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Abstract
We show that any dynamics on any discrete planar sequence S can be realized by the
postsingular dynamics of some transcendental meromorphic function, provided we
allow for small perturbations of S. This work is motivated by an analogous result of
DeMarco et al. (Mathematische Annalen, 2018) for finite S in the rational setting. The
proof contains a method for constructing meromorphic functions with good control
over both the postsingular set of f and the geometry of f , using the Folding Theorem
of Bishop (Acta Math 214(1):1–60, 2015) and a classical fixpoint theorem (Tychonoff
in Math Ann 111(1):767–776, 1935).

Mathematics Subject Classification 30D05 · 37F10 · 30D30

1 Introduction

The singular set S( f )of ameromorphic function f : C → Ĉ is the collection of values
w at which one can not define all branches of the inverse f −1 in any neighborhood of
w. If f is rational, then S( f ) coincides with the collection of critical values of f . If
f is transcendental meromorphic, f −1 may also fail to be defined in a neighborhood
of an asymptotic value. The value w is an asymptotic value of f if there is a curve
γ (t) → ∞ for which f (γ (t)) → w; for instance the exponential map has one
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asymptotic value at 0. In the transcendental setting, the set S( f ) coincides with the
closure of the collection of critical and asymptotic values.

The postsingular set P( f ) of a meromorphic function is the closure of the union
of forward iterates of the singular set: ∪∞

n=0 f
n(S( f )). The singular and postsingular

sets play an important rule in the study of the dynamics of f , both in the rational
and transcendental settings (see for instance [4] for the rational setting, and [17] for
the transcendental setting.) The present work addresses the question of allowable
geometries and dynamics for the postsingular sets of meromorphic functions. Our
main result states that any postsingular dynamics on any discrete sequence can be
realized provided one allows for arbitrarily small perturbations of that sequence:

Theorem 1 Let S ⊂ C be a discrete sequence (no finite accumulation points) with
4 ≤ |S| ≤ ∞, let h : S → S be any map, and let ε > 0. Then there exists a
transcendental meromorphic function f : C → ̂C and a bijection ψ : S → P( f )
with |ψ(s)−s| → 0 as s → ∞, |ψ(s)−s| ≤ ε for all s ∈ S, and f |P( f ) = ψ◦h◦ψ−1.

Theorem 1 was inspired by Theorem 1.3 of [5]:

Theorem 2 Let h : S → S be an arbitrary map defined on a finite set S ⊂ Ĉ with
|S| ≥ 3. Then there exists a sequence of rigid postcritically finite rational maps fn
such that |P( fn)| = |S|, P( fn) → S and fn|P( fn) → h|S as n → ∞.

The proof of this result in [5] uses iteration on Teichmüller space, whereas the
proof of Theorem 1 uses a fixpoint theorem [18] and quasiconformal folding methods
developed in [2] which we will discuss at length in Sect. 2. Quasiconformal folding
is a method of associating entire functions to certain infinite planar graphs introduced
in [2], and was applied there to construct various new examples, such as a wandering
domain for an entire function in the Eremenko–Lyubich class. Other applications
have been given by Fagella, Godillon and Jarque [8], Fagella, Jarque and Lazebnik
[7], Lazebnik [10,11], Osborne and Sixsmith [14], and Rempe-Gillen [16]. We will
review the basic folding construction in Sect. 2.

We now briefly sketch the proof of Theorem 1, leaving details and some special
considerations to subsequent sections.We refer to Fig. 1. Recall we are given a discrete
sequence S = (sn) and amap h : S → S.We construct an infinite graphG by enclosing
points si ∈ S by disjoint Euclidean discs Di centered at si . As discussed in Sects. 3
and 4 , we will associate a quasiregular function g : C → ̂C to the graph G. For now,
we give the definition of g in a disc Di under the assumption that h(si ) = s j ∈ D.
If z ∈ Di , then g(z):=ρi ◦ (z 
→ zd) ◦ τi (z), where d ∈ 2N, τi : Di → D is a
Euclidean similarity (so τi (si ) = 0), and ρi is a quasiconformal self-map of D which
is conformal in (3/4)D and ρ|∂D = id. The resulting quasiregular map g will have a
critical value at ρi (0) coming from the critical point si in Di , and we will denote this
critical value by s∗

j . The critical value s
∗
j should be thought of as a complex parameter

in a small neighborhood of s j for now, and s∗
j will eventually correspond to ψ(s j )

where ψ : S → P( f ) is the bijection of Theorem 1. We note that the definition of g
on C\Di will not depend on a choice of s∗

j .
Next we apply the measurable Riemann mapping theorem to obtain a quasicon-

formal map φ so that g ◦ φ−1 is holomorphic. The crux of the proof of Theorem 1
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Fig. 1 Illustrated is the general strategy in the proof of Theorem 1. One applies the Folding Theorem to a
graph G. Here si ∈ S is the center of Di , and s

∗
i is a critical value of g. The critical point si of g is sent to a

critical value s∗j near s j = h(si ). One then arranges (using a fixpoint theorem) for s∗j to be chosen so that

φ−1(s∗j ) = s j

is to arrange for s∗
j to be chosen so that φ−1(s∗

j ) = s j ∈ S, over all j . Indeed, then

for f = g ◦ φ−1 we would have f (S( f )) ⊂ S( f ) with the desired dynamics, since
g◦φ−1(s∗

j ) = g(s j ) = (h(s j ))∗ whence again onewouldhaveφ−1((h(s j ))∗) = h(s j ).

How do we arrange for the parameters (s∗
j ) to be chosen so that φ

−1(s∗
j ) = s j over

all j? Let us consider for now the simpler problem of arranging for φ−1(s∗
j ) = s j

for some fixed, single index j . Of course the Beltrami coefficient μg of g, and hence
the map φ, depends on a choice of s∗

j ; indeed varying the critical value s∗
j varies the

dilatation of ρi in D (and hence the dilatation of g in a small neighborhood of ∂Di ).
However, as explained in Sects. 3 and 4 , one can arrange for the (uniformly bounded)
dilatation of g to be supported on a neighborhood ofG of arbitrarily small area. Hence
one may prove that φ is uniformly close to the identity regardless of our choice of s∗

j
in a small neighborhood of s j , say |φ(z) − z| < ε over all z ∈ C.

Now consider moving the parameter s∗
j continuously in D(ε, s j ). Namely, for each

choice of w ∈ D(ε, s j ), we set s∗
j :=w, and we have some resulting quasiregular

map gw and correction map φw where we have arranged for |φw(z) − z| < ε for
z ∈ C, and ε is independent of w. Thus the map w → φw(s j ) is a self-map of
D(ε, s j ), and by continuous dependence on parameters (see Theorem 4),w → φw(s j )
is continuous. Thus we can apply a fixpoint theorem (in this instance the classical
Brouwer fixpoint theorem) to yield some w0 ∈ D(ε, s j ) so that by choosing s∗

j :=w0,

we have φ−1
w0

(s∗
j ) = s j as needed.

The argument to arrange for the parameters (s∗
j ) to be chosen so that φ

−1(s∗
j ) = s j

over all indices j is similar, however one looks for a fixpoint among a continuous
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self-mapping of an infinite product of discs centered at the points s j , and one appeals
to the following infinite-dimensional fixpoint theorem due to Tychonoff [18]:

Theorem 3 Let V be a locally convex topological vector space. For any non-empty
compact convex set X in V , any continuous function f : X → X has a fixpoint.

For us the locally convex topological vector space ofTheorem3will beCN (a countable
product of complex planes with seminorms ρi ((z j )∞j=1):=|zi |), and the non-empty
compact convex set X will be an infinite product of closed discs containing the points
si (which is compact by another result of Tychonoff). We remark that a similar fixpoint
argument to the one described above was developed independently in [12]. We also
record here a statement of continuous dependence on parameters (see, for instance,
Theorem 7.5 of [4]):

Theorem 4 (Continuous dependence on parameters) Let μ ∈ L∞(C) with ||μ||L∞(C)

< 1. Denote byφμ the unique quasiconformal solution of ∂φμ

∂ z̄ = μ
∂φμ

∂z satisfying some
fixed normalization. If μn → μ a.e., then φμn → φμ uniformly on compact subsets.
Consequently, for any fixed z ∈ C, the map L∞(C) → C given by μ → φμ(z) is
continuous.

We remark that in the present work we will only need to consider a subclass of
Beltrami coefficients μ which satisfy a strong thinness condition near ∞, so that φμ

is asymptotically conformal at ∞ (see Sect. 3). For such maps one may normalize φμ

such that φμ(z) = z + O(1/|z|) as z → ∞, and this is the normalization we will
always use in the present work.

We leave open the following question arising naturally from the statement of The-
orem 1, which asks whether it is necessary, in general, to consider perturbations of the
sequence S:

Question 1 Given any discrete planar sequence S and some map h : S → S, does
there always exist a meromorphic f so that P( f ) = S, and f |S = h?

A similar question was asked for finite S and rational f in [5] (see Question 1.2 of
[5]):

Question 2 Let S ⊂ P1(Q) be a finite set. Is every map h : S → S realized by a rigid
rational map f : P( f ) → P( f ) with P( f ) = S?

We also remark that an analogous version of Theorem 1 holds for any infinite sequence
in ̂C with a unique accumulation point (not necessarily at ∞); in this case the f
produced in Theorem 1would have one essential singularity at this accumulation point
(not necessarily ∞). Thus Theorem 1 could be viewed as a statement that Theorem 2
of [5] remains true for infinite sets S with a unique accumulation point, provided one is
allowed to place an essential singularity of the function f at that accumulation point.
It seems plausible, moreover, that any dynamics on a sequence S with n accumulation
points could be realized by the postsingular dynamics of a meromorphic function with
n essential singularities (one at each accumulation point), provided one allows for
perturbations of S as in Theorem 1. There are further generalizations to be made in
this direction.
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Prescribing the postsingular dynamics. . . 1765

2 Bounded geometry graphs

In this and the next section we review the quasiconformal folding method of [2] for
constructing entire functions and adapt it to producing meromorphic functions.

Suppose G is an unbounded, locally finite, connected planar graph. We say G has
bounded geometry if

(1) The edges of G are C2 with uniform bounds.
(2) The union of edges meeting at a vertex v are a K -bi-Lipschitz image of a “star”

{z ∈ C : 0 ≤ zk ≤ r} for some uniformly bounded k, K (r can be any positive,
finite value; the star consists of k equal length segments meeting at evenly spaced
angles).

(3) For any pair of non-adjacent edges e and f , diam(e)/dist(e, f ) is uniformly
bounded from above.

The values for which these conditions hold are called the “bounded geometry con-
stants” of G. We define a neighborhood Tγ (r) of an arc γ by

Tγ (r) = {z ∈ C : dist(z, e) < r · diam(γ )},

and we define a neighborhood T (r) of G by taking the union of these neighborhoods
where γ ranges over the edges of G. This is a sort of Hausdorff neighborhood of
G, but adapted to the local geometry of G (the “thickness” of the neighborhood is
proportional to the diameters of nearby edges).

It is sometimes helpful to replace condition (1) by a stronger condition that was
introduced in [3]: we say an arc γ is ε-analytic if there is a conformalmap on Tγ (ε) that
maps γ to a line segment. We say G is uniformly analytic if it has bounded geometry
and every edge is ε-analytic for some fixed ε > 0. Note that if we add extra vertices
to the edges of a uniformly analytic graph G so as to form a new bounded geometry
tree, the new tree is also uniformly analytic with the same constant. All the graphs
constructed in this paper will be uniformly analytic.

Since G is connected, the connected components of Ω := C\G = ∪ jΩ j are
simply connected. We further assume that any bounded components are disks and the
vertices of G are evenly spaced on the boundary of each disk. We call these the D-
components (for “disk components”). To apply the Folding Theorem, D-components
need only be bounded Jordan domains, but the special case of disks is all that we need
here, and this extra assumption will simplify the discussion. Note that this assumption
and bounded geometry imply that no two D-components touch each other. Moreover,
we shall assume that every D-component contains an even number of vertices on its
boundary; this is necessary because we will eventually map vertices of G to ±1 with
edges mapping to top and bottom halves of the unit circle and we will need to have
an equal number of each type of edge and vertex on the boundary of the component.
For each D-component Ω j let τ j be a complex-linear map to the unit disk, mapping
the vertices of G to the 2nth roots of unity if there are 2n vertices on ∂Ω j .

The unbounded components of Ω are called R-components (for “right half-plane
components”). For each R-component Ω j , choose a conformal map τ j from Ω j to
the right half-plane, Hr = {x + iy : x > 0}, taking ∞ to ∞. We will denote by
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τ : Ω → C the map defined as τ j in each component Ω j of Ω = C\G. We think
of each edge in G as having two sides, which may belong to the same or different
complementary components of G. The map τ sends all the sides belonging to a given
unbounded component Ω j to intervals that partition the imaginary axis. The bounded
geometry condition implies adjacent intervals have uniformly comparable lengths; this
is Lemma 4.1 of [2]. We call such a partition of a line a “quasisymmetric partition”.
The proof of this lemma given in [2] is just a sketch, so we give a more detailed version
here.

Lemma 5 [2, Lemma 4.1] Suppose notation is as above. If G is a bounded geometry
graph, then τ maps sides of each unbounded complementary component Ω j to a
quasisymmetric partition of ∂Hr .

Proof We will use some simple facts involving conformal modulus, e.g., as discussed
inChapter IVof [9].Wefirst note that if I = [a, b] and J = [b, c] are adjacent intervals
on the real line, then I and J have comparable lengths if and only if the conformal
moduli of the two path families connecting opposite sides of the quadrilateral are
bounded (connecting I to K = [c,∞) and connecting J to L = (−∞, a]).

Suppose I and J correspond to sides e, f of Ω j (they might belong to two distinct
edges of G or be the two sides of a single edge), and let g and h be the parts of ∂Ω j

that correspond to the rays K and L respectively. By rescaling we may assume e has
diameter 1. We claim that there is an ε > 0 so that any path γ connecting e to g
inside Ω j has length at least ε. If γ connects e to a non-adjacent edge e′ this follows
immediately from condition (3) in the definition of bounded geometry. Otherwise, e, f
must be the two sides of a single edge, and γ connects e to a point of an adjacent edge
e′ (possibly a point on the other side of e). If γ leaves N (e, ε), the ε-neighborhood of
e, then it obviously has length at least ε. Otherwise, γ remains inside N (e, ε). Suppose
v,w are the endpoints of e. By the bounded geometry conditions there is a C < ∞
and ε > 0 so that N (e, ε)\(B(v,Cε) ∪ B(w,Cε)) is disjoint from all edges of G
except e itself. With γ as above, it must pass through one of these balls (where the
graph has degree 1) and then hit the other ball before reaching g. Thus γ must connect
these two balls, and hence it must have diameter ≥ 1 − O(ε) > ε.

Now define a metric by ρ = 1/ε on N (e, ε), the ε-neighborhood of e, and zero
elsewhere. Since any path connecting e to g inside Ω j has length at least ε, ρ is
admissible for this family. On other hand, part (1) of bounded geometry implies that
N (e, δ) has area O(ε), so

∫∫

ρ2dxdy = O(ε−1), a uniform bound for the modulus
of the path family that depends only on the bounded geometry constants. The same
argument applies to f and h, proving the lemma. 
�

3 Quasiconformal folding andmeromorphic functions

In order to state the Folding Theorem we need another assumption on the graph G: we
will assume that the τ -image of every side of every R-component has length bounded
below by π ; this is the so called “τ -condition” or “τ lower bound”. If there is a
conformal map so that the images have lengths uniformly bounded away from zero,
then by multiplying by a positive constant, we may assume the lower bound is π . Thus
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we usually only need to check that some lower bound holds. For example, it is easy to
check that a half-strip satisfies the τ -condition (for some choice of τ ) if the vertices
are evenly spaced, and even if the gaps between vertices decrease exponentially along
the edges of the strip. Moreover, this is essentially the only case that we will need to
consider in this paper.

This collection of conformal maps on R-components and C-linear maps on D-
components defines a holomorphic map from Ω to the right half-plane. This map
need not be continuous across G, but the following result says that it can be modified
in a neighborhood of G so that it becomes continuous on the whole plane and is not
far from holomorphic (it is quasi-regular). The following is a special case of the result
proven by the first author in [2]:

Theorem 6 (Folding Theorem) Suppose notation and assumptions are as above. Then
there are constants r , K < ∞ (that depend only on the bounded geometry constants
of G) and a graph G ′ so that
1. G ′ is obtained from G by adding a finite number of finite trees to the vertices of G

(the number added at any vertex is at most the degree of that vertex).
2. Each added tree is contained inside T (r).
3. Each added tree is contained in an R-component, except for the vertex it shares

with G. Therefore each complementary component Ω ′
j of G

′ is contained in a
complementary component Ω j of G and this is a one-to-one correspondence.
Note that Ω j\Ω ′

j ⊂ Ω j ∩ T (r).
4. For each R-componentΩ ′

j of G
′, there is a K -quasiconformal map η j ofΩ ′

j to the
right half-plane that maps the sides ofΩ ′

j to intervals of length π on the imaginary
axis.

5. On each side of an R-componentΩ ′
j , the map η j multiplies arclength by a constant

factor (which must be π divided by the length of that side).
6. For each R-component Ω j , η j = τ j on Ω j\T (r). In particular, η j is conformal

off T (r).

We define a map F on Ω ′ = C\G ′ = ∪ jΩ
′
j by setting F = exp ◦η j on each

R-componentΩ ′
j and setting F = τ n on a D-component that has 2n vertices. Because

the only closed loops in G are the boundaries of the D-components, and because we
have assumed each of these contains an even number of vertices, it is easy to check
that G is bipartite and we choose a labeling of its vertices by ±1, so that adjacent
vertices always have different labels. By post-composing with a translation (for R-
components) or a rotation (for D-components) we can assume F maps each vertex of
G to ±1, agreeing with its label.

Note that each new unbounded component Ω ′
j lies inside one of the old R-

components, and we will call these the new R-components (to distinguish them from
the original R-components). Note that F extends continuously across any edge bound-
ing both a D-component and a new R-component. This follows since both maps send
the edge to the same half of the unit circle, with both maps agreeing at the endpoints
(which map to ±1), and both maps multiply arclength by the same constant factor.

The same observation shows that for any point on an edge bounding two new R-
components (or an edge for which both sides belong to the same new R-component),
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Fig. 2 The 3-quasiconformal map that sends the outside of the unit disk to the outside of [−1, 1] and
identifies conjugate points on the circle. The map is conformal (indeed, is the identity) on the light gray
region

the two possible images under F = exp ◦η are conjugate points on the unit circle. To
“close the gap”, we define a 3-quasiconformal map σ from {|z| > 1} to C\[−1, 1] as
follows. Use a Möbius transformation μ(z) = (z + 1)/(z − 1) to map {|z| > 1} to the
right half-plane with {−1,+1}mapping to {0,∞} (also note thatμ is its own inverse).
Consider the 3-quasiconformal map ν from the right half-plane to C\(−∞, 0] that is
the identity on {| arg(z)| ≤ π/4} and which triples angles in the two remaining sectors.
Post-composing with μ−1 gives the desired map σ (Fig. 2).

We gave the definition in sectors so that σ is conformal off a bounded neighborhood
of {|z| = 1} (it would have been easier to define a 2-quasiconformal map with the
same boundary values, but non-conformal in the whole plane). Thus applying σ will
keep our map holomorphic outside T (r1) if r1 is large enough.

Note that σ maps two conjugate points on the unit circle to the same point of
[−1, 1], so σ ◦ F will extend continuously across the edge we are considering. Here
σ ◦ F is applied on the components of the F-pre-image of C\({|z| ≤ 1} ∪ [1,∞))

that contain the relevant edges of G on their boundary, where we note that σ(z) = z
for z ∈ [1,∞).

Finally, given w ∈ D = {|z| < 1}, we can follow F on a D-component by a
quasiconformal map ρ : D → D so that ρ(0) = w, ρ is the identity on {|z| = 1}, and
ρ is conformal on {|z| < 1/2}. The QC constant depends only on |w| and blows up
as |w| ↗ 1. Then ρ ◦ F is uniformly quasiconformal (if |w| is uniformly bounded
away from 1), and has dilatation supported in T (r) for a uniformly bounded r (the
maximum of r from Theorem 6 and r1 above). The choice of w can be different for
each D-component, but |w| must be uniformly bounded below 1 to get a uniform
quasiconformal estimate. Thus we have:

Corollary 7 Suppose notation is as above. Given 0 < s < 1 there are r < ∞ (depend-
ing only on the bounded geometry constants of G), K < ∞ (depending on s and the
bounded geometry constants of G) and a K-quasiregular g on C so that

1. g = exp ◦τ off T (r).
2. The center of any D-component with 2n boundary vertices is a critical point of

order n and each critical value can be specified in {|z| < s}.
3. The only other singular values of g are ±1, and the corresponding critical points

occur at vertices of G ′.
4. The only asymptotic value is ∞, taken in the R-components.
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We now adapt the above result to give meromorphic functions. Suppose we have a
graphG, as above, but now the bounded components (which we still assume are disks)
are labeled either as D-components or ID-components (ID for “inverted disk”) and
the unbounded components are labeled either as R-components or IR-components (IR
for “inverted R-component”). We emphasize that the new terminology ID-component
(respectively, IR-component) is introduced only so as to allow a binary labelling of
bounded (respectively, unbounded) components of C\G. This enables us, in what
follows, to define a quasiregular function H in C\G ′ so that the definition of H in
a given component of C\G ′ depends on whether that component has been labelled
“inverted” or not. We assume that we are given such a labelling so that:

(i) D-components share edges only with R-components,
(ii) ID-components share edges only with IR-components,
(iii) R-components may share edges with D, R or IR-components,
(iv) IR-components may share edges with ID, R or IR-components.

Apply the Folding Theorem to this graph with ID-components momentarily con-
sidered as D-components and IR-components considered as R-components. Obtain
the graph extension G ′ of G and the corresponding subdomains of the unbounded
components. Each of these is a subset of a R-component or IR-component and they
will be called the new R-components and new IR-components.

Next define a function H to be equal to F on the D and new R-components, and
only use the QC-map σ to modify F on edges with both sides belonging to new R-
components (possibly the same component). On the ID and new IR-components we
set H = 1/F , where we only use σ to modify F on edges with both sides belonging to
new IR-components (possibly the same). Note that this creates poles, but considered
as a map into the sphere H is continuous across all edges, except possibly those shared
by a new R-component and new IR-component. However, for a point on such an edge,
the two possible images of F are conjugate points on the unit circle and since 1/z = z
on the unit circle, H also extends continuously across such edges.

Theorem 8 With the assumptions above, and taking 0 < s < 1, there are r , K < ∞
(depending only on the bounded geometry constants of G; K also may depend on s)
and a K -quasiregular map g : C → ̂C that equals H off T (r). Moreover,

1. Each IR-component contains a curve tending to ∞ along which g tends to zero;
thus each such component contributes an asymptotic value of 0, which may be
perturbed with the map ρ.

2. There are n poles (counted with multiplicity) in each ID-component that has 2n
vertices on its boundary.

3. The critical values corresponding toD-componentsmaybe specified independently
in {|w| < s} and the critical values corresponding to ID-components may be
specified independently in {|w| > 1/s}.

4 Constructing the graph

In this section we build the graph G that we use in the proof of Theorem 1.
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1770 C. J. Bishop, K. Lazebnik

Fig. 3 By using small disks around each point and thin corridors that enter and leave on opposite sides of
the disks, we can build a Jordan domain that satisfies Lemma 9

Lemma 9 Given δ > 0 and an infinite, discrete set of points {zn} in the plane, we can
construct an unbounded Jordan domain W so that

(1) {zn} ⊂ W.
(2) The points {zn} are all at least unit distance apart in the hyperbolic metric for

W.
(3) Every point of {zn} lies within a uniformly bounded hyperbolic distance of some

fixed hyperbolic geodesic, γ , for W that connects some finite boundary point x
of W to ∞.

(4) area(W ) < δ and for all n ∈ N, area(W ∩ {|z| > n}) ≤ δ exp(−n).
(5) Every point of the plane lies within distance 1 of W.
(6) We can add vertices to ∂W tomake it into a uniformly analytic tree with uniformly

bounded constants.
(7) Each edge J j of this tree is on the boundary of a region R j ⊂ W so that

area(R j ) � diam(J j )2 and the {R j } are pairwise disjoint.
(8) For each edge J j of this tree, the path distance in W from Jj to the arc of ∂W\x

(x is as in part (3)) that is disjoint from Jj is comparable to diam(J j ).

Proof The proof is simple and we only sketch the construction, leaving some details
for the reader. The main idea is illustrated in Fig. 3: we take W to be the union
of small, disjoint disks Dn centered at the points {zn} together with thin polygonal
tubes connecting the disks, in order, which leave each disk at antipodal points of the
boundary circle. If the connecting tubes are thin compared to the disks, then the points
{zn} are far apart in the hyperbolic metric, so (2) holds. We now show that (3) follows
by imposing an upper bound on the relative entering width of the connecting tubes
(described above). Let x ∈ ∂W , γ a geodesic in W connecting x to ∞, and denote
harmonic measure by ω. Let I1, I2 denote the two components of ∂W\{x}. Property
(3) will follow if we can show that

ω(zn, I1,W ) > c and ω(zn, I2,W ) > c
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Rj

Jj

Fig. 4 A detail of the tube showing how the tube width can vary, and how to associate a region R j ⊂ W to

each side J j of W so that area(R j ) � diam(J j )
2

for all n and some c > 0 independent of n. By monotonicity properties of harmonic
measure we have that

ω(zn, I1,W ) ≥ ω(zn, I1 ∩ ∂Dn, Dn),

and I1 ∩ ∂Dn contains a circular arc of harmonic measure (in Dn) uniformly bounded
away from zero given an upper bound on the relative entering width of the connecting
tubes. Similar considerations yield the lower bound for ω(zn, I2,W ).

Part (4) can be obtained simply by taking the tubes and disks in the construction
small enough. To get (5), we can add points to {zn} until this set is 1-dense in the plane,
e.g., add any point of Z+ iZ that does not already have a point of {zn} within distance
1/10 of it. (6) is also easy to verify: on the tubes, take approximately evenly spaced
points where the spacing is comparable to the width, and partition the circles in a way
that interpolates between the sizes of the two tube openings. If we take a disk centered
at the midpoint of J j , whose radius is a small multiple of diam(J j ) (depending only on
the bounded geometry constants), then the intersection R j of this disk withW satisfies
(7). See Fig. 4. We can vary the width of a tube (also illustrated in Fig. 4) so that all
the previous conditions still hold, and the width of a tube when it enters and leaves a
disk is always comparable to the width of that disk; thus only a uniformly bounded
number (independent of the disk) of vertices is needed on the boundary of each disk
and this implies (8) holds. 
�

If we conformally map W to the upper half-plane, we can arrange for the geodesic
γ of Lemma 9 to map to the positive imaginary axis (by mapping the boundary point
x in the lemma to the origin; post-composing any conformal map from W to the half-
plane taking ∞ to ∞ with a translation will accomplish this). Then the points {zn}
map to points in a vertical cone with its vertex at the origin. See Fig. 5. Moreover, we
can rescale so that the first point has height 1 above the real axis.

A small disk in W around each zn (say with radius one tenth the distance to the
boundary) will map to a near-circular region in the upper half-space and it is easy
to connect the near-disks to each other and to ∞ to form a bounded geometry graph
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Fig. 5 Building a bounded geometry graph with either a bounded component centered at each point or
vertex there

G̃ as shown in Fig. 5. We note that, instead of a bounded component containing
the image of zn , we may also place a vertex at the image of zn , also as shown in
Fig. 5. The unbounded components are all approximately horizontal half-strips, and it
is easy to verify the τ -condition for them. Note that given any labeling of the bounded
components by D or ID, we can easily label the unbounded components with R or IR
to satisfy the necessary adjacency restrictions.

The bounded geometry and τ -lower bound are clear for all the complementary
components of G̃, except possibly the two components that border the real line. These
require a separate argument; we want to show the vertices on the real line can be
taken with all spacings � 1. By the bounded geometry of ∂W , the vertices on ∂W
map to points on the real line that define a quasisymmetric partition of the line (see
Lemma 5). Condition (8) of Lemma 9 implies that the spacing between the vertices on
R grows exponentially (this is precisely Lemma 8.1 of [3]) and hence the spacing is
bounded below. Thus by adding more points to G̃ along the real axis, if necessary, we
can assume every edge on the real axis has length at most 1/4 and without changing
the bounded geometry constants of G̃. This verifies the bounded geometry condition
and lower τ -bound for the two components that border the real line. Moreover, adding
the corresponding vertices to ∂W does not increase the bounded geometry constant
or the uniformly analytic constant of ∂W .

Therefore, Lemma 4.1 of [3] implies that the image G of G̃ under the conformal
map back toW will be a uniformly analytic graph G contained inW . The τ -condition
will be automatically satisfied for components inside W , since this is a conformally
invariant condition.

These account for all the complementary components of G except for one: the
complement V of W . This is also an unbounded Jordan domain, but it is not clear
whether it satisfies the τ -condition. However, there is a very simple trick for fixing
this that we take from [3]. Let ϕ : V → Hu be the conformal map of V to the upper
half-plane, taking infinity to infinity. We let Φ : Hu → V be its inverse. The vertices
on G on ∂W = ∂V map to points on the real line. By Lemma 5, these points define a

123



Prescribing the postsingular dynamics. . . 1773

Fig. 6 Any quasisymmetric partition of the real line can be extended to a bounded geometry graph in the
upper half-plane that satisfies the τ -condition

quasisymmetric partition of the real line. We define a graph in the closed upper half-
plane by adjoining to the real line vertical rays, and placing evenly spaced vertices on
each ray, where the spacing is the minimum distance of that ray to its two neighbors
to the left and right. This defines an infinite “comb” tree. See Fig. 6.

By Lemma 6.1 of [3], this tree is uniformly analytic and every component satisfies
the τ -condition for an appropriate choice of τ . Therefore by Lemma 4.1 of [3] again,
the same is true for the conformal image of this graph in V . Adding this image to
G gives a new uniformly analytic tree (which we will still call G). We mark all the
new components (i.e., the subdomains of V ) as R-components. By construction, these
only share edges with the two unbounded sub-domains of W that border ∂W , hence
they do not share edges with any ID-component, as required in condition (iii) in the
discussion preceding Theorem 8.

In fact, the τ -condition remains valid for the infinite comb tree even if the spacing
of the points decays exponentially in the height. Therefore we can place the vertices so
that the graph has bounded geometry, the τ -condition holds on each vertical half-strip,
and the area of T (r) intersected with any of the half-strips decays exponentially as we
move away from the boundary of the half-plane. Next we use the distortion theorem
for conformal maps to prove an analogous estimate for the conformal image of this
graph inside V .

Lemma 10 Suppose the domain W and graph G are as described above, and that g is
the corresponding quasi-regular function given by the folding construction. Let E be
the set where g is not holomorphic (note that E is contained in T (r) by construction).
There is a α > 0 so that for any δ > 0, we can choose W, G and g so that

area(E ∩ {|z| ≥ n}) ≤ δ · exp(−αn), n = 0, 1, 2, . . .

Proof The domain W was chosen so that area(E ∩ W ) satisfies this estimate, so we
only need to worry about area(E ∩ V ) = area(E\W ).

We know that E will be contained in the conformal image of the set T (r) cor-
responding to the comb tree in the upper half-plane illustrated in Fig. 6. Recall that
Φ : H → V is a conformal map. The tree in the upper half-plane consists of vertical
rays that define vertical half-strips {S j } with the finite edge I j lying on the real axis.

123



1774 C. J. Bishop, K. Lazebnik

I S S S Sj j,0 j,1 j,2 j,3 j,4S

T(r)

Fig. 7 The half-strip S j is cut into squares {S j ,k } whose intersection with T (r) (shaded) has Euclidean
area that decays exponentially with k. The picture has been rotated by 90◦ compared to Fig. 6

These edges correspond to the edges {J j } on ∂W via Φ. In Fig. 6, the points on each
vertical ray are shown as being evenly spaced, with the spacing being comparable
to the distance from the ray to its two neighboring rays. However, we can space the
points at height y so they are only separated by distance

� |I j | exp(−cy/|I j |), (4.1)

for some c > 0 and still have the τ -condition. This holds since the conformal map
from a half-strip to a half-plane is given in terms of the sinh function, which has
exponential growth in the half-strip (for a single strip we could take c = π , but since
the spacing on a ray depends on the width of both adjacent strips, we use a positive c
that depends on the relative sizes of adjacent I j ’s). See Fig. 7; note that the vertical
half-strip is drawn horizontally to make the illustration clearer. 
�

Now cut S j into disjoint squares {S j,k}∞k=0 of side length |I j |, where S j,k denotes
the square whose Euclidean distance from the boundary segment I j is k|I j |. Because
of the exponential decrease in the spacing between vertices, the fraction of this square
that hits T (r) is bounded by O(exp(−ck)) (c > 0 as in (4.1)). We will show that a
similar estimate holds, even after we map these squares back to the region V :

Lemma 11 With notation as above,

area(Φ(T (r) ∩ S j,k)) ≤ C diam(J j )
2 · exp(−ck/2),

for k ≥ 0, where C < ∞ is fixed and c > 0 is as in (4.1).

Proof The case k = 0 (the square that is adjacent to the boundary of the half-plane)
is different from the cases k ≥ 1, and we deal with it first.

Recall that ϕ : V → Hu is our choice of conformal map and we let Φ : Hu → V
denote its inverse. In the case k = 0, we simply bound the area of Φ(T (r) ∩ S j,0)

by the area of Φ(S j,0) (i.e., we assume T (r) fills the entire square) and we claim the
latter set has diameter bounded by a uniform multiple of diam(J j ).

Let x j be the center of the boundary segment I j , let y j = |I j | and define z j =
x j + iy j ∈ Hu and w j = Φ(z j ) ∈ V . By Koebe’s theorem

dist(w j , ∂V ) � y j |Φ ′(z j )|, (4.2)

123



Prescribing the postsingular dynamics. . . 1775

Fig. 8 Illustrated is the notation used in the proof of Lemma 11 for the case k = 0

and hence

y j |Φ ′(z j )| = O(diam(J j )), (4.3)

e.g., see Exercise IV.8 in [9].
Assume the boundary intervals {I j } are numbered consecutively, so that I j−1 and

I j+1 are adjacent to I j . By Lemma 5, the intervals I j−1, I j , I j+1 have uniformly
comparable lengths (uniform over j). Thus by Corollary 4.18 of [15] and (4.2), there
exists a point x−

j ∈ I j−1 such that the geodesic γ −
j in Hu with endpoints x−

j and z j
satisfies

length(Φ(γ −
j )) ≤ Myj

∣

∣Φ ′(z j )
∣

∣ , (4.4)

for M < ∞ independent of j (see Fig. 8). Let Γ −
j denote the vertical segment con-

necting x−
j to x−

j + iy j . We claim thatΦ(Γ −
j ) andΦ(γ −

j ) have uniformly comparable

lengths (uniform over j). To see this, we cut Γ −
j and γ −

j into subsegments Γ −
j,k and

γ −
j,k for k = 0, 1, 2, . . . , where the kth subsegment is defined to be the subsegment

lying in the horizontal strip

{x + iy : 2−k−1y j ≤ y ≤ 2−k y j }.

Two such subsegments Γ −
j,k , γ −

j,k lie in a common hyperbolic disc of fixed radius
(independent of j , k), and so by Koebe’s distortion theorem the derivative of Φ is
uniformly comparable throughout this disc. Thus since the lengths of Γ −

j,k , γ −
j,k are

comparable,

length(Φ(Γ −
j,k)) and length(Φ(γ −

j,k))

are uniformly comparable (uniform over j , k). Thus the bound (4.4) implies that

length(Φ(Γ −
j )) ≤ M ′y j

∣

∣Φ ′(z j )
∣

∣ (4.5)
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for M ′ < ∞ independent of j . Analogously, there is a point x+
j ∈ I j+1 such that

the image under Φ of the vertical segment Γ +
j connecting x+

j to x+
j + iy j satisfies

a similar bound. Lastly, consider the horizontal segment l j connecting x−
j + iy j to

x+
j + iy j . Since I j−1, I j , I j+1 have uniformly comparable lengths,

length(Φ(l j )) = O(y j
∣

∣Φ ′(z j )
∣

∣) (4.6)

byKoebe’s distortion theorem.Let Q j be theEuclidean rectanglewith vertices x
−
j , x

+
j ,

x+
j +iy j , x

−
j +iy j . Summarizing, we haveΦ(S j,0) ⊂ Φ(Q j ), and the boundary of the

latter set is contained inside the unionofΦ(Γ −
j ),Φ(Γ +

j ),Φ(l j ), J j−1, J j , and J j+1; all
of these have diameter O(diam(J j )) by (4.3). Thus diam(Φ(S j,0)) = O(diam(J j )),
so the k = 0 case of Lemma 11 has been proved.

Next we verify Lemma 11 for k ≥ 1. In this case, S j,k has bounded hyperbolic
diameter, so Koebe’s distortion theorem implies

area(Φ(T (r) ∩ S j,k))

area(Φ(S j,k))
� area(T (r) ∩ S j,k)

area(S j,k)
� exp(−ck), (4.7)

where c > 0 is as in (4.1). Thus it suffices to bound area(Φ(S j,k)). To do this, we use
Lemma 16.1 of [1].

Proposition 12 Let Ω �= C be simply connected and let ϕ : Ω → Hu be a conformal
map to the upper half-plane. LetΦ : Hu → Ω denote the inverse of ϕ. Letw = x + i t
and z = x + iy with y > t and let X ⊂ Hu be a simply connected neigbourhood of z
with hyperbolic radius bounded by r. Then

diam(Φ(X)) = O
(

|Φ ′(w)| y
t
diam(X)

)

where the constant depends only on r.

The statement of this in [1] is for the special case t = 1 and a map into the right
half-plane, but the version above follows immediately by considering our ϕ composed
with the linear map z → − i

t z. The proof given in [1] is a short deduction from the
standard distortion theorem for conformal maps, e.g., Theorem I.4.5 of [9].

We apply Proposition 12 using ϕ, t = |I j | = y j ,w = x j + iy j = z j and X = S j,k ,
k ≥ 1. Note that y/t = k and diam(X) = y j . Then

diam(Φ(X)) = O(|Φ ′(z j )| · k · y j ),

and using (4.3) gives

diam(Φ(X)) = O(diam(J j ) · k).

Since k = o(exp(ck/4)), we get

area(Φ(X)) = O(diam(J j )
2 exp(ck/2)),
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and hence, using (4.7),

area(E ∩ Φ(X)) = O(diam(J j )
2 exp(−ck/2)),

which gives the k ≥ 1 cases of Lemma 11. 
�
Now that Lemma 11 is established, we can finish the proof of Lemma 10. Let

E j = E ∩ Φ(S j ) and note that

area(E j )=
∞
∑

k=0

area(E j ∩ Φ(S j,k))=O(diam(J j )
2

∞
∑

k=0

exp(−kc/2)) = O(area(R j )),

where {R j } are the regions from Lemma 9. Next, let Un = {z ∈ C : |z| ≥ n}. Then

area(E ∩Un) =
∑

j

area(E j ∩Un).

We break this sum into two parts, depending on whether J j is contained in Un/2 or
not. For the first sum, we have

∑

j :J j⊂Un/2

area(E j ) = O
(
∑

area(R j )
)

= O(area(W ∩Un/2)) = O(exp(−n/2)).

If J j is not contained inUn/2, then let γ j be the hyperbolic geodesic connecting the
two endpoints of J j inside V . Note that diam(γ j ) is uniformly bounded from above
by a theorem of Gehring and Haymann (see, for instance, Exercise III.16 in [9]) since
diam(J j ) is uniformly bounded from above by the construction of G. Thus any curve
that connects γ j to ∂Un inside V has quasi-hyperbolic length at least comparable to n
(recall that we have constructedW so that every point of V is within Euclidean distance
1 of ∂V ). By Koebe’s distortion theorem, the hyperbolic and quasi-hyperbolic metrics
are comparable, and hence the hyperbolic distance from γ j to ∂Un = {z ∈ C : |z| = n}
is also comparable to n. Thus any square S j,k whose Φ-image hits Un has at least
hyperbolic distance � n to S j,0 in the upper half-plane and hence k ≥ exp(an) for
some fixed a > 0. Now fix j and sum all over all the squares S j,k whose Φ-images
hits Un/2:

area(E j ∩Un) ≤ area(R j )O

⎛

⎝

∑

k>exp(an)

exp(−ck/2)

⎞

⎠

≤ area(R j )O(exp(−acn/2)),

for some a > 0. The {R j } are pairwise disjoint and contained in W , so summing
area(R j ) over all j is bounded by area(W ). Taking α = ac/2 completes the proof of
Lemma 10. 
�
We end this section with the following consequence of Theorem 8 and Lemmas 9 and
10:
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Lemma 13 Suppose ε, δ > 0 and supposewe are given an infinite, discrete set of points
{zn}∞n=1 in the plane, and a sequence {wn}∞n=1 so that for each n, either wn = ±1 or
|wn| is uniformly bounded away from 1 (i.e., ||wn| − 1| > ε > 0). Then we can find a
quasiregular map g : C → ̂C so that:

(1) For all n ∈ N, g has a critical point at zn whose critical value is wn.
(2) S(g) = {wn}∞n=1 ∪ {±1}, i.e., the only other singular values of g are ±1 (these

correspond to the critical points occurring at the vertices of the graph G ′), and
the asymptotic value 0 coming from the IR-components (0 can be replaced by
any value in {|w| < 1 − ε}).

(3) The map g is conformal except on a set E whose area is less than δ, and is
exponentially small near ∞, i.e., we have area(E ∩ {|z| > n}) < δ exp(−n).

(4) Moreover, K does not depend on the particular critical values {wn} chosen, but
only on {zn} and ε.

Proof Given the sequences {zn}∞n=1 and {wn}∞n=1, one obtains a bounded geometry
graph G through Lemma 9 (and the ensuing discussion in Sect. 3) with the following
property: for each n ≥ 1, G has a vertex at zn if wn = ±1, and if wn �= ±1, G
has a D-component or ID-component centered at zn according to whether |wn| < 1
or |wn| > 1, respectively. The bounded geometry constants of G depend only on
{zn}∞n=1 by Lemmas 9 and 10 . Theorem 8 then yields (1), (2) and (4). Property (3) is
a consequence of Lemma 10. 
�

5 Reducing Theorem 1 to a special case

Next we show that it suffices to prove Theorem 1 using extra hypotheses on the set S.
First, after conjugating by a conformal linear transformation z → az + b, we may

assume ±1 ∈ S. In other words, given a general S as in Theorem 1, we can always
find a conformal linear transformation z → m(z) so that±1 ∈ m(S). It suffices to find
some meromorphic f satisfying the conclusion of Theorem 1 for m(S), since then
m−1 ◦ f ◦m is the desired meromorphic function in the conclusion of Theorem 1 for
the initial S.

Next, we claim that since |S| ≥ 4, we may further always choose the conjugating
linear transformation z → m(z) so that there is some s ∈ Swith |m(s)| < 1 in addition
to±1 ∈ m(S). Indeed, note that it would suffice to find three points s, p, q ∈ S so that
the circle whose diameter is the straight line segment [s, p] joining s, p contains the
third point q in its interior. Moreover, this happens if and only if the angle subtended
by [s, p] at q is greater than or equal to π/2. If three points of S are collinear, the
statement is obvious. If we assume a point r ∈ S is in the interior of the convex hull
T of s, p, q ∈ S, then the three angles subtended at r by the three edges of T sum
to 2π , hence one of the angles is greater than π/2, as needed. Lastly, if no point of
s, p, q, r is in the convex hull of the other three, then the two segments connecting
alternating pairs of points must cross one another. If the closed disk corresponding to
each segment does not contain either of the two points of the other pair, the circles
must cross in at least four points, which is impossible. Hence we can always choose
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the conjugating linear transformation z → m(z) so that there is some s ∈ S with
|m(s)| < 1 in addition to ±1 ∈ m(S).

Furthermore, we claim that we may further assume that S does not intersect some
open neighborhood of |z| = 1 other than at ±1. Indeed, suppose for the moment that
we can prove Theorem 1 for such an S. If we then consider the case when S has finitely
many points of modulus one, we adjust S by moving each such point of modulus one
(other than ±1) by a radial distance ε/2 inside of D. Then we only need to apply
Theorem 1 with ε/4 to this adjusted S to obtain the desired result.

Let us return to Theorem 1, where we are given ε > 0, a discrete sequence S =
(sn) and some dynamics h : S → S. By the above discussion, we may assume
henceforth that ±1 ∈ S, there is some s ∈ S with |s| < 1, and that ∀s ∈ S with
s �= ±1, ||s| − 1| > 2ε. Thus given any sequence (t∗n ) with |t∗n − h(sn)| < ε for
all n and t∗n = h(sn) if h(sn) = ±1, we may apply Lemma 13 with {zn} = {sn},
{wn} = {t∗n } to yield a quasiregular map g : C → Ĉ such that g has a critical point
at each sn with corresponding critical value t∗n . By the measurable Riemann mapping
theorem, there exists some quasiconformal map φ : C → C such that f = g ◦ φ−1 is
meromorphic. Moreover, since Lemma 13 guarantees that the support of the dilatation
of φ is exponentially small near ∞, we may normalize φ so that φ(z) = z + O(1/z)
near ∞ (see for instance [6]). Furthermore, by choosing δ in Lemma 13 sufficiently
small, we may guarantee that |φ(z) − z| < ε for all z ∈ C. In the next section we will
see how to choose {wn} = {t∗n } so that φ−1(t∗n ) = h(sn) for all n.

If we can prove that there is a choice of {wn} = {t∗n } so that φ−1(t∗n ) = h(sn)
for all n, Theorem 1 will be proven in the case that h is onto. Indeed, we would
then have P( f ) = S( f ) = {t∗n }, and ψ : S → P( f ) defined as ψ(h(sn)):=t∗n
(see also the discussion in Sect. 1). If h is not onto, the definition ψ(h(sn)):=t∗n of
course does not define ψ on the entirety of S and we may have, for instance, that
|P( f )| = |S( f )| < |S|. However we claim that in what follows, we may assume that
h is onto. Indeed, if h is not onto, we may augment the sequence S with auxiliary
points to form a discrete sequence S̃, and extend h to a function h̃ : S̃ → S such
that h̃ is onto S. Then we apply Lemma 13 with {zn} = {s̃n} and {wn} = {t∗n } where
{t∗n } is any sequence with |t∗n − h̃(s̃n)| < ε for all n and t∗n = h̃(s̃n) if h̃(s̃n) = ±1.
Then, again, if we can choose {wn} = {t∗n } so that φ−1(t∗n ) = h̃(s̃n) for all n, then
f : = g ◦ φ−1 will be the desired function of Theorem 1, with P( f ) = S( f ) = {t∗n }
and ψ(h̃(s̃n)) := t∗n now defined on all of S.

6 Existence of a fixpoint

With the concluding remarks of Sect. 1 in mind, we will look for a fixpoint of a self-
map of an infinite product of closed Euclidean discs. This fixpoint will correspond
to a quasiregular map g so that g ◦ φ−1 is the desired meromorphic function in the
conclusion of Theorem1. In the previous sectionswe built a graphG and a quasiregular
map g associated to a pair (S, h) fromTheorem1.The set of critical points of g included
S.
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The function g depended on a choice of the images of each s ∈ S. We enumerate
S = (si ). For each choice of (s∗

j )
∞
j=1 where s∗

j ∈ D(ε, s j ), Lemma 13 (and the
assumption that h is onto—see Sect. 5) gives some quasiregular function gwith critical
points including S, and critical values at each s∗

j where g(si ) = s∗
j if and only if

h(si ) = s j . Thus there is a corresponding quasiconformal map φ so that g ◦ φ−1 is
meromorphic. Moreover, we have noted that we can arrange for |φ(z)− z| < ε for all
z ∈ C, and φ(z)− z = o(1) as z → ∞. Since φ(z)− z = o(1) as z → ∞, we can now
fix some positive sequence εi → 0 with εi < ε over all i , such that |φ(si ) − si | < εi ,
and (εi ) is independent of a choice of (s∗

i ).

Lemma 14 With notation as above, the composition of maps

∞
∏

i=1

D(εi , si ) → L∞(C) →
∞
∏

i=1

D(εi , si )

given by

(s∗
i ) → μ(s∗i ) → (φμ(s∗i )

(si )) (6.1)

is continuous between the product topologies.

Proof We recall that a basis for the product topology on
∏∞

i=1 D(εi , si ) is given by
products

∏∞
i=1Ui where each Ui is open in D(εi , si ) and Ui = D(εi , si ) except for

finitely many indices i . In particular the topology on
∏∞

i=1 D(εi , si ) is coarse, and so
it is easy to prove continuity of a map into

∏∞
i=1 D(εi , si ); we only need to check

continuity into each factor of the product (see for example Theorem 19.6 of [13]).
This is precisely Theorem 4. This gives the continuity of the second map in (6.1).

On the other hand, it is slightly more difficult to prove continuity of the first
map in (6.1). Fix some sequence (s∗

i ) ∈ ∏∞
i=1 D(εi , si ) and an open neighborhood

D(r , μ(s∗i )) ⊂ L∞(C). We need to find some product of open sets
∏∞

i=1Ui � (s∗
i ) so

that Ui = D(εi , si ) except for finitely many indices i , and for any (ti ) ∈ ∏∞
i=1Ui we

have ||μ(ti ) − μ(s∗i )||L∞(C) < r .
Supposewe have indexed s∗

1 as the unique asymptotic value of g, and consider some
fixed i > 1. Varying s∗

i changes the dilatation of g only on a collection of thin annuli
A j ⊂ Dj for which h(s j ) = si . Let Ei be the union of those annuli A j ⊂ Dj for
which h(s j ) = si . For s∗

1 , we define E1 as T (r0)\(∪s Ds) in union with any A j ⊂ Dj

for which h(s j ) = s1; the reason for this definition is that varying s∗
1 changes the

dilatation of g only on E1.
Now consider some fixed E j . Then μ(ti )|E j depends only on t j , and as t j → s∗

j , it
is clear that μ(ti )|E j → μ(s∗i )|E j uniformly, so that we may choose some δ > 0 with

||μ(ti )−μ(s∗i )||L∞(E j ) < r as long as t j ∈ D(δ, s∗
j ). Since ε j → 0, we know that for all

sufficiently large j we have D(ε j , s j ) ⊂ D(δ, s∗
j ), and we chooseUj = D(ε j , s j ) for

such j . For the finitely many other indices j , we choose Uj = D(δ, s∗
j ) ∩ D(ε j , s j ).

With this choice of
∏∞

i=1Ui , we have that ||μ(ti ) − μ(s∗i )||L∞(C) < r for any (ti ) ∈
∏∞

i=1Ui , as required. 
�
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We are now ready to prove Theorem 1. We remark that the singular values ±1
are distinguished from other singular values of g in that we do not have the freedom
in Lemma 13 to perturb ±1. Therefore, the proof is simpler in the case when the
correction map φ fixes both ±1. We will first prove the theorem in this case, and then
extend the argument to cover the general case.

Proof (Theorem 1 assuming φ fixes ±1) We have just shown that the map in (6.1)
is continuous and maps

∏∞
i=1 D(εi , si ) into itself; this was arranged by definition of

εi . Thus Theorem 3 implies this map has fixpoint. A fixpoint of (6.1) corresponds to
some choice of (s∗

i ) so that φ−1
μ(s∗i )

(s∗
i ) = si for all singular values other than ±1. By

assumption this also holds if we set (1)∗ = 1 and (−1)∗ = −1. If f (z) = g(φ−1(z)),
then f is meromorphic and we have f |S∗ = ψ ◦ h ◦ψ−1, where the map ψ is defined
by ψ(s) = s∗. This proves Theorem 1 under the extra assumption that φ−1 fixes both
±1. 
�

Proof (Theorem 1 in general) Now we consider the case when the correction map
φ−1 does not necessarily fix both ±1. Let δ > 0 be the distance from ±1 to the
remainder of the singular set (this is positive since the singular set is discrete). For
each x, y ∈ D(−1, δ/2)×D(1, δ/2) let η be a quasiconformalmap so that η(−1) = x ,
η(1) = y and η is the identity outsideU = D(−1, δ)∪D(1, δ). Clearly we can do this
with a dilation that is uniformly bounded independent of δ, x and y and is supported
inside U .

We now wish to repeat the fixpoint argument above with g replaced by G = η ◦ g.
This is still a quasi-regular map that depends on the parameters {s∗

j } and two new
parameters x, y. The g preimages of U are contained in T (r) for a uniform choice
of r , so G still has a dilatation that is supported in a set of small area and this area
decays exponentially near ∞. Therefore the corresponding correction map φ still
varies continuously in all the parameters. Moreover, φ will move each of the points
±1 by as little as we wish, depending on our choice of W . Therefore we can arrange
for φ to map −1 into D(−1, δ/2) for any x ∈ D(−1, δ/2), independent of how the
other parameters are chosen. Similarly, φ maps 1 into D(1, δ/2). The chosen closed
disks around all the other (non±1) singular values still map into themselves as before,
so the fixpoint argument from above applies again. More precisely, there is a choice of
x ∈ D(−1, δ/2), y ∈ D(1, δ/2), and {s∗

j } ∈ D(s j , ε j ) so that φ(−1) = x , φ(1) = y,
and φ(s j ) = s∗

j for all j .

Let f (z) = η(g(φ−1(z))). Then the definition of η implies

f (x) = η(g(φ−1(x))) = η(g(−1)) =

⎧

⎪

⎨

⎪

⎩

x if g(−1) = −1,

y if g(−1) = 1,

g(−1) otherwise.

Similarly for f (y). For other s j ∈ S such that s j �= ±1, we have η(s j ) = s j (since η

is the identity away from ±1), so
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f (s∗
j ) = η(g(φ−1(s∗

j ))) = η(g(s j )) =

⎧

⎪

⎨

⎪

⎩

x if g(s j ) = −1,

y if g(s j ) = 1,

g(s j ) otherwise.

Thus if we set ψ(−1) = x , ψ(1) = y and ψ(s j ) = s∗
j for the other singular values,

then f , ψ satisfy the conclusions of Theorem 1. 
�
Acknowledgements The authors would like to thank the anonymous referees for their suggestions which
have led to an improved version of the paper.

References

1. Albrecht, S., Bishop, C.J.: Spieser class Julia sets with dimension near one (2017) (preprint)
2. Bishop, C.J.: Constructing entire functions by quasiconformal folding.ActaMath. 214(1), 1–60 (2015).

https://doi.org/10.1007/s11511-015-0122-0
3. Bishop, C.J.: Models for the Speiser class. Proc. Lond. Math. Soc. (3) 114(5), 765–797 (2017). https://

doi.org/10.1112/plms.12025
4. Carleson, L., Gamelin, T.W.: Complex dynamics. Universitext: Tracts in Mathematics. Springer, New

York (1993). https://doi.org/10.1007/978-1-4612-4364-9
5. DeMarco, L.G., Koch, S.C., McMullen, C.T.: On the postcritical set of a rational map. Mathematische

Annalen (2018)
6. Dyn’ kin, E.M.: Smoothness of a quasiconformal mapping at a point. Algebra i Analiz 9(3), 205–210

(1997)
7. Fagella, N., Jarque, X., Lazebnik, K.: Univalent wandering domains in the Eremenko–Lyubich Class.

arXiv:1711.10629 (2017)
8. Fagella, N., Godillon, S., Jarque, X.: Wandering domains for composition of entire functions. J. Math.

Anal. Appl. 429(1), 478–496 (2015). https://doi.org/10.1016/j.jmaa.2015.04.020
9. Garnett, J., Marshall, D.: Harmonic Measure, New Mathematical Monographs, vol. 2. Cambridge

University Press, Cambridge (2005)
10. Lazebnik, K.: Oscillating Wandering Domains for Functions with Escaping Singular Values. arXiv

e-prints (2019)
11. Lazebnik, K.: Several constructions in the Eremenko–Lyubich class. J. Math. Anal. Appl. 448(1),

611–632 (2017). https://doi.org/10.1016/j.jmaa.2016.11.007
12. Martí-Pete,D., Shishikura,M.:Wandering domains for entire functions of finite order in theEremenko–

Lyubich class (2018)
13. Munkres, J.R.: Topology: A First Course. Prentice-Hall Inc, Englewood Cliffs (1975)
14. Osborne, J.W., Sixsmith, D.J.: On the set where the iterates of an entire function are neither escaping

nor bounded. Ann. Acad. Sci. Fenn. Math. 41(2), 561–578 (2016)
15. Pommerenke, Ch.: Boundary behaviour of conformal maps, volume 299 of Grundlehren derMathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1992)
16. Rempe-Gillen, L.: Arc-like continua, Julia sets of entire functions, and Eremenko’s conjecture (2016)

(preprint)
17. Sixsmith, D.J.: Dynamics in the Eremenko–Lyubich class. ArXiv e-prints (2017)
18. Tychonoff, A.: Ein Fixpunktsatz. Math. Ann. 111(1), 767–776 (1935). https://doi.org/10.1007/

BF01472256

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s11511-015-0122-0
https://doi.org/10.1112/plms.12025
https://doi.org/10.1112/plms.12025
https://doi.org/10.1007/978-1-4612-4364-9
http://arxiv.org/abs/1711.10629
https://doi.org/10.1016/j.jmaa.2015.04.020
https://doi.org/10.1016/j.jmaa.2016.11.007
https://doi.org/10.1007/BF01472256
https://doi.org/10.1007/BF01472256

	Prescribing the postsingular dynamics of meromorphic functions
	Abstract
	1 Introduction
	2 Bounded geometry graphs
	3 Quasiconformal folding and meromorphic functions
	4 Constructing the graph
	5 Reducing Theorem 1 to a special case
	6 Existence of a fixpoint
	Acknowledgements
	References




