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Abstract

India represents an intricate tapestry of population substructure shaped by geography, language, culture, and social
stratification. Although geography closely correlates with genetic structure in other parts of the world, the strict en-
dogamy imposed by the Indian caste system and the large number of spoken languages add further levels of complexity
to understand Indian population structure. To date, no study has attempted to model and evaluate how these factors
have interacted to shape the patterns of genetic diversity within India. We merged all publicly available data from the
Indian subcontinent into a data set of 891 individuals from 90 well-defined groups. Bringing together geography,
genetics, and demographic factors, we developed Correlation Optimization of Genetics and Geodemographics to build
a model that explains the observed population genetic substructure. We show that shared language along with social
structure have been the most powerful forces in creating paths of gene flow in the subcontinent. Furthermore, we
discover the ethnic groups that best capture the diverse genetic substructure using a ridge leverage score statistic.
Integrating data from India with a data set of additional 1,323 individuals from 50 Eurasian populations, we find that
Indo-European and Dravidian speakers of India show shared genetic drift with Europeans, whereas the Tibeto-Burman
speaking tribal groups have maximum shared genetic drift with East Asians.
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Introduction
The genetic structure of human populations reflects gene
flow around and through geographic, linguistic, cultural,
and social barriers (Cavalli-Sforza et al. 1988; Sokal 1991).
The intricate tapestry of population substructure and com-
plexity in India undoubtedly showcases the interplay among
them. The Indian subcontinent encompasses 3,200 km from
North to South, complex topography with elements ranging
from the Himalayas to the Thar desert, plateaux, and rain
forests, almost 800 spoken languages, a long history of migra-
tions and invasions and a strict caste system imposing
endogamy.

The strata within India can be summarized into the so-
called backward castes and forward castes (Desai and Dubey
2012), whereas 8.2% of the total population belongs to tribes
(1991 census) representing minorities that are unassimilated
into the caste system. The tribes in India continue to live in
forest hills and naturally isolated regions with a largely
hunting-gathering subsistence mode. They practice endog-
amy, a matrimonial rule governing mate-exchange within lo-
cal groups (Vidyarthi and Rai 1977). On the other hand, the
caste system is a rigorous social hierarchy of endogamous
groups in which individuals are born (Olcott 1944;

Wooding et al. 2004). Prior to the establishment of the caste
system there was wide admixture among them, which came
to an abrupt end 1,900 to 4,200 years before present
(Moorjani et al. 2013). Historically, the so-called forward
castes have been associated with socio-economic privileges,
whereas the backward castes and tribal groups faced social
segregation (Desai and Dubey 2012). Although discrimination
on the basis of caste was abolished by the Indian constitution
in 1950, this strict social structure has existed for thousands of
years (Thapar 1990).

Numerous studies have attempted to dissect the genetic
components and origins of Indian populations (Bamshad
et al. 2001; Majumder 2001; Roychoudhury et al. 2001; Basu
et al. 2003, 2016; Brahmachari et al. 2005; Reich et al. 2009;
Metspalu et al. 2011; ArunKumar et al. 2012; Moorjani et al.
2013; Silva et al. 2017; Pathak et al. 2018) along with ancient
individuals from Central and South Asia (Narasimhan et al.
2019). Studies of Indian populations based on groupings of
tribal versus nontribal, geographic regions, or linguistic affili-
ation have shown that the observed genetic structure
resulted from admixture of five ancestral populations.
These are Ancestral North Indians, which loosely captures
Indo-European (IE) speakers in Northern India; Ancestral
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South Indians, who are mostly Dravidian (DR) speakers of
Southern India; Ancestral Austroasiatic with Austroasiatic
(AA) speakers of Central and Eastern India; Ancestral Tibeto-
Burman speakers constituted of Tibeto-Burman (TB) speakers
in Northeast and the tribal populations, Jarawa and Onge, from
Andaman (AND) archipelago (Basu et al. 2016). Great
Andamanese is considered as the sixth language family of
India, being a linguistic isolate, typologically and genealogically
different from other AND languages (Abbi 2009). However, to
date, no study has attempted to model how different spatio-
cultural features acted in concert in order to create the ob-
served genetic structure across the Indian subcontinent and to
evaluate the relative contribution of each factor.

Earlier attempts to investigate the covariance of allele fre-
quencies and nongenetic factors on genetic structure either
depended heavily on assumptions and a computationally
expensive Bayesian framework (Bradburd et al. 2013) or did
not provide any statistical significance or feature selection to
identify the most relevant structure-related factors
(Schlebusch et al. 2012). To dissect the population substruc-
ture in Indian populations, we designed a quantitative frame-
work for the evaluation of the relative contribution of
geodemographic features such as geography, spoken lan-
guage, and social structure to the architecture of the genetic
pool of human populations. Our work provides a general
model that may be used to study the significance of each
underlying factor on the genetic substructure of a given
population.

New Approaches
In order to understand the genetic substructure of India, con-
sidering the strongly endogamous social structure as well as the
presence of multiple language families and their geographical
distribution, we developed Correlation Optimization of
Genetics and Geodemographics (COGG). COGG is a deter-
ministic algorithm that may be used to simultaneously corre-
late genome-wide genotypes, with multiple factors that may
have acted to shape population genetic substructure. In the
context of this study, we correlate genetic structure as depicted
by the top two principal components (PCs) with geography
(longitude and latitude) and sociolinguistic factors (social and
language group information in this case) as shown in equation
(1). We encoded four language groups AA, DR, IE, and TB as
well as the social group information as indicator variables i. e., if
a sample belongs to a social or language group, we use 1 and 0
otherwise. We refrain from using terms that could be consid-
ered socially stigmatizing and instead refer to Social Group A
(SGA) for forward castes and Social Group B (SGB) for back-
ward castes, respectively. For the seminomadic tribes in India,
we assign Social Group C (SGC) (more details in supplemen-
tary note, Supplementary Material online).

Given information onm samples, the objective of COGG is
to maximize the correlation between u, the genetic compo-
nent as represented by either of the top two PCs of the
genetic covariance matrix formed by the genotype data

and a geodemographic matrix G 2 Rm�k where k is the
number of demographic features.
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Therefore, COGG solves the following optimization
problem,

max
a

Corrðu;
Xk
i¼1

aiGiÞ; (2)

where a be the k-dimensional vector whose elements are
a1; . . . ; ak (k¼ 9 in this case). Recall that Gi denotes the
i-th column vector of G. Let di ¼ uTGi=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½u�

p
for i ¼ 1

. . . k and let d be the vector of the di’s. Also, let Mij ¼ GT
i Gj

for all i; j ¼ 1 . . . k and let M be the matrix of Mij. Then the
optimizer for COGG is given by

amax ¼ M�1d:

We also check for statistical significance of the maxi-
mum squared Pearson correlation coefficient r2, returned
by COGG, by conducting 1,000 permutation tests on the
sociolinguistic variables in G. On top of COGG, we used a
greedy feature selection algorithm to select the most sig-
nificant factors which influence genetic variation in India.

To further study the interplay between these factors,
we propose a simple analytic procedure using the so-
called ridge leverage score (RLS) statistic that highlights
the significant populations capturing genetic diversity in
India. The RLS of the i-th row of any matrix A 2 Rm�n is
defined as:

si
kðAÞ ¼ ðAA>ðAA> þ kInÞ�1Þii; (3)

where k > 0 is the regularization parameter.
Starting from the mean-centered (subtracting each col-

umn by its respective mean) genotype matrix Z 2 Rm�n

where n is the number of markers for each of m samples
and G as described above, we compute population level RLS
(median RLS of the samples in the population) for each ma-
trix (details in Materials and Methods and supplementary
note, Supplementary Material online). Thereafter, we com-
pute an additive RLS statistic for each population highlighting
the ethnic groups which represent and capture the greatest
portion of observed genetic diversity across India. Our analysis
aims to better understand the intricate details of admixture,
substructure, and genetic variation across social and language
groups in the Indian subcontinent. The need for methods
such as COGG has been previously underlined by many stud-
ies (Bamshad et al. 2001; Roychoudhury et al. 2001; Basu et al.
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2003, 2016; Majumder 2010). The ability to correlate genomic
background with geographic, sociolinguistic, and cultural dif-
ferences opens new avenues to study genomic structure of
extant human populations.

Results and Discussion

Description of Compiled Data Sets
We begin by briefly introducing the different data sets that
are presented throughout our analysis (supplementary table
S1, Supplementary Material online). We initially compiled a
pan-Indian data set of 891 individuals across 90 populations
(supplementary table S1A and fig. S1A, Supplementary
Material online) and 47,283 SNPs from various sources
(Reich et al. 2009; Chaubey et al. 2011; Metspalu et al. 2011;
Moorjani et al. 2013; Basu et al. 2016). This data set presented
unequal representations of the five language families IE, DR,
AA, TB, and AND as well as uneven distribution across social
groups and geographical regions. To create a normalized sub-
set across these spatiocultural features, we selected a subset of
33 populations spanning 368 individuals (supplementary ta-
ble S1B, Supplementary Material online and fig. 1A) in which
four language families AA, DR, IE, and TB are represented
(supplementary note, Supplementary Material online) and
used it for COGG and subsequent feature selection analyses.
For other analyses such as the RLS statistic identifying repre-
sentative ethnic groups contributing to the genetic diversity
in India and relationship between sociolinguistic groups, we
used the pan-Indian data set. Furthermore, in order to inter-
rogate the shared ancestry between Indian sociolinguistic

groups and Eurasia, we merged the normalized subset with
1,323 individuals from 50 populations and 42,975 SNPs across
Eurasia (supplementary table S1C, Supplementary Material
online). For the outgroup f3 analysis, we present later in this
section, we used 124 samples of Yorubans in Nigeria (YRI)
from the 1000 Genomes phase 3 data set (Auton et al. 2015)
and merged it with the Eurasian data set.

Geography versus Population Structure within India
Studies of populations in different parts of the world have
shown that when top two PCs are extracted from genome-
wide genotypes, individuals from the same geographic region
cluster together with the PCs being well correlated with geo-
graphic coordinates, namely longitude and latitude (Lao et al.
2006; Rosenberg et al. 2006; Chen et al. 2009; Paschou et al.
2010).

For instance, Novembre and Stephens (2008) showed that
within Europe, the Pearson correlation coefficient (r2) (here-
after r2) between PC1 versus latitude (north–south) is equal
to 0.77 and 0.78 for PC2 versus longitude (east–west). In order
to explore whether Indian genetic information mirrors geog-
raphy, we computed principal component analysis (PCA) on
the normalized data set of 33 Indian populations and plotted
the top two PCs (fig. 1B and C and supplementary fig. S1B,
Supplementary Material online, for language, sociolinguistic,
and geographical groupings, respectively). The first three PCs
explained 32%, 15%, and 10% of the total variance, respec-
tively. Along PC1, we observed a separation of TB speakers
from the rest of the Indian populations. On the other hand,

FIG. 1. A map of locations of the 33 populations in the normalized set and the results of principal component analysis. (A) Map of India showing the
locations of the 368 individuals in the normalized subset across 33 well-defined populations, 47,283 SNPs (see supplementary fig. S1A, Supplementary
Material online, for the pan-Indian data set of 90 ethnic groups and supplementary fig. S2, Supplementary Material online, for the corresponding PCA
plot). The populations are colored by their sociolinguistic group. (B) Top two PCs of the normalized data set show clustering by language groups. (C) PCA
plot colored and marked by sociolinguistic groups shows the genetic structure stratified by sociolinguistic groups.
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the IE and DR speaking populations formed a cline separated
from AA speakers on PC2 (fig. 1B). Next, we computed r2

between the top two PCs of the covariance matrix and the
geographic coordinates (longitude and latitude) of the sam-
ples under study. We observed r2 ¼ 0:604 (P < 10�9) for
PC1 versus longitude and r2 ¼ 0:065 (P < 10�9) for PC2
versus latitude. Thus, PC1 correlates well with longitude due
to the East–West cline of language families with IE and TB
speakers in Northwestern and Northeastern Frontiers, respec-
tively and AA speakers dwelling in the forests of Central India
between them. However, PC2 only minimally correlates with
latitude, just barely picking up a previously reported North–
South cline of IE and DR speakers (Reich et al. 2009). We note
that IE and DR speakers also share significant ancestry among
SGA and SGB groups as indicated by the result of
ADMIXTURE analysis (Alexander et al. 2009) (supplementary
fig. S3, Supplementary Material online). Interestingly, we ob-
serve clusters of sociolinguistic groups which become more
prominent in the second and third PCs (supplementary fig.
S4, Supplementary Material online) with the SGCs distin-
guished from SGA and SGB within their language group.

This weak correlation between geography and genetics in
Indian context is confirmed by Mantel tests between genetic
(FST) and geographic distances which returned a low r2 ¼
0:17 (P¼ 0.0001, Z¼ 5.71) when run on the normalized data
set with 33 groups. These findings are in sharp contrast with
findings within the European continent (Novembre and
Stephens 2008; Drineas et al. 2010) and highlight the need
for social and linguistic factors to be accounted for, as noted
in prior work (Bamshad et al. 2001; Roychoudhury et al. 2001;
Brahmachari et al. 2005; Majumder 2010; Basu et al. 2016). We
performed linear discriminant analysis (LDA) (supplementary
fig. S5, Supplementary Material online) in order to gain fur-
ther understanding of the relationship between genetics, ge-
ography, language, and social groups in shaping the structure
of the data. We run LDA on the normalized data set with the
language groups set as classes (supplementary fig. S5A,
Supplementary Material online) followed by the geographic
regions (supplementary fig. S5B, Supplementary Material on-
line). In the LDA performed by language group, three separate
clusters capturing IE social groups (SGA, SGB, and SGC) ap-
pear in one axis of variation. The second axis captures the rest
of the language groups again stratified by social group. In the
LDA performed by geography, we see an east–west cline with
TB speakers in the left and IE speakers in the right along the
first discriminant. However, the second discriminant does not
pick up the north–south cline as was expected, further indi-
cating confounding by sociolinguistic groups.

Correlation Optimization of Genetics and
Geodemographics
Having shown that geography alone cannot explain the ge-
netic structure within India, we applied COGG to explore
whether integrating information on spoken language and
social structure as shaped by endogamy can lead to an im-
proved model. Indeed, solving the optimization problem that
underlies COGG (see Materials and Methods and supplemen-
tary note, Supplementary Material online, for the exact

formulation) and plugging in the solution, we observe almost
perfect correlation with PC1 and PC2 representing the ge-
netic structure of the Indian subcontinent using the geode-
mographic matrix G instead of just longitude and latitude: r2

increases from 0.6 to 0.93 (P < 10�22) for PC1 versus G and
from 0.06 to 0.85 (P < 10�15) for PC2 versus G.

Our results clearly show that endogamy and language fam-
ilies are pivotal in studying the genetic stratification of Indian
populations. This is in sharp contrast to what has been seen in
other parts of the world where geography is a major contrib-
utor in shaping genetic structure of populations (Cann et al.
2002; Novembre and Stephens 2008; Auton et al. 2015). Our
results are statistically significant (supplementary fig. S6,
Supplementary Material online) over 1,000 iterations with
permutation of the variables related to social factors and
languages (see supplementary note, Supplementary
Material online).

We further explored an extension of COGG in order to
jointly analyze multiple PCs simultaneously and not just each
component individually. To do this, we employed canonical
correlation analysis (CCA), a well-studied statistical tech-
nique, which maximizes the correlation between the genetic
and the geodemographic matrices by jointly finding linear
combinations of the variables in each matrix. We used the
top eight PCs of the genetic matrix as the results did not
improve significantly, beyond that. We note that these eight
PCs capture, collectively, 89% of the variance of the genetic
matrix.

Running COGG-CCA on these inputs returns a statistically
significant (supplementary fig. S7, Supplementary Material
online) r2 equal to 0.94 (P < 10�16) which is well above
the r2 ¼ 0:74 obtained when COGG-CCA is run without
including the sociolinguistic factors (see supplementary
note, Supplementary Material online, for details).

Identifying the Features That Drive Population
Structure within India
In order to formally investigate which of the nine features in
the geodemographic matrix G contribute more in the opti-
mization problem posed by COGG (eq. 2), we used the sparse
approximation framework and the orthogonal matching pur-
suit (OMP) algorithm from applied mathematics (Natarajan
1995) (see supplementary note, Supplementary Material on-
line). Running OMP on our data set, we obtain two sets of
three features each, S1 and S2, for PC1 and PC2, respectively:

S1 ¼ fAA; TB; SGAg; and

S2 ¼ fAA; Latitude; SGAg:

Plugging in S1 as the reduced feature space in COGG
resulted in r2 ¼ 0:92 (P < 10�15) for PC1 versus S1 and
0.85 (P < 10�12) for PC2 versus S2. These values capture
over 99% of the correlation returned by COGG when all
the features in G are included. Membership to the AA and
TB language groups which are identified among the top sig-
nificant features correspond mostly to tribal nomadic hunter-
gatherers dwelling in the hills and forests of Central East and
North East India, respectively. Thus, the AA and TB language
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groups automatically capture SGC. On the other hand, mem-
bership to SGA, which is the other top significant feature that
we identified, spans most of the IE and DR speakers found
across Northern and Southern India. Thus, these three fea-
tures appear to encompass most of the geographic, social,
and linguistic diversity found in the Indian subcontinent and
highlight their interplay.

Ethnic Groups Capturing Genetic Diversity across
India
We developed a simple approach based on the RLS statistic
(Alaoui and Mahoney 2015) (see Materials and Methods) to
identify influential (from a genetic perspective) Indian pop-
ulations which represent and capture the greatest portion of
observed genetic diversity across India. Here, we analyzed the
pan-Indian data set of 90 populations (details in Materials and
Methods).

The RLS statistic highlights ethnic groups in the Indian
subcontinent who either are quite distinct (e.g., underwent
a founder event, or practiced endogamy and maintained iso-
lation from other groups) or populations that show signs of
admixture from distinctly different language families (table 1).
Such populations create a mesh of complex layers of admix-
ture across language and social barriers. We observe mostly
SGB and SGC populations across all the language families in
India encapsulate much of its genetic structure. Some of the
highlighted populations are: 1) Great Andamanese and
Jarawas from AND represent distinct ethnic groups and out-
liers with respect to mainland Indian populations (supple-
mentary fig. S2B, Supplementary Material online). Great
Andamanese are also linguistically divergent from Jarawa
(Abbi 2009); 2) Vysyas, who underwent a founder event going
back 100 generations, due to the strong imposition of endog-
amy (Reich et al. 2009); 3) Language isolates Vedda from Sri
Lanka (Chaubey 2014); 4) Minicoy from Lakshadweep
Archipelago with strong founder effects and diverse mixture
due to the archipelago being a popular destination for mar-
itime sailors (Samuel et al. 2009); 5) AA speaking Mundas who
have Ancestral North and South Indian ancestry and an
Ancestral Southeast Asian component (T€atte et al. 2019);
6) Manipuri Brahmins (TB_SGA) who show high shared an-
cestry with IE_SGA as well as TB_SGC (supplementary table
S2, Supplementary Material online), since they are at the

junction of the language families; and 7) TB speaking
Changpas, who are seminomadic pastoralists dwelling in
the high altitudes of Tibet and Ladakh in India.

Relationship between Sociolinguistic Groups
Our analyses using COGG clearly support the fact that lan-
guage families and endogamy within social groups have
played a significant role in shaping the genetic structure of
the Indian subcontinent. Here, we further dissect the relation-
ship between the endogamous social groups including the
AND isolates (Thangaraj et al. 2003; Mondal et al. 2016) in
order to highlight the cryptic relatedness among ethnic
groups that COGG posits.

To better illustrate the intricacies in the relationships be-
tween the social groups in India, we constructed a network of
all the 90 populations across India (fig. 2). The network was
built as we have previously described (Paschou et al. 2014)
based on weights that reflect shared ancestry (supplementary
table S2, Supplementary Material online) as computed by
meta-analysis of ADMIXTURE results (Alexander et al.
2009) (see Materials and Methods and supplementary note,
Supplementary Material online, for details). The shared an-
cestry network, revealed four major clusters (i.e., 1. IE and DR,
2. AA, 3. TB, and 4. AND) and a few exceptions as outlined in
detail below.

IE and DR Populations across Social Groups
A cluster of IE and DR speakers across social groups resem-
bling a nearly complete graph with over 60% of all possible
edges was observed (fig. 2). This was further supported by a
similar pattern of strong shared ancestry in outgroup f3 sta-
tistics (Patterson et al. 2012) using YRI from the 1000
Genomes data set as the outgroup (Auton et al. 2015) as
well as in f3 tests for signs of admixture. We find that most
IE and DR populations share more alleles with each other
(supplementary fig. S8, Supplementary Material online) and
are admixed with each other (supplementary table S3,
Supplementary Material online). IE speakers share above
70% average ancestry with DR_SGA and DR_SGB (supple-
mentary fig. S3B, Supplementary Material online) in the meta-
analysis of ADMIXTURE. This supports the notion that there
was mixture between IE and DR speakers across SGA and SGB
around 1,900 to 4,200 years ago (Moorjani et al. 2013) and

Table 1. Top Ten Significant Ethnic Groups in India Capturing the Genetic Structure of the Subcontinent as Reflected by the RLS Statistic.

Population State/Territory Language Family Social Group

Great Andamenese Andaman and Nicobar Islands Great Andamanese SGC
Minicoy Lakshadweep islands IE SGB
Vedda Sri Lanka IE SGC
Vysya Andhra Pradesh DR SGAa

Palliyar Tamil Nadu DR SGC
Munda Madhya Pradesh AA SGC
Changpas Jammu and Kashmir TB SGC
Manipuri Brahmins Manipur TB SGA
Meghawal Rajasthan IE SGB
Jarawa Andaman and Nicobar islands Ongan SGC

aVysyas are classified as in between SGA and SGB; Moorjani et al. (2013).
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that the caste system originated in a “classless” seminomadic
society, which became hierarchical with the knowledge of
agriculture (Kosambi 1964; Majumder 2001). Furthermore,
it provides a possible explanation for DR loanwords appearing
in early Hindu texts which are not found in IE languages
outside the Indian subcontinent (Mallory and Adams 1997;
Witzel 2001; Moorjani et al. 2013). The high relatedness be-
tween SGA and SGC across IE and DR speakers barring a few
exceptions (supplementary fig. S9, Supplementary Material
online), also provides genetic evidence to the claim that al-
though the caste system was formally defined and observed
to be stringent, it was broken in some cases, allowing mixture
between SGC and SGA (Thapar 2014).

AA Speakers Forming a Clique
Almost all AA populations from Central and East India tightly
cluster together with fellow Central Indian groups such as
Bhunjia (IE_SGC), Gonds (DR_SGB), and Sahariya (IE_SGB).

Clique of TB Speakers
TB speakers from North East India form a strongly connected
cluster with the Khasis (AA speakers residing in North East
India) who also clustered together with TB speakers in the
scatter plot of the top two PCs (fig. 1B). The cluster also
contains Manipuri Brahmins (TB_SGA), who are known to
have significant admixture from IE_SGA and Tharus (IE_SGC)
(Chaubey et al. 2014) from Tarai region in Nepal and eastern
India (supplementary tables S3A and B, Supplementary
Material online).

Isolated and Groups
The AND groups Jarawa and Onge diverge from the rest of
the Indian populations. This has also been shown in
(Thangaraj et al. 2003; Reich et al. 2009; Basu et al. 2016;
Mondal et al. 2016). They belong to the Ongan language
family which has a debatable connection with Austronesian
languages (Blevins 2007), showing divergence from all lan-
guage families in mainland India.

Populations outside Major Clusters
Above, we describe four major clusters each capturing the
majority of individuals from different language groups: 1. The
IE and DR cluster with 81% of IE and 69% of DR, 2. The AA
cluster, capturing 93% of AA, 3. TB cluster with 73% of TB,
and 4. a main AND cluster with 66% of AND populations.
However, in each case, we also observed some exceptions
revealing cryptic relatedness among ethnic groups which
we outline here.

Few DR_SGC groups such as Kadar, Irula, Palliyar, and
Paniya (which contain the lowest levels of Ancestral North
Indian ancestry among Indian populations; Moorjani et al.
2013) formed a connected component, isolated from the
main IE-DR cluster. They are hunter-gatherer populations
dwelling in the forests of Western Ghats in Southern India,
isolated from the rest of the DR_SGCs and very low shared
ancestry with IE_SGC (supplementary fig. S9, Supplementary
Material online).

The Gonds and Sahariyas are candidate mosaic Indian
populations, which are also reflected by their location as
bridge nodes between the AA and IE-DR cliques. They

FIG. 2. Network of 90 Indian populations (891 individuals) in the pan-Indian data set based on shared ancestry as defined by meta-analysis of
ADMIXTURE results. Only the top 40% of edges (most related) populations are shown here (see Materials and Methods for details). The node
labels are colored by their corresponding language groups as shown in figure 1.
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contain high AA, DR, and IE ancestry (supplementary figs. S8
and S9 and table S2, Supplementary Material online), which
can be attributed to their central location in India (Chaubey
et al. 2017) and their long history of exogamy.

We also found the Great Andamenese to be connected to
TB speakers of North East India, rather than other AND
populations. They share approximately 50% shared ancestry
(supplementary table S2, Supplementary Material online) as
well as showing strong shared genetic drift with respect to
outgroup f3 statistics (supplementary fig. S9, Supplementary
Material online). The Great Andamanese are known to be
genetically divergent from other AND groups Jarawa and
Onge (Thangaraj et al. 2003; Abbi 2009). To the best of our
knowledge, this is the first observed interaction of the group
to the rest of mainland Indian speakers based on autosomal
markers and should be interpreted with caution due to small
samples sizes of all groups involved. However, a study focused
on the mitochondrial haplogroup M31 showed that with the
exception of M31a1 (specific to AND), lineages M31a2, M31b,
and M31c are prevalent in North East India and surrounding
regions (Wang et al. 2011). The authors concluded with time
estimation that the Andaman archipelago was likely settled
by modern humans from North East India via the land-bridge
connecting Andaman archipelago and Myanmar around Last
Glacial Maximum (LGM) (Voris 2000; Clark et al. 2009).

The Mosaic of Indian Sociolinguistics in the Context of
Eurasia
Indian populations from diverse sociolinguistic groups have
different genetic affinities toward Eurasian populations.
Outgroup f3 statistics between the sociolinguistic groups
and European populations with YRI as outgroup, reveal
greater shared genetic drift between IE speakers (across social
groups) and DR_SGA with European and Middle Eastern
populations (supplementary table S2, Supplementary
Material online).

The East Asian populations have more shared drift with
the TB speakers along with some affinity with AA speakers,
which is in agreement with a previous study (T€atte et al.
2019). Our results clearly show two paths with a gradient of
decreasing shared genetic drift from India and Eurasia: one
from North East India toward China, Mongolia, and Siberia
and the other from North West India toward Central Asia,
Uygurs, Middle Easterners, and Europeans (fig. 3). This is con-
cordant with our findings from network analysis with respect
to connections with possible gateways to and from the Indian
subcontinent (supplementary fig. S10, Supplementary
Material online).

Conclusion
India represents a country of great social and linguistic com-
plexity. We established a quantitative deterministic and non-
parametric framework called COGG, aiming to evaluate the
relative contribution of language, social structure, and geog-
raphy in shaping the Indian gene pool. COGG resulted in a
dramatic increase in correlation between top PCs depicting
genomic structure and the geodemographic factors that we

investigated. We applied a feature selection algorithm to
identify the most important factors shaping genomic struc-
ture in India, as well as a RLS statistic to highlight ethnic
groups in India that best capture its diverse gene pool.
Intriguingly, our study shows that spoken language seems
to have been the major force bringing people together in
India, across geographic and social barriers highlighting the
need for population-specific studies.

We find evidence of wide mixture across all the social
groups (tribal and nontribal) for IE speakers and across SGA
and SGB for DR speakers. We also provide further support for
broad admixture and a long contact between IE and DR
speakers in India. Our analysis also identifies finer substruc-
ture and population relationships within Indian sociolinguis-
tic groups as well as their relatedness with various Eurasian
populations. Interestingly, we find stronger shared ancestry
between the Great Andamenese with TB speakers of North
East India than other mainland speakers, a relationship which
is observed for the first time using autosomal markers.

The framework developed here in order to understand
genetic structure within the Indian subcontinent can be ap-
plied more broadly to different populations to model the
interaction between different factors that may have shaped
genetic diversity. The possibility to correlate genomic back-
ground to geographic, social, and cultural differences opens
new avenues for understanding how human history and mat-
ing patterns are translated into the genomic structure of ex-
tant human populations.

Materials and Methods

Study Design and Data Sets
We used PLINK1.9 (Chang et al. 2015) to assemble genome-
wide data for 891 samples from 90 well-defined sociolinguistic
groups (fig. 1A and supplementary table S1, Supplementary
Material online) genotyped on 47,283 autosomal SNPs. These
samples were collected from various sources (Reich et al.
2009; Chaubey et al. 2011; Metspalu et al. 2011; Moorjani
et al. 2013; Basu et al. 2016) with the consent of the corre-
sponding authors. We created subsets of this data set in order
to construct an equal representation of social groups, lan-
guage families, and geographical locations for this study and
tested for correlation between genetics and geography along
with sociolinguistic features. The normalized subset (see sup-
plementary note, Supplementary Material online, for details)
for which we have reported results on COGG, contains 368
samples from 33 populations genotyped on 47,283 SNPs
(supplementary table S1B, Supplementary Material online).
We converted all data to the same build (hg19) using LiftOver
from the UCSC Genome Browser (Hinrichs 2006) before
merging the data. Further quality control such as filtering
out variants with missing call rates > 5% and minor allele
frequency <0.05 was performed in PLINK1.9.

We merged 1,323 individuals across 50 populations from
Eurasia and Southeast Asia, collected from various publicly
available sources such as HGDP (Cann et al. 2002), the
Estonian Biocenter (Behar et al. 2010; Yunusbayev et al.
2012, 2015; Di Cristofaro et al. 2013; Fedorova et al. 2013;
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Kovacevic et al. 2014; Raghavan et al. 2014), and the Allele
Frequency Database (ALFRED) (Rajeevan et al. 2003) (supple-
mentary table S1C, Supplementary Material online) with our
normalized Indian data set to create a merged data set of
1,691 samples from 83 populations genotyped on 42,975
SNPs overlapping between all data sets.

PCA and LDA
We used TeraPCA (Bose et al. 2019) to perform PCA on our
data sets after pruning for LD structure by setting –indep-
pairwise 50 10 0.4 in PLINK1.9. We checked for outliers (using
EIGENSTRAT’s; Price et al. 2006; outlier detection method) in
the PCA plot (supplementary fig. S2A, Supplementary
Material online) and removed three outliers, each one from
TB speakers Jamatia, Tripuri, and Sherpa.

We implemented Rao’s discriminant analysis which is di-
rectly based on Fisher’s linear discriminant analysis (supple-
mentary note, Supplementary Material online).

Mantel Tests
We computed pairwise FST distances between 33 Indian pop-
ulations in the normalized data set using PLINK1.9.
Thereafter, we computed the correlation between the FST

and the distance matrix based on the geodemographic vari-
ables using the Mantel test function in Python’s scikit-bio
package. We performed 10,000 permutations and estimated
Spearman’s correlation, acknowledging the caveat of

overestimation of P values obtained from the tests (Guillot
and Rousset 2013).

COGG and Feature Selection Using OMP
Aimed to model genetic structure within India, COGG max-
imizes the correlation between the top two PCs (for more
PCs, see CCA section in supplementary note, Supplementary
Material online) and the geodemographic matrix which con-
sists of nine variables (columns) corresponding to geograph-
ical coordinates (latitude and longitude), social groups, and
language information encoded as indicator variables. COGG
is explained in detail in New Approaches and supplementary
note, Supplementary Material online.

On top of COGG, we used a greedy feature selection al-
gorithm described in (Natarajan 1995) to select features of
the geodemographic matrix G. We obtain two sets, S1 and S2

of the three most significant features from G, for PC1 and
PC2, respectively. In short, it selects the column which results
in the maximum r2 value from G and then projects G (and u)
on the subspace perpendicular to the selected column in
order to form G0 (and u0). We iterate the process until we
have removed the required number of features from G
(details in supplementary note, Supplementary Material
online).

All the values returned by this method are statistically
significant. When COGG was run with random permutations
of the elements of S1 and S2, it returned negligible r2. We also
considered all ð 9

3 Þ combinations of three feature sets and

FIG. 3. Shared genetic drift between 33 Indian populations (denoted by X) and 50 Eurasian/East Asian populations (denoted by Y) as estimated by
f3 statistics with Yoruba as an outgroup f3 (YRI; X, Y). The darkest colors correspond to greatest portions of shared genetic drift with Indian
populations. Full results can be found in supplementary table S4, Supplementary Material online.
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concluded that, out of all possible sets, only S1 and S2 return
maximum correlation with PC1 and PC2, respectively.

Ridge Leverage Scores
We devised a simple method based on the RLS statistic in
order to identify Indian populations that maximally contrib-
ute to the genetic diversity within the Indian subcontinent.
We considered the genotype data, denoted by mean-
centered (by SNPs) matrixZ 2 Rm�n wherem is the number
of individuals and n is the number of markers in the pan-
Indian data set of 90 Indian populations (891 individuals) and
47,283 SNPs. Since we are interested in the median RLS sta-
tistic as the representative of a population, including groups
of larger sample size would not introduce any bias, so there
was no need for normalization. We also considered the mean-
centered geodemographic matrix G. Our analysis procedure
based on the RLS statistic has four steps:

• We apply the RLS algorithm (supplementary note,
Supplementary Material online) separately to the matri-
ces Z and G to find their corresponding row RLSs,
denoted by ski ðZÞ and ski ðGÞ, respectively, for
i ¼ 1 . . .m.

• We grouped the RLSs by populations to obtain a single
score (median RLS) per group. If there are T ¼ f
t1; t2; . . . ; tTg populations in the entire set of the
Indian populations (jTj ¼ 90 in this case), then we ob-
tain jTj RLSs in this manner, one per population ti, de-
fined as the jTj � 1 vectors �skðZÞ and �skðGÞ.

• Next, we compute an additive RLS for each population
after normalizing the vectors obtained in the last step.
This additive RLS highlights the significant rows (in our
case, Indian populations), across both the genotype and
geodemographic matrices Z and G. We define this con-
solidated additive RLS as,

~s ¼ �skðZÞ þ �skðGÞ:
• Finally, we sort the entries of ~s in descending order to

obtain a set of representative populations.

Estimating Population Admixture and Meta-Analysis
We used the ADMIXTURE v1.22 software (Alexander et al.
2009) for all admixture analyses. Prior to running
ADMIXTURE, we pruned for LD using PLINK1.9 by setting
–indep-pairwise 50 10 0.8. We used 8-fold cross-validation
(CV) to determine the optimal number of ancestral popula-
tions (K). We varied K between two and eight performing
iterations until convergence for each value of K and selected
the one with the lowest CV error.

We also performed a quantitative analysis (supplementary
note, Supplementary Material online) of ADMIXTURE’s out-
put as shown in (Stamatoyannopoulos et al. 2017). To com-
pute the shared ancestry between populations X and Y, we
create two matrices PX 2 Rx�K and PY 2 Ry�K containing
the estimates from ADMIXTURE, where x and y are the num-
bers of samples in X and Y respectively. Thereafter, we project
PX onto the subspace spanned by PY. In other words, we take

the top p eigenvectors of PX; VX and perform the following
to find the shared ancestry between X and Y,

jjPYVXjj2F
jjPXjj2F

:

We compute the shared ancestry values for each K, by
varying it from four to eight and report the mean shared
ancestry across these ancestral components. Furthermore,
we designed a color-coding scheme for better visualization.
The highest and lowest shared ancestry correspond to black
and white respectively, and all intermediate values follow a
gradient from black to white.

Three Population Statistics
f3 tests are conducted for checking whether a target popula-
tion (Z) is admixed between two source populations (X and
Y) or to measure the shared drift between two test popula-
tions (X and Y) from an outgroup (Z).

f3ðX; Y; ZÞ ¼ E½ðpZ � pXÞðpZ � pYÞ�;

where pi is the allele frequency for a given site in population i
(Patterson et al. 2012; Peter 2016) for a detailed exposition on
f3 tests. We employ both these tests using ADMIXTOOLS
(Patterson et al. 2012) to find signs of admixture and shared
genetic drift within Indian populations as well as to find
shared drift between Indian sociolinguistic groups and
Eurasian populations using YRI as an outgroup. We set the
significance thresholds for z-score as jZj > 3.

Network Analysis
To better visualize and understand the connection between
the populations included in our study, we performed a net-
work analysis where the nodes represent each of 90 Indian
populations and the edge weights correspond to the mean
shared ancestry computed by meta-analysis results of
ADMIXTURE (varying K from four to eight), as shown in a
previous study (Paschou et al. 2014). As we can have ðm2 Þ
number of edges for an undirected graph with m nodes, we
allow edges to the graph (fig. 2) until all the n populations
(nodes) appear in the graph with their corresponding nearest
neighbors (NN) sorted by decreasing edge weight (shared
ancestry). Using this method with 3 NN, we obtained the
top 40% of all edges for figure 2.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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