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Abstract—We analyze optimal strategies for the allocation of a
finite budget that can be invested in different advertising
channels over time with the objective of influencing social
opinions in a network of individuals. In our analysis, we consider
both exogenous influence mechanisms, such as advertising
campaigns, as well as endogenous mechanisms of social influence,
such as word-of-mouth and peer-pressure, which are modeled
using diffusion dynamics. We show that for a broad family of
objective functions, the optimal influence strategy at every time
uses all channels at either their maximum rate or not at all, i.e., a
bang-bang strategy. Furthermore, we prove that the number of
switches between these extremes is bounded above by a term that
is typically much smaller than the number of agents. This means
that the optimal influence strategy is to exert maximum effort in
waves for every channel, and then cease effort and let the effects
propagate. We also show that, at the beginning of the campaign,
the total cost-adjusted reach of an exogenous advertising channel
determines its relative value. In contrast, as we approach our
investment horizon (e.g., election day), the optimal strategy is to
invest in channels able to target individuals instead of broad-
reaching channels. We demonstrate that the optimal influence
strategies are easily computable in several practical cases, and
explicitly characterize the optimal controls for the case of linear

objective functions in closed form. Finally, we see that, in the
canonical example of designing an election campaign, identifying
late-deciders is a critical component in the optimal design.

Index Terms—Marketing management, optimal control, bang-
bang control, election, advertising.

I. INTRODUCTION

OPINIONS are important definers of real-world out-

comes: they affect who is elected for political office

[1], which policies are successful [2], and which products

are bought by customers [3]. The proliferation of online

media has complicated [4], sped up [5], and enhanced [6]

opinion formation processes. The opinion formation process

can be affected by interested parties through advertising

channels, which are media by which messages are distrib-

uted to a target audience. Political campaigns and marketing

departments apportion their advertising budgets between

such channels (e.g., TV ads, website banner ads, billboards)

in order to maximize some ultimate goal (e.g., votes, sales)

[7], though the extent of the effect of these efforts is a mat-

ter of debate [1], [8]. The importance of this decision has

increased in conjunction with the increasing resources

devoted to these efforts: In 2017, over $1 trillion was spent

on marketing globally [9], while $9.8 billion was spent on

advertising in the 2016 US elections alone [10]. Thus,

studying the related multi-channel resource allocation prob-

lem is both timely and significant.

In particular, the mechanisms of opinion influence can be

classified into two types based on its direct provenance. First,

there are endogenous influence mechanisms (e.g., word-of-

mouth), in which individuals process the expressed opinions

of other individuals they meet, and consider their credibility

and the level of acquaintance and trust in synthesizing a new

opinion based on the information.1 This leads to the notion of

an endogenous influence weighted graph capturing endoge-

nous influence between individuals. On the other hand, there

are exogenous influence mechanisms, in which an external

influencer seeks to shape the opinions of an individual. This
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1. These weights can, in general, be dynamic, even depending on the

expressed opinion [11]. In this work, we consider static weights.
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mechanism is facilitated by various advertising channels.2 In

our opinion formation model, each channel has a reach struc-

ture, i.e., the individuals that can be reached by that channel,

that is not necessarily related to the endogenous neighbor-

hood. The actions of other external influencers also affect

each individual’s opinion formation process, which can in

general be a random (noisy) process. The external influencer

seeks to maximize a function of the global state (the vector of

individual opinions) at a specific time (e.g., election day) by

allocating their budget across several advertising channels in a

given time interval (see Fig. 1). In this paper, we study the

nature of the optimal budget allocation and provide structures

and algorithms for their computation.

Finding the optimal budget allocation is complicated by

several factors: (i) The reach of each channel is limited, and

there are significant overlaps between the target audiences of

various channels [12]; (ii) different channels have differing

costs, and attempts to influence opinions by external sources

can affect individuals in different, and sometimes opposite,

ways [13]; (iii) the budget allocation decision is dynamic

(depends on time) and changes with the state of the network.

Furthermore, the influencer faces several trade-offs: utilizing

an advertising channel early allows the influenced individuals

to spread the effect to their neighbors (diffusion), while lessen-

ing the impact on the influenced individuals as they moderate

the effects of the external influence with the opinions of their

neighbors (dilution). There is also a trade-off between utiliz-

ing cheap channels versus utilizing expensive but effective

ones. These competing forces make the a priori determination

of the optimal budget allocation hard to determine.

There are also significant technical challenges to solving this

problem, since characterizing the optimal budget allocation

across channels and throughout the time interval requires charac-

terizing the structure of an optimal constrained vector of controls

over a graph. Furthermore, the work also requires computing the

optimal control of the well-studied linear consensus dynamics

[14], [15] in a novel setting, as the classical literature is

concerned with reaching agreement among agents, while our

objectives may incentivize agreement in some circumstances

and disagreement in others. As we show in this paper, finding

the optimal allocation in our problem requires a new synthesis of

spectral graph theory and optimal control theory.

Contributions. In this work, we model the advertising influ-

ence problem as a constrained consensus control process in an

arbitrary network with overlapping influence channels and

endogenous influence of agents on each other [16]. Using

Pontryagin’s maximum principle, spectral graph theory, and

custom analytical arguments, we determine the structure of

the optimal budget allocation to the various influence channels

along a given time horizon.

We show that for a broad family of objectives, the optimal

control for each channel is bang-bang (only takes its extreme

values), with the number of switches being upper-bounded by a

term which is smaller than the number of individuals. There-

fore, the search for optimal controls can be conducted on the

space of vectors of a fixed size whose entries represent times of

switching between extreme values rather than on the space of

functions. Furthermore, for the case of a linear objective (i.e.,

when individuals make a decision in proportion to their opinion

value), we explicitly calculate the optimal budget allocation

over time, providing an open-loop algorithm that can compute

the vector of optimal controls in a logarithmic number of steps.

This allocation also implicitly determines the relative impor-

tance of a particular channel to the global objective, and thus

defines an explicitly computable metric for the influence of a

channel at any given time. This metric allows the influencer to

compare and contrast the effects of different channels, as well

as the effect of a channel at different times. Finally, our results

show that investing in an influence channel reaching likely vot-

ers is important as we get close to decision/election time, while

the cost-effectiveness of a channel (defined as its total reach

divided by its cost) is more important at earlier times.

For the case where the objective is a sum of sigmoids,

which is a relaxed version of voting between two alternatives,

we show that the optimal control can be approximated just by

knowing the agents who change their minds at the terminal

time in the optimal allocation (late-deciders [17]).

In sum, our work represents a new confluence of the litera-

ture on consensus dynamics and optimal control theory, while

providing significant novel structures, computational algo-

rithms, metrics, and insights to the optimal budget allocation

for the multi-channel advertising problem.

II. LITERATURE REVIEW

As this work draws upon the literature in multiple areas, we

will discuss antecedents in each area in turn:

Consensus and Opinion Dynamics: Linear consensus-seek-

ing dynamics are some of the oldest models used to model the

spread of opinions and social influence, first proposed by

French [18] and expounded upon by DeGroot [19]. In these

models, opinions (states) are taken to be continuous real varia-

bles, and each node uses a (weighted) average opinion of its

neighbors’ opinions in each time-step to update its opinion.

Fig. 1. Different advertising channels have differing, possibly overlapping,
reaches and come with differing costs. Furthermore, the effect of a channel
may differ across individuals. These external influences are modulated by
internal conversations within the network whereby agents integrate this infor-
mation with that of their neighbors. The decision of the advertiser is to appor-
tion resources between these channels factoring in these complexities so as to
get an optimal return on investment, which in the election example is votes
cast in favor of the campaign.

2. Throughout this work, we use the word channel to represent both the
medium (e.g., TV advertising) and the reach of the medium (e.g., people who
watch TV)—the distinction is clear in context.
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Abelson [20] provided a continuous-time variant of these

dynamics, which is the model we base our work upon. This

work was generalized first by Taylor [21] to also incorporate

individual-specific prejudices, leading to the desirable persis-

tence of opinion cleavage within such simple models (leading

to a dynamics very similar to ours). Other closely related con-

tinuous-time variants of these dynamics have been rigorously

studied by control theorists [14], [15], [22], [23]. Most of these

results focus on asymptotic properties of these dynamics and

their convergence, and not on their finite-time behavior and

the effect of influence on such behavior. While more complex

models of opinion dynamics have been proposed and studied

in detail [11], [24], [25], the linear consensus dynamics

remains a baseline for comparison. Recent detailed overviews

of the developments in the field of opinion dynamics make the

above distinctions and limitations clearer [26], [27]. Finally,

the linear approximation of the effect of external influence on

opinion dynamics also follows a long-standing tradition [21],

[24]. Our work covers finite-time budget-constrained opinion

change with a specific goal, while the focus of these papers is

understanding asymptotic properties of these systems (without

strategic interventions and goals).

Control of Opinion Propagation: The case of influencing

opinion dynamics is a research question of current interest. The

problem of Influence Maximization (IM) consists of finding the

set of individuals that must be initially influenced in order to

maximize the final effect of endogenous spreading mechanisms

[28]. Variants of this problem, under multiple models of opinion

propagation, have been the subject of much study (e.g., [29]–

[32]). Among this line of work, budgeted influence maximiza-

tion with partial incentives [33] is the closest to our setting, as it

relaxes the artificial binary assumptions on the success of influ-

ence efforts. While this literature is closely related to work on

epidemic control [32], its more immediate analog is work on

control of social learning. For example, Yildiz et al. [34] con-

sider the case of stubborn agents who refuse to change their opin-

ions in a two-opinion voter model. They show that the mean

average opinion is only a function of the structure of the network

and the placement of the stubborn nodes. They then investigate

the optimal placement of these stubborn nodes. However, the

focus of all of these papers has been on static optimization, i.e.,

actions that are taken at a specific point in time. On the other

hand, social networks are naturally dynamic, i.e., their states are

time-varying, and it is natural to assume that actions prescribed

to affect them can also be dynamic. In this paper, we analyze

such optimal actions (henceforth referred to as controls) using

tools from optimal control theory.

Linear Optimal Control: In linear optimal control problems,

a controller seeks to optimize the time integration of a linear

objective depending on the states and inputs of a linear

dynamical system with linear bounded controls.

In the case where actions are not costly and the time hori-

zon is not fixed, the optimal control signal has a bang-bang

structure with a finite number of switches [35]–[37]. How-

ever, these results do not apply directly in the case with

costly actions and where the goal is not to drive the system to

a known state in minimum time. In contrast, our work takes a

step beyond those results and provides a context-specific

method for evaluating the relative influence value on a chan-

nel within a time horizon.

Optimal Control of Epidemic Spread and Diffusion: This

work bears a similarity with the literature on the optimal con-

trol of information spread, in that both aim to optimize a ter-

minal function subject to some spread dynamics. Most such

work uses compartmental epidemic models (e.g., SI [38],

[39]) and is thus dissimilar in dynamics to the one we con-

sider. Furthermore, we show that when opinions can take con-

tinuous values (instead of the finite fixed values assumed in

compartmental models), the optimal controls for influence

maximization are significantly different to the strategies

derived for information spread (which typically advocate

some form of maximal spreading at the start of the time inter-

val [39], [40]). The model also allows an even more explicit

incorporation of graph structure than metapopulation models,

e.g., [41], as their approximation breaks down when the popu-

lation of each patch/type is small, and therefore provides a

poor model for interactions at the scale of individuals.

Adversarial Sensor Network Deception: Finally, the problem

discussed in this paper has a direct analog in the optimal decep-

tion of a sensor network by an adversary, as discussed in [42]. In

this setting, a state-estimation sensor network [43] can bemisdir-

ected through local noise injection at a fixed number of points,

that will affect a subset of nodes in the vicinity. The optimal

locations and patterns for the noise to affect the conclusion of

the network will depend also on the dynamic information fusion

model of the sensor network and its relationship with the reach

of each of the noise injection points. This problem, too, will

require the same type of exogenous influence and endogenous

processing model as the opinion influence problem, as well as

having the same objective structure. Thus, any structural results

obtained will have direct implications for the adversary’s opti-

mal deception policy. The modeling approach employed in our

work is, to the best of our knowledge, novel for this setting.

In summary, our work integrates elements of the rich litera-

ture in linear consensus protocols, spectral graph theory, and

optimal control, and applies the synthesis to the problem of

resource allocation in advertising, achieving strong structural

guarantees and applied insights.

III. SYSTEM MODEL DESCRIPTION

In this section, we present our notation (Section III) and out-

line our system model (Section III) and its dynamics (Section

III). Then we outline the bounds on the actions of the influencer

(Section III) and describe their objective (Section III). We fin-

ish the section by presenting a technical assumption (Section

III) and by stating the overall problem (Section III).

A. Notation

n ¼ number of agents

m ¼ number of channels

xiðtÞ ¼ opinion of agent i at time t; i ¼ 1; . . . ; n
ukðtÞ ¼ utilization of channel k at time t; k ¼ 1; . . . ;m

umax
k ðtÞ ¼ maximum utilization of channel k at time t
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aij ¼ magnitude of effect agent j0s opinion on the opinion of
agent i

Ni ¼ neighbors of agent i in communication graph G
Hk ¼ set of agents within the reach of channel k
bik ¼ relative magnitude of the effect of utilization of chan-

nel k on agent i
eiðtÞ ¼ sum effect of other influences on agent i at time t

T ¼ terminal time

ckð�Þ ¼ cost of influence on channel k
r ¼ total resources of influencer over the time period

U ¼ set of feasible influence allocations

Jið�Þ ¼ value of opinion of agent i at time T to influencer

Jð�Þ ¼ value of opinion profile at time T to influencer

We use bold lower case letters to denote vectors and bold

upper case letters to denote matrices, ½n� to represent

f1; 2; . . . ; ng, and ha; bi to represent aTb. For a matrix W, we

denote the kth column of W as Wð:; kÞ, and the kth row of the

same asWðk; :Þ. Furthermore, we use wij to denote the ði; jÞth
element of the matrixW.

B. System Model

We consider a social systemwith n agents. The state/opinion

of agent i 2 ½n� at time t is denoted by xiðtÞ 2 R. Each agent

communicates with other agents based on an edge-weighted,

undirected, and connected communication graph G ¼
ðV;E;AÞ. The (non-negative) weight on an edge between

agents i; j 2 ½n�, which determines the relative influence agent

j has on agent i’s state update, is represented by aij, and the

matrix of such weights is represented by A. An agent j is said
to be a neighbor of agent i (and vice versa) if aij ¼ aji > 0
(see Fig. 2).3 The assumption of symmetric interaction weights,

that a difference of opinion can have the same magnitude effect

on both sides of an interaction, is common in the Influence

Maximization literature, most commonly being present in the

Independent Cascade (IC) model [28], [44], [45].

Remark 1. However, weighted directed communication

graphs can also be considered in our framework, in which

case some of our results apply to cases where the weighted

Laplacian of the graph has real eigenvalues.4 In particular,

this includes the set of quasi-strongly connected weighted

Directed Acyclic Graphs (DAGs).

At each time t, each agent updates its state based on a

weighted average of the difference of its current state from

those of its neighbors, as well as on an external influence that

will be described below, and a known drift signal (which may

be due to the influence of other competing influencers), which

we denote by eiðtÞ for i 2 ½n�.
An influencer aims to shape the opinion profile (i.e., the opin-

ion vector of all agents) at a fixed terminal time T according to

an objective function through the judicious use of particular

influence channels. Each channel of influence (e.g., advertising

medium) is limited in its reach, as it only affects a specific subset

of agents (denoted Hk for channel k). The structure of these m
influence channels is pre-specified, with the assumption that

influencing a channel only directly affects the members within

that channel. The influence exerted by the influencer on channel

i 2 ½m� at time t is denoted by the scalar uiðtÞ.
In this model, the effect of influence on a channel can differ

across agents within the channel, potentially even having

opposite effects. These effects are captured by the influence

gain, denoted by bik, which determines the linear relative gain

of influence of channel k 2 ½m� on agent i within that channel.

For example, if billboard advertising (say, channel k) has a

more positive effect on the opinion of individual i than adver-

tising on the radio (say, channel l), we will have bik > bil.
5 If

agent i is not within channel k, we define bik to be zero. With-

out loss of generality, we assume ui � 0 for i 2 ½m�, and

encode the possible negative effects of channel i on agent k
within its reach through the sign of bik. Stacking these values

into a matrix Bn�m captures the structure of the channels.

C. Dynamics

To understand the dynamics, we provide the following dis-

crete-time intuition: an agent i 2 ½n� constructs its change in

state in the time interval ðt; tþ DÞ based on the weighted dif-

ference between its own state and that of its neighbors, as well

as the external influence exerted on it in that time period and

the drift signal:

xiðtþ DÞ ¼

xiðtÞ þ D

�X
j2Ni

aijðxjðtÞ � xiðtÞÞ þ
X

k:i2Hk

bikukðtÞ þ eiðtÞ
�
:

This simply states that agents attempt to align their state/opinion

with that of their neighbors, and the influencer’s effort may act

as a hindrance to that process. Mathematically, it can be thought

of as a gradient descent algorithm implemented by agents seek-

ing to minimize disagreement (measured by a Laplacian poten-

tial) [22]. The above can be re-written to represent the classic

discrete-time consensus model [19] with influence:6

Fig. 2. Each agent takes into account the opinions of its neighbors in updating
its own opinion. The weight given by node i to the opinion of its neighbor j is a
measure of how much i trusts j’s appraisal. If agents i and j are not neighbors,
aij ¼ 0 by default. In our model, aij ¼ aji, i.e., trust is a symmetric relation ,
though our results apply even if that is not the case (see conditions in Remark 1).

3. While negative weight updates are conceivable, they will not be consid-
ered in this paper.

4. Lemma 1 and Theorem 1.1 carry over, as does a modification of the
water-filling procedure in Section IV. For specifics, see [46, Section VI].

5. Note that the magnitude of bik can be determined by comparing the size of
the effect of channel k on individual i’s opinion with that of one of i’s neighbors
having the same amount of difference in opinion with i. At scale, these orderings
and values can possibly be inferred from demographic information.

6. The results derived in this paper would also apply to the Friedkin and
Johnsen model of opinion updates [24] given uniform susceptibility to change
across agents.

ESHGHI et al.: SPREAD, THEN TARGET, AND ADVERTISE IN WAVES: OPTIMAL BUDGET ALLOCATION 753

Authorized licensed use limited to: University of Pennsylvania. Downloaded on June 09,2021 at 14:54:57 UTC from IEEE Xplore.  Restrictions apply. 



xiðtþ DÞ ¼
�
1� D

X
j2Ni

aij

�
xiðtÞ þ D

X
j2Ni

aijxjðtÞ

þ D

� X
k:i2Hk

bikukðtÞ þ eiðtÞ
�
:

Note also that, from this formulation, it is evident that the

influencer’s effect on the state of any individual is dissipative,

as their prior state is discounted by a factor of

ð1� D
P

j2Ni
aijÞ < 1 at every time-step.7

Subtracting xiðtÞ from both sides, dividing by D and taking

the limit as D goes to zero, we arrive at the following continu-

ous time agent-level dynamics:8

_xiðtÞ ¼
X
j2Ni

aijðxjðtÞ � xiðtÞÞ þ
X

k:i2Hk

bikukðtÞ þ eiðtÞ:

We let L be the weighted Laplacian matrix, where for all

i; j 2 ½n� such that i 6¼ j, lij ¼ �aij, and lii ¼
P

j2Ni
aij for

all i 2 ½n�. Stacking the n equations, we arrive at the following

system-level dynamics:

_xðtÞ ¼ �LxðtÞ þ BuðtÞ þ eðtÞ: (1)

We assume that the states/opinions at time 0 are known

(xð0Þ ¼ x0), however we will see that the value of the states at
time 0 has no direct bearing on our structural results.

D. Admissible Control Strategies

The total expenditure on all channels is bounded by r > 0,
which is the budget available to the influencer. This is cap-

tured through the following budget constraint:Z T

0

Xm
k¼1

ckðukðtÞÞ dt � r ðbudget constraintÞ; (2)

where ckð�Þ represents the time-independent cost-function

which maps the utilization of channel k to its associated cost

to the influencer.

Assumption 1. We assume that for all k 2 ½m�, ckð�Þ is

increasing, differentiable and concave as a function of channel

k’s utilization. Furthermore, without loss of generality, we

assume that ckð0Þ ¼ 0 for all k 2 ½m�.
This assumption models the diminishing cost of additional

utilization of a channel once it is already in use. The above

assumption allows the case where ck is linear (that is

ckðxÞ ¼ vkx). We assume that for all channels k 2 ½m�, the
influence that can be exerted on channel k at any time t is

bounded above by a time-varying value umax
k ðtÞ.9 This can

capture both physical limits on the influence (i.e., availability

of media) and limits on the susceptibility of agents to the influ-

ence. We impose the modest assumption that umax
k ðtÞ is differ-

entiable. Hence, we have that:

8k 2 ½m�; 0 � ukðtÞ � umax
k ðtÞ ðinfluence constraintÞ: (3)

We will restrict our analysis to control signals u that are piece-

wise continuous with only a finite number of discontinuities.10

We shall use U to denote the set of such controls that fulfill (3):

U ¼ fu : 0 � ukðtÞ � umax
k ðtÞ; k 2 ½m�; t 2 ½0; T �g:

In our model, employing channel k 2 ½m� at effort level u at

time t 2 ½0; T � incurs a cost of ckðuÞ, where for all k 2 ½m�,
ck : ½0;þ1Þ ! ½0;þ1Þ. Note that we assume that for all

k 2 ½m�, the cost function ckð�Þ is time-invariant.

E. Objective

The objective of the influencer is a function of the opinion

profile at a fixed time T . The nature of the function will depend
on the information aggregation method employed by the set of

individuals. We consider the most general case, where any

increase in the opinion of any particular individual at time T
(keeping all other opinions the same) is not detrimental to the

influencer. This is obviously the case in both political and mar-

keting campaigns. While our reasoning applies to a general

family of objective functions, we will give special consider-

ation to functions that model voting in an election between two

options (relevant in the political campaign setting) and

weighted averaging (relevant in estimating total returns from

marketing efforts and in the sensor network setting).

Assumption 2. The objective, JðxðT ÞÞ, is an increasing, dif-
ferentiable function of the n components of the vector of ter-

minal opinions xðT Þ.
In particular, we will elaborate on the application of our

results to a particular family of objective functions that are

separable in the elements of the vector of opinions, as follows:

JðxðT ÞÞ ¼
Xn
i¼1

JiðxiðT ÞÞ: (4)

Two specific types of separable functions are of particular

interest:

1) Linear Functions:

JiðxiðT ÞÞ ¼ pixiðT Þ; pi > 0; (5)

which model the simplest case, where the utility the influencer

gains from an individual has a linear relationship with its state

at time T . In the marketing example, this can model the

amount of sales as a simple function of an individual’s opinion

of a product. This is also a useful approximation in the adver-

sarial sensor network deception case where the utility for the

influencer is a simple function of a sensor’s report level. The

mapping of the election example to this utility is not direct:

7. This can be seen by looking at the explicit effect after two time-steps
(i.e., time tþ 2D), where the effect of direct influence exerted at time t, uðtÞ,
is multiplied by ð1� D

P
j2Ni

aijÞ : xiðtþ 2DÞ ¼ � � � þ D
P

k:i2Hk
bikukðtþ DÞþ

ð1� D
P

j2Ni
aijÞD

P
k:i2Hk

bikukðtÞ þ D2
�P

j2Ni

P
m:j2Hm

aijbjmumðtÞ
�þ . . .

8. While discrete-time dynamics are more commonly used for the model-
ing of opinions, discretization is typically a simplifying assumption for ana-
lytic purposes. In this paper, we work with the continuous-time dynamics
directly, which allows the use of mathematical tools new to the domain. How-
ever, all derived structures and insights for the continuous case can be discre-
tized and applied to the discrete-time case as well.

9. This rules out impulse controls. 10. This means, in particular, that the integral in (2) is well-defined.
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this can model the case where each agent votes with probabil-

ity pi, and if it does, chooses among two options with a proba-

bility that is linearly related to their opinion (i.e., they flip an

appropriately weighted coin). However, finding the correct

total weight of the coin to be considered depends on the

assumptions made by the modeler, and multiple normaliza-

tions may be defensible. This ambiguity leads to the definition

of a second type of utility for the specific case of the election

example.

2) Sigmoid Functions: Assume each individual i 2 ½n� has
to vote for one of two options (e.g., candidates, products,

policies), encoded by 0 and 1, at time T . Assume that the

influencer backs option 1 (without loss of generality). Each

individual is assumed to vote with probability pi > 0, and
to choose who to vote for among two options based on

whether their state at time T is above or below an agent-

specific threshold ui (which models the various biases for

and against an option). Thus, the utility gained from each

individual can be modeled using a Heaviside function with

a jump at ui, which is agent i’s vote. However, this utility

is discontinuous at xiðT Þ ¼ ui, which complicates analysis.

The sigmoid function:

JiðxiðT ÞÞ ¼ pi
1þ e�aiðxiðT Þ�uiÞ ; (6)

is a smooth approximation to the Heaviside utility, with the

closeness of the approximation being determined by the

choice of the parameter ai—the greater ai is, the faster the

transition. In the extreme of taking ai to infinity, this function

will indeed converge to the aforementioned Heaviside

function.

F. Technical Assumption

We now add a technical assumption that will be needed in

our arguments:

Assumption 3. There exists a j 2 ½n� such that
@JðzÞ
@zjðT Þ > 0

for all z 2 Rn.

Note that this is equivalent to saying there exists at least one

individual such that the influencer always values a marginal

increase in its state. That is, holding all opinions the same, any

increase in that agent’s opinion will be translated to a strict

increase in their likelihood of voting for the choice backed by

the influencer.11 The purpose of this assumption is to rule out

a pathological case where the necessity conditions for the opti-

mality of an allocation become so general that they apply to all

controls and are thus uninformative.

G. Problem Statement

We aim to characterize the control inputs uðtÞ that maxi-

mize JðxðT ÞÞ under the dynamics outlined in (1) and con-

straints (3) and (2). Mathematically, we state our problem as:

max
u2U

JðxðT ÞÞ
s:t: _xðtÞ ¼ �LxðtÞ þ BuðtÞ þ eðtÞ; xð0Þ ¼ x0 2 RnZ T

0

Xm
k¼1

ckðukðtÞÞ dt � r;

eðtÞ given:

Note that the above problem is non-convex in general owing

to the potentially non-convex objective function, as well as

the potentially non-convex budget constraint (when any of the

cið�Þ’s are strictly concave). In this paper, we solve it using

tools from optimal control theory. It should be observed that

the number of competing influence channels, m, and therefore

the number of optimization variables, can potentially be large.

These factors complicate naive approaches to solving the

problem.

We reformulate the problem with an auxiliary variable to

aid the analysis. We define the auxiliary function g such that,

gð0Þ ¼ 0; _gðtÞ ¼ �
Xm
k¼1

ckðukðtÞÞ: (7)

As can be seen, gðtÞ is the accumulated cost of the influence

up to time t. Thus, the budget constraint becomes gðT Þ � �r,
and the integral constraint has been transformed to a terminal

time one. So we can rewrite the optimization as:

max
u2U

JðxðT ÞÞ
s:t: _xðtÞ ¼ �LxðtÞ þ BuðtÞ þ eðtÞ; xð0Þ ¼ x0 2 Rn;

_gðtÞ ¼ �
Xm
k¼1

ckðukðtÞÞ; gðT Þ � �r;

eðtÞ given; gð0Þ ¼ 0:

(8)

IV. RESULTS

In this section, we outline the analytical structures of the opti-

mal controls. To show the nature of the results, we first explain

some necessary priors in Section IV. Then, we prove the exis-

tence of optimal controls (under some conditions) and identify

their structure using our main theorem in Section IV (with proofs

in Appendices A and B, respectively, which can be found at

10.1109/TNSE.2018.2873281). A refinement is presented for

the case of the linear objective Section IV that allows the direct

computation of the control input u and shows that the optimal

control is unique, while providing insights into the logic of the

allocation decision. Finally, the sigmoid approximation to voting

is covered in Section IV and an approximation to the optimal

control is presented.

A. Preliminaries

For an undirected, connected graph G, the weighted Lapla-

cian matrix L is real, symmetric, and positive semi-definite;

hence it has real, non-negative eigenvalues [47, page 13]. Thus,

L has an eigen-decomposition L ¼ QNQT , where Q is a real

11. This rules out Jð�Þ functions with stationary points, i.e., those for
which rzJðzÞ ¼ 0 for some z 2 Rn. For example, this rules out an objective
which is a sum of Heaviside functions.
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orthogonal matrix whose columns are the eigenvectors of L,
and N is the diagonal matrix of eigenvalues of L) [48, p. 393,
Theorem 8.1.1].12 The smallest eigenvalue of L is always zero,

its multiplicity is 1, and its associated eigenvector is 1ffiffi
n

p 1n,
where 1n ¼ ð1; . . . ; 1ÞT (as G is connected) [47, page 13].

We will order the eigenvalues of N smallest to largest

(�1 ¼ 0 < �2 � . . . � �n) and, therefore, column i 2 ½m� of
Q, Qð:; iÞ will be the ith eigenvector of L. This means that

Qð:; 1Þ ¼ 1ffiffi
n

p 1n.
We now state a lemma that shows that an optimal control u

for the main problem exists. We then state our main result

(Theorem 1) and present a subcase where the bound can be

significantly strengthened and the optimal control can be cal-

culated in open-loop (Theorem 1). We provide proofs of these

results in Appendices A and B, available in the online supple-

mental material, respectively.

B. Existence of Optimal Solutions and Structural Results for

the Optimal Control

We prove (in Appendix A, available in the online supple-

mental material, that optimal controls for (8), exist when

cið�Þ’s are linear.
Lemma 1. Optimal controls for problem (8) exist for linear

costs, i.e., ciðuiÞ ¼ viui for all i 2 ½m�.
We are now ready to state our main theorem. We will

provide results for a large natural class of channels that

we shall call disciplined. We first formally define the set of

disciplined channels I before stating the theorem:

Definition 1. The set of disciplined channels, I � ½m�, is
such that for all i 2 I , one of the two following conditions holds:

	 cið�Þ is strictly concave, hBð:; iÞ1ni 6¼ 0, and umax
i ðtÞ ¼

umax
i for all t.

	 cið�Þ is linear and the system ðL;LBð:; iÞÞ is controllable
[49, p. 144] (with umax

i ðtÞ being any differentiable

function).

Theorem 1. For all i 2 I :
1) Optimal controls are bang-bang, taking on their

maximum or minimum values at all times t (i.e.,

u�
i ðtÞ 2 fumax

i ; 0g).
2) The number of switches between these values is

bounded above:

a) In the general case, by one less than the number of

non-zero elements in fhQð:; jÞBð:; iÞignj¼1.

b) For JðxðT ÞÞ ¼ hp; xðT Þi, by the number of sign

variations in fPj
k¼1 skgnj¼1, where sj :¼ hQð:; jÞpi

hQð:; jÞBð:; iÞi.
An example of an optimal control with these characteristics

is provided in Fig. 3. The proof of this theorem is presented in

Appendix B, available in the online supplemental material.

This theorem means that the optimal strategy uses each

channel in waves (see Fig. 3), stopping between them to let

influence propagate. From a computational stand-point, this

result simplifies the space of possible optimal controls for

each channel, since the optimal control is characterized by the

bounded number of switching times for each channel. The

actual number of switches of each optimal control can be sig-

nificantly less than the fixed upper-bound of n� 1 (which can

in general be very high), as we will see in Section V.

Remark 2. The conditions in Definition 1 rule out patholog-

ical cases where the necessary conditions for optimality

derived from the Maximum Principle [37, page 182] cannot

directly determine the optimal value of the control (i.e., singu-

lar arcs [36, page 113] exist).

Remark 3. The set of disciplined channels may be a proper

subset of the set of channels (I 
 ½m�), in which case the

derived structure only applies to disciplined channels. This

means that even if ckð�Þ is non-concave or the conditions

around Bk in Definition 1 do not hold for some k, Theorem 1

will remain valid for disciplined channels. Note that optimal

controls for undisciplined channels may also abide by the

bang-bang structures stated in Theorem 1.

C. Water-Filling: Optimal Budget Allocation for Separable

Linear Objectives

In this section, for separable linear objectives, we will

derive a detailed cost-effectiveness metric for channel i’s utili-
zation that depends on the eigenvalues and eigenvectors of the

Laplacian (L), the channel influence gain vector (Bð:; iÞ), and
the weights of the linear objective (p). The variation of this

metric across time will result in hills and valleys that represent

the variations in the effectiveness of the channel across time.

Choosing a water-line for this topography (see Fig. 4), we will

show, leads to the description of a candidate control which

takes its maximum values when a hill is above water, and will

be set to zero when a valley is under water. This waterline is

varied using the bisection/binary search method so that the

cost of the total area above water matches the budget con-

straint (2). We will further show how this approach general-

izes for more varied objective functions.

From the proof of Theorem 1 in Appendix B, available in

the online supplemental material, we can define:

hiðtÞ ¼ h���ðtÞBð:; iÞi

¼
XN
j¼1

hQð:; jÞpihQð:; jÞBð:; iÞie��jðT�tÞ; (9)

Fig. 3. For a cið�Þ and Bð:; iÞ fulfilling the conditions of Theorem 1, the opti-
mal control uiðtÞ will be bang-bang, only taking its minimum or maximum
values and switching between them a bounded number of times. Thus, the
function can be fully described by the set of switching times ftigi, making
them easier to compute, store, and implement.

12. However, the reasoning below applies to any L that has real eigenval-
ues for the case of linear costs cið�Þ and a quasi-strongly connected communi-
cation digraph. For details, see [46, Section VI].
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where Qð:; jÞ is the jth eigenvector of the Laplacian matrix L
with associated eigenvalue �j, and p is the vector of weights

of the linear objective, i.e., JðxðT ÞÞ ¼ hp; xðT Þi, such that the
necessary condition for optimal controls in the concave cið�Þ
case becomes:13

u�
i ðtÞ ¼

umax
i ; if hiðtÞ > b�ðT Þ ciðu

max
i

Þ
umax
i

;

0; if hiðtÞ < b�ðT Þ ciðu
max
i

Þ
umax
i

;

?; if hiðtÞ ¼ b�ðT Þ ciðu
max
i

Þ
umax
i

;

8>>>><
>>>>:

(10)

and for the linear cið�Þ:

u�
i ðtÞ ¼

umax
i ðtÞ; if hiðtÞ > b�ðT Þvi;

0; if hiðtÞ < b�ðT Þvi;
?; if hiðtÞ ¼ b�ðT Þvi;

8<
: (11)

for some optimal a priori unknown parameter b�ðT Þ. All other
terms in (10) and (11) are explicitly computable without solving

the optimal control problem. Thus, determining b�ðT Þ will

determine uðtÞ for all t except for a finite, explicitly bounded

number of points (notice that the existence of singular controls

was ruled out in the proof of Theorem 1). However, as we shall

see in (A4) of the appendix, available in the online supplemental

material, b�ðT Þ > 0 if and only if
R T
0

Pm
k¼1 ckðukðtÞÞ dt ¼ r

This last equation is the budget constraint.

Define the equivalent of (10) and (11) as functions of a vari-

able b̂ðT Þ, an estimate for b�ðT Þ:

uiðt; b̂ðT ÞÞ ¼
umax
i ; if hiðtÞ > b̂ðT Þ ciðu

max
i

Þ
umax
i

;

0; if hiðtÞ < b̂ðT Þ ciðu
max
i

Þ
umax
i

;

?; if hiðtÞ ¼ b̂ðT Þ ciðu
max
i

Þ
umax
i

:

8>>>><
>>>>:

(12)

and for the linear cið�Þ:

uiðt; b̂ðT ÞÞ ¼
umax
i ðtÞ; if hiðtÞ > b̂ðT Þvi;

0; if hiðtÞ < b̂ðT Þvi;
?; if hiðtÞ ¼ b̂ðT Þvi:

8<
: (13)

One can see that in both cases, if b̂1ðT Þ > b̂2ðT Þ � 0,
uiðt; b̂2ðT ÞÞ � uiðt; b̂1ðT ÞÞ for all i and all t. This, along with

Assumption (1), leads to ci
�
uiðt; b̂2ðT ÞÞ

� � ci
�
uiðt; b̂1ðT ÞÞ

�
for all i and all t, culminating in:

Z T

0

Xm
i¼1

ci
�
uiðt; b̂2ðT ÞÞ

�
dt �

Z T

0

Xm
i¼1

ci
�
uiðt; b̂1ðT ÞÞ

�
dt: (14)

As a corollary, (14) holds with equality if and only if

uðt; b̂2ðT ÞÞ ¼ uðt; b̂1ðT ÞÞ for all t (excluding any switching

points). Thus, if

Z T

0

Xm
i¼1

ci
�
uiðt; b̂ðT ÞÞ

�
dt ¼ r; (15)

then uðt; b̂ðT ÞÞ ¼ u�ðtÞ also for all t. Therefore, we have the

following result:

Proposition 1. For the case of separable, linear objective

functions, i.e, JðxðT ÞÞ ¼ hp; xðT Þi, the unique optimal con-

trol can be explicitly calculated using a number of evaluations

of (15) that is logarithmic in the range of considered b̂ðT Þ’s.14
Using the process outlined above, we can use a simple

bisection algorithm to find b�ðT Þ and to solve the optimal

control problem using a single-shooting approach. b̂ðT Þ
is adjusted so as to find the root of

R T
0

Pm
i¼1 ci�

uiðt; b̂ðT ÞÞ
�
dt ¼ r. This significantly decreases the com-

plexity of calculating the optimal control, since instead of

evaluating and comparing potential optimal solutions that ful-

fill the necessary conditions in Theorem 1, one can simply

evaluate
R T
0

Pm
i¼1 ci

�
uiðt; b̂ðT ÞÞ

�
dt using (12) and (13) over a

number of iterations that is logarithmic in the range of b̂ðT Þ
under consideration to explicitly characterize the unique opti-

mal control.

The procedure outlined above is also instructive in under-

standing the relative importance of different channels at differ-

ent times graphically. In particular, we will be interested in

comparing umax
i hiðtÞ=ciðumax

i Þ for concave cð�Þ and hiðtÞ=vi
for linear cð�Þ with b̂ðT Þ (as in (12) and (13)). One can think of

Fig. 4. We demonstrate a case with two hiðtÞ=vi functions for the case of lin-
ear cið�Þ. Areas above the water-line (b̂ðT Þ) translate to uiðt; b̂ðT ÞÞ ¼ umax

i ðtÞ,
while those below translate to uiðt; b̂ðT ÞÞ ¼ 0. The amount of budget spent for
this b̂ðT Þ can thus be calculated from the resulting uiðt; b̂ðT ÞÞ, and so b̂ðT Þ
can be adjusted to find b�ðT Þ.

13. The question mark denoting the fact that PMP does not uniquely deter-
mine the optimal u�i at times t when ’iðt; uiÞ does not change with ui.

14. This proposition does not apply for the general JðxðT ÞÞ, as the equiva-
lent definition of hiðtÞ in (14) would have to replace p with ½@JðxÞ=@x�x¼x�ðT Þ,
which can only be evaluated with knowledge of the optimal terminal opinion
vector x�ðT Þ.
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the terms containing hiðtÞ as a topographic relief map, signify-

ing hills and valleys. b̂ðT Þ represents a water-line, below which

the valleys are flooded. The budget expenditure in this case is a

monotone function of the area above water (see Fig. 4). There-

fore, the algorithm outlined is equivalent to adjusting the

water-line so that the budget expenditure (evaluated as a func-

tion of the land above water) matches the budget constraint.

Furthermore, the water-filling procedure shows the relative

importance of channels over time with respect to external

influence. As the optimal water-level is a monotone decreas-

ing function of the budget available, one can see that the peaks

in umax
i hiðtÞ=ciðumax

i Þ and hiðtÞ=vi signify the time intervals

and channels that would be prioritized when the budget is

tight, while if the budget is increased, more and more channels

will be utilized at an increasing set of intervals. Therefore,

we can consider the explicitly computable result of

umax
i hiðtÞ=ciðumax

i Þ (for the linear cost case, hiðtÞ=vi) to be a

direct metric/ total order for the effect of advertising on chan-

nel i at time t on the outcome of the election, which we shall

henceforth call cost-effectiveness of a channel.

One can extract some more insight from the structure of this

metric to compare the relative importance of channels by con-

sidering (9) at extreme values of t:
Remark 4. If t � T (i.e., early on in the time horizon) and

T � 1
�2
, the deciding factor in comparing the cost-effective-

ness of channels is their total reach (e.g.,
Pn

j¼1 bji for channel
i) per unit cost; for example, for the linear cð�Þ case:

hiðtÞ
vi

 1

n

Xn
j¼1

pj

 ! Pn
j¼1 bji

vi

� �
; (16)

as 1
n

Pn
j¼1 pj is the same for all channels.

Proof. From Section IV, we know that �1 ¼ 0 <
�2 � � � � � �n, so when t � T and T � 1

�2
, then e��jðT�tÞ  0

for j � 2 and e��1ðT�tÞ ¼ e0 ¼ 1. Replacing these values, and

Qð:; 1Þ ¼ 1ffiffi
n

p 1n, in (9) completes the argument. &

Remark 5. However, if 1� t
T � 1

�n:T
(i.e., late on in the

time horizon), targeting (e.g., how well a channel is aligned

with the a priori likelihood of people to vote) is more impor-

tant than total reach; for example, for the linear cð�Þ case:
hiðtÞ
vi

 hp;Bð:; iÞi
vi

; (17)

Proof. When 1� t
T � 1

�n:T
, then e��jðT�tÞ  1 for all

j 2 ½n�. Replacing these values in (9) results in:

hiðtÞ ¼
XN
j¼1

hQð:; jÞpihQð:; jÞBð:; iÞi ¼ hpBð:; iÞi;

due to the orthonormality of the eigenvectors inQ and the def-

inition of an inner product. &

This is instructive, as it shows that at the start of a cam-

paign, cheap broadcast methods (that maximize total reach per

unit cost) would be preferable to costly (premature) targeting

of likely voters, while as election day approaches, the align-

ment of a channel with the likelihood of voting among its tar-

gets gradually increases in importance.

D. Separable Sigmoid Objective

In this case, as shown in Appendix B, available in the online

supplemental material, the equivalent hiðtÞ expression (9) will

feature a term ���ðT Þ, instead of p, that depends strongly on

jx�
i ðT Þ � uij, how far agent i is from changing their mind (6),

for all i. The further away x�
i ðT Þ is from ui (i.e., the farther they

are from changing their mind, or alternatively the more

convinced they are), the smaller the relevant ��
i ðT Þ. For a given

� � 1, define the set of late-deciders [17] under the optimal

advertising action u� to be L :¼ fj : jx�
jðT Þ � ujj < �g.

When L 6¼ ; (i.e., there are late deciders), we can use the

water-filling machinery in Section IV with the changes outlined

below to approximate the cost-effectiveness of channels and to

calculate the optimal allocation using the much faster method

described therein.

We define �� such that:

��j ¼ 0 for j =2 L;
ajpj
2 for j 2 L:

�

Then, the approximate cost-effectiveness metric of channel i
with linear cð�Þ becomes:

hiðtÞ
vi

¼ hQð:; jÞ��ihQð:; jÞBð:; iÞie��jðT�tÞ

vi
:

This confirms the practical intuition that identifying the people

who will decide late early in the campaign can delineate the

whole trajectory of the campaign.

V. SIMULATION STUDIES

In this section, we first study a simple example to show that

even in small networks, the optimal budget allocation across

channels can have complicated, sometimes counter-intuitive,

structures. Furthermore, we show that in many cases, the

bound derived from Theorem 1 grows much slower than the

number of agents, n. Then, we study the performance of our

algorithm on a real network derived from political discussions

between MIT students prior to the 2008 US general election,

and compare it to policies that use more simple centrality met-

rics that do not consider the temporal degrees of freedom of

advertising policies.

We first examine a network of 7 agents with linear objectives,

with p ¼ ð3%; 2%; 10%; 100%; 6%; 7%; 1%Þ. Note that under

these conditions, agent 4 is the only reliable voter, with all other

agents having small probabilities of voting. The connections

within the network are represented in Fig. 5; the off-diagonal ele-

ments of the Laplacian L are such that lij ¼ 1 if there is an edge
in the figure between nodes i and j and zero otherwise. Assume

two equal (linear) cost channels are available to the advertiser:

Channel 1, Bð:; 1Þ ¼ ð1;�1; 1; 0; 1; 0; 0ÞT has a positive impact

on agents 1, 3, and 5, but a negative impact on agent 2. It has no

effect on the likely voter, agent 4. In contrast, channel 2,

Bð:; 2Þ ¼ ð�1; 1; 0; 1; 0; 0; 0ÞT , has a positive effect on the

likely voter, but it has more limited effects on the rest of the

agents. We solve the optimal buget allocation problem in Fig. 6

using the waterfilling methodology of Section IV. As noted in
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Remarks 4 and 5, at times t � T ¼ 10, the cost-effectiveness of
the two equal cost channels is measured by (16) which is larger

for channel 1, even though it does not do a good job of targeting

the likely voter. However, for t close to T , we can see that the

cost-effectiveness ranking depends on the match between the

reach of the channel and the likelihood of agents to vote (17),

and therefore the cost-effectiveness of channel 2 is higher. This

optimal control is bang-bang with bounded numbers of transi-

tions, as proven in Theorem 1.

One important question, especially from a computational

point of view, is how tight the upper-bounds on the number of

switches are. The most general bound (Theorem 1.2.a) grows

with the number of agents in the system, potentially leading to

a large computational burden. On the other hand, knowing

���ðT Þ will allow us to use tighter bounds, like that in Theorem

1.2.b. We simulated 1000 random connected Erdos-Renyi

graphs with uniformly random linear objective functions for

the case of Bð:; 1Þ ¼ ð1; 01�ðn�1ÞÞT , and plotted the mean, var-

iance, and maximum value of the bound in Theorem 1.2.b as

the number of agents was varied. As can be seen in Fig. 7, this

latter bound is much smaller (around 10 for 200 agents), and

its growth with respect to the number of agents is very slow.

This is significant since, from an applied perspective, the

advertiser can enumerate and evaluate a much smaller set of

candidate optimal solutions, and yet can be reasonably sure

that the best such policy is globally optimal.

We now study the performance of our algorithm on a test

scenario derived from the MIT Social Evolution data-set [50].

In this data-set, among other data, the political opinions and

communication patterns of 84 MIT students are recorded in

the period prior to, and following, the 2008 US presidential

election. Furthermore, the living sector and year of the stu-

dents was recorded. We consider the problem of deciding how

the campaign of Barack Obama should have invested its

resources to disseminate campaign literature in order to guar-

antee the best electoral outcome. While this is admittedly a

stylized and somewhat simplistic, it adequately demonstrates

how the model could be specified and identified.

In particular, we focus on a social network derived from the

reported political discussions between students conducted on

2008-09-09 and 2008-10-19, the only two surveys conducted

before the November 4th election. We consider “discussion”

to be an undirected communication between individuals, and

thus we aggregate communications that are flagged by both

participants. However, we sum distinct communications

between two individuals to denote a stronger bond. This pro-

cess is used to generate the Laplacian communication matrix

L, including by normalizing discussions by time-frame

T ¼ 66 days. The discussion graph is plotted in Fig. 8.

We then calculate the channel matrix B for channels that

represent the 8 dorm floors and 5 seniority levels (freshman,

sophomore, junior, senior, graduate), leading to a total m of

13. The channels mapping to dorm floors capture possible

advertising on bulletin boards, for example, while the 5 senior-

ity-based channels could represent e-mail lists targeting

Fig. 6. (A) We plot the cost-effectiveness of the two channels over a time
horizon of T ¼ 10 days when they have equal cost (ciðuiÞ ¼ viui for i ¼ 1; 2
with v1 ¼ v2 ¼ 1). We then derive the water-level b̂ for r ¼ 11 (in green). (B)
The optimal water-level determines the optimal utilization rate of the two
channels at different times. As can be seen, the channel with the most reach
(channel 1) is prioritized at small t, and the one that is most aligned with the
likelihood to vote (channel 2) is prioritized late as the election draws near.

Fig. 7. We plot the upper-bounds on the number of switches of the optimal
resource allocation derived from Theorem 1 for 1,000 random Erdos-Renyi
graphs for a channel that only affects the first agent as the size of the network
is varied. The dashed bound is from Theorem 1.2.a, and can be seen to grow
with the number of agents. For a linear objective (Theorem 1.2.b), the gray
line (with the related standard deviation band) shows the mean bound on the
number of switches, while the dashed red line shows the empirical maximum
of the bound over 1,000 runs. We can see that both these values are signifi-
cantly smaller than the bound from Theorem 1.2.a and increase at a much
slower rate with the size of the network.

Fig. 5. A network of n ¼ 7 agents with m ¼ 2 influence channels. The lines
in solid black represent the underlying communciation network L. The blue
and red boxes delineate the two channels that are available for influence in
terms of agents affected (but not intensity).
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specific graduating years. The weight of the effect of each

channel is derived from the self-reported liberal or conserva-

tive initial bias of the individuals, as the effect of advertising

depends on its alignment with the values of the target [51]. In

this example, we consider the propagation of campaign litera-

ture targeted at liberals, and thus off-putting to conservatives.

This can model any of the wedge issues of the campaign (e.g.,

the Iraq war [52]). Thus, advertising can have a negative effect

on outcomes for the campaign, making some individuals less

likely to vote for the candidate. Thus, we assign a non-zero

value to bik if i is in the kth dorm floor/seniority group, with

the sign being determined by individual i’s self-described

“liberal” (from the perspective of the Obama campaign, posi-

tive) or “conservative” (respectively, negative) affiliation, and

the magnitude being determined by their self-described

strength of identification with that affiliation.15

Furthermore, and again for simplicity, we assume that

all the channels have a similar linear cost, v ¼ 1, and have

similar small effects on the voting intentions of participants

umax ¼ 0:01. The channels are also shown in Fig. 8.
We consider a linear objective for the campaign. While the

more complex sigmoid objective functions are a better model

for decision-making, we consider the simpler linear case for trac-

tability.Wemap the self-reported likelihood of voting of partici-

pants in September ’08 to a ½0; 1� scale, taking 5 equally spaced
values, and constituting the vectorp. While self-reported turnout

has been shown to be an unreliable predictor of voting behavior

[53], we operate under the reasonable assumption that more reli-

able information is not available to the political campaign. These

likelihoods of voting can be seen in Fig. 8.

Finally, we instantiate the opinions of individuals xð0Þ (repre-
senting their voting intentions, as viewed by the Obama cam-

paign) with the self-reported voting intention of individuals in

September ’08, which takes 8 values, mapped to values between

½�1; 1�. Again, for simplicity, we pool third-party voters with

undecided voters. A more realistic scenario with vectors of opin-

ions would be able to more accurately capture the diversity in

opinions, but would not be as instructive as the current example

for the performance of our policy and the resulting centralities.

These initial preferences can be seen in Fig. 8.

In Fig. 9, we show the water-fillling procedure and the result-

ing optimal utilization of the channels for this problem for a bud-

get of r ¼ 52. We observe that the optimal budget allocation

only uses three of the dorm floor channels, with time-variations

in the use of channels f290.2 and f290.4. This is somewhat

counter-intuitive given the significantly higher reach of the

seniority-based channels, which are unused by the optimal allo-

cation, while dorm floor f290.1, which only includes one solitary

individual, is used throughout the time period at the maximum

possible rate. However, as the cost of utilizing a channel is taken

to be proportional to its reach, f290.1 is utilized because it is

very effective relative to its cost.

To benchmark our results, we compared the results of the

optimal budget allocation policy on electoral outcomes to pol-

icies based on different types of static centralities: between-

ness centrality, eigen-centrality, Page-rank, and degree cen-

trality. For the comparison, we ranked channels according to a

Fig. 8. In this figure, political discussions between students are mapped as a graph, with the weight of links being derived from the frequency of discussions.
In the left-hand graph, nodes are colored according to the seniority of the students, while in the right-hand graph, they are colored in according to their residence,
which are the two determinants of advertising channels.

15. The mapping for bik within channel k was as follows: “Extremely con-
servative”:�1, “Conservative”:�0:66, “Slightly conservative”:�0:33,
“Moderate middle of the road”: 0, “Slightly liberal”:0.33, “Liberal”:0.66, and
“Extremely liberal”:1.
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channel-weighted sum of the centrality in question (to account

for possible negative effects of a channel on an individual),

and allocated our budget to the highest-ranked channels at the

maximum possible static rate until the exhaustion of our bud-

get (r ¼ 52). Table I summarizes the relative differences in

outcomes between the optimal dynamic budget allocation pol-

icy and the static benchmarks. We see that using our optimal

water-filling algorithm based on our novel cost-effectiveness

metric leads to a 26 percent increase in the expected number

of votes compared to the best static policy based on common

centrality measures, a significant improvement.

Note that due to our results outlined in Section IV, the total

budget does not affect the relative priority assigned to the

channels by either the optimal algorithm (as it does not change

the cost-effectiveness of channels) or the heuristics. Rather, it

determines how many of the channels with high priorities can

be used without going over the budget. The results presented

in Table I are representative in the regime where the budget is

a binding constraint in the choice of advertising channels.

VI. SUMMARY AND DISCUSSION

We consider the problem of optimally allocating a finite

budget over time across several advertising channels.

We showed, using Pontryagin’s maximum principle, that the

optimal allocation follows a bang-bang structure, in which we

either invest fully in a channel or not at all. In other words, to

maximize the effectiveness of our budget, we should invest

fully over a number of waves, and let the effect of the waves

propagate in between waves. Furthermore, we show that the

number of advertising waves during which we invest fully is,

in practice, much smaller than the number of agents in the net-

work. This result greatly facilitates the explicit computation of

the optimal allocation policy over time. Furthermore, we

showed that the exact optimal control can be calculated using

an efficient water-filling procedure for a linear objective.

From this water-filling procedure, we rigorously defined

“cost-effectiveness” as a metric for ranking and comparing

the influence of different channels at differing times on out-

comes. Finally, applying our results to the sigmoid approxima-

tion of the electoral campaign/voting model confirmed the

intuitive notion that identifying last-deciders determines the

campaign strategy.

These results can be generalized in various ways. The

notion of channel interaction in this work did not come with

any constraints on the presence or attention of the channel

members. Adding such a constraint can more clearly model

real-world interactions. Furthermore, the linear model of influ-

ence is also a constraint that may be relaxed to obtain more

general structures on influence control. Finally, this work

looked at a single issue where each agents opinion was repre-

sented with a scalar—the same methodology can be extended

to find optimal advertising strategies with vectors of opinions.
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