

1 Archana Yadav^a, C. Ryan Hahn^a, Mostafa S. Elshahed^a, and Noha H. Youssef^{a#}

2

3

4 ¹Department of Microbiology and Molecular Genetics. Oklahoma State University. Stillwater,
5 Oklahoma. USA

6

7

8 Running Head: Phylum CSSED10-310 genomes from an anoxic spring.

9

10

11

12 #Address correspondence to Noha H. Youssef (Noha@Okstate.edu).

13

14 **Abstract**

15 We analyzed five metagenome-assembled genomes (MAGs) belonging to the rare, yet-
16 uncultured phylum CSSED10-310 recovered from the anoxic sediments of Zodletone spring
17 (Oklahoma, USA). Our analysis suggests their potential involvement in sulfite respiration.

18

19 **Announcement**

20 Zodletone spring is a surficial, anoxic, sulfide and sulfur-rich spring in Southwestern Oklahoma,
21 USA. Prior studies have documented the phylogenetic diversity in the spring (1-5). Such studies
22 have demonstrated that the spring harbors a plethora of novel and rare taxa. Here, we report on
23 the assembly and analysis of five genomes belonging to the rare, yet-uncultured phylum
24 CSSED10-310. Currently (April 2021), this phylum is represented in GTDB (release 95) by a
25 single genome (GCA_003558985.1) binned from sediments of a hypersaline soda lake (6). The
26 phylum appears to be a sister phylum to the Acidobacteriota.

27 Samples from the anoxic, sulfide-saturated source sediments were obtained from
28 Zodletone spring in September 2017. Ten samples were collected 5-cm deep into the anoxic
29 sediments by completely filling sterile 50-mL polypropylene plastic tubes. Tubes were kept on
30 ice until brought back to the lab (~2h drive), where they were immediately processed. DNA
31 extraction was conducted on 0.5 g sediment from each of the ten replicate samples using the
32 DNeasy PowerSoil kit (Qiagen, Valencia, CA, USA) according to manufacturer protocols. All
33 DNA extractions were pooled and used for the preparation of sequencing libraries using the
34 Nextera XT DNA library prep kit (Illumina, San Diego, CA, USA) as per manufacturers'
35 instructions. Sequencing was conducted using the Illumina HiSeq 2500 platform using the
36 services of Novogene (Beijing, China), generating 281 Gbp of 150-bp pair-end raw sequence

37 output. FastQC - v0.11.5 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) was used
38 to assess the quality of the reads followed by trimming using Trimmomatic v0.38 (7). High-
39 quality reads were assembled into contigs using Megahit (v.1.1.3) (8). MetaBAT2 v1.7 (9) and
40 MaxBin2 - v2.2.4 (10) were used to bin the contigs into draft genomes, and DasTool v 1.1.1-0
41 (11) was used to select the highest quality bins. Genome completeness, strain heterogeneity, and
42 contamination were estimated using CheckM v1.1.3 (12). Default parameters were used except
43 where otherwise noted. GhostKoala (13) was used for functional annotation by assigning
44 protein-coding genes to KEGG orthologies (KOs). KEGG mapper (14) was used to visualize
45 metabolic pathways for this phylum. The taxonomic affiliation of the genomes were determined
46 using GTDB-Tk, v1.1.0 (15, 16), and the generated concatenated alignment was used to
47 construct a maximum-likelihood phylogenomic tree using FastTree (17).

48 Five genomes recovered from the spring source sediment metagenome were affiliated
49 with the rare, yet-uncultured phylum CSSED10-310 (Figure 1). Sequencing statistics (including
50 number of contigs, median genome coverage and N50) as well as general genomic features of
51 CSSED10-310 genomes are shown in Table 1. Expected genome sizes ranged from 3.01-5.72
52 Mbp, and GC content ranged from 43.4-58.9%. Cells are predicted to be Gram-negative, and
53 possibly motile (based on the identification of the majority of flagella and type IV pili
54 biosynthesis and assembly genes). A heterotrophic lifestyle is predicted, with sugars (glucose,
55 fructose, mannose, ribulose and galactose), starch, and propionate as potential carbon sources.
56 Two genomes (Zod_Metabat.252 and Zod_Metabat.419) encoded the anaerobic sulfite reductase
57 (AsrABC) system, as well as the membrane-bound heterodisulfide reductase-related enzymes
58 (HdrABC) for transfer of electrons to AsrC subunit, suggesting sulfite reduction capacities

59 coupled to sugar degradation as an energy-generating process in the analyzed phylum CSSED10-
60 310 genomes. In addition, the genomes encoded sugar fermentative capabilities.

61 **Data Availability.** Raw sequencing reads were deposited in the SRA under accession
62 [SRX9813571](#). The whole genome shotgun project was submitted to GenBank under Bioproject
63 ID [PRJNA690107](#) and Biosample ID [SAMN17269717](#). The individual assembled MAGs have
64 been deposited at DDBJ/ENA/GenBank under the accession [JAFGEQ000000000](#),
65 [JAFGDC000000000](#), [JAFGJC000000000](#), [JAFGMN000000000](#) and [JAFGLW000000000](#), and
66 were annotated using NCBI Prokaryotic Genome Annotation Pipeline.

67

68 Figure 1 Legend

69 Maximum likelihood tree based on the concatenated alignment of 120 single-copy marker genes
70 showing the phylogenetic position of phylum CSSED10-310 relative to other phyla. The tree was
71 constructed in FastTree (17) and visualized using iTOL (18). Phylum CSSED10-310 is
72 highlighted in yellow, and all other phyla are wedged. The 5 MAGS from Zodletone spring
73 discussed here are shown in red bold text. Names depict the MAG bin name (as shown in Table
74 1). The single CSSED10-310 genome (Assembly accession number GB_GCA_003558985.1)
75 available in GTDB is also highlighted in the same clade. The tree was midpoint rooted and the
76 bootstrap values (from 100) are displayed for the branches with $\geq 50\%$ support.

77

78 **References**

79 1. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz
80 LR. 2003. Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. *Appl*
81 *Environ Microbiol* 69:5609-5621.

82 2. Spain AM, Najar FZ, Krumholz LR, Elshahed MS. 2015. Metatranscriptomic analysis of a
83 high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic
84 metabolism. *Peer J* 3:e1259.

85 3. Youssef NH, Couger MB, Elshahed MS. 2010. Fine-scale bacterial beta diversity within a
86 complex ecosystem (Zodleton spring, OK, USA): the role of the rare biosphere *PLoS*
87 *ONE* 5:e12414.

88 4. Youssef NH, Farag IF, Hahn CR, Premathilake H, Fry E, Hart M, Huffaker K, Bird E,
89 Hambright J, Hoff WD, Elshahed MS. 2019. *Candidatus Krumholzibacterium*
90 *zodletonense* gen. nov., sp nov, the first representative of the candidate phylum
91 *Krumholzibacteriota* phyl. nov. recovered from an anoxic sulfidic spring using genome
92 resolved metagenomics. *Syst Appl Microbiol* 42:85-93.

93 5. Elshahed MS, Najar FZ, Aycock M, Qu C, Roe BA, Krumholz LR. 2005. Metagenomic
94 analysis of the microbial community at Zodleton spring: Insights into the genome of
95 novel candidate division OD1. *Appl Environ Microbiol* 71:7958-7962.

96 6. Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. 2018. A
97 metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake
98 sediments. *Microbiome* 6:168.

99 7. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
100 sequence data. *Bioinformatics* 30:2114-20.

101 8. Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node
102 solution for large and complex metagenomics assembly via succinct de Bruijn graph.
103 *Bioinformatics* 31:1674-6.

104 9. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive
105 binning algorithm for robust and efficient genome reconstruction from metagenome
106 assemblies. *PeerJ* 7:e7359.

107 10. Wu YW, Simmons BA, Singer SW. 2016. MaxBin 2.0: an automated binning algorithm to
108 recover genomes from multiple metagenomic datasets. *Bioinformatics* 32:605-7.

109 11. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF. 2018.
110 Recovery of genomes from metagenomes via a dereplication, aggregation and scoring
111 strategy. *Nat Microbiol* 3:836-843.

112 12. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing
113 the quality of microbial genomes recovered from isolates, single cells, and
114 metagenomes. *Genome Res* 25:1043-55.

115 13. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG Tools for
116 Functional Characterization of Genome and Metagenome Sequences. *J Mol Biol*
117 428:726-731.

118 14. Kanehisa M. 2019. Toward understanding the origin and evolution of cellular organisms.
119 *Protein Sci* 28:1947-1951.

120 15. Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. 2020. A
121 complete domain-to-species taxonomy for Bacteria and Archaea. *Nat Biotechnol*
122 38:1079-1086.

123 16. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify
124 genomes with the Genome Taxonomy Database. *Bioinformatics*
125 doi:10.1093/bioinformatics/btz848.

126 17. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood
127 trees for large alignments. *PLoS One* 5:e9490.

128 18. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new
129 developments. *Nucleic Acids Research* 47:W256-W259.

130