesting the potential for muted ecological responses to the 2014–2019 event. Finally, we
found that recent patterns of community variability appear to be highly dissimilar to those associated with the
1970s event, suggesting the potential for novel community states with continued warming. In summary, we find
no evidence for wholesale ecosystem reorganization during 2014–2019, though nonstationary relationships
among climate and community variables suggest the ongoing possibility of novel patterns of ecosystem func-
tioning with continued warming.
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1. Introduction

The North Pacific Ocean was unprecedentedly warm for much of
2014–2019. This climate event at first appeared to be part of a discrete
multi-year heatwave characterized by extremely high sea level pressure
(SLP) anomalies that led to reduced wind mixing and wind-forced ad-
vection, resulting in extreme ocean temperatures (the “Warm Blob”;
Bond et al., 2015). Attribution studies suggest that peak temperatures
during this event, in 2016, would have been impossible absent an-
thropogenic radiative forcing (Jacox et al., 2018; Walsh et al., 2018b).
After more normal temperatures in 2017, extreme temperatures re-
turned in 2018–2019, establishing the climate perturbation as a longer
time scale event rather than a discrete heatwave.

The North Pacific provides a range of important ecosystem services,
including commercial and subsistence fisheries that are critical for the
cultural, social, and economic well-being of coastal communities.
Understanding the ecosystem implications of the 2014–2019 warm
anomaly is important both for appropriate management of these eco-
system services under accelerating physical stress, and to inform soci-
etal decisions concerning the mitigation of, and adaptation to, global
warming and other aspects of human-caused climate change. A number
of biological responses to the climate perturbation have already been
noted in the northern North Pacific (Bering Sea and Gulf of Alaska).
These include the largest-ever observed mass mortality event for
common murres (Piatt et al., 2020) and a variety of other seabird mass
mortality events; acute and chronic production of neurotoxins by
harmful algal blooms (McCabe et al., 2016; Roggatz et al., 2019);
unusual mortality for humpback whales (Megaptera novaeangliae) in the
western Gulf of Alaska in 20151; unprecedented irruptions of pelagic
colonial tunicates (Pyrosoma sp.) in the Gulf of Alaska in 20172,3;
fisheries failures for Gulf of Alaska Pacific cod (Gadus marocephalus) in
20184, Gulf of Alaska-wide pink salmon (Onchorynchus gorbuscha) runs
in 20164, and Chignik Management Area sockeye salmon (O. nerka) in
20184; dramatic abundance increases for Pacific cod and walleye pol-
lock (Gadus chalcogrammus), and abundance decreases for Arctic cod
(Boreogadus saida) in the northern Bering Sea (Stevenson and Lauth,
2019); drastic reductions in the energy content of Pacific sandlance
(Ammodytes personatus), a key forage species (von Biela et al., 2019);
and a delayed spring bloom and depressed abundance of large crusta-
cean zooplankton in the southeast Bering Sea (Duffy-Anderson et al.,
2019). However, understanding of the community-level impacts of this
event remains limited. Summaries of effects across multiple taxonomic
groups and trophic levels tend to be qualitative collections of multiple
observations (e.g.; Cavole et al., 2016; Leising et al., 2015; Morgan
et al., 2019), while more quantitative syntheses tend to concentrate on
restricted trophic or taxonomic groups (e.g.; Auth et al., 2018; Brodeur
et al., 2019; Gomez-Ocampo et al., 2018; Peterson et al., 2017). These
studies have provided important summaries of ecosystem impacts of the
warming event. We build on this foundation with a quantitative
synthesis of impacts across all available long-term biology time series,
for multiple trophic and taxonomic groups, in the Gulf of Alaska eco-
system.

Climate change complicates the task of evaluating ecosystem re-
sponses to physical forcing. There is a long history of studies testing for
state shifts in ecosystem properties in the North Pacific, typically re-
lated to red noise in leading modes of internal climate variability (e.g.,

Hare and Mantua, 2000; Litzow and Mueter, 2014; Mantua et al.,
1997). Testing for similar changes in mean values of ecosystem prop-
erties remains an important aspect of evaluating the impact of the
2014–2019 warming event. However, climate change also involves
change to a suite of environmental variables beyond temperature. Be-
cause rates of change differ among different variables, novel combi-
nations of physical variables are likely to occur as anthropogenic
change accelerates (Henson et al., 2017; Wolkovich et al., 2014). These
new combinations are indicated by correlations among climate vari-
ables that are nonstationary, or described by probability distributions
that change over time (Kolmogorov, 1991). Novel climate combinations
expose communities to new combinations of physical forcing variables,
with the potential result of reorganized biological communities that are
poorly described by existing ecological understanding (Maguire et al.,
2015; Williams and Jackson, 2007).

In the Gulf of Alaska, both types of ecosystem change (shifts in mean
ecosystem state and nonstationary relationships among ecologically-
important climate variables) are intimately related to dynamics in the
Aleutian Low, an area of climatological low atmospheric surface pres-
sure during the winter in the northern North Pacific (Trenberth and
Hurrell, 1994). At a basin scale, the Aleutian Low drives wind stress
fields that regulate water column mixing, Ekman transport, and heat
fluxes that contribute to the Pacific Decadal Oscillation (PDO) sea
surface temperature (SST) pattern (Newman et al., 2016). At a regional
scale, the Aleutian Low drives cyclonic mean atmosphere and ocean
circulation in the Gulf of Alaska, which in turn affects regional-scale
physical variables including temperature, wind stress, advection,
coastal downwelling, coastal freshwater discharge, coastal salinity, and
nutrient availability (Coyle et al., 2019; Hunt et al., 2008; Weingartner
et al., 2005). During the 20th Century, low-frequency change in the
average intensity of the Aleutian Low was a primary driver of shifts
between persistently positive and negative values in the PDO index
(Mantua et al., 1997). During that time, community composition for
Gulf of Alaska fish and crustaceans tracked the PDO index in a linear
fashion (Hare and Mantua, 2000; Litzow and Urban, 2009). Broadly
speaking, negative PDO values were associated with a community state
rich in crabs, shrimp, and lipid-rich forage fishes, while positive PDO
values were associated with increased abundance of salmon (Oncor-
hynchus spp.) and groundfishes such as Pacific cod and Pacific halibut
(Hippoglossus stenolepis; Anderson and Piatt, 1999; Hare and Mantua,
2000; Litzow et al., 2014). In the late 1980 s, though, the Aleutian Low
experienced a sharp decline in interannual variance (Litzow et al.,
2020, 2018). Strong departures from average atmospheric forcing
conditions (strong positive or negative anomalies in SLP) were no
longer present. Absent strong contrasts in atmospheric forcing, pre-
viously strong correlations between Aleutian Low SLP values and re-
gional climate variables in the Gulf of Alaska degraded towards zero.
Strong intercorrelation among regional climate variables that had
previously reacted synchronously to Aleutian Low variability also de-
cayed, and in particular, previously strong relationships between re-
gional SST and other important climate variables, as well as strong
relationships between the PDO index and regional climate variables,
degraded. Apparently as a result, previously strong correlations be-
tween SST/PDO variability and community state largely disappeared
(Litzow et al., 2020, 2019, 2018; Puerta et al., 2019).

The goal of the current study is to evaluate the evidence for either
state changes (shifts in mean state across multiple climate and biology
time series) or nonstationary ecological relationships (changing corre-
lations among variables) in the Gulf of Alaska ecosystem during the
2014–2019 climate anomaly. Departure from the natural range of cli-
mate variability implies an increased chance of novel system config-
urations and ecological surprises (Williams and Jackson, 2007). We
therefore also test the hypothesis that the magnitude and duration of
2014–2019 temperature anomalies were outside the envelope of nat-
ural variability, in order to evaluate the degree to which this event may
represent a transition to a novel anthropogenic climate state. Our

1 https://www.fisheries.noaa.gov/national/marine-life-distress/2015–2016-
large-whale-unusual-mortality-event-western-gulf-alaska
2 https://www.fisheries.noaa.gov/resource/data/2017-status-alaska-marine-

ecosystems-considerations-gulf-alaska
3 https://www.fisheries.noaa.gov/feature-story/researchers-investigate-

explosion-number-pyrosomes-alaska
4 https://www.fisheries.noaa.gov/national/funding-and-financial-services/

fishery-disaster-determinations
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specific objectives are to: 1) calculate the fraction of risk for SST
anomalies throughout the 2014–2019 period that can be attributed to
anthropogenic forcing; 2) evaluate the evidence for state changes in
shared trends of multivariate climatic and biological variability; 3) test
for nonstationary community responses to SST variability since 2014;
and 4) test for nonstationary associations among individual climate and
biology time series. An important contribution of this study is the de-
velopment and application of a Bayesian implementation of Dynamic
Factor Analysis (DFA) to provide probabilistic statements about how
time series map onto shared unseen processes (Ward et al., 2019).

2. Methods

2.1. Comparing SST observations to preindustrial simulations

For objective 1, we evaluated the evidence that 2014–2019 SST
anomalies exceeded the limits of preindustrial variability by calculating
the Fraction of Attributable Risk (FAR; 1 - Probpreindustrial / Probpresent)
(Stott et al., 2004; Walsh et al., 2018b). We calculated FAR both for SST
anomalies in each year, and for non-overlapping three-year running
mean anomalies in order to compare the combined duration and
magnitude of recent climate conditions with those expected under
preindustrial conditions (Jacox et al., 2018). FAR values were calcu-
lated with previously-published outputs from five climate models run
under preindustrial conditions as part of the Coupled Model Inter-
comparison Project Phase 5 (CMIP5). These five models were judged to
be the best CMIP5 models for capturing Arctic variability (Walsh et al.,
2018b, 2018a). Model SST outputs were summarized for the area 50°-
60°N, 150°-130°W. Observed SST for the same area was calculated as
the area-weighted mean of monthly ERSSTv5 values (Huang et al.,
2017), and converted to anomalies by subtracting the 1981–2010 mean
and dividing by the 1900–2016 standard deviation (following the ap-
proach used by Walsh et al. [2018b]). Valid comparisons of three-year
running means between observations and simulations requires that
models capture the autocorrelation (red noise) that is a natural feature
of SST due to the thermal inertia of water (Di Lorenzo and Ohman,
2013; Newman et al., 2016). First-order autocorrelation during
1987–2005 (the period of historical simulations used by Walsh et al.
[2018b]) was broadly similar for observations (0.29) and four of the
five models (range 0.27 – 0.49). A fifth model (MRI.CGCM3) showed
markedly lower autocorrelation (-0.04) and was therefore dropped
from the three-year running mean comparison. For the calculation of
FAR values, the probability of observed anomalies under preindustrial
values was estimated from single 60-year windows randomly selected
for each model (Walsh et al., 2018b), and the probability under the
current climate was calculated for the 1960–2019 reference period
(matching the 60-year length of preindustrial simulations). We also
compared the magnitude of change associated with the 2014–2019
anomaly (in normalized units) with the magnitude of change around
the 1976/77 PDO shift, as an approach for evaluating the size of the
2014–2019 perturbation relative to a historical event with profound
and long-lasting ecological consequences.

2.2. Climate and biology data

We used a wide range of climate and biology time series to char-
acterize Gulf of Alaska ecosystem variability (Table 1). For climate
data, we used our familiarity with the study system to select a parsi-
monious set of variables (n = 11) to capture ecologically-important
physical properties (Fig. 1). These included winter (November-March)
and spring (May-June) SST for both the western and eastern Gulf of
Alaska, the SLP gradient between Ketchikan and Seward (a proxy for
onshore windflow and resulting orographic precipitation / freshwater
input; Weingartner et al., 2005), February-April 20 m salinity at the
GAK1 site, the Ocean Station Papa index (a measure of gyre-scale ad-
vection), and Bakun upwelling indices for four stations (54°N 134°W,

57°N 137°W, 60°N 146°W, 60° 149°W) during summer (May-July), the
season when persistent coastal downwelling in this system relaxes
(Stabeno et al., 2004).

We populated the biology data sets for this study by searching for all
available time series that met the following criteria. We wanted to
detect community responses to climate change without long lags, so we
used population parameters that are expected to show short (0- or 1-
year lag) responses to climate variability. Because we wanted to com-
pare recent biological variability to longer-term patterns, we only used
time series that were at least 15 years long. The resulting list of time
series (n= 48) included: abundance and phenology estimates for short-
lived taxa (phytoplankton, zooplankton, forage fish, jellyfish, shrimp)
or early life history stages of long-lived taxa (ichthyoplankton); the
nearshore abundance of one groundfish with a history of rapid changes
in abundance and distribution in response to climate variability (Pacific
cod); a growth chronology for another groundfish (northern rockfish
Sebastes polyspinis); and commercial catches of pink salmon and coho
salmon (Oncorhynchus kisutch), species which return to natal rivers one
year after ocean entry, and thus show short-lag abundance responses to
ocean conditions.

Biology data were normalized with log transformations, or fourth-
root transformations for time series containing zeros, as needed. For
example, if the time series data were lognormal (e.g. weight/count
data) or the coefficient of variation was > 1, the data were normal-
ized. Ichthyoplankton data were standardized using Generalized
Additive Models prior to analysis to account for spatial and temporal
variability in sampling effort among years (Marshall et al., 2019).

2.3. Testing for state changes

We describe these methods in detail below, but in summary, our
work flow for objectives 2–4 was to (1) identify shared trends in mul-
tivariate climate and biology datasets; (2) evaluate the evidence for
shifts in those shared ecosystem trends since 2014; (3) where time
series length allowed, apply time-varying regressions to evaluate
changing relationships between biological indices and SST since 2014;
and (4) evaluate the evidence for changing relationships among in-
dividual time series within climate and biology data sets.

To summarize shared trends of climatic and biological variability,
we implemented a Bayesian version of Dynamic Factor Analysis (DFA,
Zuur et al., 2003b, Ward et al. 2019) using the software Stan and R
(Carpenter et al., 2017; R Core Team, 2018; Stan Development Team,
2018). DFA is a multivariate statistical tool somewhat analogous to
Principal Components Analysis, but for time series data (Holmes et al.,
2018; Zuur et al., 2003b). For a collection of time series, the number of
unobserved, “latent” trends is specified a priori, and DFA estimates
these latent trends as independent random walks. In mathematical
form, this is expressed as

= +x x ,t i t i t i, 1, 1,

where xt i, represents the value of latent (unobserved) trend i at time t,
and the process error deviations t i1, are generally assumed to have
arisen from a multivariate distribution (with an identity covariance
matrix for identifiability; Zuur et al., 2003a). The latent trends at time t
x( )t are mapped to the observed data yt through a loadings matrix Z and
residual error t ,

= +y Zx .t t t

Because the response is multivariate, yt represents the value of all time
series at time t. The residual error terms are assumed to be drawn from
a univariate or multivariate normal distribution, where variances may
be shared or not across time series, as well as correlated or not.

Our Bayesian implementation of DFA provides a probabilistic
summary of multivariate time series relationships. We present posterior
distributions that allow the plausible range of time series loadings and
shared trends to be evaluated. Our implementation is more flexible than
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Table 1
Data and sources for evaluating multivariate climate and biology variability.

Variable Metric Years Source

Climate
Sea surface temperature anomaly, ˚C Western Gulf of Alaska, Nov-Mar 1950–2019 ERSSTv5
Sea surface temperature anomaly, ˚C Western Gulf of Alaska, Apr-Jun 1950–2019 ERSSTv5
Sea surface temperature anomaly, ˚C Eastern Gulf of Alaska, Nov-Mar 1950–2019 ERSSTv5
Sea surface temperature anomaly, ˚C Eastern Gulf of Alaska, Apr-Jun 1950–2019 ERSSTv5
Gyre scale advection Papa advection index 1950–2019 NOAA Alaska Fisheries Science Center
Sea level pressure gradient (hPa) SLP difference between Ketchikan and Seward (annual

mean)
1950–2019 NCEP NCAR reanalysis

30 m salinity (PSU) GAK1 Feb-Apr mean 1971–2017 University of Alaska
Downwelling, m3 s−1 100 m−1 coastline Jun-Aug mean at 60°N, 149°W 1950–2019 NOAA Pacific Marine Environmental Laboratory
Downwelling, m3 s−1 100 m−1 coastline Jun-Aug mean at 60°N, 146°W 1950–2019 NOAA Pacific Marine Environmental Laboratory
Downwelling, m3 s−1 100 m−1 coastline Jun-Aug mean at 57°N, 137°W 1950–2019 NOAA Pacific Marine Environmental Laboratory
Long-term biology
Northern shrimp (Pandalus eous) Pavlof Bay catch per unit effort, log-transformed 1972–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Northern shrimp (Pandalus eous) Chiniak Bay catch per unit effort, log-transformed 1977–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Capelin (Mallotus villosus) Pavlof Bay catch per unit effort, log-transformed 1972–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Eulachon (Thaleichthys pacificus) Pavlof Bay catch per unit effort, log-transformed 1972–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Eulachon (Thaleichthys pacificus) Chiniak Bay catch per unit effort, log-transformed 1977–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Jellyfish Pavlof Bay catch per unit effort, log-transformed 1972–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Jellyfish Chiniak Bay catch per unit effort, log-transformed 1977–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Pacific herring (Clupea pallasii) Mature Sitka Sound biomass 1979–2016 Alaska Department of Fish and Game assessment model
Pacific cod (Gadus macrocephalus) Pavlof Bay catch per unit effort, log-transformed 1972–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Pacific cod (Gadus macrocephalus) Chiniak Bay catch per unit effort, log-transformed 1977–2019 Alaska Department of Fish and Game / NOAA small-

mesh trawl survey
Coho salmon (Oncorhynchus kisutch) Southeast Alaska commercial catch, lagged 1 year and log-

transformed
1972–2018 Alaska Department of Fish and Game

Coho salmon (Oncorhynchus kisutch) Prince William Sound commercial catch, lagged 1 year and
log-transformed

1972–2018 Alaska Department of Fish and Game

Coho salmon (Oncorhynchus kisutch) Kodiak commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Coho salmon (Oncorhynchus kisutch) Cook Inlet commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Coho salmon (Oncorhynchus kisutch) Chignik commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Coho salmon (Oncorhynchus kisutch) South Alaska Peninsula commercial catch, lagged 1 year
and log-transformed

1972–2018 Alaska Department of Fish and Game

Pink salmon (Oncorhynchus gorbuscha) Southeast Alaska commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Pink salmon (Oncorhynchus gorbuscha) Kodiak commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Pink salmon (Oncorhynchus gorbuscha) Chignik commercial catch, lagged 1 year and log-
transformed

1972–2018 Alaska Department of Fish and Game

Pink salmon (Oncorhynchus gorbuscha) South Alaska Peninsula commercial catch, lagged 1 year
and log-transformed

1972–2018 Alaska Department of Fish and Game

Lower-trophic level biology
Spring bloom date Surface chl-a 1998–2019 SeaWiFS, MODIS-Aqua
Spring bloom duration Surface chl-a 1998–2019 SeaWiFS, MODIS-Aqua
Spring bloom amplitude Surface chl-a 1998–2019 SeaWiFS, MODIS-Aqua
Pacific cod (Gadus macrocephalus) Standardized spring ichthyoplankton density, fourth-root

transformed
1982–2015 NOAA Ichthyoplankton Survey

Walleye pollock (Gadus chalcogrammus) Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Rockfish (Sebastes spp.). Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Ronquils (Bathymaster spp.) Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Pacific sand lance (Ammodytes personatus) Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Flathead sole (Hippoglossoides elassodon) Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Northern rock sole (Lepidopsetta polyxystra) Standardized spring ichthyoplankton density, fourth-root
transformed

1982–2015 NOAA Ichthyoplankton Survey

Calanoid copepod biomass May biomass, log transformed 1998–2018 UAF Seward Line
Calanoid copepod biomass September biomass, log-transformed 1998–2018 UAF Seward Line
Euphausid biomass May biomass, log transformed 1998–2018 UAF Seward Line
Euphausid biomass September biomass, log-transformed 1998–2018 UAF Seward Line

(continued on next page)
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conventional DFA models in that it optionally allows for the deviations
of the latent trends to be modeled with a Student-t, rather than
Gaussian distribution. The Student-t distribution allows greater flex-
ibility, particularly in modeling extreme events (Anderson et al., 2017).
The Student-t distribution introduces a single scaling parameter ;
when is small the distribution of process variation includes a greater
probability of extremes than the normal distribution, and when is
large (~30) the year to year deviations are nearly identical to those
drawn from a normal distribution. As implemented in Stan, we con-
ducted estimation with 3 parallel chains, with a warm-up period of
2000 samples, followed by 2000 iterations. The potential scale reduc-
tion factor (Gelman and Rubin, 1992) and estimated Rhat were used to
assess convergence (Rhat < 1.05). Code to replicate these analyses is

deployed as an R package on CRAN (‘bayesdfa’, Ward et al. 2019) and
our public Github repository (https://github.com/fate-ewi/bayesdfa).

We used a model selection approach to evaluate the best-supported
number of latent DFA trends from a candidate set of models invoking
1–3 trends. Each model was evaluated with two candidates for ob-
servation error structure (unique or shared observation error variances
for individual time series). The best number of trends and best error
structure were selected using the Bayesian Leave-One-Out Information
Criterion (LOOIC; Vehtari et al., 2017). Model structures that failed
convergence tests were removed from the analysis. We also rejected
models that failed to load on any time series (using 90% or more of the
posterior distribution as a threshold).

In the case of biology data, time series related to fisheries man-
agement (salmon catches, herring recruitment, small-mesh trawl survey
catches, rockfish growth) were available going back to at least the early
1970 s, while lower trophic level time series (phytoplankton, zoo-
plankton, and ichthyoplankton) were available only beginning in the
1980 s or 1990 s (Table 1). Attempts to fit DFA models to the full set of
biology time series failed to converge and/or produced models with no
loadings with posterior distributions that were 90% above or below
zero. Accordingly, we fit separate DFA models to the two subsets of the
biology data.

After identifying the best supported DFA model for the climate data
and the two subsets of biology data described above, we conducted post
hoc examination for evidence of state shifts in shared trends of varia-
bility (objective 2). We tested for the presence of alternative states by
fitting a Hidden Markov Model (HMM) to the posterior trend estimates
from each model. An HMM is similar to a DFA or other state-space
model in that it partitions total variance into a process and observation
error component, but unlike other approaches the HMM treats the la-
tent process as discrete rather than continuous. As before, we used
LOOIC to identify the data support for the greatest number of alter-
native states, using candidate sets of 1–5 states.

2.4. Changing community responses to SST variability

We conducted time-dependent regressions between the shared trend
in long-term biology data and an environmental variable (winter SST)
to test the hypothesis of non-stationary climate-community relation-
ships (objective 3). This analysis evaluated the slope of the shared
community trend on SST during three periods: the period of elevated
Aleutian Low variance (from the start of our biology data set in 1972
through 1988; Litzow et al., 2019, 2018), the period of reduced Aleu-
tian Low variance (1989–2013), and the 2014–2019 warming event.
Time-dependent regression was executed in a Bayesian framework to

Table 1 (continued)

Variable Metric Years Source

Calanoid copepod size Average size, May 1998–2018 UAF Seward Line
Calanoid copepod size Average size, September 1998–2018 UAF Seward Line
Euphausid size Average size, May 1998–2018 UAF Seward Line
Euphausid size Average size, September 1998–2018 UAF Seward Line
Euphausid abundance Density, log transformed 1997–2019 NOAA Icy Strait Survey
Pelagic amphipod abundance Density, log transformed 1997–2019 NOAA Icy Strait Survey
Pelagic gastropod abundance Density, log transformed 1997–2019 NOAA Icy Strait Survey
Large copepod abundance Density, log transformed 1997–2019 NOAA Icy Strait Survey
Small copepod abundance Density, log transformed 1997–2019 NOAA Icy Strait Survey
Copepod community size Normalized anomaly 2000–2018 Marine Biological Association UK Continuous Plankton

Recorder
Diatom abundance Log-transformed, normalized anomaly 2000–2018 Marine Biological Association UK Continuous Plankton

Recorder
Large copepod abundance Log-transformed, normalized anomaly 2000–2018 Marine Biological Association UK Continuous Plankton

Recorder
Mesozooplankton abundance Log-transformed, normalized anomaly 2000–2018 Marine Biological Association UK Continuous Plankton

Recorder
Small copepod abundance Log-transformed, normalized anomaly 2000–2018 Marine Biological Association UK Continuous Plankton

Recorder

Fig. 1. Study site: approximate locations of a) climate time series, b) biology
time series. 1 = western SST, 2 = eastern SST, 3 = Papa advection index,
4 = GAK1 site and northern end of SLP gradient, 5 = southern end of SLP
gradient, 6 = upwelling stations, 7 = Pavlof Bay trawl survey, 8 = Chiniak Bay
trawl survey, 9 = herring biomass, 10 = Southeast salmon catch, 11 = Prince
William Sound salmon catch, 12 = Cook Inlet salmon catch, 13 = Kodiak
salmon catch, 14 = Chignik salmon catch, 15 = South Peninsula salmon catch,
16 = Continuous Plankton Recorder, 17 = Icy Strait zooplankton,
18 = Shelikof ichthyoplankton, 19 = Seward Line zooplankton.
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account for the uncertainty in latent community trends. The plankton
time series, which were generally short and included few observations
in the 1980 s, were judged to be insufficient to support this time-de-
pendent analysis. Accordingly, we fit a single regression on winter SST
for the shared trend from those data sets.

2.5. Changing relationships among time series

We follow the approach of Litzow et al. (2019) to test for changing
relationships between individual time series and shared trends of
variability identified by DFA models (objective 4). This analysis was
conducted separately on the climate and long-term biology data sets;
plankton time series were judged to be too short for evaluating non-
stationary relationships in the current study. We calculated correla-
tions, on 25-year rolling windows, between each time series and trends
from the best DFA model for the entire data set. The 25-year window
length was selected, based on earlier analysis (Litzow et al., 2019), as
being short enough to resolve changing relationships but long enough
to minimize the influence of stochastic variability. These correlations
were conducted on the full DFA posteriors in a Bayesian framework to
provide a probabilistic account of uncertainty. DFA models are inter-
preted in terms of stationary loadings that are assumed to be valid
across the full time series under consideration (Ward et al., 2019; Zuur
et al., 2003b). Therefore, correlations between population time series
and DFA trends that change over time are evidence that such a time-
independent interpretation is inappropriate. The 25-year length of
durations was selected as a reasonable minimum length that might
avoid spurious results based on stochastic noise in relationships.
However, we recognize that this window length offers little power for
detecting post-2014 changes in relationships. We therefore also com-
pare loadings from separate DFA models to the climate and biology data
from two periods: 15 years spanning the 1976/77 PDO shift
(1972–1986) and the last 15 years of the data (2005–2019). Our aim
here is not to examine the effects of nonstationary Aleutian Low var-
iance as described in section 2.4, but rather to determine if patterns of
multivariate climate and biology change across the 2014–2019 warm
anomaly are comparable to those associated with the 1970 s event.

3. Results

3.1. Comparison of observed and preindustrial SST (objective 1)

The 2014–2019 period includes the four warmest years since 1900 in
the ERSSTv5 time series (Fig. 2). One year (2015) returned a FAR = 1 for
each of the five models considered (Table 2), indicating that such an ex-
treme anomaly was never matched in preindustrial simulations (Walsh
et al., 2018b). Three other years (2014, 2016, 2019) produced FAR= 1 for

four of the five models considered, and 2018 produced FAR = 1 for three
models. Results for three-year running mean anomalies were uniformly
strong, with FAR = 1 for all four models considered (Table 2), indicating
that the duration and magnitude of recent anomalies would likely be im-
possible absent anthropogenic forcing.

The magnitude of temperature change associated with the
2014–2019 warming anomaly appears to be much greater than that
associated with the 1976/77 PDO shift. Change in the three-year run-
ning mean of SST associated with the 1976/77 event (maximum range
in anomalies around the shift event) was approximately 1.75 SD, while
the 2014 event involved a ~ 3 SD change in SST anomalies (Fig. 2).

3.2. Ecosystem variability (objective 2) and changing community-SST
relationships (objective 3)

The best DFA model for shared variability in Gulf of Alaska climate
was a one-trend model with time series-specific observation error var-
iances. The latent trend positively loaded all four SST time series, the
SLP gradient, the Papa advection index, and upwelling at 54°N 134°W,
and negatively loaded GAK1 salinity (Fig. 3a). The shared climate trend
showed markedly elevated values during 2014–2019 (Fig. 3b).

Variability in the long-term biology time series was best described
by a one-trend model with time series-specific observation error var-
iances. This trend suggested coherence among salmon, herring, jellyfish
and crustacean abundance time series, and opposite dynamics with
capelin and shrimp abundance (Fig. 4a). The shared trend captured
rapid community change following the 1970 s PDO shift, and did not
show evidence of an abrupt shift associated with the 2014–2019 cli-
mate perturbation (Fig. 4b). The slope of this biology trend on winter
SST showed a clear distinction between the eras of high Aleutian Low
variance (1972–1988) and reduced Aleutian Low variance
(1989–2013). In the high variance era, the SST effect was strongly
positive, with 100% of the posterior distribution for the slope on SST
being > 0 (slope in standardized units; Fig. 5). In the low variance era,
the effect was not strongly different from zero, with 70% (30%) of the
posterior distribution falling below (above) zero. While few years of
post-2014 data are available, there is some suggestion of a strength-
ening effect of SST in these years, with 86% (14%) of the posterior
distributions falling above (below) zero (Fig. 5).

The best model for lower-trophic level variability invoked a single
latent trend with the same observation variance for all time series. This
model indicated coherence among phytoplankton, zooplankton, and
ichthyoplankton over a large area of the Gulf of Alaska (Fig. 6a). The
trend showed low-frequency periods of positive and negative anomalies
(Fig. 6b). This single trend showed a strong negative response to SST
variability across the entire time series, with > 99% of the posterior
distribution for slope falling below 0 (Fig. 6c).

Fig. 2. Observed Gulf of Alaska SST anomalies for comparison with preindustrial simulations. a) Area in the Gulf of Alaska for which observations and simulations
are compared. b) Time series of area-weighted annual anomalies from ERSSTv5. Black line plots three-year running mean anomalies.
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Table 2
Fraction of attributable risk (FAR) for observed Gulf of Alaska sea surface temperature (SST) relative to simulated preindustrial values from five CMIP5 models.

Year(s) Anomaly (SD) CCSM4 GFDL.CM3 GISS.E2.R IPSL.CM5A.LR MRI.CGCM3

Annual anomalies
2014 1.83 1 1 0.75 1 1
2015 2.04 1 1 1 1 1
2016 1.95 1 1 0.67 1 1
2017 0.45 0.87 0.6 0.2 1 0.4
2018 1.34 1 0.6 0.8 1 0.8
2019 2.03 1 1 0.5 1 1
Three-year means
2014–2016 1.94 1 1 1 1 *
2017–2019 1.27 1 1 1 1 *

* Excluded from three-year running mean comparison.

Fig. 3. Bayesian DFA estimates of shared variability in Gulf of Alaska climate variables, 1950–2019. a) Posterior distributions for loadings on individual time series,
b) Shared trend time series with 95% credible interval.

Fig. 4. Bayesian DFA estimates of shared variability among Gulf of Alaska population time series, 1972–2017. a) Posterior distributions for loadings on individual
time series, b) Shared trend time series with 95% credible interval.
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3.3. Evidence for ecosystem state shifts (objective 2)

For most of the 2014–2019 period, median values for the latent
trend in climate time series were beyond the range of previous ob-
servations (Fig. 3b). On the other hand, latent trends for the long-term
biology and plankton data sets remained within the range of previous
observations during 2014–2019 (Fig. 4b, 6b). After applying HMM

Fig. 5. Nonstationary community responses to climate variability: era-specific
posteriors for the slope of the shared trend in long-term biology data on winter
SST. Slope is in units of standard deviation (scaled anomaly).

Fig. 6. DFA model fit to low trophic level time series (phytoplankton, ichthyoplankton and zooplankton). a) Posterior distributions for time series loadings, b) Shared
trend and 95% credible interval, c) Posterior distribution for the slope of the shared trend on winter SST for the entire time series.

Table 3
Results for Hidden Markov Model (HMM) evaluations for the evidence of state
shifts in latent trends for different data sets. Entries are leave one out in-
formation criterion (LOOIC) values, with the best-supported model in each case
indicated by bold.

Number of
states

Climate data
(1950–2019)

Salmon, herring, trawl
survey data
(1972–2019)

Plankton data
(1981–2019)

1 241.18 154.46 67.01
2 22.05 2.88 33.98
3 50.11 7.56 59.43
4 74.94 13.55 79.34
5 92.73 18.61 95.55
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models to trends from the three datasets to identify underlying hidden
states, we found the strongest support for only two alternate states in
each data set (Table 3). In each case, these alternate states were asso-
ciated with relatively warmer and colder conditions, and none of HMM
models supported the hypothesis of the emergence of novel alternate
states during 2014–2019 (Fig. 7). We therefore conclude that our
analysis does not find evidence of a shift to a novel mean state in shared
trends of ecosystem variability during the 2014–2019 warm anomaly.

3.4. Nonstationary relationships among time series (objective 4)

Rolling correlations between individual climate time series values
and the shared climate trend indicated that relationships among climate
variables were nonstationary over the period that we consider (Fig. 8).
Temperature time series showed periods of weakening correlations,
centered roughly around the late 1980 s, followed by strengthening
correlations later in the time series. Other time series showed more
monotonic changes, consisting of either a general trend of weakening
correlations (SLP gradient, Papa advection index, GAK1 salinity, and
upwelling at 60°N 146°W) or strengthening correlations (the two
southern upwelling stations). Rolling correlations between individual
biology time series and the shared biology trend showed widespread
evidence of nonstationary relationships (Fig. 9). Correlations for most
time series weakened around the late 1980 s, and these correlations
have generally remained weak for the remainder of the time series.

DFA models fit separately to data spanning the 1970 s PDO shift
(1972–1986) and data for the recent anomaly (2005–2019) illustrate
the changing nature of ecological variability in this system. Loadings for
the four SST variables were similar for DFA models fit to climate data
from the two periods. However, a number of other ecologically-im-
portant climate variables showed a tendency towards weaker loadings
(posterior distributions shifted towards zero). This group included
GAK1 salinity, upwelling at 60°N 146°W, the Papa advection index, and
the SLP gradient (Fig. 10a). The model fit to 1972–1986 climate data
clearly captured the 1970 s PDO shift (Fig. 10b), while the model fit to
2005–2019 data captured the unprecedented climate state that has
pertained during 2014–2019 (Fig. 10c). The significance of the different

loadings in the two eras informs interpretation of the two climate shifts
illustrated in Fig. 10: the 1970 s event included stronger changes across
all climate time series, while the 2014–2019 event has, by comparison,
been more limited to change in temperature.

Finally, DFA models fit to biology data from the same two periods
illustrate even greater changes in loadings (Fig. 11a), indicating that
patterns of community change associated with the 1970 s event are not
directly comparable with community responses to the 2014–2019
perturbation. Many biology time series show evidence of reversing
signs of loadings in the later era (Pavlof and Chiniak shrimp, Southeast
herring, Pavlof eulachon, Southeast coho and pink salmon, Pavlof Pa-
cific cod). Some time series (Kodiak and South Peninsula pink salmon)
show weaker loadings in 2005–2019 than in 1972–1986, similar to the
weaker loadings in the second era seen for some climate time series.
And still other time series show loadings that are similar between the
two eras (Fig. 11a). The shared trend from the 1972–1986 model
clearly captures the late 1970 s community shift (Fig. 11b). This eco-
logical change was detected with a short (0–1 year) lag following the
1976/77 PDO shift, confirming the ability of our selected time series to
provide a short-lag indication of ecological change following climate
perturbations. To evaluate our ability to detect a community shift with
limited data, we conducted a comparison HMM analysis for biology
data limited to 1972–1982 (i.e., for data extending six years after the
1976/77 SST increase, corresponding to the six years of data available
following the 2013/14 temperature increase). This analysis detected
the 1976/77 community shift immediately (0–1 year lag), suggesting
that data availability did not prevent the detection of an immediate
community shift following the 2014 temperature increase (results not
shown). The shared trend for the model fit to the 2005–2019 data
shows elevated median values from 2016 onwards, suggesting some
ecological response to the 2014–2019 warm anomaly, but the 95%
credible interval for this trend includes 0 in every year (Fig. 11b). This
result highlights the muted nature of recent ecological changes when
compared to the 1972–1986 period, when strong patterns of change
shared broadly across the community returned estimated trend values
with 95% credible intervals below or above 0 for most years (Fig. 11b).

Fig. 7. State probability for latent trends in three Gulf of Alaska ecosystem data sets: Hidden Markov Model (HMM) results. The best model for all three data sets
invoked two states, and the median probability of being in the state associated with warmer conditions is plotted for each, with 95% credible intervals. The
probability of being in the state associated with colder conditions is the inverse of the plotted values.
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4. Discussion

4.1. Negative evidence for an ecosystem state shift

The persistence of extreme SST anomalies in the Gulf of Alaska
during 2014–2019 is well outside the envelope of simulated pre-
industrial conditions. Mean SST anomalies for both three-year windows
considered (2014–2016 and 2017–2019) returned FAR values of 1
when compared with preindustrial simulations for every model con-
sidered, leading to the conclusion that the 2014–2019 climate pertur-
bation would be impossible without anthropogenic forcing. This result
implies departure from the envelope of natural climate variability,
signaling an increased risk of ecological surprises involving novel cli-
mate and community configurations (Williams and Jackson, 2007). Of
particular note in terms of potential ecosystem consequences of the
2014–2019 event is the comparison with the 1976/77 PDO shift, which
was associated with an abrupt, widespread, and persistent state shift in
the Gulf of Alaska ecosystem (Fig. 4b; Anderson and Piatt, 1999; Litzow
and Mueter, 2014). Judged in terms of the magnitude of change in SST
(~3 SD change vs ~ 1.75 SD change in 1976/77, Fig. 2) and the range
of acute ecological responses noted in the Introduction, the 2014–2019
anomaly would seem capable of producing a wholesale community
reorganization of a magnitude comparable to that seen following the

1976/77 event. However, none of our tests for alternative states in
shared trends of climatic and biological variability showed evidence of
a post-2014 alternative state (Fig. 7). This negative result for a shift in
climate state may be partly explained by the paucity of post-2014 ob-
servations; continuation of recent values in the shared trend in climate
variability would appear intuitively consistent with an alternative post-
2014 state. However, red noise (autocorrelated random variability)
creates shifts around the anthropogenic trend that are impossible to
predict (Di Lorenzo and Ohman, 2013; Rudnick and Davis, 2003), so
the persistence of 2014–2019 climate conditions over the short term
future (i.e.,< 10 years) cannot be robustly predicted. In addition,
community responses to the 2014–2019 perturbation may occur with a
time lag, in which case extended observations would be needed to
detect change. However, the ability of biology time series selected for
this study to provide a short-lag indication of ecological response to the
1976/77 event (Fig. 11b) argues against this consideration. We re-
cognize that differences in pre-shift community states may also mediate
differences in response to the 1976/77 and 2014–2019 climate per-
turbations. For instance, the low-diversity pre-1976/77 community
state may have been inherently less stable than the higher-diversity
community experiencing the 2014–2019 event (Frank et al., 2006).
Rather than being an analogous ecological event to the 2014–2019
perturbation, the 1976/77 event is useful in terms of evaluating the

Fig 8. Nonstationary patterns of shared variability in Gulf of Alaska climate: Bayesian correlation between individual climate time series and the shared DFA trend
for individual 25-year rolling correlations centered every 5 years between 1962 and 2007. Plots are median correlations with 50% and 80% quantiles of the posterior
distribution. Note different scales on y-axis.
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ability of our data and methods to rapidly detect a community shift. We
conclude that our results are consistent with resilience in the current
community state, in spite of the many anecdotal reports of dramatic
biological responses to heatwave conditions.

4.2. Changing community responses to temperature variability

A result that may suggest the potential for a community-level re-
sponse to the current climate perturbation is the observation that sta-
tistical relationships between SST and the shared trend in long-term
biology data may be reverting towards positive values after decades of a
more neutral relationship (Fig. 5). While too few observations are yet
available to provide firm inference concerning post-2014 SST-commu-
nity relationships, this tentative result is consistent with observations
that Aleutian Low variance is again increasing after the post-1988/89
period of low Aleutian Low variance (Litzow et al., 2020). Given past
observations that periods of high (low) Aleutian Low variance appear to
correspond with strong (weak) community responses to SST variability
(Litzow et al., 2019, 2018; Puerta et al., 2019), these increases in
Aleutian Low variability would suggest a reversion to strong commu-
nity responses to SST variability, and the results in Fig. 5 appear

consistent with this idea. However, a separate analysis suggests that
salmon production took on a novel, negative correlation with SST and
the PDO during 2014–2019 (Litzow et al., in press), which would seem
to conflict with the possible reversion to a positive relationship de-
monstrated here. These conflicting results speak to the difficulty in-
herent in evaluating the effect of novel climate conditions with limited
observations. In addition, loadings on several non-temperature climate
time series during 2005–2019 remain weaker than loadings observed
during 1972–1986 (Fig. 10a), suggesting that covariance between
temperature and other climate variables remains weaker during the
2014–2019 climate anomaly than was the case with the 1970 s PDO
shift, which would suggest an expectation of a weaker ecological re-
sponse to the later event. While data limitations precluded the analysis
of changing responses of lower trophic level taxa to temperature with
the DFA modeling approach used in this study, Batten et al. (2018)
found that positive temperature effects on diatom abundance and
zooplankton abundance observed during 2000–2013 in the CPR data
set were absent during the especially warm years of 2014–2015. These
observations suggest the potential for further nonstationary responses
to temperature variability, beyond those discussed above.

Fig 9. Nonstationary patterns of shared variability in the Gulf of Alaska community: Bayesian correlation between individual biology time series and the shared DFA
trend for individual 25-year rolling correlations centered every 3 years between 1984 and 2007. Plots are median correlations with 50% and 80% quantiles of the
posterior distribution.
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4.3. Lower trophic level responses to 2014–2019 warming

The DFA model fit to lower trophic level data is notable for iden-
tifying a latent trend that is broadly shared across multiple trophic le-
vels and taxonomic groups (phytoplankton, zooplankton, and ichthyo-
plankton) over the spatial scale of a large marine ecosystem (Fig. 6a).
The negative slope of this shared trend on winter SST (Fig. 6c) and low
values in the shared trend during some anomalously warm years (2015,
2016, 2019; Fig. 6b) provide evidence of bottom-up climate effects on
ecosystem productivity. The single shared trend produced by the DFA
model provides only a first-order understanding of what are doubtless
highly complex lower trophic level responses to the 2014–2019
warming event. One interpretation that may be useful for framing an
initial understanding of these results is the observation that twice as
many abundance, biomass, or size time series are predicted to show a
negative response to warming (i.e., those with a positive DFA loading,
n = 14) as are predicted to show a positive response (those with a
negative DFA loading, n = 7; Fig. 6a). Results for several sets of in-
dividual time series merit discussion in this context. Loadings for ocean
color time series indicate a longer spring bloom reaching a lower peak
amplitude during warm years (98.7% chance of negative loadings for
bloom duration, 91.8% chance of positive loadings for bloom ampli-
tude). There was also some indication of earlier spring blooms with
ocean warming (87.3% chance of positive loadings for bloom start date,

not plotted). In the central Gulf of Alaska, warming and extreme SLP
values associated with the onset of the 2014–2019 event are expected to
increase upper water column stability, reduce mixing and lead to earlier
nutrient depletion resulting in reduced primary productivity or a shift
of the production into smaller cells (Bond et al., 2015; Peña et al.,
2019). Dynamics on the continental shelf are likely more complex, in
particular due to the role of terrigenous nutrient input (Batten et al.,
2018; Coyle et al., 2019). While the interplay between bottom-up and
top-down control in continental shelf ecosystems is complex (Frank
et al., 2007; Litzow and Ciannelli, 2007), these changes in primary
production have the potential to impact fisheries production in a
warming Gulf of Alaska (Ware and Thomson, 2005). Given the complex
nature of the changes suggested by these results (earlier, longer, lower-
amplitude blooms), a more detailed analysis to consider higher-order
effects such as the potential for temporal mismatches with secondary
consumers would be warranted to better elucidate the potential eco-
system consequences of these changes.

Zooplankton loadings on the shared trend also suggest complicated
responses to warming, though several themes emerge from the results.
Positive loadings on copepod time series for the CPR, Icy Strait, and
Seward Line data sets indicate a reduction in copepod abundance and
size with ocean warming. These effects include opposite loadings for
Seward Line calanoid copepod abundance in May (negative loading)
and September (positive loading), indicating a switch to increased

Fig. 10. Changing relationships among climate time series: results for DFA models fit separately to data from 1972–1986 and 2005–2019. a) Time series loadings for
each era, b) Shared trend with 95% credible interval, 1972–1986, c) Shared trend with 95% credible interval, 2005–2019.
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(decreased) abundance early (late) in the season as a response to
warming, which may indicate coherence with the earlier bloom timing
noted above. This interpretation is supported by modeling work sug-
gesting bottom-up control of springtime calanoid biomass in the system
(Coyle et al., 2019). Ichthyoplankton loadings on the shared trend were
almost entirely positive, indicating a decline in abundance for a variety
of commercially and ecologically important taxa during the warming
event. These taxa include walleye pollock, which support the largest
groundfish fishery in the Gulf of Alaska, rockfish, another important
commercial group, and Pacific cod, which supported an important
fishery prior to their recent stock collapse. Also notable in this context
is the positive loading on Pacific sand lance, indicating reduced larval
abundance for this species during the 2014–2019 warm period, which
is consistent with observations of strongly negative growth and energy
density anomalies for this species during the warming event (von Biela
et al., 2019). These generally negative relationships between ichthyo-
plankton abundance and winter temperature may reflect the negative
effects of increased metabolic rates that result in the early depletion of
larval lipid reserves (Doyle et al., 2019). Alternately, the peak timing of
ichthyoplankton abundance in the spring is believed to reflect syn-
chrony with the spring bloom (Doyle et al., 2019), so the earlier timing
of the spring bloom might indicate a phenological mismatch with larval
energetic demand. These are only preliminary speculations concerning
the mechanisms underlying the patterns we show here, and the

mechanistic links between rapid warming and community responses are
likely to be highly complex.

4.4. Novel climate and community combinations

A central assumption for most dimensional reduction techniques is
that relationships among different variables are stationary over the time
period under consideration (i.e., they are described by a probability
density that does not change over time; Kolmogorov, 1991). In the case
of DFA, this assumption is expressed through the requirement that
model residuals should be independent and identically distributed
(Zuur et al., 2003b). A central idea from paleoecology is that over long
time scales, the assumption of stationary relationships required for
these techniques is not met; over time, climates and communities take
on new combinations that cannot be summarized with fixed statistical
definitions (Maguire et al., 2015; Williams and Jackson, 2007). An
analogous situation apparently occurred in the Gulf of Alaska after the
1988/89 decline in Aleutian Low variance. The switch from strong
covariance to weak covariance among climatic and biological time
series resulted in significant autocorrelation in regression and DFA
model residuals, indicating time-dependent errors in inference (Litzow
et al., 2019, 2018). While these findings suggest that common statistical
approaches assuming stationary relationships are inappropriate for this
system, there are few commonly-used approaches for dimensional

Fig. 11. Changing relationships among biology time series: results for DFA models fit separately to data from 1972–1986 and 2005–2019. a) Time series loadings for
each era, b) Shared trend with 95% credible interval, 1972–1986, c) Shared trend with 95% credible interval, 2005–2019.
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reduction that allow time-dependent relationships to be modeled. Ac-
cordingly, we took a hybrid approach in this study: we used a novel
implementation of an increasingly popular dimensional reduction
technique assuming stationary relationships (Bayesian DFA) to identify
the strongest patterns of shared variability within the data sets, but also
used rolling correlations and model fitting to subsets of data to illustrate
temporal changes in relationships that cannot be captured by DFA. The
problem of changing ecological relationships will only grow in im-
portance as anthropogenic climate change accelerates (Williams and
Jackson, 2007; Wolkovich et al., 2014), and improved statistical ap-
proaches will be needed to support robust understanding of changing
ecosystem function and identity.

The rolling window analysis of correlations between individual time
series and the shared trends of climatic and biological variability
(Figs. 8, 9) are consistent with the hypothesis of nonstationary re-
lationships among ecosystem variables in the Gulf of Alaska. The
changes in correlations for a number of climate time series are centered
around the late 1980 s (Fig. 8), consistent with the timing of the decline
in Aleutian Low variance as a proposed deterministic cause of nonsta-
tionary relationships in the physical environment. There was no in-
dication of sudden changes in correlations for climate variables at the
end of the time series that would be consistent with a sudden change in
relationships since 2014, though the 25-year windows used in this
analysis would have limited sensitivity to changes over the last six years
of the time series. The increase in strength of correlations between the
four SST time series and the shared climate trend in the second half of
the time series (Fig. 8) is consistent with the idea of a reversion towards
strong multivariate collinear relationships for SST in this system.
However, loadings for a number of non-temperature climate time series
remain weaker in the model fit to 2005–2019 data than to 1972–1986
data (Fig. 10a), suggesting that patterns of shared covariance among
climate time series remain relatively weak during the 2014–2019
warming event when compared with the 1976/77 PDO shift. None of
the climate variables show evidence of loadings with different signs
between the two periods (Fig. 10a), so we conclude there is little evi-
dence for novel climate combinations as an outcome of the 2005–2019
warming event.

On the other hand, DFA models fit to biology data for the two
periods return a number of time series with opposite sign loadings,
indicating strong differences in the nature of community variability
over time. These time-dependent loadings have important implications
for the ways in which ecological variability is measured over time, as
they imply that common dimensional reduction techniques that assume
stationary loadings over time are likely inadequate for resolving pat-
terns of community variability over the historical record in this eco-
system. This result also loops back to the evidence that 2014–2019 SST
anomalies were outside the envelope of natural variability (Table 2). As
the climate of this ecosystem has exceeded the bounds of historical
variability, historical understanding of climate-biology relationships
and patterns of community variability is increasingly likely to fail
(Williams and Jackson, 2007). While the absence of evidence for eco-
system state changes during the 2014–2019 indicates ecological resi-
lience during this event, the unprecedented nature of this climate per-
turbation sounds a cautionary note about the potential for outsized
ecosystem consequences with continued warming.
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