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Abstract—In this article, we consider the problem of tun-
ing the edge weights of a networked system described by
linear time-invariant dynamics. We assume that the topol-
ogy of the underlying network is fixed, and that the set of
feasible edge weights is a given polytope. In this setting,
we first consider a feasibility problem consisting of tuning
the edge weights such that certain controllability proper-
ties are satisfied. The particular controllability properties
under consideration are 1) a lower bound on the smallest
eigenvalue of the controllability Gramian and 2) an upper
bound on the trace of the Gramian inverse. In both cases,
the edge-tuning problem can be stated as a feasibility prob-
lem involving bilinear matrix equalities, which we approach
using a sequence of convex relaxations. Furthermore, we
also address a design problem consisting of finding edge
weights able to satisfy the aforementioned controllability
constraints while seeking to minimize a cost function of the
edge weights, which we assume to be convex. Finally, we
verify our results with numerical simulations over a number
of random network realizations, as well as with an IEEE
14-bus power system topology.

Index Terms—Bilinear matrix equality, controllability
Gramian, convex optimization, network design, networked
dynamics.

I. INTRODUCTION

MANY technological, biological, chemical, and social
systems can be modeled as large ensembles of dynam-

ical units connected via an intricate pattern of interactions [1].
From an engineering perspective, we are interested in efficiently
steering the dynamics of these complex systems via external
actuation. In this direction, control theory provides us with the
notion of controllability to decide whether a given system can be
steered toward an arbitrary state [2]. Furthermore, the so-called
controllability Gramian of a system, which implicitly depends
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on the system’s dynamics and the configuration of its actuators,
can be used to quantify the energy required to steer the system,
assuming that the system is controllable [2]. Leveraging these
notions, several papers have recently focused on the problem
of optimally allocating actuators throughout the network under
several performance metrics [3]–[11].

In some scenarios, instead of designing the location of ex-
ternal actuators, one may consider the alternative problem of
modifying the network’s dynamics given a fixed configuration
of actuators. For example, in power systems, one can tune
the electrical parameters of the transmission lines using, for
example, flexible ac transmission system devices [12], [13].
Also, in multiagent networks, the interactions between agents
can usually be modified to achieve a particular objective [14].
For instance, in leader–follower multiagent networks, one may
consider the scenario, where both the communication topology
and the location of the external actuators are fixed. Then, one can
seek a set of edge weights (e.g., the agents’ update rules) such
that the average and/or worst-case energy required to drive the
state of the network satisfies certain bounds. In this regard, this
article first considers the feasibility problem of finding the edge
weights of a linear networked system such that certain bounds
on controllability metrics are satisfied. Second, we address the
design problem of finding edge weights able to satisfy the afore-
mentioned bounds while seeking to minimize a cost function of
the edge weights, which we assume to be convex. In particular,
we consider a 1-norm sparsity-promoting cost function aiming
to penalize the number of edges whose weights are modified in
the resulting design.

A. Related Work

In recent years, the problem of designing systems to satisfy
certain controllability metrics has mostly focused on finding
optimal actuator configurations, i.e., the location of those nodes
to be externally actuated by control inputs [3]–[11]. In addition,
a considerable amount of research has been dedicated to un-
derstanding how the network topology impacts control perfor-
mance [7], [15]–[24]. In particular, Zhao and Pasqualetti [24]
establish necessary and sufficient graph-theoretical conditions
for a discrete-time networked system to exhibit a diagonal con-
trollability Gramian. In [25], the authors characterize the mini-
mum input energy required to transfer a discrete-time dynamical
system with bilinear dynamics from the origin to a desired state.
The work in [26] proposes the notion of observability radius,
which measures how much the parameters of a dynamical system
can be perturbed before the system becomes unobservable. In
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a similar direction, the work in [27] investigates the effect of
adding network edges to improve spectral performance metrics
for the case of consensus dynamics over networks. More gen-
erally, design problems seeking to optimize network dynamical
properties such as the dominant eigenvalue of the system matrix
are studied in [28]–[32], and applications to virus spread and
wireless control networks appear in [33]–[35].

This article extends previous work by the authors in [36]
through several contributions. Specifically, in this article we
address the discrete-time case, in which the discrete Lyapunov
equation introduces higher degree products in its decision vari-
ables and requires new transformation steps for its treatment;
provide an analysis of the conditions, under which stability of the
designed system is assured; consider cost functions over edge
weights, which can be used to promote solutions with higher
sparsity in edge modifications; propose a convex relaxation ap-
proach, which enables a more detailed analysis of convergence;
consider average controllability as an additional controllability
metric; and present comprehensive computational experiments
to illustrate the above aspects.

B. Structure and Contributions of This Article

The rest of this article is organized as follows. In Section II, we
formalize both the network feasibility and the network design
problems, in which we are tasked with tuning the weights of the
edges in a given network in order to satisfy certain controllability
metrics. Specifically, we consider two metrics: 1) the worst-case
control energy, which is related to the smallest eigenvalue of
the Gramian, and 2) the average energy required to drive the
system, which is related to the trace of the Gramian inverse.
In Section III, we provide a detailed description of the strategy
followed to solve both problems. In particular, we cast both the
feasibility and the design problems into nonlinear optimization
programs with quadratic bilinear terms, which are, in general,
computationally hard to solve. We approach these optimiza-
tion problems by lifting the space of variables and adding a
rank constraint on a matrix whose entries depend affinely on
the decision variables. We then propose a sequence of convex
problems to relax this rank constraint using a truncated nuclear
norm (TNN). In Section IV, we illustrate the validity of our
results via computational experiments on random graphs, as
well as a 1-norm sparsity-promoting design problem considering
the IEEE 14-bus system. We conclude and enumerate some
possibilities for future work in Section V.

Notation: We denote by [X]i,j the entry at the ith row and jth
column of the matrix X ∈ Rm×n. The transpose of X is written
asX>. The n× n identity matrix is denoted by In. The operator
diag(a1, . . . , an) returns a diagonal matrix having a1, . . . , an
as entries in its diagonal. The inner product between two ma-
trices X,Y ∈ Rm×n is given by hX,Y i = tr{X|Y }, where
tr{X|Y } = Pn

i=1[X
|Y ]i,i denotes the trace operator. The 1-

norm of a matrixX ∈ Rm×n is defined as the `1-norm of its vec-
torization, i.e., kXk1 = k vec(X)k1. Likewise, the 0-norm of a
matrix is defined as the `0-quasi-norm of its vectorization, i.e.,
the number of nonzero entries. The nuclear norm ofX is defined

in terms of its singular values σi(X), i = 1, . . . ,min{m,n},
as kXk∗ =

Pmin{m,n}
i=1 σi(X). We denote by Sn the set of

symmetric matrices of dimension n. Likewise, Sn
+ (respectively,

Sn
++) is the set of symmetric positive semidefinite (respec-

tively, definite) matrices. Correspondingly, the semidefinite par-
tial ordering is denoted X � Y (respectively, X � Y ) when
X − Y � 0 (respectively, X − Y � 0). A set S ⊂ Rm is a
spectrahedron [37, Def. 2.6] if it can be represented in the
form S = {(x1, . . . , xm) ∈ Rm : Q0 +

Pm
i=1 Qixi � 0}, for

Q0, . . . , Qm ∈ Sn. A proper algebraic variety V ⊂ Rn is the
set of common zeros of a finite number of nonzero polynomials
in n variables.

II. PROBLEM FORMULATION

Consider a networked system following a discrete-time linear
time-invariant dynamics, described by

x(k + 1) = A(G)x(k) +Bu(k) (1)

where x(k) ∈ Rn denotes the vector of states and u(k) ∈ Rm

is the vector of inputs at instant k. The sparsity pattern of the
state matrix A(G) ∈ Rn×n is constrained by a directed inter-
dependence graph G = (V, E) defined by a set of nodes V =
{1, . . . , n} and a set of edges E ⊆ V × V , such that [A(G)]i,j ∈
R if the edge (j, i) ∈ E , and [A(G)]i,j = 0 if (j, i) /∈ E . Also,
the input matrix B ∈ Rn×m is such that [B]i,l 6= 0 if the ex-
ternal input signal [u(k)]l directly influences [x(k + 1)]i, and
[B]i,l = 0 otherwise.

Next, consider the problem of driving the state of the net-
work from a given initial state x0 ≡ x(0) to a desired target
state xT ≡ x(T ) within a time horizon T > 0, by designing
a sequence of inputs u(k) for k ∈ {0, 1, . . . , T − 1}. If any
xT ∈ Rn is attainable from x0 = 0n within a time horizon T ,
then the system (1) is said to be reachable, which we refer to
(A(G), B) being reachable. Furthermore, it is known that the
minimum input control energy to steer the system to a desired
final state xT from x0 = 0 is given by [2]

J(T, xT ) := x
|
T (Wr,T )

−1xT (2)

where Wr,T is called the finite-horizon reachability Gramian,
defined as Wr,T :=

PT−1
k=0 A(G)kBB

|
(A(G)|)k. The infinite-

horizon reachability Gramian is then obtained as the limit
W∞

r := limT→∞Wr,T . This Gramian is positive definite and
can be computed as the (unique) solution to the discrete-time
Lyapunov equation

A(G)W∞
r A(G)| −W∞

r +BB
|
= 0 (3)

when the system is reachable and A(G) is stable [2].

A. Reachability Metrics

We focus on two metrics related to the reachability Gramian
to quantify the minimum input energy to drive the system [15],
[25], [38].

1) Worst-Case Minimum Input Energy: Because W∞
r is

(symmetric) positive definite when the system is reachable,
its eigenvalues λ1 ≤ · · · ≤ λn are positive real numbers, with
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corresponding eigenvectors vi for i = 1, . . . , n. It turns out that
the final state xT satisfying kxT k2 = 1 requiring the largest
minimum input energy to be reached from x0 = 0 is given by
the (normalized) eigenvector v1. The energy required to drive
the state from the origin toward v1 within an infinite horizon
is equal to λ−11 , which we call the worst-case minimum input
energy. Therefore, if we require the worst-case minimum input
energy to be less than or equal to a desired value λ̃−1 > 0, then
the reachability Gramian must satisfy the following semidefinite
constraint:

W∞
r − λ̃In � 0. (4)

2) Average Minimum Input Energy: The expected energy
required to steer the system from the origin toward a random
final state uniformly distributed over the unit sphere is equal to
1
n tr{(W∞

r )−1} [38], which we call the average minimum input
energy. In a manner similar to the worst-case minimum input
energy metric, we can constrain the average minimum input
energy to be upper-bounded by a target value τ̃ <∞ via the
condition

nτ̃ − tr{(W∞
r )−1} ≥ 0 (5)

which is also representable by a semidefinite constraint over
W∞

r (see Lemma A.3 in the Appendix).
In what follows, we will refer to the aforementioned reacha-

bility constraints on W∞
r by the set membership condition

W∞
r ∈ Wθ (6)

whereWθ is a convex set (more precisely, a spectrahedron) de-
fined by constraints (4) and/or (5) and indexed by the parameters
in θ = (λ̃, τ̃).

B. Network Design for Reachability

As previously mentioned, we consider the problem of tuning
the edge weights of a given network in order to satisfy certain
minimum control energy requirements (either in worst-case or in
average). In particular, we assume that we are able to add a matrix
Δ(G) ∈ Rn×n to the state matrixA(G), such thatΔ(G) presents
the same sparsity pattern as the interdependence graph, i.e.,
[Δ(G)]i,j = 0 for (j, i) /∈ E . After this addition, the dynamics
of the network becomes

x(k + 1) = [A(G) + Δ(G)]x(t) +Bu(t). (7)

Furthermore, we may require that Δ(G) be contained in a
given polytope D encoding acceptable limits for its entries.
For example, we can impose upper and lower bounds of the
form [Δ(G)]i,j ∈ [ιi,j , υi,j ] for (j, i) ∈ E in the design problem.
Subsequently, we consider the model described by (7) and
address the following two problems.1

1) Feasible Design for Reachability Metrics: We seek
an addition Δ ∈ D such that the resulting reachability
Gramian W ∈ Sn

++ satisfies W ∈ Wθ. This can be posed as
the following feasibility problem.

1For compactness of notation, we will denote A(G), W∞
r , and Δ(G) simply

by A, W , and Δ, respectively, in the rest of this article.

P1(Feasible design for reachability metrics). Given the in-
terdependence graph G, with (A,B) reachable, we would like
to

find Δ ∈ Rn×n, W ∈ Sn
++

subject to W ∈ Wθ (8)

Δ ∈ D (9)

(A+Δ)W (A+Δ)
| −W +BB

|
= 0 (10)

|λi(A+Δ)| < 1, i = 1, . . . , n (11)

where constraint (10) arises from the discrete-time Lyapunov
equation associated with (7), and constraint (11) enforces the
stability of the designed system.

Remark 1: Partial design, allowing only a subset of the edge
weights to be modified, can be performed by imposing additional
constraints [Δ]i,j = 0 for the edges (j, i) that cannot be affected
by the design procedure.

As we will show in the next section, this feasibility prob-
lem can be addressed using a sequence of convex relaxations.
This problem also lays the foundation to our second problem,
described next.

2) Design for Reachability With Structural Penalties: In
this formulation, we introduce an optimization objective that
penalizes entries of Δ with large magnitudes, while meeting
the reachability requirements on W and structural constraints
on Δ. In particular, aiming at penalizing the number of edges
modified, we consider the 1-norm penalty over the entries of Δ
as our cost function. The 1-norm behaves as a convex envelope
to the 0-norm (i.e., the number of nonzero entries in the matrix)
and has found wide use in the signal processing and optimization
literature [39]–[41]. In the control systems literature, it has been
successfully applied to promote sparsity in control architectures,
for instance, in [42] and [43].
P2(Design for reachability with structural penalties). Given

an interdependence graph G and a reachable system (A,B), find
a structural addition Δ seeking to

minimize
Δ∈Rn×n
W∈Sn

++

kΔk1

subject to (8)–(11).

As will be described in Section III-D, this problem can be
addressed by a sequence of convex relaxations involving an
additive penalty term over the 1-norm of Δ, whose limiting
value is obtained by a procedure called regularization path [44].

Remark 2: More generally, in P2, we could consider a cost
function having individual weights over the entries of Δ. For
simplicity, in this article, we consider all entries to have unit
weight.

III. DESIGN FOR A REACHABILITY ALGORITHM

In this section, we propose a computational procedure to
addressP1 andP2. We begin by providing preliminary analyses
of the Lyapunov (10) and of the stability constraint (11). We
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show that the Lyapunov equation constraint can be transformed
into a rank constraint, and that its solution will imply the stability
ofA+Δ almost surely. Then, we solveP1 by handling the rank
constraint through a sequence of convex problems with guaran-
teed convergence. Subsequently, we address P2 by computing
a regularization path over a weight parameter that controls the
sparsity of the generated solutions.

A. Stability From a Positive Solution to the
Lyapunov Equation

In this section, we show that constraint (11) is satisfied almost
surely by all Δ ∈ D that satisfy the Lyapunov constraint in (10).
Following methodologies similar to [45]–[48], we formalize this
result in the next theorem.

Theorem 1 (Stability of the designed system): For a so-
lution (W,Δ) to (10) with W � 0, if the original system (A,B)
is reachable, then the system A+Δ will be stable for any
Δ ∈ D \ V , where V is a set with Lebesgue measure zero.

Proof: Applying Lemma A.1 from the Appendix for the
matrix A+Δ, we have that a solution W to (10) exists and is
unique for allΔ ∈ D \ V0, whereV0 is a proper algebraic variety
with Lebesgue measure zero. Furthermore, since the pair (A,B)
is reachable and Δ is restricted to the structure of A by D,
from [46, Proposition 2], the pair (A+Δ, B) is also reachable
for Δ ∈ D \ V1, where V1 is a proper algebraic variety with
Lebesgue measure zero. Therefore, since a finite union of proper
algebraic varieties is a proper algebraic variety, we have that
the system A+Δ will be reachable and will have a unique
solutionW � 0 to (10) for anyΔ ∈ D \ V , whereV := V0 ∪ V1
is a proper algebraic variety with zero Lebesgue measure. Thus,
applying Lemma A.2, we have that A+Δ will be stable for all
Δ ∈ D \ V . �

Therefore, seeking a tractable computational strategy for P1,
we consider constraint (11) to be implicitly satisfied by all points
satisfying (8) and (10), which do not lie in V . Consequently, if
the solution to P1, as determined by specific constraint setsWθ

and D, is such that Δ ∈ V , then we declare P1 to be infeasible
for the parameters defining those sets. The same considerations
apply to P2.

B. Discrete-Time Lyapunov Equation as a
Rank Condition

Notice that, for both problems P1 and P2, the discrete-time
Lyapunov constraint (10) induces double and triple products be-
tween the decision matrices Δ and W . To address this issue, we
first show that (10) can be alternatively satisfied by the solution of
a lifted bilinear matrix equation (BME). Then, we approximate
the solution of the resulting BME-constrained problem using a
sequence of convex problems. We begin by lifting the constraint
in (10) into a BME using the following lemma.

Lemma 1: The discrete-time Lyapunov (10) is satisfied
by W and Δ when the following BME is satisfied by the
variables W ∈ Sn

++, H ∈ Rn×n, and Δ ∈ Rn×n:

M(W,H)N(Δ) = Q (12)

where

M(W,H) : =

"
H| −W
−W H

#
, N(Δ) :=

"
(A+Δ)|

In

#
,

Q : =

"
−BB|

0

#
.

Proof: Equation (12) is equivalent to the following system
of matrix equations:�

(A+Δ)H −W = −BB| (13a)
H −W (A+Δ)| = 0. (13b)

From (13b), we have that H = W (A+Δ)
|

. Substituting
this H into (13a), we obtain the Lyapunov equation in (10),
as desired. �

We now rewrite the BME in (12) as an equivalent rank
constraint over a matrix with a specific block structure, as stated
in the next theorem.

Theorem 2 (Rank condition for Lyapunov equation): Let
Z(W,H,Δ) ∈ R4n×3n be the structured matrix defined as

Z(W,H,Δ) :=

"
Z11 Z12

Z21 Z22

#
:=

"
I2n N(Δ)

M(W,H) Q

#

=

⎡
⎢⎢⎢⎣

In 0 (A+Δ)
|

0 In In

H
| −W −BB

|

−W H 0

⎤
⎥⎥⎥⎦ . (14)

If rank[Z(W ?, H?,Δ?)] = 2n, then W ? and Δ? satisfy the
discrete-time Lyapunov equation in (10).

Proof: Consider the Schur complement of Z11 in Z ≡
Z(W ?, H?,Δ?), given by Z/Z11 = Z22 − Z21Z

−1
11 Z12. From

(14), we have that Z/Z11 = Q−M?N?, where M? ≡
M(W ?, H?) and N? ≡ N(Δ?). According to Guttman’s rank
additivity formula [49], the following holds:

rank[Z] = rank[Z11] + rank[Z/Z11]. (15)

Since rank(Z11) = 2n, we have that rank(Z) = 2n if and only
if rank[Z/Z11] = 0 = rank[Q−M?N?], or equivalently, Q =
M?N?. Thus, by Lemma 1, it follows that W ? and Δ? satisfy
the discrete-time Lyapunov equation in (10). �

Equipped with the above result, we can replace the constraint
in (10) by the rank constraint rank[Z(W,H,Δ)] = 2n in both
problems P1 and P2. Importantly, notice that the blocks of
Z(W,H,Δ) depend affinely on the problem decision matri-
ces W and Δ. Next, we show that this reformulation can be
approached using a sequence of convex programs.

C. Design for Reachability via Sequential Optimization

As introduced in Theorem 2, a solution (W ?,Δ?) to (7) will
be obtained when the rank of Z(W ?, H?,Δ?) equals 2n. To
achieve this condition, one would in principle seek to minimize
the rank of Z(W,H,Δ), which is a nonconvex and discontin-
uous function. Alternatively, problems having the rank as an
objective function have been approached by considering the
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nuclear norm (i.e., the sum of a matrix’s singular values) as a
relaxation [40]. Furthermore, from Theorem 2, we have a priori
information on the specific optimal value (equal to 2n) for the
rank ofZ. In this case, alternative functions related to the nuclear
norm have been shown to produce better approximations to the
rank function [50]. In particular, the TNN function, defined next,
uses the rank as an index restricting the number of (ordered)
singular values considered in its computation.

Definition 1 (TNN function): The TNN function of a ma-
trixX ∈ Rm×n with respect to an integer parameter r satisfying
r < min{m,n} is defined as

ηr(X) :=

min{m,n}X
i=r+1

σi(X)

where σi takes values over the set of singular values of X sorted
in decreasing order.

Using this definition, we can restate the conditions in
Theorem 2 in terms of the TNN, as described below.

Corollary 1 (TNN sufficient condition for Lyapunov
equation): If the tuple (W ? ∈ S++, H

? ∈ Rn×n,Δ? ∈ Rn×n)
satisfies η2n(Z(W ?, H?,Δ?)) = 0, then (W ?,Δ?) satisfies the
discrete-time Lyapunov (10).

Proof: The value η2n(Z(W ?, H?,Δ?)) = 0 implies
σi = 0 for i = 2n+ 1, . . . , 3n. This, in turn, implies that
rank[Z(W ?, H?,Δ?] = 2n in (14), and subsequently, (10) is
satisfied by invoking Theorem 2. �

The next lemma establishes a useful fact associated with
Definition 1.

Lemma 2 (TNN via Von Neumann’s inequality [50]): Let
kXkdre :=

Pr
i=1 σi(X) denote the Ky Fan norm of a ma-

trix X ∈ Rm×n with respect to an integer r ≤ min{m,n}.
Then, the TNN can be written as

ηr(X) = kXk∗ − kXkdre
which is a difference-of-convex function of X . Moreover, the
TNN is equivalently given by

ηr(X) = kXk∗ − sup
LL

|
=Ir

RR
|
=Ir

tr{LXR
|} (16)

for L ∈ Rr×m and R ∈ Rr×n.
Proof: We have kXk∗ − kXkdre =

Pmin{m,n}
i=1 σi(X)−Pr

i=1 σi(X) =
Pmin{m,n}

i=r+1 σi(X) = ηr(X). This form is
clearly a difference of convex functions, since it is a differ-
ence between the nuclear and Ky Fan norms of X . Equa-
tion (16) is proved by observing the equivalence of kXkdre with
supLL

|
=Ir,RR

|
=Ir tr{LXR

|}, as established by Lemma A.4
in the Appendix. The supremum term is defined over a family of
affine functions parameterized by the matrices L and R; hence,
it is convex. �

Using Corollary 1, we can reformulateP1 by seeking to mini-
mize η2n(Z(W,H,Δ)) subject to the reachability requirements
in (8) and structural constraints in (9). Using Lemma 2, a solution
to P1 can be found by solving the following problem.

Algorithm 1: Sequential Convex Program for P1−DN.
Inputs:

reachability parameters θ, tolerance �η
initial value Z(0) ← Z(W (0), H(0),Δ(0))

1: k ← 0
2: while η2n(Z

(k)) ≥ �η do
STEP A:

3: (U (k),Σ(k), V (k))← svd{Z(k)}
4: L(k) ← [u

(k)
1 | . . . |u(k)

2n ]
|

, R(k) ← [v
(k)
1 | . . . |v(k)2n ]

|

STEP B:
5: (W (k+1), H(k+1),Δ(k+1))←

argmin C(L(k), R(k); θ)
6: Z(k+1) ← Z(W (k+1), H(k+1),Δ(k+1))
7: k ← k + 1
8: end while

P1−DN(Difference-of-norms problem).

minimize
W,H,Δ

kZ(W,H,Δ)k∗ − sup
LL

|
=I2n

RR
|
=I2n

tr{LZ(W,H,Δ)R
|}

subject to W ∈ Wθ, Δ ∈ D.
As established in Theorem 1, a solution to P1−DN will fulfill

the stability constraint in (11) almost surely. Furthermore, de-
spite its nonconvexity, P1−DN has a known global optimal value
when P1 is feasible. From Corollary 1, this optimal value is
equal to η2n(Z(W,H,Δ)) = 0.

Next, taking inspiration from related problems in the litera-
ture [50], we employ a specific strategy consisting of solving
a sequence of convex problems. More specifically, a convex
relaxation ofP1−DN is obtained by replacing the supremum over
parametersL andR in (16) by fixed values Ľ and Ř, respectively,
as formalized next.
P1-SUB(Convex subproblem for P1−DN). For fixed Ľ ∈

R2n×4n and Ř ∈ R2n×3n, we define the convex prob-
lem C(Ľ, Ř; θ) as

minimize
W,H,Δ

kZ(W,H,Δ)k∗ − tr{ĽZ(W,H,Δ) Ř
|}

subject to W ∈ Wθ, Δ ∈ D.
Subsequently, using Von Neumann’s trace inequality in

Lemma A.4, a sequence of convex problems can be de-
fined by iteratively solving P1−SUB according to the fol-
lowing rule: At each iteration k, the parameters L(k) and
R(k) are fixed, and the convex subproblem C(L(k), R(k); θ) is
solved. Then, the left- and right-singular vectors of the current
solution Z(k)(W,H,Δ) = argminW,H,Δ C(L(k), R(k); θ) are
used, respectively, to update parameters L(k+1) and R(k+1) for
the next iteration. Such a procedure, summarized in Algorithm 1,
generates a monotonically convergent sequence of objective
function values, as shown in the next theorem.

Theorem 3 (Convergence of Algorithm 1): Let αk :=
η2n(Z(W (k), H(k),Δ(k))). Then, the sequence {αk} generated
by (W (k), H(k),Δ(k)) = argmin C(L(k), R(k); θ), according
to Algorithm 1, is monotonically nonincreasing.
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Proof: We assume that the sets D and Wθ are nonempty,
i.e., there exists at least one feasible solution (W (0), H(0),Δ(0))
to the relaxed problem C(L(0), R(0); θ). For example, for
the worst-case minimum energy design, a feasible solu-
tion can be constructed by letting any Δ(0) ∈ D, W (0) =
λ̃In, and H(0) = W (0)(A+Δ)

|
. Because STEP A (in

Algorithm 1) does not affect feasibility of the initial feasible
solution (W (0), H(0),Δ(0)), this solution will remain feasible
for STEP B, which will also retain feasibility, by construction.
Therefore, a solution (W (k), H(k),Δ(k)) will remain feasi-
ble at any iteration k. Let φ(Z,L,R) := kZ(W,H,Δ)k∗ −
tr{LZ(W,H,Δ)R

|} be the value of the objective function of
C(L,R; θ) evaluated at Z, for Z ≡ Z(W,H,Δ). We now ana-
lyze the behavior of the objective function at any iteration k. De-
note by p(k)A := φ(Z(k), L(k), R(k)) the objective function value
returned after execution of STEP A in Algorithm 1. Likewise,
denote by p

(k)
B := φ(Z(k+1), L(k), R(k)) the objective function

value returned after execution of STEP B. Because STEP B in-
volves the solution of a (feasible) convex optimization problem,
we have p

(k)
B ≤ p

(k)
A . Furthermore, by invoking Lemma 2, we

have that p(k+1)
A ≤ p

(k)
B . Therefore, we have p

(k+1)
A ≤ p

(k)
A for

any k, and αk = p
(k)
A . Thus, for any �η > 0, there exists an iter-

ation number k such that |αk+1 − αk| ≤ �η , and the sequence
{αk} is monotonically nonincreasing. �

D. Design for Reachability With Structural Penalties

We now build on the results obtained for the feasibility
problemP1 to address the more challenging problemP2, which
seeks to penalize large magnitudes in the entries of Δ. First,
we observe that using the definition of the TNN introduced
in the previous section, P2 can be approximated by solving
the following problem for increasing values of the positive
weight γ.
P2−DN(Penalized difference-of-norms problem). For γ a pos-

itive scalar, a relaxation of P2 can be written as

minimize
W,H,Δ

η2n(Z(W,H,Δ)) + γkΔk1

subject to W ∈ Wθ, Δ ∈ D
= minimize

W,H,Δ
kZ(W,H,Δ)k∗ + γkΔk1

− sup
LL

|
=I2n

RR
|
=I2n

tr{LZ(W,H,Δ)R
|}

subject to W ∈ Wθ, Δ ∈ D

where we have removed the explicit stability constraint (11)
based on the results presented in Theorem 1. Besides using
a relaxation strategy similar to the one previously used for
P1−DN (i.e., replacing the supremum operator with fixed values
for L and R), we associate with P2−DN the following convex
subproblem.
P2-SUB(Convex subproblem for P2−DN). For γ > 0 with

fixed Ľ ∈ R2n×m and Ř ∈ R2n×n, we define the convex

subproblem Cγ(Ľ, Ř; θ) as

minimize
W,H,Δ

kZ(W,H,Δ)k∗ − tr{ĽZ(W,H,Δ) Ř
|}

+ γkΔk1
subject to W ∈ Wθ, Δ ∈ D.

Note that P2−DN presents two competing objectives with
relative importance balanced by the weight γ. On one hand, we
have the TNN term, associated with the residual of the Lyapunov
(10). On the other hand, we have the 1-norm penalty aiming
to promote sparsity on the design variable Δ. As a result, a
sequential optimization strategy similar to the one applied for
P1-DN can introduce an unwanted side effect: depending on
the magnitude of γ, convergence in terms of the TNN is not
guaranteed. More specifically, while the overall cost of P2−DN

can be still assured to be monotonically nonincreasing (using
similar arguments from Theorem 3), higher values of γ might
promote iterations where a decrease in the overall objective
function (including the penalty term γkΔk1) will be obtained at
the expense of an increase in the term associated with the TNN
kZ(W,H,Δ)k∗ − tr{ĽZ(W,H,Δ) Ř

|}.
To control this effect, we propose an iterative procedure that

seeks an approximation for the largest value of γ for which
P2−DN can be solved. The proposed procedure begins by solv-
ing P2−DN(γ) with γ = 0. In this configuration, P2−DN(γ)
is equivalent to the unpenalized problem P1−DN. Therefore,
Algorithm 1 can be applied to achieve convergence, as estab-
lished in Theorem 3. Then, we attempt to solve P2−DN(γ)
for increasing values of γ, using the solution of the current
problem as an initialization for the next problem, until a stopping
criterion is met. This type of strategy is commonly referred to
as regularization path and has been applied to control problems,
for instance, in [44] and [51].

Formally, we consider a sequence {γt}Nt=1 of increas-
ing positive weights and begin by applying Algorithm 1
to solve P2−DN(γ0) with a preliminary weight γ0 = 0. If
Algorithm 1 fails to produce a feasible solution at conver-
gence, we declare P2−DN infeasible. Otherwise, if it pro-
duces a solutionZ(W̄ , H̄, Δ̄)with η2n(Z(W̄ , H̄, Δ̄)) < �η , we

makeZ(0) ≡ Z(W̄ , H̄, Δ̄) and useL(0) = [u
(0)
1 , . . . , u

(0)
2n ]

|
and

R(0) = [v
(0)
1 , . . . , v

(0)
2n ]

|
from svd{Z(0)} as initial parameters

for P2−DN(γ1). Then, for each γt, we seek to solve P2−DN(γt)
by a sequence of convex subproblems {Cγt

(L(k), R(k); θ)}k and
evaluate the stopping condition in terms of the inner-loop so-
lution Z(k) ≡ Z(W (k), H(k),Δ(k)) to each Cγt

(L(k), R(k); θ),
as follows. If η2n(Z

(k)) < �η , we consider the algorithm
to have converged for the current weight γt and move on
to the next weight in the sequence. Otherwise, we choose
to stop the sequence if η2n(Z

(k)) ≥ η2n(Z
(k−1)) holds for

K > 1 successive iterations of Cγt
(L(k), R(k); θ), where K is

a parameter of choice. For this purpose, we define the func-
tion stopK(Z(min{0,k−K+1}), . . . , Z(k)), which returns TRUE if
η2n(Z

(k)) ≥ η2n(Z
(k−1)) for k −K + 2, . . . , k when k ≥ K,

and FALSE otherwise. The proposed procedure is summarized in
Algorithm 2.
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Algorithm 2: Regularization Path Algorithm for P2−DN.
Inputs:

parameters θ, tolerance �η , stopping number K
penalization weights γ0 = 0 and γ1, . . . , γN
initial value Z(0) ← Z(W (0), H(0),Δ(0))

1: k ← 0, t← 0
2: while not stopK(Z(min{0,k−K+1}), . . . , Z(k)) do
3: while η2n(Z

(k)) ≥ �η do
4: STEP A:
5: (U (k),Σ(k), V (k)) = svd{Z(k)}
6: L(k) ← [u

(k)
1 , . . . , u

(k)
2n ]

|
,

R(k) ← [v
(k)
1 , . . . , v

(k)
2n ]

|

7: STEP B:
8: (W (k+1), H(k+1),Δ(k+1))←

argmin Cγt
(L(k), R(k); θ)

9: Z(k+1) ← Z(W (k+1), H(k+1),Δ(k+1))
10: k ← k + 1
11: end while
12: (W (0), H(0),Δ(0))← (W (k+1), H(k+1),Δ(k+1))
13: t← t+ 1
14: end while

IV. COMPUTATIONAL EXPERIMENTS

To illustrate the effectiveness of our proposed approaches,
in this section, we perform several computational experiments
considering both worst-case and average reachability designs.
In the first set of experiments, we analyze random networks
generated by the directed Erdős–Rényi (ER) model. The main
goal is to verify the convergence of our algorithm for different
random system realizations and different reachability objectives.
As we will illustrate, our algorithm typically reaches solutions
characterized by a very low value (i.e., below a prespecified tol-
erance) of the TNN after a relatively small number of iterations.

In the second set of experiments, we examine a networked sys-
tem with the topology of the IEEE 14-bus system [52]. We take
inspiration from [6], which considers the problem of improving
transient stability properties of power grids to damp frequency
oscillations and prevent rotor angle instability. In this setting,
the physical design variables are associated with the placement
of high-voltage direct current (HVdc) links, which are modeled
as ideal ac sources on the terminal buses [53]. Furthermore,
in their problem formulation, the nonlinear swing equations of
system are linearized, and the HVdc placements are evaluated
using controllability Gramian metrics. Our presentation consists
of a simplification of the aforementioned experiment, with the
goal of illustrating the effects of sparsity obtained by applying
the procedure for design with structural penalties described
in Section III-D. Furthermore, as described in our problem
statement, we restrict our edge design variables to follow the
existing network topology. The code and data generated for both
sets of experiments are available in [54].

A. Erdős–Rényi

We generateL = 100 random realizations of directed ER sys-
tems, with state dimension n = 15 and input dimension m = 5.

Each system l = 1, . . . , L is defined by a pair (A(l), B(l)) that
is generated as follows: The sparsity pattern encoded by the
set {(i, j) : i, j = 1, . . . , n; (i, j) ∈ G} is obtained by following
the ER process until the resulting density of nonzero entries,
i.e., kA(l)k0/n2, reaches a value of 0.5. The weights of the
edges in the network are sampled from a standard uniform
distribution, i.e., [A(l)]i,j ∼ uniform(0, 1), for all (i, j) ∈ G,
with self-loops being allowed. To assure stability, the entries
of each matrix A(l) were simultaneously scaled such that the
absolute value of the largest eigenvalue of the matrix was less
than one. The entries of the input matrices B(l) = [b

(l)
1 | . . . |b(l)m ]

were selected to have each column bj (j = 1 . . . ,m) defined
as a canonical indicator vector eπj(n), where πj(n) denotes
the index of the entry equal to 1 and is obtained as a random
permutation of the 1, . . . , n possible indices. Each pair was
tested for reachability by assuring that rank[ C(A(l), B(l)) ] = n,
where C(A,B) = [B |AB | · · · |An−1B ].

We consider two types of design problems: 1) design for the
worst-case reachabililty, associated with the minimum eigen-
value λ1(W ), and 2) design for average reachability, associ-
ated with τ = 1

n tr{W−1}. For each objective, we explore two
cases: one with a low target improvement value, and one with
a high target improvement value. For the case of design for
the worst-case reachabililty, we define the ratio of improve-
ment ρλ = λ̃1/λ1 and fix target values ρ̃low

λ = 10 and ρ̃high
λ = 50.

For the case of design for average reachability, we define the ratio
of improvement ρτ = τ̃ /τ and fix target values ρ̃low

τ = 1
10 and

ρ̃high
τ = 1

50 . The maximum and minimum allowed perturbation
magnitudes [Δ]i,j were set to υi,j = 0.50 and ιi,j = −0.50,
respectively, for all i and j. We then observe the evolution of
the TNN η2n(Z

(k)) as a function of the iteration k for each
system realization, until a stopping criterion is met. In particular,
this criterion was set to �η = 1.00× 10−7, i.e., the algorithm
stops when it reaches an iteration k? for which η2n(Z(k?)) ≤ �η .
The results from the execution of the algorithm are presented
in Fig. 1. It can be seen that η2n(Z(k)) reached the threshold
�η for all cases considered, indicating that the desired reach-
ability improvement, as captured by the constraint W ∈ Wθ,
was feasible in relation to the structural constraints imposed by
Δ ∈ D. Furthermore, the median iteration value k? for which
such threshold was achieved is below 100 for the four scenarios
considered. Finally, it can be observed that the iteration for which
the desired improvement in reachability is achieved typically
coincides with the iteration at which the TNN reaches the lowest
point.

B. IEEE Electric Power Network

We generate a network following the topology of the IEEE
14-bus system [52], with state dimension n = 14 and input
dimension m = 11. The maximum and minimum allowable
perturbation magnitudes [Δ]i,j are set to υi,j = 0.50 and
ιi,j = −0.50, respectively, for all i and j. As a simplification
of the experiments presented in [6], the initial weights of
the network were symmetrically associated with the resistance
values of the transmission lines, with particular numerical values
set to those available in [55]. The resulting matrix A has sparsity
pattern and weights as displayed next, with values rounded for
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Fig. 1. Improvement of reachability for ER systems for L = 100 random realizations of (A,B) system pairs. In (a), we consider the design for the
worst-case reachabililty problem, while in (b), we present results for the design for average reachability problem. For the first case, panels (a,1) and
(a,2) present the TNN η2n(Z

(k)) as a function of the algorithm iteration k, considering, respectively, low and high target reachability improvement
values (i.e., ρ̃low

λ
and ρ̃high

λ
). Correspondingly, (a,3) and (a,4) display the current-to-target reachability improvement ratios ρλ(k) = λ1(k)/λ̃ for the

same system realizations and low/high improvement targets. A value of ρλ(k) ≥ 1 implies the achievement of the desired reachability improvement
λ1(k) ≥ λ̃. Each thin line is associated with one of the L = 100 random ER system realizations. The thicker line is associated with the specific
system realization whose iteration number when the stopping criterion was met was in the median of the stopping iteration numbers for all system
realizations. Likewise, panels (b,1) and (b,2) display the TNN η2n(Z

(k)) considering, respectively, low and high reachability improvement target
values for the design for average reachability problem (i.e., ρ̃lowτ and ρ̃highτ ). Correspondingly, panels (b,3) and (b,4) display the current-to-target
reachability ratios ρτ (k) = τ(k)/τ̃ for the same system realizations and low/high improvement targets. A value of ρτ (k) ≥ 1 implies the achievement
of the desired reachability improvement τ(k) ≤ τ̃ .

compactness (please see the equation shown at the bottom of
this page). In that matrix, the symbol “·” denotes an absence of
interconnection, corresponding to an entry with numerical value
0. In particular, the network represented by A has a total of 40
edges out of 196 possible, resulting in a density of 0.204 nonzero
entries.

In a similar fashion to the previous experiment, we consider
two types of design: 1) design for the worst-case reachabililty,
associated with the minimum eigenvalue λ1(W ), and 2) design
for average reachability, associated with τ = 1

n tr{W−1}. For
each objective, we explore two cases: one with a low tar-
get improvement value, and one with a high target improve-
ment value. For case of design for the worst-case reacha-
bililty, we define the ratio of improvement ρλ = λ̃1/λ1 and
set target values ρ̃low

λ = 10 and ρ̃high
λ = 50. For the case of

design for average reachability, we define the ratio of im-
provement ρτ = τ̃ /τ and set target values ρ̃low

τ = 1
10 and ρ̃high

τ

= 1
50 .
To evaluate the effect of the sparsity inducing penalty, we

define the cardinality index α(Δ) := kΔk0/kAk0, which aims
at computing the density of nonzero entries of Δ in terms of the
available system entries, as induced by the sparsity pattern of the
original system matrixA. We solveP2−DN using Algorithm 2 for
40 different values of the penalization parameter γ, whose log-
arithm values are set to be uniformly spaced in the prespecified
interval log10 γ ∈ [−3,−1]. In practice, this range just needs to
be chosen wide enough such that its lower limit allowsP2−DN to
be solved within the prescribed tolerance, and conversely, its up-
per limit causesP2−DN not to be solved (i.e., the stopK function
returns TRUE at some iteration k?). In particular, Algorithm 2 is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 0.06 · · 0.22 · · · · · · · · ·
0.06 · 0.20 0.18 0.17 · · · · · · · · ·
· 0.20 · 0.17 · · · · · · · · · ·
· 0.18 0.17 · 0.04 · 0.21 · 0.56 · · · · ·

0.22 0.17 · 0.04 · 0.25 · · · · · · · ·
· · · · 0.25 · · · · · 0.20 0.26 0.13 ·
· · · 0.21 · · · 0.18 0.11 · · · · ·
· · · · · · 0.18 · · · · · · ·
· · · 0.56 · · 0.11 · · 0.08 · · · 0.27
· · · · · · · · 0.08 · 0.19 · · ·
· · · · · 0.20 · · · 0.19 · · · ·
· · · · · 0.26 · · · · · · 0.20 ·
· · · · · 0.13 · · · · · 0.20 · 0.35
· · · · · · · · 0.27 · · · 0.35 ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 2. Reachability design with induced sparsity for the IEEE 14-bus system. In (a), we consider the design for the worst-case reachabililty
problem, while in (b), we present results for the design for average reachability problem. For the first case, (a,1) and (a,2) present the 1-norm of the
matrix Δ as a function of the penalization weight γ, considering low and high target reachability improvement values, respectively. Correspondingly,
(a,3) and (a,4) display the cardinality index α(Δ) for the same system realizations when low and high improvement targets are considered. Likewise,
in (b,1) and (b,2) [respectively, (b,3) and (b,4)], we display the 1-norm (respectively, cardinality index) for low and high reachability improvement
target values, when the design for average reachability problem is considered. In terms of the simplified power system network analyzed, the
decrease in the cardinality index value for increasing values of γ seen in panels (a,3), (a,4), (b,3), and (b,4) means that a decreasing number of
HVdc links would need to be deployed in order for the system to achieve the desired controllability metrics (i.e., minimal worst-case and average
energy required at the control inputs).

set to stop at iteration k? if η2n(Z(k)) ≥ η2n(Z
(k−1)) holds for

K = 8 successive iterations preceding k?.
The results from the execution of the algorithm are presented

in Fig. 2. We notice the decrease of the penalty term kΔk1
associated with a decrease in the cardinality index α(Δ), for all
the four cases studied. The total number of iterations (i.e., convex
subproblems solved) for the worst-case controllability metric
was of 47 and 61, respectively, for the low and high improvement
ratios. Likewise, the total number of iterations for the average
controllability metric was of 49 and 60, respectively, for the low
and high improvement ratios. Furthermore, for concreteness, we
display the specific values of Δ for the initial and final values
of the penalization weight γ, considering the scenario where we
seek the design for average reachability with a high target value
of improvement ρ̃high

τ = 50 (c.f. panel (h) in Fig. 2). The entries
of the perturbation matrix obtained for the initial value of the
penalization parameter γfirst = 1.00× 10−3 were

Δ(γfirst) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· 0.05 · · 0.22 · · · · · · · · ·
−0.32 · 0.24 0.03 0.02 · · · · · · · · ·
· 0.34 · 0.06 · · · · · · · · · ·
· −0.01 ∗ · −0.00 · ∗ · ∗ · · · · ·

−0.00 −0.02 · −0.03 · ∗ · · · · · · · ·
· · · · −0.03 · · · · · ∗ ∗ ∗ ·
· · · −0.02 · · · ∗ ∗ · · · · ·
· · · · · · ∗ · · · · · · ·
· · · −0.05 · · ∗ · · ∗ · · · 0.01
· · · · · · · · ∗ · ∗ · · ·
· · · · · ∗ · · · ∗ · · · ·
· · · · · ∗ · · · · · · ∗ ·
· · · · · ∗ · · · · · ∗ · ∗
· · · · · · · · ∗ · · · ∗ ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the symbol “∗” means that the specific entry had a value
approximately zero (i.e., within a tolerance �s = 1.00× 10−4),
even though the original network topology and sparsity con-
straints allowed a nonzero intervention value. More specifically,
17 out of 40 nonzero possible entries were used. The algorithm
was executed for increasing values of γ until the stopping
criterion was met, in particular, occurring for γlast = 5.54×
10−2. The penalized values obtained in this case were given
by

Δ(γlast) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· ~ · · 0.23 · · · · · · · · ·
−0.34 · ~ 0.09 0.02 · · · · · · · · ·
· 0.28 · ~ · · · · · · · · · ·
· ~ ∗ · ~ · ∗ · ∗ · · · · ·
~ ~ · ~ · ∗ · · · · · · · ·
· · · · ~ · · · · · ∗ ∗ ∗ ·
· · · ~ · · · ∗ ∗ · · · · ·
· · · · · · ∗ · · · · · · ·
· · · ~ · · ∗ · · ∗ · · · ~
· · · · · · · · ∗ · ∗ · · ·
· · · · · ∗ · · · ∗ · · · ·
· · · · · ∗ · · · · · · ∗ ·
· · · · · ∗ · · · · · ∗ · ∗
· · · · · · · · ∗ · · · ∗ ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, the symbol “~” indicates that the corresponding entry
resulted in an approximately zero value (i.e., within a tolerance
�s = 1.00× 10−4) for this value of γlast, whereas the same entry
took a nonzero value when the penalization weight γfirst was
considered. In particular, while 17 nonzero entries were used
for γfirst, this number was reduced to 5 for γlast, as a result of the
structural penalty effect.
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V. CONCLUSION

In this article, we have formulated and solved two problems
involving the tuning of edge weights in a given networked
dynamical system such that certain reachability requirements,
defined in terms of the reachability Gramian, were satisfied. In
our first problem, we aimed at finding a feasible tuning of the
edge weights. A direct formulation of this problems results in
highly nonlinear optimization program. In order to overcome
this challenge, we proposed a chain of transformations allowing
us to reformulate this problem as an optimization program
involving a rank constraint over a structured matrix presenting
an affine dependence on the decision variables. We then relaxed
this rank constraint using a TNN and proposed a sequence of
convex programs to solve this relaxation. Furthermore, we also
considered a second problem, in which we aimed at finding
edge weights in order to satisfy certain reachability requirements
while tuning a small number of edges. Our computational ap-
proach to solve these problems has been illustrated with several
numerical experiments. As future work, we plan to examine a
more comprehensive class of systems, including bilinear and
stochastic systems, through their corresponding reachability
Gramians. Another interesting avenue of investigation would
be to provide insights on the graph-theoretic characteristics of
optimal designs produced for different network topologies.

APPENDIX

ADDITIONAL LEMMAS

Lemma A.1: (Uniqueness for the Lyapunov equation) A
solution W ∈ Sn to

AWA| −W = −BB| (17)

exists and is unique for any matrices A ≡ A(G) ∈ Rn×n and
B ∈ Rn×m except for a proper algebraic variety V0 ⊂ R|E|,
where |E| is the number of free entries in A.

Proof: Existence and uniqueness of a solution W ∈ Sn to
(17) can determined by examining the result of applying the
vectorization operator on both sides of (17) to get

(A⊗A− In2)vec(W ) = −vec(BB|) (18)

where the symbol ⊗ denotes the Kronecker product. Equa-
tion (18) will have a unique solution whenever the coefficient
matrix (A⊗A− In2) is nonsingular. Following [48], we let
aE := ([A]i,j : (j, i) ∈ E) represent an ordered set containing
the entries of A in lexicographic order. Next, we define a
correspondence between aE and a vector z ∈ Rd, d = |E|, and
notice that ϕ(z) := det(A⊗A− In2) is a polynomial function
of the components of z. Then, we observe that the setV0 := {z ∈
Rd : ϕ(z) = 0} defines a proper algebraic variety of Rd [56]
where the matrix (A⊗A− In2) is singular. Therefore, for any
matrix A having entries from the correspondence between aE
and z such that z ∈ Rd \ V0, the matrix (A⊗A− In2) will be
nonsingular, and (17) will have a unique solution vec(W ) =
−(A⊗A− In2)−1 · vec(BB|). �

Lemma A.2 (Stability from the Lyapunov equation): Con-
sider the discrete-time Lyapunov equation (17) with a unique

solution W . If W � 0 and the pair (A,B) is reachable, then the
matrix A is Schur stable.

Proof: The proof is a trivial extension to discrete-time
systems of [2, proof of Theor. 12.5, p. 103]. To begin, we pick a
left eigenvector v of A such that A|v = λv. Then, we compare
the quadratic forms for v at both sides of (17)

v∗(AWA| −W )v = −v∗(BB|)v

(|λ|2 − 1)v∗Wv = −kB|vk2 (19)

where v∗ denotes the conjugate transpose of v. Because we
assumed that W � 0, it is the case that v∗Wv > 0. Then, since
(A,B) is reachable by assumption, from the Popov–Belevitch–
Hautus test for controllability [2, c.f. Theor. 12.3, p. 101], there
is no eigenvector v of A| such that B|v = 0. Therefore, we
have that kB|vk2 > 0, which implies |λ| < 1 in (19). Hence,
the matrix A is Schur stable. �

Lemma A.3 (Trace-inverse as semidefinite constraint):
The condition nτ − tr{W−1} ≥ 0 for W ∈ Sn

++ can be for-
mulated as a semidefinite constraint requiring the existence of a
variable P ∈ Rn×n such that

nτ − tr{P} ≥ 0 and

"
W In

In P

#
� 0.

Proof: Note that P −W−1 � 0⇒ tr{P} − tr{W−1}
≥ 0. Then, applying the Schur complement on P −W−1 � 0
yields the relationship in terms of the inverse of W . �

Lemma A.4 (Von Neumann’s trace inequality): For
any X ∈ Rm×n and pair (L,R) ∈ {L ∈ Rr×m, R ∈ Rr×n :
LL

|
= Ir, RR

|
= Ir}, where 1 ≤ r ≤ min{m,n}, we have

tr{LXR
|} ≤

rX
i=1

σi(X). (20)

Furthermore, consider the singular value decomposition X =
UΣV

|
, where U = [u1, . . . , um] and V = [v1, . . . , vn]. Then,

(20) holds with equality if L = [u1, . . . , ur]
|

and R =
[v1, . . . , vr]

|
.

Proof: See [50, Theor. 3.1] and [57, Theor. 7.4.1.1, p. 458].
�
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