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Abstract—In this paper, we analyze the (exact) stochastic
dynamics of spreading processes taking place in complex networks.
The analysis of this dynamics is, in general, very challenging since
its state space grows exponentially with the network size. A
common approach to overcome this challenge is to apply moment-
closure techniques, such as the popular mean-field approach, to
approximate the exact stochastic dynamics via ordinary differential
equations. However, most existing moment-closure techniques
do not provide quantitative guarantees on the quality of the
approximation, limiting the applicability of these techniques. To
overcome this limitation, we propose a novel moment-closure
technique with explicit quality guarantees based on recent results
relating the multidimensional moment problem with semidefinite
programming. We illustrate how this technique can be used to
derive upper and lower bounds on the exact (stochastic) dynamics
of a variety of networked spreading processes, such as the SIS, SI,
and SIR models. Moreover, we provide a simplified version of this
moment-closure technique to approximate the dynamics of the
probabilities of infection of each node using a linear number of
piecewise-affine differential equations. Finally, we demonstrate the
validity of our bounds via numerical simulations in a real-world
social network.

Index Terms—Complex networks, epidemics, stochastic pro-
cesses, moment closure, K-moment problem, semidefinite
programming.

I. INTRODUCTION

MODELING and analysis of spreading processes taking

place in complex networks have found applications in a

wide range of scenarios, such as modeling the propagation of

malware in computer networks [1], failures in technological net-

works [2], memes in social networks [3], and diseases in human

populations [4]–[6]. We find in the literature a wide variety of

models to characterize the dynamics of spreading processes over

networks. In the epidemiological literature, these models con-

sider the spread of a disease in human contact networks in which

individuals and their relationships are modeled via complex

networks. Some of the most popular models in the literature are

the Susceptible-Infected-Susceptible (SIS) [7], the Susceptible-

Infected-Recovered (SIR) [8], and their variants [9], [10].

During the last decade, several mathematical techniques have

been developed to determine whether a disease spreading over a

network will be eradicated quickly or, in contrast, will spread

widely over time, causing a large epidemic outbreak. These tech-

niques can then be used to design efficient strategies to contain,

or even eradicate, the spread of the disease by distributing medi-

cal resources throughout the network [11]–[14]. One of the most

important characteristics in the global behavior of these models

is the presence of phase transitions, or epidemic thresholds. These

phase transitions can be described as a dynamical bifurcations in

the dynamics, where the system transition from a single stable

equilibrium at the origin (i.e., the disease-free state) towards the

existence of (potentially many) nontrivial equilibria. The authors

in [15] presented an approximate analysis to show that the net-

worked SIS model presents a phase transition that can be charac-

terized in terms of the largest eigenvalue of the adjacency matrix

representing the network structure. A rigorous analysis of this

phase transition was presented in [7], where the authors use Mar-

kov processes to model the exact stochastic dynamics of the net-

worked SIS spreading process. Following this approach, the

authors in [10] characterized the global dynamics of a more gen-

eral spreading model which includes the SIS as a particular case.

A common idea behind the aforementioned results is to con-

struct a Markov transition model and analyze the transition prob-

abilities among network states. However, the number of possible

network states grows exponentially with the number of nodes.

Consequently, the analysis of the resulting Markov process is

both computationally and analytically challenging to study. An

alternative approach to overcome this challenge is to analyze the

probability of each node being in a particular state at a given

time. For example, in the SIS spreading model, it is mathemati-

cally convenient to analyze the time evolution of the probabilities

of infection of each node in the network. However, as illustrated

in [7], the ODEs describing the evolution of these infection

probabilities depend on pairwise correlations (second-order

moments) between the states of connected nodes in the network.

As shown in [16], the governing dynamics of these second-order

moments can also be described as ODEs involving third-order

moments. In general, the ODEs describing the dynamics of k-th
order moments depend on ðkþ 1Þ-th order moment. Therefore,

a complete characterization of the dynamics requires, in general,

an exponential number of ODEs [17]. To address this issue, it is

common to resort to moment-closure techniques—a method to
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obtain a closed system of ODEs by approximating higher-order

moments using lower-order ones [18]. Hence, it would be possi-

ble to use this technique to obtain a polynomial number of ODEs

approximating the dynamics of moments of order k as a function
of moments of order up to k. For instance, the popular mean-field

approximation (MFA) is a moment-closure techniques in which

pairwise correlations are approximated by the products of two

first-order expectations [7], resulting in a linear number of

ODEs. In [19], the authors proposed to close second-order

moments using Frechet inequalities; whereas the authors in [20]

proposed to close third-order moments by products of first- and

second-order moments.

Existing moment-closure techniques suffer from the follow-

ing pitfalls. Firstly, there is no theoretical guarantee on the

quality of the approximation obtained. Secondly, in the partic-

ular case of the SIS dynamics, these techniques often fail to

lower bound the evolution of the probabilities of infection of

each node. These pitfalls are partly addressed by [19], [21]; in

particular, in [21] the authors showed that the moment-closure

problem can be directly related to the multidimensional

moment problem in functional analysis [22].

The objective of this paper is to provide a moment-closure

framework with theoretical guarantee on the quality of the

approximation for networked SIS model, along with several

other disease spreading models. More specifically, in this paper,

we further achieve the following contributions:

We extend the work in [21] and propose a mathematical

and computational framework to obtain a polynomial

number of ODEs describing the dynamics of all k-th
order moments of the SIS stochastic model for an arbi-

trary integer k and an arbitrary contact network.

As part of this framework, we provide upper and lower

bounds on the evolution of an arbitrary k-th moment of

the SIS stochastic model.

We provide a simplified expression for k ¼ 1 to approxi-

mate the dynamics of the means of each node state using

a linear number of piecewise-affine differential equations.

Finally, we extend our framework to other compartmen-

tal spreading processes over networks, such as the SI

and SIR models.

The rest of the paper is organized as follows. In Section II, we

provide preliminaries and a description of the non-homogeneous

SIS spreading process, as well as necessary background on the

multidimensional moment problem. The proposed moment-

closure framework is introduced in Section III, where we focus

our attention on the networked SISmodel. In Section IV, we dis-

cuss how to apply this moment-closure technique to both the SI

and the SIR epidemicmodels. In Section V, we illustrate the per-

formance of our framework by numerically analyzing several

spreading processes taking place over a real-world social net-

work. Finally, conclusions are presented in Section VI. All

proofs of lemmas and theorems are available in Appendix A.

II. PRELIMINARIES

We use bold fonts to represent vectors and capital letters to

represent matrices. For a vector x; we denote its transpose,

i-th element, and 1-norm as x>; xi; and jxj ¼Pn
i¼1 jxij;

respectively. The n-dimensional vector of all ones is denoted

by 1n 2 Rn, and the m-by-n matrix of all ones by

Jm;n 2 Rm n. The transpose of a matrix M is denoted by

M>: If a matrix M 2 Rn n is positive semi-definite, we write

M 0: Given a positive integer n 2 N; we use the shorthand
notation ½nŠ to represent the set of integers f1; . . . ; ng and we

let Nn
r ¼ fx 2 Nn : jxj rg.

A. Heterogeneous Networked SIS Spreading Model

In this section, we describe the Susceptible-Infected-

Susceptible (SIS) model, which is commonly used to char-

acterize epidemics over networked populations. In the com-

ing sections, we introduce a novel technique to analyze the

stochastic dynamics of this, and other, epidemic models.

For clarity in our exposition, we first illustrate the proposed

technique using the SIS epidemic model; we then extend

our analysis to other models, such as the SI and SIR mod-

els, in Section IV.

Let G ¼ ðV; EÞ be a directed graph, also called digraph, with

node-set and edge-set denoted by V ¼ ½nŠ and E V V ; res-
pectively. The out-neighborhood (respectively, in-neighborhood)

of node i is defined asNþ
i ¼ fj 2 V : ði; jÞ 2 Eg (respectively,

N i ¼ fj 2 V : ðj; iÞ 2 Eg).
Next, we describe the continuous-time heterogeneous SIS

spreading model on the graph G, [7]. In this model, at a given

time t 0; each node can be in one of the following two states:
(i) ‘Susceptible,’ representing the case of a healthy node, and

(ii) ‘Infected,’ in which the node is infected by a disease propa-
gating through the network. On one hand, whenever node i is in
the Susceptible state, i can be infected by one of its infected in-

neighbour j 2 N i according to a Poisson process with parame-

ter bij > 0; called the infection rate of edge ðj; iÞ. On the other
hand, if node i is in the Infected state at a given time t, it cures
itself according to a Poisson process with parameter di; called
the recovery rate of node i. We use a binary variable

xiðtÞ 2 f0; 1g to represent the state of node i 2 V at time t 0.
More specifically, xiðtÞ ¼ 0 if node i is Susceptible, and

xiðtÞ ¼ 1 if it is Infected at time t 0. We illustrate the SIS

spreading model in Fig. 1.

The exact evolution of the random variables xiðtÞ can be

characterized by a continuous-time Markov process with the

following transition probabilities:

Fig. 1. Illustration of the SIS spreading model on a directed graph. In the left
subfigure, the black arrows represent the edges in the digraph, whereas the red
and blue circles represent the infected and susceptible nodes, respectively. In
the right subfigure, we show the possible transitions between states of a node
i. The variable Yij represents the event that an in-neighbor j of i is infected.
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P xiðtþ hÞ ¼ 1 jxiðtÞ ¼ 0ð Þ ¼
X
j2N i

bijxjðtÞhþ oðhÞ;

P xiðtþ hÞ ¼ 0 jxiðtÞ ¼ 1ð Þ ¼ dihþ oðhÞ: (1)

Notice that the dimension of the state space of the Markov

process in (1) is 2n; hence, an exact analysis of the stochastic

process is computationally challenging when the size of the

underlying network is large. In what follows, we are interested

in analyzing the dynamics of the probability of a node i 2 V
being infected at time t, i.e., PðxiðtÞ ¼ 1Þ ¼ E½xiðtÞŠ: As illus-
trated in [4], the governing equations for the evolution of the

expectation of xiðtÞ is given by1

d

dt
E xi½ Š ¼ diE xi½ Š þ

X
j2N i

bijE xj

X
j2N i

bijE xixj : (2)

We refer to (2) as the mean SIS dynamics of node i: In order to
solve (2), it is necessary to characterize the second-order

moment E½xixjŠ for all j 2 N i . However, as shown in [16],

the evolution of E½xixjŠ depends on third-order moments of

the form E½xixjxkŠ; which in turn, forces us to characterize

E½xixjxkŠ: More generally, one can prove that, in order to

characterize the evolution of a k-th order moment, one needs

to characterize the time derivatives of moments of order

kþ 1: As a result of this recursive dependency, the evolution

of the mean SIS dynamics is fully characterized by 2n ordi-

nary differential equations.

In order to obtain a computationally tractable approxima-

tion of the mean SIS dynamics, it is common to use moment-

closure techniques in which one approximates k-th order

moments using lower-order moments (see for example [16]).

In particular, the mean-field approximation (MFA) is a widely

adopted moment-closure technique in which one assumes that

E½xixjŠ ¼ E½xiŠE½xjŠ: Hence, defining the moment variable

mi ¼ E½xiŠ; (2) turns into the following system of n non-

linear differential equations:

_mi ¼ dimi þ
X
j2N i

bijmj

X
j2N i

bijmimj: (3)

Although, as shown in [23], this approximation provides an

upper bound on the mean SIS dynamics of each node i, it
is unclear how MFA can be generalized to provide upper or

lower bounds for higher-order moment closures. In this paper,

we develop a systematic framework to perform moment-

closure with quality guarantees by using recent results on the

K-moment problem [22]. The proposed framework is capable

of providing both upper and lower bounds on the mean SIS

spreading process. In the next subsection, we provide neces-

sary background on the K-moment problem. We use the SIS

model as a running example to illustrate the proposed tech-

nique. In Section IV, we will extend this technique to analyze

other epidemic models, such as the networked SI and SIR

models.

B. TheK-Moment Problem

To explain our approach, we first introduce the K-moment

problem and related notions. Let ðV;F ;PÞ be a probability

space, and B be a s-algebra of Rn containing open sets. An

Rn-valued random variable is a function X : V ! Rn such

that for all B 2 B; fv : XðvÞ 2 Bg 2 F : Moreover, let

: B ! ½0; 1Š be a measure on Rn; the support of ; denoted
as Suppð Þ; is defined as the smallest closed set C Rn such

that ðRn n CÞ ¼ 0, [24]. Given an Rn-valued random vari-

able x and an integer vector aa 2 Nn; the aa-moment of x
is defined as E½xaaŠ ¼ R

Rn

Qn
i¼1 x

ai
i d : Moreover, the order of

an aa-moment is jaaj: Finally, a sequence y ¼ fyaagaa2Nn

indexed by aa is called a multi-sequence.

Definition 1: LetK be a closed set ofRn: Let y ¼ fyaagaa2Nn

be an infinite multi-sequence. A measure is said to be a

K-representingmeasure for y if

yaa ¼
Z
Rn

xaad ; for all aa 2 Nn; (4)

and

Suppð Þ K: (5)

If y has a K-representing measure, then we say that y is

K-feasible.

In this paper, we are particularly interested in the case whenK
is a semi-algebraic set. A setK Rn is called a semi-algebraic

set if there exist a set of m polynomials gi : R
n ! R such that

K ¼ fx 2 Rn : giðxÞ 0 for all i 2 ½mŠg: A necessary and

sufficient condition for the feasibility of theK-moment problem,

restricted to the case whenK is semi-algebraic and compact, can

be stated in terms of linear matrix inequalities involvingmoment

matrices and localizing matrices. In order to define these matri-

ces, we introduce the following notions. Given an integer r 2 N;
we define the vector

vrðxÞ :¼ 1; x1; . . . ; xn; x
2
1; x1x2; . . . ; x

r
1; . . . ; x

r
n

>
; (6)

i.e., the vector containing the monomials of the canonical basis

of real-valued polynomials of degree at most r. Furthermore,

given an integer vector aa ¼ ½a1; . . . ;anŠ> 2 Nn
r ; we define

½vrŠaa ¼ xaa.
Definition 2: Given an Rn-valued random variable x; the

moment matrix of x of order 2r is defined as Mr ¼
E½vrðxÞvrðxÞ>Š.
Let y ¼ fyaagjaaj 2r be a finite t can index the entries of the

moment matrix Mr using two elements of Nn
r as follows. Given

two elements aa;bb 2 Nn
r ; the ðaa;bbÞ-th entry of Mr; denoted by

½MrŠaa;bb; is equal to E½½vrŠaa½vrŠbbŠ ¼ E½xaaxbbŠ ¼ yaaþbb: For exam-

ple, let n ¼ 2 and r ¼ 1; hence v1ðxÞ ¼ ½1; x1; x2Š>: Then, we
have that the multi-sequence of moments is defined as y ¼
fyijgiþj 2; with yij ¼ E½xi

1x
j
2Š for all ½i; jŠ> 2 N2

2. Hence, the

moment matrix can be written as:

M1ðyÞ ¼ E

1
x1

x2

2
4

3
5 1 x1 x2½ Š

2
4

3
5 ¼

y00 y10 y01
y10 y20 y11
y01 y11 y02

2
4

3
5:

1 Whenever clear from the context, we shall remove the time-dependent
notation from the random variable xiðtÞ.
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Similarly, we define the localizing matrices as follows.

Definition 3: Given an Rn-valued random variable x; and a

polynomial g : Rn ! R; we define the localizing matrix of x
with respect to g as LrðgÞ ¼ E½gðxÞvrðxÞvrðxÞ>Š.

Let degðgÞ be the degree of the polynomial g: Then, g can

be written as

gðxÞ ¼
X

gg2Nn
degðgÞ

cggx
gg ;

where xgg is a monomial (i.e., an entry in vdegðgÞðxÞ) and cgg is its

corresponding coefficient. Let y ¼ fyaagjaaj 2rþdegðgÞ be the multi-

sequence of moments such that yaa ¼ E½xaŠ for all aa 2Nn
2rþdegðgÞ:

Hence, the entries of the localizing matrix can be indexed using

two entries of Nn
rþdegðgÞ; as follows. Given two elements aa; bb 2

Nn
r ; the ðaa;bbÞ-th entry of LrðgÞ; denoted by ½LrðgÞŠaa;bb; is equal

to E½gðxÞ½vrŠaa½vrŠbbŠ ¼ E½Pgg2Nn
degðgÞ

cggx
ggxaaxbbŠ ¼Pgg2Nn

degðgÞ
cggyaaþbbþgg : For example, let n ¼ 2 and r ¼ 1; and gðxÞ ¼ 1
x1; then the localizingmatrix can be written as

L1ðg; yÞ ¼
y00 y10 y10 y20 y01 y11
y10 y20 y20 y30 y11 y21
y01 y11 y11 y21 y02 y12

2
4

3
5;

where yaa ¼ E½xi
1x

j
2Š; for aa ¼ ½i; jŠ> 2 N2

3.

In order to state a necessary and sufficient conditions for an

infinite multi-sequence y ¼ fyaagaa2Nn to be K-feasible for a

semi-algebraic set K, we first need to define the following

notion [22].

Definition 4: A polynomial p : Rn ! R is a sum-of-

squares (SOS) if p can be written as

pðxÞ ¼
XJ
j¼1

pjðxÞ2; (7)

for some finite set of polynomials fpj : j 2 ½J Šg.
A necessary and sufficient condition for an infinite multi-

sequence y ¼ fyaagaa2Nn to be K-feasible, restricted to the

case when K is both compact and semi-algebraic, is as

follows.

Theorem 1: (Putinar’s Positivstellensatz, [25]) Consider an

infinite multi-sequence y ¼ fyaagaa2Nn , and a collection of poly-

nomials gi : R
n ! R; for all i 2 ½mŠ: Define a compact semi-

algebraic set K ¼ fx 2 Rn : giðxÞ 0; i 2 ½mŠg: Assume

that there exists a polynomial u ¼ u0 þ
Pm

i¼1 uigi; where ui

are SOS polynomials for all i 2 ½mŠ; such that the set

fx : uðxÞ 0g is compact. Then, the multi-sequence y has a

K-representing measure, if and only if,

MrðyÞ 0; and

LrðgjyÞ 0; for all j 2 ½mŠ; and r 2 N: (8)

Remark 1: Using (8) to verify the K-feasibility of a given

multi-sequence requires checking the positive semi-definiteness

of mþ 1 matrices for each r 2 N: Moreover, the dimension of

these matrices grows with r.
Based on Theorem 1, one can verify whether a given multi-

sequence is a K-feasible moment sequence by solving an

infinite sequence of semi-definite programs. On the other

hand, given a finite moment sequence, up to a certain order,

one can use Theorem 1 to derive conditions on higher-order

moments for the multi-sequence of moments to be feasible. In

the next section, we use this idea to provide upper and lower

bounds on the evolution of E½xiŠ, described in (2).

III. SDP-BASED MOMENT CLOSURE

In this section, we first characterize the dynamics of the

aa-moment of the random vector describing the state of the SIS

model, for an arbitrary aa 2 Nk (Section III-A). Then, we show

that the problem of obtaining upper and lower bounds on the

evolution of the aa-moment is closely related to the K-moment

problem (Section III-B). Finally, we obtain a closed-form

expression for the mean dynamics of the SIS spreading pro-

cess (Section III-C). In Section IV, we will extend our results

to other networked epidemic models, such as the SI and SIR

models.

A. Dynamics of the aa-Moment in the SIS Spreading Process

As discussed in Section II-A, in order to close the system of

differential equations describing the mean SIS dynamics (2), it

is necessary to characterize the dynamics of second-order

moments E½xixjŠ for all ði; jÞ 2 E: More generally, in order to

characterize the mean dynamics of any k-th order moment of

the form E½xi1 xik Š, we need to obtain an expression for the

ðkþ 1Þ-th order differential dxi1 xikþ1
. To undertake the

problem of finding a closed system of differential equations to

describe the mean SIS spreading process, we propose the follow-

ing three-step approach: First, we describe the stochastic dynam-

ics of the networked SIS process using jump processes [26].

Second, we use Ito’s formula for jump processes to obtain a gov-

erning equation for high-order differentials, i.e., an expression

for dxi1 xik for arbitrary k. Finally, we derive explicit differ-
ential equations allowing us to upper and lower bound the

dynamics of any k-th order moment of the SIS spreading pro-

cess. To achieve our goals, we first introduce related notions on

Poisson jump processes.

Definition 5: [26] Given g > 0; a stochastic process P g
t is

called a Poisson jump process with rate g if: (i) for every

s; t > 0; the random variable P g
sþt P g

s is independent of

fP g
t0 : t

0 sg and follows the same distribution as P g
t P g

0 ;
and (ii) the random variable P g

t P g
0 follows a the Poisson dis-

tribution withmean gt; i.e., PðP g
t P g

0 ¼ kÞ ¼ egt ðgtÞ
k

k! .

In what follows, we abbreviate P g
t as Pg for convenience.

Using Poisson jump processes, the evolution of the states xiðtÞ
in the SIS spreading process described in (1) can be character-

ized by the following set of stochastic differential equations:

dxi ¼ xidPdi þ ð1 xiÞ
X
j2N i

xjdPbij ; (9)

with xið0Þ 2 f0; 1g for all i 2 V: Notice that, we can recover

the first-order mean dynamics of the SIS spreading process

in (2) by taking expectation of (9). In order to obtain the
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dynamics of the second-order differential dxixj; we use Ito’s

formula for jump processes, as stated below:

Theorem 2: [26] Let xðtÞ be an Rn-valued random vari-

able for all t > 0; and f : Rn ! R be a twice continuously-

differentiable function. If

dxðtÞ ¼
Xnp
k¼1

hkðxÞdPgk ; (10)

where hk : R
n ! Rn; for all k 2 ½npŠ; then

dfðxÞ ¼
Xnp
k¼1

fðxþ hkðxÞÞ fðxÞ½ ŠdPgk : (11)

As an example, we let fðxÞ ¼ xixj; and apply Theorem 2

on (9). Subsequently, after tedious (but simple) algebraic

manipulations, we obtain

dxixj ¼ xixjðdPdi þ dPdjÞ þ ð1 xiÞxj

X
k2N i

xkdPbik

þ ð1 xjÞxi

X
k2N j

xkdPbjk :
(12)

If the SIS spreading process is homogeneous, i.e., di ¼ d for

all i 2 ½nŠ and bij ¼ b for all ði; jÞ 2 E; then taking the expec-

tation of (12) results in:

dE½xixjŠ
dt

¼ 2dE½xixjŠ b
Xn
k¼1

ðajk þ aikÞE½xixjxkŠ

þ b
X
k2N i

E½xixkŠ þ
X
k2N j

E½xjxkŠ
2
4

3
5;

which reduces to the result in [16]. More generally, we can

use (11) to derive explicit expressions of higher-order differ-

entials, i.e., dx
a1
1 x

a2
2 xan

n for arbitrary a1; . . . ;an 2 N; for
the SIS spreading model, as stated in the following theorem.

Theorem 3: Given a collection of k integers i1; . . . ; ik 2 ½nŠ
and a vector of positive integers aa 2 Nk, we define the

following monomials faaðxÞ ¼ x
a1
i1

x
ak
ik
; f s

aa ðxÞ ¼ x
a1
i1

x
as 1
is 1

x
asþ1
isþ1

x
ak
ik
; and f11ðxÞ ¼ xi1 xik : Consider a directed

graphG ¼ ðV; EÞ; and the set of stochastic differential equations
described in (9). Then, the evolution of the aa-moment satisfies

dE½faaðxÞŠ
dt

¼
Xk
s¼1

disE½f11ðxÞŠ

þ
Xk
s¼1

X
‘2N is

bis‘ E½f s
11 ðxÞx‘Š E½f11ðxÞx‘Š :

(13)

Proof: See Appendix A. &

Remark 2: As an example, consider k ¼ 2; i1 ¼ 1; i2 ¼ 2
and aa ¼ ½1; 1Š, we have that faaðxÞ ¼ x1x2, f

i1
aa ðxÞ ¼ x2 and

f i2
aa ðxÞ ¼ x1. Subsequently, from (13), we can obtain the

time derivative of E½faaðxÞŠ ¼ E½x1x2Š, which follows similar

expression in (12).

Theorem 3 shows that the time derivative of the aa-moment

E½faaðxÞŠ depends on E½f11ðxÞx‘Š; which is a moment of higher

order.

Remark 3: From (13), we have that the time derivatives of

n first order moment E½xiŠ depends on second-order moments

of the form E½xixjŠ, which requires us to characterize the time

derivatives of n
2 second-order moments. Inductively, the

time derivatives of n
k k-th-order moment is dependent on

moments of oder ðkþ 1Þ; hence, a complete characterization

of the dynamics requires
Pn

k¼1
n
k ¼ 2n number of ODEs,

which is exponential on n.
In order to close the differential equation in (13), we pro-

pose to approximate E½f11ðxÞx‘Š using E½faaðxÞŠ for jaaj k: In
the next section, we achieve this goal by upper and lower

bound the term E½f11ðxÞx‘Š.

B. SDP-Based Moment Closure

In this subsection, we will develop a framework to obtain

both upper and lower bounds on the dynamics of the

aa-moment, E½faaŠ. In this direction, we will bound the higher-

order term E½f11ðxÞx‘Š using lower-order moments E½fbbðxÞŠ
for jbbj k: For example, the widely used mean-field approxi-

mation [16] is an approach to close the first-order mean-

dynamics E½xiŠ by approximating the second-order term

E½xixjŠ using the following product of two first-order terms

E½xiŠE½xjŠ.
In what follows, we develop a framework to find two systems

of differential equations whose solutions are guaranteed to upper

and lower bound the dynamics of any aa-moment. Our approach

utilizes Putinar’s Positivstellensatz to derive bounds on an

aa-moment in terms of lower-order moments. Before we present

this approach, we first introduce several definitions. Given a set

I ½ nŠ;we definemI ¼ E½Pi2IxiŠ: Furthermore, given a set of

k distinct indices I k ¼ fi1; . . . ; ikg ½ nŠ, we define the (finite)
multi-sequence of moments yðI kÞ ¼ fE½Ps2SxsŠgS Ik;jSj<k.

In what follows, we bound the moment E½faaŠ ¼ mIk using

lower-order moments contained in the set yðIkÞ: To achieve this
goal, we notice that at each time t > 0, xðtÞ is a f0; 1gn-valued
random variable. Subsequently, for a given time t, ½xi1ðtÞ;
. . . ; xikðtÞŠ> follows a distribution supported on f0; 1gk: In par-
ticular, the aa-moment of ½xi1ðtÞ; . . . ; xikðtÞŠ> for aa ¼ 1k is

equal to mIk : Therefore, the sequence of moments ŷðIkÞ ¼
yðIkÞ [ fmIkgmust be f0; 1gk-feasible (see Definition 1). Con-
sequently, an upper bound (respectively, lower bound) on mIk
can be obtained by finding the largest (respectively, smallest)

value ofmIk such that ŷðIkÞ is f0; 1gk-feasible.
To achieve the above objective, we propose to exploit the

semidefinite inequalities in Theorem 1, regarding the moment

and localizing matrices of yðI kÞ. However, (8) provides con-
ditions for an infinite sequence to be K-feasible whereas the

sequence yðIkÞ is finite. To circumvent this issue, we will

extend the finite multi-sequence of moments yðI kÞ into an

infinite sequence such that the results in Theorem 1 are appli-

cable. As we discuss below, this extension is possible due to
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the binary nature of the random variables xi. More specifi-

cally, although yðI kÞ contains a finite sequence of moments,

we can extend this sequence using the following observation:

Given a set of q disjoint indices fi1; . . . ; iqg ½ nŠ; since xi

are binary random variables, we have that:

E½Pq
s¼1xis Š ¼ E½Pq

s¼1x
as
is
Š; (14)

for all q k, where as > 0 for all s 2 ½qŠ. Subsequently, yðIkÞ
can be extended uniquely into an infinite sequence, as follows:

Given ŷðIkÞ, we construct its associated infinite extension as

y1ðIkÞ ¼ fyaagaa2Nk ; with yaa satisfying (14). Consequently,

given a compact semi-algebraic set K; the K-feasibility of

yðIkÞ is equivalent to theK-feasibility of y1ðIkÞ ¼ fyaagaa2Nk .

Secondly, in order to apply Theorem 1, we show below (in

Lemma 4) that the infinite-dimensional matrices in (8) are posi-

tive semidefinite, if and only if, certain finite-dimensional matri-

ces are positive semidefinite. Before rigorously stating this

claim, we need to introduce several additional notions. Given

k n; we let k ¼ dk=2e; and Nk ¼ kþk
k : Finally, given

s 2 ½kŠ; we let es denote the s-th standard basis vector of Rk:
With the help of these notions, we define the following finite-

dimensional matrices. Let MkðŷðIkÞÞ 2 RNk Nk be defined

entry-wise by

½MkðŷðIkÞÞŠaa;bb ¼ yaaþbb; (15)

for all aa;bb 2 Nk
k: Essentially, if ygg ¼ E½xgg Š for all gg 2 Nk; then

Mk is the principal sub-matrix of sizeNk of the infinite moment

matrix in Theorem 1. In addition toMk, we now construct a col-

lection of finite-dimensional matrices to replace the infinite-

dimensional localizing matrices in Theorem 1. To achieve this

goal, we first notice that the measure of the random vector

½xi1 ; . . . ; xik Š> is supported on ~Sk ¼ ½0; 1Šk f 0; 1gk, which is

both compact and semi-algebraic. By defining g1sðxÞ ¼ 1 xis

and g0sðxÞ ¼ xis for all s 2 ½kŠ; the hypercube ~Sk can be repre-

sented as

~Sk ¼ fx 2 Rk : g1sðxÞ 0; g0sðxÞ 0; 8s 2 ½kŠg: (16)

Next, for each s 2 ½kŠ; we define two matrices ½L1
kðŷðI kÞ; sÞŠ

and ½L0
kðŷðI kÞ; sÞŠ, as follows:

½L1
kðŷðIkÞ; sÞŠaa;bb ¼ yaaþbb yaaþbbþes ; (17)

and

½L0
kðŷðIkÞ; sÞŠaa;bb ¼ yaaþbbþes : (18)

As we will prove in Lemma 4, the matrices in (17) and (18)

can be used as finite-dimensional localizing matrices for g1sðxÞ
and g0sðxÞ, respectively.
Remark 4: From (14), we see that whenever yaaþbb ¼ yaaþbbþes ,

the corresponding entry in (17) is zero. More specifically, given

an integer vector aa 2 Nk; we define A ¼ fi : ½aaŠi 6¼ 0g and

B ¼ fi : ½bbŠi 6¼ 0g. Consequently, ½L1
kðŷðI kÞ; sÞŠaa;bb ¼ 0, if and

only if,

A [ B ¼ A [ B [ fisg: (19)

Next, we show that the positive semidefiniteness of the

infinite-dimensional matrices in Theorem 1 is equivalent to

the positive semidefiniteness of the finite-dimensional matri-

ces in (15), (17), and (18).

Lemma 4: Let fxisgs2½kŠ be a collection of binary random

variables such that ŷðIkÞ ¼ fE½Ps2SxsŠgS Ik , and denote its

associated infinite extension by y1ðIkÞ. Then, the sequence

y1ðIkÞ is ~Sk-feasible, if and only if,

MkðŷðI kÞÞ 0; and

L1
kðŷðIkÞ; sÞ 0; L0

kðŷðIkÞ; sÞ 0; 8s 2 ½kŠ: (20)

Proof: See Appendix A. &

Remark 5: From (15), (17), and (18), we have that

MkðŷðI kÞÞ ¼ L1
kðŷðIkÞ; sÞ þ L0

kðŷðIkÞ; sÞ: Subsequently, pos-
itive semidefiniteness of L1

kðŷðI kÞ; sÞ and L0
kðŷðI kÞ; sÞ implies

thatMkðŷðI kÞÞ 0.
Based on the above lemma, we can derive upper and lower

bounds on the moment E½f11ðxÞx‘Š ¼ mIk[f‘g in (13) by solv-

ing, respectively, the following semidefinite programs:

mIk[f‘g ¼ max
mIk[f‘g

mIk[f‘g s.t. (20) holds. (21)

mIk[f‘g ¼ min
mIk[f‘g

mIk[f‘g s.t. (20) holds. (22)

Hence, given a set Ik;we have thatmIk[f‘g 2 ½mIk[f‘g;mIk[f‘gŠ:
Based on this, one could be tempted to obtain an upper (respec-

tively, a lower) bound on the evolution of E½faaŠ by solving the

ODE in (13) after replacing the higher-order term E½f11ðxÞx‘Š by
mIk[f‘g (respectively, mIk[f‘g). However, this is not true, since a
monotone relationship between derivatives does not preserve the

monotonicity between the solutions of the ODEs, as discussed

in [27].

To address this issue, we propose tomake slight modifications

on the entries of the localizing matrices to invoke a multidimen-

sional version of Gr€onwall’s comparison lemma [27]. More spe-

cifically, for a given set J I k, let m̂J and mJ be upper and

lower bounds on the moment mJ ; i.e., mJ 2 ½mJ ; m̂J Š. For a
given gg 2 Nk

k, let us define J ¼ fi 2 ½nŠ : ½ggŠi 6¼ 0g, as well as
ŷgg ¼ m̂J and ygg ¼ mJ . Let us also define the following modifi-

cations on the localizingmatrices described in (17) and (18):

½ ~L1
kðŷðIkÞ; sÞŠaa;bb ¼ 0; if (19) holds;

ŷaaþbb yaaþbbþes ; otherwise.
; (23)

and

½ ~L0
kðyðIkÞ; sÞŠaa;bb ¼ ŷaaþbbþes : (24)

In the next theorem, we formally show how to obtain upper

and lower bounds on the evolution of E½faaŠ using a modifica-

tion of the ODE in (13) involving (23) and (24).

Theorem 5: Given a directed graph G ¼ ðV; EÞ; let us

define a sequence of functions fm̂I ðtÞ;mI ðtÞgI ½nŠ;jI j k satis-

fying the following ODEs:
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dm̂I ðtÞ
dt

¼
XjI j
s¼1

dism̂I ðtÞ

þ
XjI j
s¼1

X
‘2N is

bis‘ m̂I[f‘gnfisgðtÞ mI[f‘gðtÞ

and

dmI ðtÞ
dt

¼
XjI j
s¼1

dismI ðtÞ

þ
XjI j
s¼1

X
‘2N is

bis‘ mI[f‘gnfisgðtÞ mI[f‘gðtÞ ;

for all I ½ nŠ; jI j k; where

mI[f‘g ¼
mI[f‘g; if jI [ f‘gj k;
m

$

I[f‘g; otherwise, (25)

and

mI[f‘g ¼
m̂I[f‘g; if jI [ f‘gj k;
m̂

$

I[f‘g; otherwise. (26)

In particular, m
$

I[f‘g and m̂
$

I[f‘g are, respectively, the solutions
that minimize/maximize the following SDPs:

min
mI[f‘g

=max
mI[f‘g

mI[f‘g

subject to ~L1
kðyðI [ f‘gÞ; sÞ 0; 8s 2 ½kŠ;
~L0
kðyðI [ f‘gÞ; sÞ 0; 8s 2 ½kŠ:

(27)

Let mI ðtÞ ¼ E½faaŠ be the solution of the ODE in (13). Then, if

m̂I ð0Þ mI ð0Þ mI ð0Þ; we have that m̂I ðtÞ mI ðtÞ
mI ðtÞ; for all t 0 and I 2 ½nŠ; jI j k:
Proof: See Appendix A. &

In the above theorem, we have provided an SDP-based

moment-closure procedure for SIS spreading process. More

specifically, when jI j < k, the ODEs in the statement of the

above theorem resemble the ODE in (13). Nonetheless, when

jI j ¼ k, the term E½f11ðxÞx‘Š in (13) may be of order kþ 1;
hence, the resulting system of ODEs cannot be solved. In the

above theorem, we derive bounds for moments that are of

order kþ 1 by solving the finite-dimensional SDPs in (27).

Notice that these SDPs involve, solely, moments of order up

to k. Consequently, all the moments in the ODEs in Theorem 5

are of order less or equal to k, resulting in a closed system of

differential equations. The theorem also states that, when the

ODEs in Theorem 5 share the same initial conditions as the

ODE in (13), the solutions are upper and lower bounds on

the exact dynamics of E½faaðxÞŠ. In the next section, we illus-

trate the proposed approach to perform a first-order moment-

closure of the mean dynamics of the SIS spreading process.

C. First-Order Moment Closure

In theory, we can upper and lower bound the dynamics of

the mean spreading process in (2) by solving the ODEs in

Theorem 5. In practice, these ODEs are solved via numerical

methods using a discretized time interval. Notice that, accord-

ing to Theorem 5, we need to solve the SDPs in (25) and (26)

in each time step, which can be computationally very chal-

lenging in large-scale applications. To undertake this issue,

we will develop a simplified procedure by finding a closed-

form solution of the SDPs for the first-order mean dynamics.

Our approach towards deriving a closed-form expression con-

sists of two steps: First, we explicitly write the moment and

localizing matrices in (20) for the first-order mean dynamics;

then, we use a generalized version of Sylvester’s criterion [28]

to find a closed-form solution of the resulting SDPs.

When considering the first-order mean-dynamics in (2), we

aim to derive upper and lower bounds on the second-order

moments mij ¼ E½xixjŠ for i 6¼ j, in terms of first-order

moments mi ¼ E½xiŠ. In this case, since k ¼ 2, we have that

I2 ¼ fi; jg (i.e., i1 ¼ i and i2 ¼ j). Subsequently, the multi-

sequence of interest yðI 2Þ is given by yðI 2Þ ¼ f1;mi;mjg, and
its associated infinite extension is equal to y1ðI2Þ ¼
f1;mi;mj;mij; . . .g: More specifically, in the multisequence

y1ðI2Þ, the entries are indexed as follows: maa ¼ mi if a2 ¼ 0;
maa ¼ mj if a1 ¼ 0; and maa ¼ mij otherwise. Subsequently,

according to (15), we have that

M1ðŷðI2ÞÞ ¼
1 mi mj

mi mi mij

mj mij mj

2
4

3
5: (28)

Moreover, from (17) and (18), we construct the following four

matrices:

L0
1ðŷðI2Þ; iÞ ¼

mi mi mij

mi mi mij

mij mij mij

2
64

3
75;

L0
1ðŷðI2Þ; jÞ ¼

mj mij mj

mij mij mij

mj mij mj

2
64

3
75:

(29)

L1
1ðŷðI2Þ; iÞ ¼

1 mi 0 mj mij

0 0 0
mj mij 0 mj mij

2
4

3
5; (30)

and

L1
1ðŷðI2Þ; jÞ ¼

1 mj mi mij 0
mi mij mi mij 0

0 0 0

2
4

3
5: (31)

Hence, according to Lemma 4, the sequence y1ðI2Þ has an
~S2-representing measure with ~S2 ¼ fx 2 R2 : xi; xj 2 ½0; 1Šg;
if and only if, (28)–(31) are all positive semidefinite. The main

idea of our approach is to use a generalized version of Syl-

vester’s criterion to replace the linear matrix inequalities in (27)

by polynomial inequalities, as shown in the theorem below.

Theorem 6: Consider a directed graph G ¼ ðV; EÞ and a set

of n initial values fmið0Þgni¼1. Let us define two sequences of
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functions fm̂iðtÞgni¼1 and fmiðtÞgni¼1 satisfying the following

ODEs:

dm̂i

dt
¼ dim̂i þ

X
j

bijm̂j

X
j

bijmij;

dmi

dt
¼ dimi þ

X
j

bijmj

X
j

bijmij
;

with m̂ið0Þ ¼ mið0Þ ¼ mið0Þ; where

mij ¼ maxfm̂i þ m̂j 1; 0g; (32)m
ij
¼ minfmi;mjg:(33)

Then m̂iðtÞ miðtÞ miðtÞ; for all t 0 and i 2 ½nŠ:
Proof: See Appendix A. &

Several remarks are in order. First, note that we do not need

to solve a semidefinite program to numerically find the upper

and lower bounds stated in the above theorem. Instead, we

need to solve a system of 2n piece-wise affine differential

equations, where the piece-wise nonlinearities are described

in (32) and (33). Furthermore, it is, in principle, possible to

use the proposed approach to obtain a whole hierarchy of

moment closures by considering higher-order moments. For

example, we could derive a system of nþm differential equa-

tions, where m is the number of edges in the graph, using both

n first-order and m second-order moments. Finally, it is worth

noting that the proposed technique can be generalized to ana-

lyze the mean dynamics of other spreading processes, as we

illustrate in the next section.

IV. MOMENT CLOSURE OF OTHER POPULAR SPREADING

MODELS

In this section, we will apply the SDP-based moment clo-

sure framework herein proposed to find upper and lower

bounds on the stochastic dynamics of two other networked

epidemic models, namely, the SI and the SIR models.

A. Susceptible-Infected (SI) Epidemic Model

In the SI networked epidemic model [6], a susceptible node

can be infected by its infected in-neighbors; however, once

the node is infected, it remains infectious forever (see Fig. 2-

(a) for a detailed transition diagram). Let xi be a binary ran-

dom variable representing the state of node i, where xiðtÞ ¼ 0
if node i is susceptible at time t and xiðtÞ ¼ 1 if it is infected.

The stochastic dynamics of the networked SI process can be

modeled using the following jump-process:

dxi ¼ ð1 xiÞ
X
j2N i

xjdPbij : (34)

Notice that this SDE is similar to (9), after removing the term

describing the recovery process. Consequently, using the tech-

niques used to prove Theorem 3, we can readily obtain the fol-

lowing ODE describing the evolution of any moment mI ðtÞ,
for any choice of I ½ nŠ:

dmI ðtÞ
dt

¼
XjI j
s¼1

X
‘2N is

bis‘ mI[f‘gnfisg mI[f‘g : (35)

Since the random variables defining the states of nodes in the

network are binary, we can use the techniques used in the

analysis of the SIS model to find upper and lower bounds in

the moment dynamics. In particular, the finite-dimensional

moment and localizing matrices proposed in Section III-B can

be directly used in here. Thus, we can obtain the following

corollary from Theorem 5.

Corollary 1: Given a directed graph G ¼ ðV; EÞ; let us

define two sequences of functions fm̂I ðtÞgI ½nŠ;jI j k and

fmI ðtÞgI ½nŠ;jIj k satisfying the following ODE’s:

dm̂I ðtÞ
dt

¼
XjI j
s¼1

X
‘2N is

bis‘ m̂I[f‘gnfisgðtÞ mI[f‘gðtÞ

dmI ðtÞ
dt

¼
XjI j
s¼1

X
‘2N is

bis‘ mI[f‘gnfisgðtÞ mI[f‘gðtÞ ;

for all I ½ nŠ; jI j k; where mI[f‘g and mI[f‘g are defined

as in (25) and (26), respectively. If m̂I ð0Þ mI ð0Þ mI ð0Þ;
then m̂I ðtÞ mI ðtÞ mI ðtÞ; for all t 0 and

I 2 ½nŠ; jI j k:

B. Susceptible-Infected-Removed (SIR) Spreading Process

In the case of SIR spreading process, nodes inG can be in one

out of three states: susceptible, infected, or removed, at any time

instance. A node is in the removed state when it has been

infected in the past, it has recovered from the infection, and has

developed permanent immunity to the disease (see Fig. 2-(b) for

a detailed transition diagram); hence, it cannot be infected again

in the future. In what follows, we use f0; 1g-valued random vari-

ables xi;SðtÞ; xi;IðtÞ; and xi;RðtÞ to indicate whether node i is
susceptible, infected, or removed at time t, respectively. Since
node i can only be in exactly one compartment at every time

instance, we have that xi;SðtÞ þ xi;IðtÞ þ xi;RðtÞ ¼ 1 for all

t 0: With these definitions, the two transition probabilities

among states are characterized by:

Pðxi;Iðtþ hÞ ¼ 1 jxi;SðtÞ ¼ 1Þ ¼ h
X
j2N i

bijxj;IðtÞ þ oðhÞ;

Pðxi;Rðtþ hÞ ¼ 1 jxi;IðtÞ ¼ 1Þ ¼ dihþ oðhÞ: (36)

We assume that a node is either susceptible or infected at time

t ¼ 0. The evolution of the network states are characterized

by the following set of SDEs:

Fig. 2. In (a) and (b), we show the transition between states in the SI-spread-
ing process and SIR-spreading process, respectively.
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d
xi;S

xi;I

xi;R

2
4

3
5 ¼

0
xi;I

xi;I

2
4

3
5dPdi þ

X
j2N i

xi;Sxj;I

xi;Sxj;I

0

2
4

3
5dPbij ; (37)

for all i 2 ½nŠ, where all the Poisson jump-processes are inde-

pendent. From (37), the expectation of the random variable

xi;S satisfies

dE½xi;SðtÞŠ
dt

¼
X
j2N i

bijE½xi;SðtÞxj;IðtÞŠ: (38)

Therefore, in order to solve for E½xi;SðtÞŠ; it is necessary to

characterize the evolution of E½xi;Sxj;I Š over time.

In what follows, we apply the framework herein proposed to

derive a closed system of ODEs bounding the mean SIR

spreading process. We start by computing the mean dynamics

of the SIR spreading process via Ito’s formula, as follows.

Theorem 7: Consider the networked SIR process described

in (37). Given the vectors aa;bb; gg 2 Nn; define the monomial

faa;bb;ggðxÞ ¼ Pn
i¼1x

ai
i;Sx

bi
i;Ix

gi
i;R. Then,

dE½faa;bb;ggðxÞŠ
dt

¼
Xn
s¼1

ds1bs 6¼0E½faa;bb;ggðxÞŠ

þ
Xn
s¼1

ds1bs¼0\gs 6¼0E½Pk2½nŠ;k 6¼‘x
ak
k;Sx

bk
k;Ix

gk
k;Rx

a‘
‘;Sx‘;I Š

Xn
s¼1

X
‘2N s

bs‘1as 6¼0E½faa;bb;ggðxÞx‘;I Š

þ
Xn
s¼1

X
‘2N s

bs‘1as¼0\bs 6¼0E½faa;bb;ggðxÞx‘;I Š (39)

Proof: See Appendix A. &

Hereafter, given two sets of indices I ;J ½ nŠ; we define
mI ;J ¼ E½Pi2Ixi;SPj2J xj;I Š: (40)

In particular, when I (resp. J ) is a singleton, i.e., I ¼ fig
(resp., J ¼ fjg), we also write mI ;J ¼ mi;J (resp.,

mI ;J ¼ mI ;j). Letting gg ¼ 0n in (39), we obtain

dmI ;J ðtÞ
dt

¼
X
s2J

dsmI ;J ðtÞ
X
s2I

X
‘2N s

bs‘mI ;J[f‘g

þ
X

s2J nI

X
‘2N s

bs‘mI ;J[f‘g; (41)

which depends only on moments of xi;S and xi;I for i 2 ½nŠ: In
order to solve the above system of ODEs, we need to provide

bounds on mI ;J[f‘g using lower-order moments. To achieve

this goal, similar to the case of SIS spreading process, we aim

to construct moment and localizing matrices, as listed in (20).

We consider a slight abuse of notations by replacing k in

yðI kÞ with jI j þ jJ j, and yðIkÞ with

yðI ;J Þ ¼ fmI0;J 0gjI0jþjJ 0j<k:

With this definition, we construct finite-dimensional matrices

analogous to the ones in (15), (17), and (18) using elements in

yI ;J accordingly. For example, to close the first-order mean

dynamics of the SIR spreading process, the moment matrix

defined in (15) becomes:

M1ðyðfig; fjgÞÞ ¼
1 mi;; m;;j

mi;; mi;; m;;j
m;;j mi;j m;;j

2
4

3
5: (42)

Since xi;S and xi;I are binary random variables for all i 2 V;
Lemma 4 can be applied without loss of generality.

To provide upper and lower bounds for the momentmI ;J[f‘g;
we build 2kþ 1 matrices using elements in yðI ;J [ f‘gÞ and
solve for the maximum and minimum value mI ;J[f‘g such that

those matrices are positive semidefinite. Denoting those extreme

values by mI ;J[f‘g and mI ;J[f‘g, we have that mI ;J[f‘g 2
½mI ;J[f‘g;mI ;J[f‘gŠ: Finally, we adopt a similar treatment to the

localizing matrices as in (23) and (24), i.e., replacing the entries

within localizing matrices by upper and lower estimates m̂I ;J
andmI ;J :We usem

$

I ;J[f‘g and m̂
$

I ;J[f‘g to denote the lower and
upper estimates of mI ;J obtained by solving SDPs using modi-

fied localizing matrices. As a result, we obtain the following the-

orem for the networked SIR epidemicmodel:

Theorem 8: Consider the networked SIR process described

in (37). Let us define a sequence of functions fm̂I ;J ðtÞ;
mI ;J ðtÞgI ;J ½ nŠ;jI j k satisfying the following ODEs:

dm̂I ;J ðtÞ
dt

¼
X
s2J

dsm̂I ;J ðtÞ
X
s2I

X
‘2N s

bs‘mI ;J[f‘g;

þ
X

s2J nI

X
‘2N s

bs‘mI ;J[f‘g;

dmI ;J ðtÞ
dt

¼
X
s2J

dsmI ;J ðtÞ
X
s2I

X
‘2N s

bs‘mI ;J[f‘g;

þ
X

s2J nI

X
‘2N s

bs‘mI ;J[f‘g;

where

mI ;J[f‘g ¼
m̂I[f‘g; if jI j þ jJ [ f‘gj k;
m̂

$

I ;J[f‘g; otherwise, (43)

and

mI ;J[f‘g ¼
mI ;J[f‘g; if jI j þ jJ [ f‘gj k;
m

$

I ;J[f‘g; otherwise, (44)

for all I ;J ½ nŠ: If m̂I ;J ð0Þ mI ;J ð0Þ mI ;J ð0Þ; then

m̂I ;J ðtÞ mI ;J ðtÞ mI ;J ðtÞ; for all I ;J ½ nŠ and t 0.
Proof: See Appendix A. &

In the next section, we demonstrate the performance of the

moment-closure framework herein proposed on both the SIS

and SIR epidemic processes taking place in a real social

network.
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V. SIMULATION

In this section, we demonstrate the SDP-based moment-

closure framework by finding upper and lower bounds on the

probabilities of infection of all nodes in a real social network.

In our first set of simulations (Section V-A), we implement

the exact stochastic SIS spreading process, as described in [7].

We simulate 10,000 realizations of the stochastic process

using the same initial conditions and compute the evolutions

of the empirical average of the probabilities of infection,

which is an approximation of the mean SIS dynamics. We

then execute our SDP-based moment-closure technique, using

Theorem 6, in order to obtain the upper and lower bounds on

the mean SIS dynamics, m̂iðtÞ and miðtÞ: Furthermore, we

compare the time evolution of these bounds with the widely

used mean-field approximation (3). In our second set of

simulations (Section V-B), we apply similar analysis to the

SIR spreading process. In our third set of simulations

(Section V-C), we compare the time evolution of first-order

moment closure and second-order moment closure obtained

using Theorem 6 and 5, respectively.

A. Moment-Closure of the SIS Epidemic Process

In this subsection, we run the stochastic SIS dynamics over

the Zachary’s Karate Club [29], plotted in Fig. 3. In our experi-

ments, we choose the individuals with labels S ¼ f3; 5;
6; 14; 16; 17; 20; 23g to be initially infected. The infection rates

satisfy bij ¼ b ¼ 1 for all ði; jÞ 2 E and the recovery rates are

di ¼ d ¼ 7:4 for all nodes. According to [15], the expected num-

ber of infected individuals converges towards zero exponentially

fast if t ¼ b
d
< 1

1ðAÞ ;where 1ðAÞ is the largest absolute eigen-
value of the adjacency matrix. In our case, the largest eigenvalue

of the Zachary’s network equals to 1ðAÞ ¼ 6:7257; hence, the
condition t < 1

1ðAÞ is satisfied. As illustrated in Fig. 4, the

empirical average of number of infected nodes decreases expo-

nentially over time. In Fig. 5, we plot the evolution of the mean

SIS dynamics of each node in the Zachary’s network.Our simu-

lations show the validity of the bounds obtained by our moment-

closure framework.

B. Moment-Closure of the SIR Epidemic Process

We proceed to demonstrate our SDP-based moment-clo-

sure scheme on the SIR model. In these experiments, we

use again Zachary’s network. In our simulations, we have

selected the following set of initially infected nodes:

D ¼ f5; 22; 28; 31; 32g; all remaining nodes are initially in

the susceptible state. We set the infection rates to be bij ¼
b ¼ 10; whereas the recovery rates are di ¼ d ¼ 6:7257 for

all nodes. Due to space limitations, we show in Fig. 6 the

evolution of fm̂i;SðtÞ; m̂i;IðtÞ; m̂i;RðtÞg and fmi;SðtÞ;mi;IðtÞ;
mi;RðtÞg for the nodes in the subset f2; 7; 22; 29g. Notice

that the proposed moment-closure technique does indeed

upper and lower bounds the true mean dynamics of the SIR

model. Nonetheless, the performance of these bounds

varies. For example, in Fig. 6-(c), both bounds remain close

to the true mean dynamics. However, in Fig. 6-(a), the

upper estimate m̂2;I fails to keep track of the true evolution

of m2;IðtÞ: There are several possible reasons for this to hap-

pen. For example, as shown in (37), at every time instance,

we have mi;SðtÞ þ mi;IðtÞ þ mi;RðtÞ ¼ 1; however, the pro-

posed upper and lower estimates fail to preserve this

property.

C. First-Order and Second-Order Moment-Closure of the SIS

Epidemic Process

In this subsection, we run the stochastic SIS dynamics over a

directed graph with six nodes, whose topology is depicted in

Fig. 7. In our experiments, we choose node 1 and node 4 to be

the infected nodes at time t ¼ 0, as colored in red in Fig. 7. The
infection rates satisfy bij ¼ b ¼ 1 for all ði; jÞ 2 E and the

recovery rates are di ¼ d ¼ 7:4 for all nodes. Similar to Section

V-A, we choose these two parameters such that t ¼ b
d
< 1

1ðAÞ;
hence the expected number of infected individuals converges

towards zero exponentially fast. In Fig. 8, we plot the evolution

of the mean SIS dynamics of all six nodes in the graph. Further-

more, we plot the evolution of upper and lower bounds using

first- and second-order moment-closure framework, as described

in Theorem 5. From this experiment, we observe that second-

order moment closure outperforms first-order moment closure

on certain nodes of the network. However, such a conclusion is

non-general.

Fig. 3. Topology of the Zachary’s Karate Club, representing friendships
among 34 individuals.

Fig. 4. This figure depicts upper and lower bounds on the expected number
of infected nodes. The solid black line represent the empirical average over
10000 realizations of the number of infected nodes over time. The dashed line
and the shaded region represent the expected number of infected nodes calcu-
lated via the mean-field approximation and the SDP-based moment-closure
technique, respectively.
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Fig. 6. Dashed lines represent the average of 10,000 realizations of stochastic SIR dynamics for each node i. In subfigures (a)– (d), we show the evolution of
m̂i;CðtÞ and mi;CðtÞ; where C 2 fS; I;Rg; for the nodes i ¼ 2; 7; 22; 29; respectively. For instance, in (a), blue and green lines in each of the subplots (from up to
down) show the evolution of fm̂2;SðtÞ;m2;SðtÞg; fm̂2;IðtÞ;m2;IðtÞg; and fm̂2;RðtÞ;m2;RðtÞg; respectively.

Fig. 5. Dashed lines represent the empirical averages of 10,000 realizations of the stochastic SIS dynamics for each node i. The dotted lines represent the trajec-
tories obtained from the mean-field approximation for each node. The solid lines represent m̂iðtÞ and miðtÞ for each node i: Finally, the shaded areas are filling
the gap between the empirical average and miðtÞ for each node i.
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VI. CONCLUSION

In this paper, we have analyzed the (exact) stochastic dynam-

ics of the networked SIS, SI, and SIR epidemic models with

heterogeneous spreading and recovery rates. The analysis of

these models are, in general, very challenging since their state

space grows exponentially with the number of nodes in the net-

work. A common approach to overcome this challenge is to

apply moment-closure techniques to approximate the exact sto-

chastic dynamics via ordinary differential equations. However,

most existing moment-closure techniques do not provide quan-

titative guarantees on the quality of the approximation, limiting

the applicability of these techniques. To overcome this limita-

tion, we have proposed a novel moment-closure framework

which allows us to derive explicit quality guarantees. This

framework is based on recent results from real algebraic geom-

etry relating the multidimensional moment problem with semi-

definite programming. We have illustrate how this technique

can be used to derive upper and lower bounds on the exact (sto-

chastic) dynamics of the SIS, SI, and SIR models. Moreover,

we have provided a simplified version of our moment-closure

technique to approximate the mean dynamics of the SIS model

using a linear number of piecewise-affine differential equations.

Finally, we have illustrated the validity of our results via

numerical simulations in the Zachary’s Karate Club network as

well as an artificial digraph with six nodes.

APPENDIX

In this appendix, we provide proofs for the lemmas and theo-

rems in this paper. In particular, our central idea of proving

Lemma 9, Theorem 3 and Theorem 7 relies on carefully

applying Theorem 2 to the jump-processes defined by the (sto-

chastic) SIS and SIR processes, respectively. We then simplify

the expressions by using the fact that the random variables

representing the states of nodes in the network are binary.

Lemma 9: Given a directed graph G ¼ ðV; EÞ; i1; . . . ; ik 2
½nŠ; and aa 2 Nk: If

dxi ¼ xidPdi þ ð1 xiÞ
X
j2N i

xjdPbij ; (45)

for all i 2 V; then
dE½faaðxÞŠ

dt
¼ dE½f1ðxÞŠ

dt
: (46)

Proof of Lemma 9: To show (46), we first write (45) in the

form of (10). Notice that there are jVj þ jEj Poisson counters

in total, thus we define h‘ : R
n ! Rn; for ‘ 2 ½jVj þ jEjŠ:

Each h‘ is defined as follows: (i) when ‘ 2 ½nŠ; we let

h‘ðxÞ ¼ ½0; . . . ; x‘; . . . ; 0Š>; and (ii) when ‘ > n; we order

the edges ðj; iÞ 2 E and assign then with a label ‘; hence,
h‘ðxÞ ¼ ½0; . . . ; ð1 xiÞxj; . . . ; 0Š>; i.e., each ðj; iÞ 2 E is

associated with a function h‘:
With these definitions, it follows from (11) that

df1ðxÞ ¼ Pk
s¼1xis

Xk
s¼1

dPdis

 !

þ
Xk
s¼1

X
‘2N s

xi1 ð 1 xisÞx‘ xikdPbs‘ : (47)

Notice that the random variables xi’s are supported on ½0; 1Š;
for all i 2 ½nŠ; therefore E½faaðxÞŠ exists and is finite for every

aa 2 Nn: Subsequently, from (47), we have that:

dE½f1ðxÞŠ
dt

¼
Xk
s¼1

di‘E f1ðxÞ½ Š

þ
Xk
s¼1

X
‘2N is

bis‘E½xi1 ð 1 xisÞx‘ xik Š: (48)

On the other hand,

dfaaðxÞ ¼ faaðxÞ
Xk
s¼1

dPdis

 !

þ
X

s2½kŠ‘2N s

x
a1
i1

xis þ ð1 xisð Þx‘Þas xas
is

x
ak
ik
dPbs‘ :

(49)

Fig. 7. Topology of directed graph with six nodes used in the third set off
simulations in Section V-C. Nodes that are in infected state at t ¼ 0 is colored
in red, whereas nodes that are in susceptible state are colored in blue.

Fig. 8. The dashed black and red lines represent the upper and lower esti-
mates m̂iðtÞ and miðtÞ for each node i obtained using second-order moment
closure (i.e., k ¼ 2 in Theorem 5), whereas the other dashed line in the middle
represent the empirical averages of 20,000 realizations of the stochastic SIS
dynamics for each node i. The solid (green and yellow) lines represent m̂iðtÞ
and miðtÞ for each node i solved using Theorem 6.
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Since xi 2 f0; 1g for all i 2 ½nŠ; the term ðxis þ ð1
xisÞx‘Þas xas

is
equals to

Xas 1

k¼0

as

k
xk
is

ð1 xisÞx‘ð Þas k:

However, since xis 2 f0; 1g; the above term can be further

simplified to ðð1 xisÞx‘Þas : Therefore, taking expectation

of (49) leads to:

dE½faaðxÞŠ
dt

¼
Xk
‘¼1

di‘E faaðxÞ½ Š

þ
Xk
s¼1

X
‘2N is

bis‘E½xa1
i1

ð 1 xisÞasxas
‘ x

ak
ik
Š;

(50)

where the second equality is due to xi are binary random vari-

ables. The proof finishes by noticing that the right-hand-side

of the above equation is equal to
dE½f1ðxÞŠ

dt . &

With the above lemma, we proceed to prove Theorem 3.

Proof of Theorem 3: From Lemma 9, we have that

dE½faaðxÞŠ
dt

¼
Xk
‘¼1

di‘E faaðxÞ½ Š

þ
Xk
s¼1

X
‘2N is

bis‘E½xa1
i1

ð 1 xisÞasxas
‘ x

ak
ik
Š: (51)

Meanwhile,
dE½faaðxÞŠ

dt ¼ dE½f1ðxÞŠ
dt holds for all aa, thus rearranging

the term E½xi1 ð 1 xisÞx‘ xik Š leads us to (13). &

In order to show Lemma 4, we introduce the following

lemma, which establishes an equivalence relationship on the

positive-semidefinteness of two matrices provided that one

can be constructed from another in a special way.

Lemma 10: Consider a matrixA ¼ ½aijŠ 2 Rn n; a sequence
of integers d1; . . . ; dn 2 N; and a mapping f : Rn n !
R
Pn

i¼1
di
Pn

i¼1
di defined as

fðAÞ ¼

a11Jd1;d1 a11Jd1;d2 a1nJd1;dn
a22Jd2;d2 a2nJd2;dn

..

. ..
. . .

. ..
.

annJdn;dn

2
6664

3
7775;

where Jpq is the p q matrix of all ones. Then, if A 0; we
have that fðAÞ 0:
Proof of Lemma 10: To proof the Lemma, let us define

Td1;...;dn 2 R
Pn

i¼1
di n as

Td1;...;dn ¼
1d1 0

..

. . .
. ..

.

1dn

2
64

3
75;

i.e., a block-diagonal matrix with its diagonal blocks specified

by 1d1 ; ; 1dn :

Next, we notices that given a matrix A ¼ ½aijŠ 2 Rn n;

fðAÞ ¼

a11Jd1;d1 a11Jd1;d2 a1nJd1;dn
a22Jd2;d2 a2nJd2;dn

..

. ..
. . .

. ..
.

annJdn;dn

2
6664

3
7775

¼ Td1;...;dnAT>
d1;...;dn

:

Consequently, A 0 implies that fðAÞ ¼ Td1;...;dn

AT>
d1;...;dn

0:
Suppose that there exists v such that v>Av < 0; then we

construct w 2 R
Pn

i¼1
di as follows iteratively. The first d1

entries ofw are all equals to v1=d1; the i-th di entries ofw are

all equals to vi=di: Thus, T
>
d1;...;dn

w ¼ v: Thus, fðAÞ is nega-
tive definite. Consequently, we have shown that A 0 if and

only if fðAÞ 0: &

With the help of Lemma 10, we are able to prove Lemma 4.

The main idea of proving Lemma 4 lies in constructing matri-

ces that exploits the special structures of moment and localiz-

ing matrices, in the form described by Lemma 10. This is

possible since the random variables fxiðtÞ : i 2 Vg describing

the states of nodes i are binary.
Proof of Lemma 4: Notice that ~Sk ¼ ½0; 1Šk is a compact,

semi-algebraic set, and it satisfies the Putinar’s condition, it

follows that y1ðI kÞ is ~Sk-feasible if and only if the conditions

in (8) are satisfied. Subsequently, it suffices to show that the

matrices in (20) implies the positive semi-definiteness of the

moment and localizing matrices specified according to Theo-

rem 1 and vice versa.

Consider r 2 N and r k; the construction of () together

with the definition of y1ðIkÞ implies that MkðyðIkÞÞ is the

k-th order principal submatrix of Mrðy1ðIkÞÞ: Since

Mrðy1ðI kÞÞ 0; we have that MkðyðI kÞÞ 0 as well. Simi-

larly, the positive semi-definiteness of localizing matrices of

y1ðIkÞ implies that both L1
k
ðyðIkÞ; sÞ and L0

k
ðyðIkÞ; sÞ are

positive semi-definite for all s 2 ½kŠ:
Conversely, if MkðyðIkÞÞ is positive semi-definite, we aim

to show that Mrðy1ðIkÞÞ is also positive semi-definite for all

r 2 N: Notice that it suffices to show the above relationship

holds for r > k: To achieve this goal, we proceed by permut-

ing the entries in Mrðy1ðIkÞÞ: Without loss of generality, we

assume that I k ¼ f1; . . . ; kg: Given a a set W I k; we use

xW ¼ Pi2Wxi: Next, we consider

vrðxIkÞ ¼ 1; x1; . . . ; xk; x
2
1; . . .x

2
k; . . . ; x

r
1; . . . ; x

r
k ;

and

v0rðxIkÞ ¼ 1; x1; . . . ; x
r
1;

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{monomials involving only

x1 . . . ;

xW ; . . .|fflfflffl{zfflfflffl}
monomials involving only

xw for w 2 W; . . . ; xIk :
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Thus, v0rðxIkÞ is a permutation on the entries in vrðxIkÞ: Let
Nr ¼ kþr

r ; and Sr be the permutation group on the set ½NrŠ;
there exists p : Sr ! Sr such that for all i 2 ½NrŠ we have

v0rðxIkÞi ¼ pðvrðxIkÞj for some j 2 ½NrŠ:
Consider the following Nr-dimensional matrix M̂r whose

entries are defined by:

½M̂rŠaa;bb ¼ y1ðI kÞp 1ðaaþbbÞ (52)

for all aa;bb 2 Nk
r=2: Thus, there exists a permutation matrix

P 2 f0; 1gNr Nr such that M̂r ¼ PMrðy1ðIkÞÞP 1: More-

over, M̂r is in the following form:

1 m11
>
r=2

m1Jr=2;r=2
..
.

. .
. ..

.

mIkJq;q

2
666664

3
777775; (53)

for some q 2 N: Similarly, we can permute the matrix

MkðyðIkÞÞ into the above form. Thus, there exists M such

that Td1;...;dk
MT>

d1;...;dk
¼ P̂MkðyðIkÞÞP̂ 1 for some sequence

of d1; . . . ; dk: Furthermore, there exists another sequence

fd1; . . . ; dr=2g such that Td1;...;dr=2
MT>

d1;...;dr=2
¼ M̂r. Conse-

quently, applying Lemma V twice, we have that if

MkðyðIkÞÞ 0 then Mrðy1ðIkÞÞ 0: The above claim

holds for arbitrary r; thus the result follows. The relationship

between finite and infinite dimensional localizing matrices

can be shown using the above procedure. &

Proof of Theorem 5: To show the monotone relationship

m̂I ðtÞ mI ðtÞ mI ðtÞ holds for all I and t 0; we apply

the multi-variate comparison lemma, i.e., Theorem 1.2

from [30]. More specifically, we aim to show that when

m̂I ¼ mI ; _̂mI _mI for all m̂J mJ ;J 6¼ I and

mJ mJ ; 8jJ j k:
On one hand, when jI [ f‘ggj k; we have that all the

terms with positive coefficients are bounded above by upper

estimates m̂I[‘nfisg; whereas the terms with negative coeffi-

cients are bounded below by mI[f‘g; thence _̂mI _mI .
On the other hand, when jI [ f‘ggj ¼ kþ 1; it suffices to

show that mI[f‘g is feasible in the SDPs (27). Consider the

random variable xI[f‘g ¼ ½xi1 ; . . . ; x‘Š>; its underlying mea-

sure at time t is supported on ~SjI jþ1; which is a compact and

semi-algebraic set. Let y be the infinite multi-sequence con-

sisting of all the moments of xI[f‘g: From y; we can readily

construct moment matrix MrðyÞ; and localizing matrices

LrðgjyÞ; for any given r 2 N: Consequently, according to

Theorem 1, these matrices are positive semi-definite. More-

over, according to Lemma 4, the positive semi-definiteness of

these matrices are equivalent to positive semi-definiteness of

MkðyðI [ f‘gÞÞ; L1
k
ðyðI [ f‘gÞ; sÞ; and L0

k
ðyðI [ f‘gÞ; sÞ

for all s 2 ½kŠ: Consequently, fmJ gJ I[f ‘g is a feasible solu-

tion to both 25 and (26). Meanwhile, the eigenvalues of (23)

and (24) are monotonic in terms of their entries, which implies

that fmJ gJ I[f ‘g is also feasible with respect to both the min-

imization and maximization problems (27). Furthermore, this

holds for all m̂J mJ ;J 6¼ I and mJ mJ ; 8jJ j k:

Summarizing the above claims, we have that if

m̂I ð0Þ mI ð0Þ; then m̂I ðtÞ mI ðtÞ holds for all I and t 0:
The above argument readily applies to the comparison

between mI ðtÞ and mI ðtÞ: &

Proof of Theorem 6: To show the results, we use the fact that

a matrix is positive semi-definite, if and only if, all its principal

minors are non-negative [31] and apply it to (28)–(31), respec-

tively. In particular, in the view of Remark 5, it suffices for us to

characterize the condition for positive semidefniteness of matri-

ces (29)–(31). More specifically, we compute all principal

minors of localizing matrices and require them to be non-nega-

tive. Therefore, from L0
1ðyðI2Þ; iÞ; L0

1ðyðI 2Þ; jÞ 0; we obtain
mij minfmi;mjg: From L1

1ðyðI 2Þ; iÞ; L1
1ðyðI 2Þ; jÞ 0; we

have mij mi þ mj 1: Therefore, fmi;mj;mijg is a feasible

moment sequence provided that all the above constraints on mij

are satisfied simultaneously. This is equivalent to mij 2 ½lij; uijŠ;
where

uij ¼ minfmi;mjg; (54)

and

lij ¼ maxfmi þ mj 1; 0g: (55)

Since bij > 0;maximizing over
Pn

j¼1 bijmij is equivalent

to minimize mij: In particular, the minimum of mij is attained at

lij: Thus, the upper bound is obtained. Similarly, to obtain the

lower bound, we maximize mij for all i; j 2 ½nŠ: The optimal

solution of these two problems arem
$

ij andm
$

ij
; respectively.

Next, we aim to show that m̂iðtÞ miðtÞ miðtÞ: To

achieve this goal, we utilize Proposition 1.4 from [30]. It suf-

fice to show that when miðtÞ ¼ m̂iðtÞ; _̂mi _mi for all

m̂j mj: Consider the difference between _̂mi and _mi

dm̂i

dt

dmi

dt
¼
X
j

bij m̂j mj þ mij mij

¼
X
j

m̂j mj þ mij maxf0; m̂j þ mi 1g

The above equality is due to the assumption that m̂i ¼ mi:
Consider the following cases: (i) m̂j ¼ mj; then the right-

hand-side is larger than zero according to (26); (ii) m̂j > mj

and m̂j þ mi 1 0; the RHS is non-negative trivially; and

(iii) m̂j > mj and m̂j þ mi 1 > 0; it follows that:

dm̂i

dt

dmi

dt
¼
X
j

m̂j mj þ mij m̂j mi þ 1

X
j

mij maxf0;mi þ mj 1g 0:

As a consequence, m̂iðtÞ miðtÞ according to [30]. Similar

analysis holds for comparing _mi and _mi: &

Proof of Theorem 7: Similar to the treatment in Lemma V,

we define h‘ : R
3n ! R3n; for ‘ 2 ½jVj þ jEjŠ: Each h‘ is

defined as follows: (i) when ‘ 2 ½nŠ; we let

h‘ðxÞ ¼ ½0; 0; 0; . . . ; 0; x‘;I ; x‘;I ; . . . ; 0; 0; 0Š>;
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and (ii) for every ði; jÞ 2 E; we let

hði;jÞðxÞ ¼ ½0; 0; 0; . . . ; xi;Sxj;I ; xi;Sxj;I ; . . . ; 0; 0; 0Š>:

With these definitions, according to (11), when ‘ 2 ½nŠ; we
have that faa;bb;ggðxþ h‘ðxÞÞ faa;bb;ggðxÞ is equal to

Pk2½nŠ;k 6¼‘x
ak
k;Sx

bk
k;Ix

gk
k;R x

a‘
‘;Sðx‘;R þ x‘;IÞg‘ x

a‘
‘;Sx

b‘
‘;Ix

g‘
‘;R

h i
:

Consequently, when b‘ 6¼ 0; the term above equals to

faa;bb;ggðxÞ:Meanwhile, x‘;I and x‘;R are binary variables. More-

over, x‘;R þ x‘;I 1 for all t 0: Thus, ðx‘;I þ x‘;RÞg‘
x
g‘
‘;I ¼ x‘;I : Subsequently, we have

faa;bb;ggðxþ h‘ðxÞÞ faa;bb;ggðxÞ

¼
faa;bb;ggðxÞ; if b‘ 6¼ 0;

Pk2½nŠ;k 6¼‘x
ak
k;Sx

bk
k;Ix

gk
k;Rx

a‘
‘;Sx‘;I ; if b‘ ¼ 0 and g‘ 6¼ 0;

0; otherwise:

8><
>:

(56)

Similarly, for a given ðj; iÞ 2 E; we have

faa;bb;ggðxþ hðj;iÞðxÞÞ faa;bb;ggðxÞ
¼ Pk2½nŠ;k 6¼ix

ak
k;Sx

bk
k;Ix

gk
k;Rx

ai
i;Sx

gi
i;R

ð 1 xj;IÞaiðxi;I þ xi;Sxj;IÞbi x
bi
i;I

h i
: (57)

On one hand, when ai 6¼ 0; we observe that if xj;I ¼ 0; then
ð1 xj;IÞaiðxi;I xi;Sxj;IÞbi x

bi
i;I equals to zero, whereas if

xj;I ¼ 1; the term equals to x
bi
i;I :

On the other hand, when ai ¼ 0 and bi ¼ 0; (18) equals to
0. Finally, we consider the case when ai ¼ 0 and bi 6¼ 0: In
this context, it suffices to examine ðxi;I þ xi;Sxj;IÞbi x

bi
i;I :

Notice that when xi;S ¼ 0 the sum equals to 0; and xj;I other-

wise. Thus, it can be simplified into xi;Sxj;I : Summarizing the

above cases, let

Q ¼ faa;bb;gg=x
bi
i;I

we obtain that:

faa;bb;ggðxþ hðj;iÞðxÞÞ faa;bb;ggðxÞ

¼
faa;bb;ggðxÞxj;I ; if ai 6¼ 0;

Qxi;Sxj;I ; if ai ¼ 0 and bi 6¼ 0;

0; otherwise.

8><
>: (58)

Finally, (39) is obtained by taking expectation on the sum of

jVj þ jEj equations (56) and (58). &
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