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BOUNDS ON THE SPECTRAL RADIUS OF DIGRAPHS FROM
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Abstract. The spectral radius of a directed graph is a metric that can only be computed when
the structure of the network is completely known. However, in many practical scenarios, it is not
possible to exactly retrieve the whole structure of the network; hence, the exact value of the spectral
radius is not computable. Even in these scenarios, it is typically possible to extract local structural
properties of a network using, for example, graph crawlers. In this paper, we develop a novel measure-
theoretic framework to upper and lower bound the spectral radius of a directed graph using local
structural information, in particular, using the counts of a collection of small subgraphs or motifs.
Our framework is based on recent results relating the multivariate moment problem with semidefinite
programming. Using these results, we develop a hierarchy of (small) semidefinite programs whose
solutions provide upper and lower bounds on the spectral radius of a directed graph using, solely,
subgraph and motif counts. We numerically validate the quality of our bounds using both random
and real-world directed graphs.
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1. Introduction. The underlying structure of many natural and artificial sys-
tems often consists of a large number of components interconnected via a complex
pattern of connections [1, 2, 3]. Examples of such complex systems include biologi-
cal [4, 5], brain [6, 7, 8], social [9, 10, 11, 12], and communication [13, 14, 15] networks,
to mention a few. In particular, the pattern of interconnections among these compo-
nents affects the global behavior of the overall system. In this direction, graph theory
provides powerful tools to characterize and analyze the structure and function of com-
plex networked systems (see, for example, [1] and the references therein). A common
approach to modeling complex networks is via synthetic random models, such as the
Erd\H os--R\'enyi random graph [16], the Watts--Strogatz small-world model [17], or the
Barab\'asi--Albert model [18], among many others [13]. Existing synthetic models have
been used to analyze, for instance, the behavior of many networked dynamical pro-
cesses, such as synchronization of coupled oscillators, network diffusion, or stochastic
spreading processes on networks (see [19] and the references therein for a thorough
exposition). A fruitful path to analyze the dynamics of networked processes exploits
the connection between network eigenvalues and dynamics. For example, the eigen-
values of the Laplacian matrix have a direct influence on network synchronization [20],
whereas the eigenvalues of the adjacency matrix can be used to characterize the speed
of spreading of epidemic processes in networks [21, 22, 23].

Even though network eigenvalues are of utmost importance, its computation in
large-scale networks is a very challenging problem [24]. On the one hand, the sheer
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526 XIMING CHEN, MASAKI OGURA, AND VICTOR M. PRECIADO

size of real-world networks makes this problem computationally challenging. On the
other hand, it is typically impossible to retrieve the whole structure of many real
networks due to privacy and/or security constraints. In contrast, it is usually feasible
to extract local samples of the network structure in the form of ego-networks [25] or
subgraph counts [5, 26, 27, 28] using graph crawlers. It is, therefore, of interest to
analyze the role of local structural samples on the global eigenvalue spectrum of a
complex network.

We find in the literature many works aiming to upper and lower bound the spectral
radius of a graph from local structural information [29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40]. In [29] and [30], the authors derived an upper bound on the spectral radius
of a matrix from its symmetric and skew-symmetric components. Merikoski and
Virtanen [33] provided bounds on the sum of selected eigenvalues using the trace and
the determinant. Instead of bounding the eigenvalues of arbitrary square matrices, the
works [31, 32, 36] provide lower bounds on the spectral radius of general nonnegative
matrices. Most of these bounds are based on the traces of the matrix and/or its
second power. In [34], the authors use the traces of even-order powers of a matrix to
provide upper bounds on the spectral radius of matrices with real spectrums. In [38],
the authors obtained lower bounds on the spectral radius of both real and complex
matrices using trace information. In [39, 40], the authors bound the spectral radius
of an undirected graph using subgraph counts. Similar results were obtained for the
spectral gap of the Laplacian matrix in [41, 42].

In this paper, we develop a measure-theoretic framework to obtain upper and
lower bounds on the spectral radius of large directed graphs using counts of small
subgraphs. More specifically, by exploiting recent results in the multidimensional
moment problem [43], we propose a hierarchy of small semidefinite programs [44]
providing converging sequences of upper and lower bounds on the spectral radius. We
numerically show that our framework provides accurate upper and lower bounds in
real-world directed networks, as well as random synthetic digraphs.

The rest of the paper is organized as follows. In section 2, we introduce certain
notions from algebraic graph theory used in our derivations. In section 3, we relate the
subgraph counts of a directed graph with the number of closed walks (subsection 3.1),
as well as the so-called spectral moments (subsection 3.2). We then introduce the
truncated K-moment problem from functional analysis (subsection 3.3), which we
then use to lower and upper bound the spectral radius (subsections 3.4 and 3.5,
respectively). Furthermore, in section 4, we propose a refined approach to find more
accurate bounds on the spectral radius by analyzing the skew-symmetric part of the
adjacency matrix. We numerically validate the quality of our bounds using randomly
generated directed graphs, as well as real networks in section 5. We conclude our
paper in section 6.

2. Notation and preliminaries. Throughout the paper, we use bold and
uppercase letters to represent vectors and matrices, respectively. For a (real or com-
plex) vector x, we denote its ith element and 1-norm as xi and | x| =

\sum n
i=1 | xi| , respec-

tively. The cardinality of a set \scrS is denoted by | \scrS | . We denote by [n] the set of integers
from 1 to n. Given nonnegative integers r and n, we define \BbbN n

r = \{ x \in \BbbN n : | x| \leq r\} .
We use M \succeq 0 to indicate that a symmetric matrix M is positive semidefinite.

Let G = (\scrV , \scrE ) be a directed graph (digraph) with vertex-set \scrV = [n] and edge-
set \scrE \subseteq \scrV \times \scrV . The order of a graph is defined as the number of its vertices. A
graph G is said to be undirected if (i, j) \in \scrE implies (j, i) \in \scrE for all i, j \in \scrV . The
out-neighborhood of vertex i \in \scrV is defined as \scrN +

i = \{ j \in \scrV : (i, j) \in \scrE \} . Similarly, we
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BOUNDS ON THE SPECTRAL RADIUS OF DIGRAPHS 527

define the in-neighborhood of vertex i as \scrN  - 
i = \{ j \in \scrV : (j, i) \in \scrE \} . A walk of length k

in G is defined as an ordered sequence of vertices (i0, i1, . . . , ik) with (i\ell , i\ell +1) \in \scrE for
all \ell = 0, . . . , k  - 1. When the vertices in the walk are distinct, then we call the walk
a path. If i0 = ik, the walk is said to be closed ; otherwise, the walk is said to be open.
We say that a vertex i \in \scrV has a self-loop if (i, i) \in \scrE . A graph contains a multiedge
if there is any directed edge appearing more than once in \scrE . A digraph is said to be
simple if the digraph does not have self-loops or multiedges. In the rest of the paper,
we assume that the digraph under consideration is simple. We say that Gs = (\scrV s, \scrE s)
is a subgraph of G, denoted by Gs \subseteq G, if \scrV s \subseteq \scrV and \scrE s \subseteq \scrV s\times \scrV s satisfies \scrE s \subseteq \scrE . A
subgraph Gs is a bidirected edge if \scrV s = \{ i, j\} and \scrE s = \{ (i, j), (j, i)\} , where i, j \in \scrV .
A subgraph Gs is a directed triangle if \scrV s = \{ i, j, k\} and \scrE s = \{ (i, j), (j, k), (k, i),
where i, j, k \in \scrV \} .

A digraph G can be represented by an adjacency matrix A \in \BbbR n\times n, whose entries
are defined as [A]ij = 1 if (j, i) \in \scrE , and [A]ij = 0 otherwise. Particularly, if the
graph is undirected, then A = A\top and all its eigenvalues are real. When the digraph
is simple, all the diagonal entries of A are zero. In what follows, we use \lambda 1, . . . , \lambda n to
denote the eigenvalues of A. The eigenvalue spectrum of A is denoted by \tts \ttp \tte \ttc (A) =
\{ \lambda i\} ni=1. Moreover, the real part (respectively, imaginary part) of \lambda i is denoted by
\sigma i (respectively, \omega i). Without loss of generality, we assume | \lambda 1| \leq \cdot \cdot \cdot \leq | \lambda n| . The
spectral radius of A is defined as | \lambda n| . Furthermore, we denote \omega max(A) = maxi | \omega i| .

Two directed subgraphs, Gs, Gh \subseteq G, are said to be isomorphic [45], denoted
by Gs \simeq Gh, if there exists a bijection f : \scrV s \rightarrow \scrV h such that (u, v) \in \scrE s if and
only if (f(u), f(v)) \in \scrE h for all u, v \in \scrV s. When Gs and Gh are nonisomorphic,
we write Gs \not \simeq Gh. In particular, when \scrV s = \scrV h, the bijection f is called an auto-
morphism and the two directed subgraphs Gs and Gh are said to be automorphic,

denoted by Gs
a\simeq Gh. Consequently, the \simeq relation is an equivalence relation on the

set of directed subgraphs of the same order, i.e., it classifies all possible directed sub-
graphs into equivalent classes. Based on these notions, we define the isomorphic group
(respectively, automorphic group) of a directed subgraph Gs \subseteq G by \ttI \tts \tto (Gs, G) =

\{ Gh \subseteq G : Gh \simeq Gs\} (respectively, \ttA \ttu \ttt \tto (Gs, G) = \{ Gh \subseteq G : Gh
a\simeq Gs\} ). Given a

directed subgraph Gs \subseteq G, the count of Gs is defined by

\ttC \tto \ttu \ttn \ttt (Gs, G) =
| \ttI \tts \tto (Gs, G)| 
| \ttA \ttu \ttt \tto (Gs, G)| 

.

A digraph G is said to be strongly connected if there exists a path between every
pair of vertices in G. A digraph G is said to be weakly connected if replacing all
of its directed edges in \scrE with undirected edges results in a connected (undirected)
graph. Finally, let \Xi s be the set of weakly connected digraphs of order s. We denote
by \Omega s \subseteq \Xi s the set of nonisomorphic strongly connected digraphs of order s.

3. Analysis of the spectral radius using subgraph counts. In the following
two subsections, we will establish a connection between the spectral moments of G
and the counts of certain subgraphs. In subsection 3.3, we will exploit recent results
regarding the existence of measures with a given sequence of moments to derive upper
and lower bounds on the spectral radius of the graph in terms of these subgraph counts
(presented in subsection 3.4). These bounds will be further refined in subsection 4.

3.1. From subgraphs to closed walks. The eigenvalues of the adjacency ma-
trix of a digraph are closely related to the walks within the digraph, as stated in the
following lemma.
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528 XIMING CHEN, MASAKI OGURA, AND VICTOR M. PRECIADO

Lemma 1 (see [46, section 6.5.2]). Let A be the adjacency matrix of a simple
digraph G. Given a positive integer k, Tr(Ak) is equal to the total number of closed
walks of length k in G.

Hereafter, we derive a relationship between the Tr(Ak) and the counts of sub-
graphs of different sizes. To illustrate the idea behind our approach with a simple
case, let us decompose Tr(A2) (i.e., k = 2) as follows:

(3.1) Tr(A2) =

n\sum 
i=1

[A2]ii =

n\sum 
i=1

n\sum 
j=1

[A]ij [A]ji =
\sum 

i,j : (i,j),(j,i)\in \scrE 

1.

Note that the last term is counting (twice) the number of bidirected-edge subgraphs,
i.e., pairs of vertices connected by two directed edges with reciprocal directions. For
clarity, let us also consider the case k = 3. In this case, we can decompose the trace
as

(3.2) Tr(A3) =

n\sum 
i=1

[A3]ii =
\sum 

i,j,k : (i,j),(j,k),(k,i)\in \scrE 

1.

Therefore, Tr(A3) is equal to (three times) the number of directed triangles in G.
More generally, for given k \in \BbbN , we prove the following theorem.

Theorem 2. Consider a (simple) digraph G with adjacency matrix A. For all\widehat G \in \Omega s and all positive integers k, we define \eta ( \widehat G, k) as the number of closed walks of

length k in \widehat G visiting all the edges of \widehat G at least once. Then the following holds:

(3.3) Tr(Ak) =

k\sum 
s=2

\sum 
\widehat G\in \Omega s

\eta ( \widehat G, k) \ttC \tto \ttu \ttn \ttt ( \widehat G,G).

Proof. See Appendix A.

Based on Theorem 2, we can fill a table with the values of \eta ( \widehat G, k) for different
values of k (see Figure 3.1). The rows in this table are indexed by those subgraphs
involved in the computation of the traces up to the fifth power. The coefficients in
this table can then be used to compute Tr(Ak) for k \leq 5, as a linear combination
of the counts of the subgraphs plotted in the table. For example, from the first row
of the table, we infer that Tr(A2) is equal to two times the count of bidirected-edge

subgraphs. In other words, we have that \eta ( \widehat G, 2) = 2, where \widehat G \in \Omega 2 is the bidirected-
edge subgraph. Similarly, from the second row, we infer that Tr(A3) equals three

times the count of directed triangles. That is, Tr(A3) = 3 \times \ttC \tto \ttu \ttn \ttt ( \widehat G,G), in which

\eta ( \widehat G, 3) = 3 and \widehat G \in \Omega 3 is the directed triangle subgraph.

3.2. From subgraph counts to spectral moments. In this subsection, we
derive a relationship between closed walks in G and the power sums of the eigenvalues
in A. To achieve this goal, we first introduce some notions from probability theory.
Let \mu be a measure on \BbbR n. The support of \mu , denoted by Supp(\mu ), is defined as
the smallest closed set C \subseteq \BbbR n such that \mu (\BbbR n \setminus C) = 0 [47]. The measure \mu is
called r-atomic if | Supp(\mu )| = r, i.e., a discrete set of cardinality r. The kth moment
of an \BbbR -valued random variable x is defined as \BbbE [xk] =

\int 
\BbbR xkd\mu x, where \mu x is the

corresponding probability measure of x. Given an \BbbR n-valued random variable x and
an n-dimensional vector of integers \bfitalpha \in \BbbN n, we let x\bfitalpha =

\prod n
i=1 x

\bfitalpha i
i . Subsequently,
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equals

mab (A) =

\int 
\BbbR 

\int 
\BbbR 
xayb

1

n

n\sum 
i=1

\delta (x - \sigma i) \delta (y  - \omega i) dxdy

=
1

n

n\sum 
i=1

\biggl[ \int 
xa\delta (x - \sigma i) dx

\biggr] \biggl[ \int 
yb\delta (y  - \omega i) dy

\biggr] 

=
1

n

n\sum 
i=1

\sigma a
i \omega 

b
i ,

where \sigma i and \omega i are the real and imaginary parts of the ith eigenvalue of A, respec-
tively. Since Tr(Ak) equals the sum of the kth powers of the eigenvalues of A, we
have that

Tr
\bigl( 
Ak

\bigr) 
=

n\sum 
i=1

(\sigma i + j\omega i)
k
=

n\sum 
i=1

k\sum 
r=0

\biggl( 
k

r

\biggr) 
jr\omega r

i \sigma 
k - r
i

=

n\sum 
i=1

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s \omega 2s

i \sigma k - 2s
i

+ j

n\sum 
i=1

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s+ 1

\biggr) 
( - 1)s \omega 2s+1

i \sigma k - 2s+1
i

=

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s

n\sum 
i=1

\omega 2s
i \sigma k - 2s

i

+ j

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s+ 1

\biggr) 
( - 1)s

n\sum 
i=1

\omega 2s+1
i \sigma k - 2s+1

i

=

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s nm2s,k - 2s(A).

Notice that the imaginary term vanishes in the last equality, since Tr
\bigl( 
Ak

\bigr) 
is a purely

real quantity.

Combining Theorem 2 and (3.6), we have that

(3.7)

k\sum 
s=2

\sum 
\widehat G\in \Omega s

\eta ( \widehat G, k) \ttC \tto \ttu \ttn \ttt ( \widehat G,G) =

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s nmk - 2s,2s(A)

for all k \in \BbbN . This expression allows us to directly relate the moments of the spectral
measure of A to the counts of certain subgraphs in G.

3.3. \bfitK -moment problem. In many practical applications, such as the analysis
of large-scale social networks, we do not have access to the whole topology of the graph
G. Therefore, it is not possible to explicitly compute the eigenvalues of A. However, it
may be possible to retrieve local structural information in the form of subgraph counts
by crawling the network (see, for example, [26, 48, 49] and the references therein).
Since in this situation it is not possible to exactly compute all the eigenvalues of A,
it would be interesting to have tools allowing us to infer spectral information, such
as bounds on eigenvalues, from the counts of small subgraphs in G. This is the main
aim of this paper.
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As we will show below, the counts of certain subgraphs can be used to constrain
the moments of the spectral measure, which can then be used to find bounds on the
spectral radius. In particular, from the counts of certain subgraphs of order less than
or equal to k, we can write down an equality constraint for linear combinations of
spectral moments using (3.7). However, it may be possible to find many different
spectral measures (with different supports) satisfying the linear constraints in (3.7).
In what follows, we will exploit recent results in the multidimensional moment problem
[43] to compute outer and inner bounds on the set of all possible spectral supports.
This result will directly provide us with upper and lower bounds on the spectral radius
of A.

To explain our approach, we first need to introduce the K-moment problem [43]
and related notions. A sequence y = \{ y\bfitalpha \} indexed by \bfitalpha \in \BbbN n is called a multi-
sequence. We will use multisequences to index the moments of \BbbR n-valued random
variables. In particular, given a \BbbR 2-valued random variable x \sim \mu and an index
\bfitalpha = [a, b]\top \in \BbbN 2, we will use the notation y\bfitalpha = yab to denote the \bfitalpha -moment of \mu ,

i.e., yab = \BbbE [x[a,b]\top ] =
\int 
\BbbR 2 x

aybd\mu (x, y).

Definition 1. Let K be a closed subset of \BbbR n. Let yn,\infty = \{ y\bfitalpha \} \bfitalpha \in \BbbN n be an
infinite real multisequence. A measure \mu on \BbbR n is said to be a K-representing measure
for yn,\infty if

(3.8) y\bfitalpha =

\int 
\BbbR n

x\bfitalpha d\mu (x) for all \bfitalpha \in \BbbN n

and

(3.9) \ttS \ttu \ttp \ttp (\mu ) \subseteq K.

If yn,\infty has a K-representing measure, we say that yn,\infty is K-feasible. Similarly,
a finite real multisequence yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n,| \bfitalpha | \leq 2r is said to be K-feasible if there
exists a measure \mu with \ttS \ttu \ttp \ttp (\mu ) \subseteq K such that (3.8) holds for all \bfitalpha \in \BbbN n

2r.

In this paper, we are interested in the case when K is characterized by polynomial
inequalities, as stated below.

Definition 2. A set K \subseteq \BbbR n is called a semialgebraic set if there exist m poly-
nomials gi : \BbbR n \rightarrow \BbbR such that

(3.10) K = \{ x \in \BbbR n : gi(x) \geq 0 for all i \in [m]\} .

A necessary and sufficient condition to determine whether a finite multisequence
is K-feasible, restricted to the case when K is both semialgebraic and compact, can be
stated in terms of linear matrix inequalities involving moment matrices and localizing
matrices, defined below.

Definition 3 (see [43]). Let yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n
2r

be a finite real multisequence.
The moment matrix of yn,2r, denoted by Mr(yn,2r), is defined as the real matrix
indexed by \BbbN n

r and has the entries

(3.11) [Mr(yn,2r)]\bfitalpha ,\bfitbeta = y\bfitalpha +\bfitbeta 

for all \bfitalpha ,\bfitbeta \in \BbbN n
r .

In this paper, we consider a particular order while indexing the entries of the
moment matrix, as described below. Consider x = [x1, . . . , xn]

\top , and let

\scrM = \{ 1, x1, . . . , xn, x
2
1, x1x2, . . . , x

2
n, . . . , x

r
1, x

r - 1
1 x2, . . . , x

r
n\} 
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be the set of monomials with degree up to r, written in degree-lexicographic order.
The cardinality1 of \scrM is given by

\bigl( 
n+r
n

\bigr) 
. Given an \BbbR n-valued random variable x,

suppose that yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n
2r

is a moment sequence of x, i.e., y\bfitalpha = \BbbE [x\bfitalpha ] for all
\bfitalpha \in \BbbN n

2r. Then, according to Definition 3, the moment matrix of yn,2r is expressed
entrywise by (3.11). In this case, we have

[Mr(yn,2r)]\bfitalpha ,\bfitbeta = y\bfitalpha +\bfitbeta = \BbbE [x\bfitalpha x\bfitbeta ]

for all \bfitalpha ,\bfitbeta \in \BbbN n
r . The right-hand side of the above equality can be viewed as taking

the expectation of the product between the \bfitalpha th and the \bfitbeta th monomial in \scrM . We
use degree-lexicographic ordering to locate these moments inside the moment matrix.
Consequently, the exponent of the monomials in \scrM index the columns and rows in
Mr(yn,2r), as shown in the example below.

Example 1. Let n = 2, r = 1, and y2,2 = \{ y00, y01, y10, y11, y02, y20\} . Suppose
\bfitalpha = [0, 1]\top and \bfitbeta = [1, 0]\top ; then [M1 (y2,2)]\bfitalpha ,\bfitbeta = y11. Moreover, according to
Definition 3, the moment matrix of y2,2 is

M1 (y2,2) =

\left[   \BbbE 
\bigl[ 
x[00]\intercal x[00]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[00]\intercal x[10]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[00]\intercal x[01]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[10]\intercal x[00]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[10]\intercal x[10]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[10]\intercal x[01]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[01]\intercal x[00]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[01]\intercal x[10]\intercal 

\bigr] 
\BbbE 
\bigl[ 
x[01]\intercal x[01]\intercal 

\bigr] 
\right]   

=

\left[   y00 y10 y01

y10 y20 y11

y01 y11 y02

\right]   .

The localizing matrix of a multisequence yn,2r with respect to a polynomial g :
\BbbR n \rightarrow \BbbR is defined as follows.

Definition 4. Consider a polynomial of degree v, g(x) =
\sum 

\bfitgamma \in \BbbN n
v
u\bfitgamma x

\bfitgamma , and a

finite multisequence yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n
2r
. The localizing matrix of yn,2r with respect to

g, denoted by Lr(g,yn,2r), is defined by the real matrix2

(3.12) [Lr(g,yn,2r)]\bfitalpha ,\bfitbeta =
\sum 
\bfitgamma \in \BbbN n

v

u\bfitgamma y\bfitgamma +\bfitalpha +\bfitbeta 

for all \bfitalpha ,\bfitbeta \in \BbbN n
r .

Example 2. Consider Example 1 with n = 2 and r = 1. Suppose that g(x) =
a  - x1 + x2

2; then u = \{ u00, u10, u02\} with u00 = a, u10 =  - 1, u02 = 1. Subsequently,
according to (3.12), L1(g,y2,2) equals

L1(g,y2,2) =

\left[  ay00  - y10 + y02 ay10  - y20 + y12 ay01  - y11 + y03
ay10  - y20 + y12 ay20  - y30 + y02 ay11  - y21 + y13
ay01  - y11 + y03 ay11  - y21 + y13 ay02  - y12 + y04

\right]  .

Hereafter, whenever clear from the context, we adopt the shorthand notation Mr

to represent Mr (yn,2r), and Lr(g) to represent Lr(g,yn,2r).
A necessary and sufficient condition for a finite multisequence y = \{ y\bfitalpha \} \bfitalpha \in \BbbN n

r

being K-feasible is stated below.

1The cardinality of the set \scrM can be derived by a star-and-bar argument in combinatorial
mathematics; see, for example, [47].

2As described above, the elements of this matrix are ordered using degree-lexicographic ordering
of \bfitalpha and \bfitbeta .
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Theorem 4 (see [43]). Let K \subseteq \BbbR n be a semialgebraic set defined by (3.10) and

v = maxj\lceil deg(gj)2 \rceil . Given a finite multisequence yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n
2r
, there exists a

\ttr \tta \ttn \ttk (Mr - v)-atomic K-representing measure for yn,2r if and only if

(3.13)
Mr(yn,2r) \succeq 0, and Lr - v(gj ,yn,2r) \succeq 0 for all j \in [m],

\ttr \tta \ttn \ttk (Mr(yn,2r)) = \ttr \tta \ttn \ttk (Mr - v(yn,2r)).

In addition to this theorem, we present a corollary that is useful in the develop-
ment of our framework.

Corollary 1. Let K \subseteq \BbbR n be a semialgebraic set defined as in (3.10) and v =

maxj\lceil deg(gj)2 \rceil . Given a finite multisequence yn,2r = \{ y\bfitalpha \} \bfitalpha \in \BbbN n
2r
, if yn,2r is K-feasible,

then

(3.14) Mr(yn,2r) \succeq 0, and Lr - v(gjyn,2r) \succeq 0 for all j \in [m].

Based on Theorem 4, one can verify whether a given multisequence is K-feasible
by verifying the positive semidefiniteness of finitely many matrices. In the next sub-
section, we make use of Theorem 4 to provide upper and lower bounds on spectral
radius of a directed graph given counts of subgraphs contained in G up to order r.

3.4. Lower bounds using the \bfitK -moment problem. In this subsection, we
aim to obtain upper and lower bounds for the spectral radius of A by leveraging
the connection between subgraph counts and the spectral moments of G, as shown
in (3.7). To obtain a lower bound on the spectral radius, we use the theory behind the
K-moment problem to characterize all K-feasible multisequences, y2,d = \{ y\bfitalpha \} \bfitalpha \in \BbbN 2

d
,

for particular choices of K and integer3 d. Following this idea, we next present
necessary conditions for the existence of a spectral measure supported on K.

As shown in (3.7), the moments of a (spectral) measure must obey linear con-
straints imposed by the counts of certain subgraphs in G. In other words, if a multi-
sequence y2,d is a feasible spectral moment sequence, then there exists a spectral
measure \mu A such that y\bfitalpha = \BbbE \mu A

[x\bfitalpha ] for all \bfitalpha \in \BbbN 2
d (see Definition 1). Furthermore,

according to (3.6), the entries of the sequence y2,d must satisfy the linear constraints

(3.15)

k\sum 
s=2

\sum 
\widehat G\in \Omega s

\eta ( \widehat G, k) \ttC \tto \ttu \ttn \ttt ( \widehat G,G) = n

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s yk - 2s,2s

for k \in [d], where the left-hand side is a function of the counts of certain subgraphs
of order up to d.

In addition to the above linear constraint, we notice that \{ \lambda i\} ni=1 are the eigenval-
ues of an adjacency matrix and that the eigenvalue spectrum of A is symmetric with
respect to the real axis in the complex plane. Therefore, the moments of a spectral
measure must satisfy

(3.16) yab = 0 for b odd.

Furthermore, when a and b are both even, we have that mab(A) = 1
n

\sum n
i=1 \sigma 

a
i \omega 

b
i \geq 0.

Therefore, the moments of a spectral measure must also satisfy

(3.17) yab \geq 0 for a and b even.

3As will be shown in later sections, the integer d represents the maximum size of all subgraphs
whose counts are used in our computation for upper or lower bounds on \lambda n.
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Let us define r = \lfloor d2\rfloor . In order to ensure that y2,d is a feasible spectral moment
sequence, the moment matrix defined by

(3.18) [Mr]\bfitalpha \bfitbeta = y\bfitalpha +\bfitbeta for \bfitalpha ,\bfitbeta \in \BbbN 2
r

must be positive semidefinite according to Corollary 1. Furthermore, since A is entry-
wise nonnegative, the spectral radius of A equals \lambda n according to Perron--Frobenius
theory [50]. This also implies that \omega i \leq \rho for all i \in [n] and \rho = \lambda n. Consequently,
the support of the spectral measure of A is contained in the square

S = \{ x \in \BbbR 2 : x1 \in [ - \rho , \rho ], x2 \in [ - \rho , \rho ]\} .

Let x = [x1, x2]
\top and define the polynomials g1(x) = \rho  - x1, g2(x) = x1 + \rho , g3(x) =

\rho  - x2, and g4(x) = x2 + \rho . The set S can be defined by

S = \{ x \in \BbbR 2 : gi(x) \geq 0 for i \in [4]\} ,

which is both compact and semialgebraic. According to Corollary 1, the localizing
matrices of y2,d with respect to \{ gi\} i\in [4] must be positive semidefinite. These matrices
are given, entrywise, by

(3.19) [Lr(g1)]\bfitalpha \bfitbeta = \rho y\bfitalpha +\bfitbeta  - y\bfitalpha +\bfitbeta +[1,0]\top ,

(3.20) [Lr(g2)]\bfitalpha \bfitbeta = \rho y\bfitalpha +\bfitbeta + y\bfitalpha +\bfitbeta +[1,0]\top ,

(3.21) [Lr(g3)]\bfitalpha \bfitbeta = \rho y\bfitalpha +\bfitbeta  - y\bfitalpha +\bfitbeta +[0,1]\top ,

(3.22) [Lr(g4)]\bfitalpha \bfitbeta = \rho y\bfitalpha +\bfitbeta + y\bfitalpha +\bfitbeta +[0,1]\top 

for\bfitalpha ,\bfitbeta \in \BbbN 2
r. Therefore, the moment sequence y2,d of the spectral measure of a matrix

with spectral radius \rho must satisfy (3.15)--(3.17), and the moment and localizing
matrices defined in (3.18)--(3.22) must be positive semidefinite.

Remark 1. Notice that, since | \lambda i| \leq \rho for all i \in [n], the support of the spectral
measure is also contained in the circle

Sc = \{ [x, y]\top \in \BbbR 2 : x2 + y2 \leq \rho 2\} .

Defining gc = \rho 2  - x2  - y2, we have that Sc = \{ [x, y]\top \in \BbbR 2 : gc([x, y]
\top ) \geq 0\} .

Therefore, the localizing matrix with respect to gc of the moment sequence y2,d,
given by

(3.23) [Lr(gc)]\bfitalpha \bfitbeta = \rho 2y\bfitalpha +\bfitbeta  - y\bfitalpha +\bfitbeta +[2,0]\top  - y\bfitalpha +\bfitbeta +[0,2]\top ,

must satisfy Lr - 1(gc) \succeq 0 for y2,d to be a valid moment sequence of the spectral
measure of a matrix with spectral radius \rho (see Corollary 1).

In what follows, we propose to find a lower bound on the spectral radius of A by
solving a semidefinite program aiming to minimize the value of the parameter \rho in
(3.19)--(3.23) while satisfying all the constraints described above. Subsequently, the
solution to this semidefinite program renders a lower bound on the spectral radius of
A, denoted by \lambda n, as shown in the following theorem.
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Theorem 5. Let r be an arbitrary positive integer and d = 2r+1. Denote by \rho  \star 
r

the solution of the following semidefinite program:

(3.24)

minimize
\rho ,\bfy 2,d

\rho 

subject to (3.15)--(3.17),

Mr \succeq 0,

Lr(gi) \succeq 0 for all i \in [4],

where Mr and Lr(gi) are defined in (3.18)--(3.22). Then \rho  \star 
r
\leq \lambda n for all r \in \BbbN .

Furthermore, \rho  \star 
r
is a nondecreasing function of r \in \BbbN .

Proof. See Appendix A.

Remark 2. Since the support of the spectral measure is contained in both S and
Sc, we can add constraint (3.23) in Remark 1 in conjunction with the constraints
in (3.24). However, for a fixed value d, using (3.19)--(3.22) allows us to constraint more
optimization variables in the optimization problem (3.24), hence giving us tighter
bounds in practice. For instance, when d = 5 (i.e., r = 2), enforcing the spectral
measure to be contained in S induces the following set of constraints: L2(gi) \succeq 0 for
i \in [4]. This set of constraints poses constraints on optimization variables yab \in y2,5

with a + b \leq 5. On the contrary, if, as an alternative, (3.23) is applied, then we
must have L1(gc) \succeq 0, which only provides constraint on variables of lower order, i.e.,
yab \in y2,5 with a+ b \leq 4.

Theorem 5 allows us to compute a family of lower bound, parameterized by r, on
the spectral radius of a digraph from counts of subgraphs up to order d = 2r + 1. In
what follows, we provide a similar result to obtain a family of upper bounds on the
spectral radius of A.

3.5. Upper bounds using the K-moment problem. From Perron--Frobenius
theory [50], we know that the spectral radius of A is equal to the largest (nonnegative)
real eigenvalue of A, denoted by \lambda n. Hence, the set of eigenvalues \lambda 1, . . . , \lambda n - 1 must
be contained inside a circle of radius \lambda n, denoted by S\lambda n

. In other words, if we
define an auxiliary atomic density with n  - 1 atoms located on the positions of the
eigenvalues \lambda 1, . . . , \lambda n - 1, the multisequence of moments of this auxiliary density must
be S\lambda n-feasible. Furthermore, we can consider a circle of radius \rho , denoted by S\rho , and
find the maximum value of \rho for which the multisequence of moments of the auxiliary
density is S\rho -feasible. This optimal value of \rho will provide us with an upper bound
on the spectral radius \lambda n. In what follows, we elaborate upon the details behind this
approach.

We start our derivation with the following observation:

(3.25)

k\sum 
s=2

\sum 
\widehat G\in \Omega s

\eta ( \widehat G, k) \ttC \tto \ttu \ttn \ttt ( \widehat G,G) = \lambda k
n +

n - 1\sum 
i=1

\lambda k
i

for all k \in \BbbN , which follows from (3.6). Let us introduce the following auxiliary atomic
measure:

(3.26) \~\mu A(x, y) =
1

n - 1

n - 1\sum 
i=1

\delta (x - \sigma i)\delta (y  - \omega i).

We denote by \~m\bfitalpha the \bfitalpha -moment of \~\mu A. In what follows, we use the theory behind
the K-moment problem to derive necessary conditions that must be satisfied for all
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K-feasible multisequences, z2,d = \{ z\bfitalpha \} \bfitalpha \in \BbbN 2
d
, for particular choices of K. In our deri-

vations, we make use of the following lemma.

Lemma 6. Given a directed graph G with adjacency matrix A, it holds that

(3.27) Tr(Ak) = \lambda k
n + (n - 1)

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s \~mk - 2s,2s for all k \in \BbbN .

Proof. From (3.26), the \bfitalpha -moment of \~\mu A for \bfitalpha = [a, b]\top equals

(3.28)

\~mab =
1

n - 1

\int 
\BbbR 

\int 
\BbbR 
xayb

n - 1\sum 
i=1

\delta (x - \sigma i) \delta (y  - \omega i) dxdy

=
1

n - 1

n - 1\sum 
i=1

\sigma a
i \omega 

b
i .

From the proof of Lemma 3, we have that mab(A) = 1
n

\sum n
i=1 \sigma 

a
i \omega 

b
i . Combining this

with (3.28), we have that

(3.29) \~mab =

\left\{   
n

n - 1
mab if b > 0,

nmab  - \sigma a
n

n - 1
if b = 0.

Leveraging the connection between mab(A) and Tr(Ak) (see (3.6)), we have

Tr(Ak) = n

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s mk - 2s,2s (A)

= (n - 1)

\lfloor k/2\rfloor \sum 
s=1

\biggl( 
k

2s

\biggr) 
( - 1)s \~mk - 2s,2s + (n - 1) \~mk,0 + \sigma k

n

= (n - 1)

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s \~mk - 2s,2s + \sigma k

n.

Furthermore, according to Perron--Frobenius theory, we have that \lambda n = \sigma n. Thus, we
obtain that

(3.30) Tr(Ak) = (n - 1)

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s \~mk - 2s,2s + \lambda k

n

for all k \in \BbbN .

If z2,d is the moment multisequence for \~\mu A, then z\bfitalpha = \BbbE \~\mu A
[x\bfitalpha ] for all \bfitalpha \in \BbbN 2

d

(see Definition 1). Furthermore, according to Lemma 6 and Theorem 2, the entries
of the sequence z2,d must satisfy the following linear constraint:

(3.31)

k\sum 
s=2

\sum 
\widehat G\in \Omega s

\eta ( \widehat G, k) \ttC \tto \ttu \ttn \ttt ( \widehat G,G) = (n - 1)

\lfloor k/2\rfloor \sum 
s=0

\biggl( 
k

2s

\biggr) 
( - 1)s zk - 2s,2s + \rho k
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for k \in [d]. Moreover, similar to (3.16) and (3.17), we also have that

zab = 0 for b odd,(3.32)

zab \geq 0 for a and b even.(3.33)

Notice that the support of \~\mu A(x, y) is contained in the square S = [ - \lambda n, \lambda n]
2.

Thus, the moment and localizing matrices corresponding to z2,d have the same form
as those in (3.18)--(3.22) after substituting y\bfitalpha by z\bfitalpha . As a result, we obtain the
following moment and localizing matrices:

(3.34) [ \~Mr]\bfitalpha \bfitbeta = z\bfitalpha +\bfitbeta ,

(3.35) [\~Lr(g1)]\bfitalpha \bfitbeta = \rho z\bfitalpha +\bfitbeta  - z\bfitalpha +\bfitbeta +[1,0]\top ,

(3.36) [\~Lr(g2)]\bfitalpha \bfitbeta = \rho z\bfitalpha +\bfitbeta + z\bfitalpha +\bfitbeta +[1,0]\top ,

(3.37) [\~Lr(g3)]\bfitalpha \bfitbeta = \rho z\bfitalpha +\bfitbeta  - z\bfitalpha +\bfitbeta +[0,1]\top ,

(3.38) [\~Lr(g4)]\bfitalpha \bfitbeta = \rho z\bfitalpha +\bfitbeta + z\bfitalpha +\bfitbeta +[0,1]\top 

for \bfitalpha ,\bfitbeta \in \BbbN 2
r. As required by Corollary 1, the moment matrix (3.34) and localizing

matrices (3.35)--(3.38) must be positive semidefinite. As a result, for \rho = \lambda n, the
moment sequence z2,d of the auxiliary spectral measure \~\mu A must satisfy (3.31)--(3.33)
and the moment and localizing matrices in (3.34)--(3.38) must be positive semidefinite.

In what follows, we find an upper bound on the spectral radius by solving a
semidefinite program whose objective is to maximize the value of the parameter \rho 
in (3.31)--(3.38), while satisfying all the aforementioned constraints, as described in
the following theorem.

Theorem 7. Let r be an arbitrary positive integer and d = 2r + 1. Denote by \rho  \star r
the solution of the following semidefinite program:

(3.39)

maximize
\rho ,\bfz 2,d

\rho 

subject to (3.31)--(3.33),

\~Mr \succeq 0,

\~Lr(gi) \succeq 0 for all i \in [4],

where \~Mr and \~Lr(gi) are defined in (3.34)--(3.38). Then \rho  \star r \geq \lambda n for all r \in \BbbN .
Furthermore, \rho  \star r is a nonincreasing function of r \in \BbbN .

Using Theorems 5 and 7, we can compute lower and upper bounds on the spectral
radius of a directed graph using counts of subgraphs in G. Furthermore, these bounds
become tighter as the order of subgraphs under consideration increases.

3.6. Illustration and discussion. To demonstrate the performance of these
bounds, we apply our methodology to a directed graph modeling the connections
between n = 1,574 different airports within the United States [51]. Assuming we
are able to count the number of all subgraphs of order up to 6, the upper bound
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Fig. 3.2. In (a), we plot the complex eigenvalues of A for an Erd\H os--R\'enyi random directed
graph with n = 500 vertices and edge probability 0.1. The spectral radius of A is \lambda n \approx 50, whereas
\omega max < 7. In (b), we plot the complex eigenvalues of A for a real social network from Google+ [51].
The spectral radius of \lambda n \approx 21, whereas \omega max < 1.5.

on the spectral radius obtained via Theorem 7 equals \rho  \star 3 = 99.2906, whereas the
actual spectral radius equals \lambda n = 99.1183. However, when we only have access to
the counts of subgraphs of small order, our approach can lead to loose bounds. For
example, considering a realization of the Erd\H os--R\'enyi random directed graph with
n = 100 vertices and \BbbP ((i, j) \in \scrE ) = 0.15 for all i, j \in \scrV , we obtain a spectral radius
of \lambda n = 14.5431. In this case, when the counts of subgraphs of order up to 4 are
available, the lower bound obtained using Theorem 5 is \rho  \star 

2
= 5.5. This bound is loose

for the following two reasons: First, although Theorems 5 and 7 provide lower and
upper bounds on the spectral radius, the moments of the optimal solutions may not
correspond to an n-atomic measure, since Corollary 1 does not provide a sufficient
condition to guarantee the existence of an n-atomic measure. Second, and more
importantly, we have assumed that \tts \ttp \tte \ttc (A) is contained in the square [ - \lambda n, \lambda n]

2.
However, the support of \mu A is contained in [ - \lambda n, \lambda n] \times [ - \omega max, \omega max], where \omega max

can be much smaller than \lambda n in some real digraphs, leading to loose bounds (see
Figure 3.2). In the following section, we propose a refinement of our technique in
order to overcome this issue by finding better bounds on \omega max.

4. Refined moment-based bounds. In this section, we introduce a refined
moment-based framework to improve the quality of our bounds on the spectral radius.
The main idea behind this approach is to obtain an upper bound on \omega max. To achieve
this goal, we will study the spectral measure of the matrix A  - A\top . As we discuss
below, the largest imaginary part among the eigenvalues of A  - A\top upper bounds
\omega max of A. We then relate the spectral moments of A - A\top to the counts of certain
subgraphs in G. Finally, we will resort to the K-moment problem to provide an upper
bound on \omega max. This upper bound will be further used to provide refined upper and
lower bounds on the spectral radius of A.

In order to provide an upper bound on \omega max of A, we first present a connection
between the eigenvalues of the (imaginary) matrix AI = j(A  - A\top ) and those of A,
where j is the imaginary unit that satisfies j2 =  - 1. Notice that the matrix A - A\top is
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skew-symmetric; hence, its eigenvalues are a collection of purely imaginary conjugate
pairs. Hence, the spectrum of AI is purely real and symmetric around the imaginary
axis. From [29], we have that

\omega max \leq 
1

2
max\{ v\ast AIv : v\ast v = 1,v \in \BbbC n\} = \lambda n(AI),

where \lambda n(AI) is the largest (real) eigenvalue of AI . In particular, the equality holds
if and only if A is normal. Using this relationship, we will provide an upper bound
on \omega max using traces of powers of AI . In what follows, we show a linear relationship
between counts of certain subgraphs in G and Tr(A\ell 

I).

4.1. From subgraph counts in \bfitG to traces of powers of \bfitA \bfitI . Hereafter, we
show that Tr(A\ell 

I) can be computed by a linear combination of the counts of specific
subgraphs in G. To show this, we first provide a closed-form expression of the term
Tr(A\ell 

I) using entries of AI . On the one hand, since the spectrum of AI is symmetric
around the imaginary axis, we have that Tr(A\ell 

I) = 0 for \ell odd. On the other hand,
when \ell is an even number, we have that

(4.1)

Tr(A\ell 
I) = Tr(j\ell (A - A\top )\ell )

= ( - 1) \ell 
2Tr

\bigl( 
(A - A\top )\ell 

\bigr) 
= ( - 1) \ell 

2

\sum 
ci,di\in \{ 0,1\} 
ci+di=1

( - 1)
\sum \ell 

i=1 diTr
\bigl[ 
Ac1(A\top )d1 \cdot \cdot \cdot Ac\ell (A\top )d\ell 

\bigr] 
.

Therefore, Tr(A\ell 
I) is equal to the sum of 2\ell terms. Using ideas similar to those used

in the proof of Theorem 2, one can show that Tr
\bigl[ 
Ac1(A\top )d1 \cdot \cdot \cdot Ac\ell (A\top )d\ell 

\bigr] 
is equal

to a linear combination of the counts of certain subgraphs in G. We illustrate this
idea by considering the following examples.

Example 3. When \ell = 2, we have that

(4.2)

Tr(A2
I) =  - Tr(A - A\top )2

=  - Tr(A2  - AA\top  - A\top A+ (A\top )2)

=  - Tr(A2) + 2Tr(AA\top ) - Tr(A\top )2

=  - 2Tr(A2) + 2Tr(AA\top ).

In this particular case, we notice that Tr(A2) =
\sum 

i,j:(i,j),(j,i)\in \scrE 1 (see (3.1)) and

Tr(AA\top ) =
\sum 

i,j:(j,i)\in \scrE 1. The latter term equals the sum of in-degrees of each vertex

i in G. Consequently, Tr(A2
I) equals twice the total number of edges minus twice the

counts of bidirected-edge subgraphs in G.

Let us consider an additional example when \ell = 4.

Example 4. When \ell = 4, we have that

(4.3) Tr(A4
I) = Tr((A - A\top )2(A - A\top )2).

Using the properties of matrix trace operations, the above term is simplified to

(4.4) Tr(A4
I) = 2Tr(A4) - 8Tr(A3A\top ) + 4Tr(A2(A\top )2) + 2Tr((AA\top )2).

In what follows, we show that Tr(A3A\top ), Tr(A2(A\top )2), and Tr((AA\top )2) can all
be calculated using the counts of certain subgraphs in G. We characterize those
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Algorithm 4.1. Identifying subgraphs whose counts are used to calculate
Tr(Ac1(A\top )d1 \cdot \cdot \cdot Ac\ell (A\top )d\ell ).

Input: Positive integer \ell \in \BbbN .
Output: \widetilde G\ell 

1: Let s = 0 and \widetilde Gs = \{ \scrV 0, \scrE 0\} , where \scrV 0 = \{ i0\} and \scrE 0 = \emptyset .
2: for s \leftarrow 1 to \ell do
3: if cs = 1 then
4: Let \widetilde Gs = \{ Vs - 1 \cup \{ is\} , \scrE s - 1 \cup \{ (is - 1, is)\} \} , i.e., add an edge is - 1 \rightarrow is to
\scrE s - 1.

5: else
6: Let \widetilde Gs = \{ Vs - 1 \cup \{ is\} , \scrE s - 1 \cup \{ (is, is - 1)\} \} , i.e., add an edge is - 1 \leftarrow is to
\scrE s - 1.

7: end if
8: end for
9: Let i\ell = i0 in \widetilde G\ell .

10: Return \widetilde G\ell .

procedure that is able to identify all subgraphs whose counts are used to calculate
Tr(Ac1(A\top )d1 \cdot \cdot \cdot Ac\ell (A\top )d\ell ). This procedure is summarized in Algorithm 4.1. From
the output of Algorithm 4.1, the topology of each subgraph whose count is used to
obtain Tr(Ac1(A\top )d1 \cdot \cdot \cdot Ac\ell (A\top )d\ell ) can be constructed by considering a particular

subset of vertices in \widetilde G\ell to be identical---see the four cases in Example 4 as an illus-
tration. The coefficients of each of these subgraphs can be calculated using an idea
similar to that introduced in Theorem 2.

Remark 3. Instead of Tr((AA\top )2), we may use Tr((A\top A)2) in (4.4) to obtain
Tr(A4

I). In this case, the subgraphs under consideration are listed in Figure 4.1(d).
This observation can be generalized to all the terms involving traces of products of A
and A\top in (4.1).

Remark 4. In general, finding a closed-form expression for the coefficients for the
subgraphs using (4.1) is difficult. Moreover, to obtain Tr(Ar

I), one has to derive the
counts for all subgraphs of size r, which can be computationally challenging when
r is large. However, in most real networks, we obtain a tight approximation of the
spectral radius by considering r \leq 6, as we will show empirically in section 5.

Next, we propose a method to upper bound the spectral radius of AI using the
K-moment problem.

4.2. Estimation of \bfitomega \bfm \bfa \bfx (\bfitA ). To upper bound the spectral radius of AI , we
follow a procedure similar to the one discussed in the previous section. Given AI ,
we define the spectral measure of AI as the following one-dimensional probability
density:

(4.6) \nu AI
(x) =

1

n

n\sum 
i=1

\delta (x - \lambda i(AI)).

Since \lambda i(AI) \in \BbbR , the measure \nu AI
is supported on \BbbR . Without loss of generality,

we can order the eigenvalues of AI by \lambda 1(AI) \leq \cdot \cdot \cdot \leq \lambda n(AI). Since A  - A\top is
skew-symmetric, we have that \lambda 1(AI) =  - \lambda n(AI). The support of \nu AI

must satisfy
Supp(\nu (AI)) \subseteq [ - \lambda n(AI), \lambda n(AI)].
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In addition to \nu AI
, we define the auxiliary spectral measure \~\nu AI

by

(4.7) \~\nu AI
(x) =

1

n - 2

n - 1\sum 
i=2

\delta (x - \lambda i(AI)),

which is an (n  - 2)-atomic measure defined by removing both \lambda 1(AI) and \lambda n(AI)
from \tts \ttp \tte \ttc (AI). Different from \~\mu A, we remove two atoms from \tts \ttp \tte \ttc (AI) to maintain
the symmetry (with respect to the origin) of the auxiliary measure. Consequently,
the supports of both \nu AI

and \~\nu AI
are contained in [ - \lambda n(AI), \lambda n(AI)].

Following an idea similar to the one presented in the previous section, we show
that the trace of A\ell 

I is related to the moments of both \nu AI
and \~\nu AI

. More specifically,
given a positive integer r \in \BbbN , we compute the rth moment of \nu AI

, denoted bymr(AI),
as follows:

(4.8) mr(AI) =

\int 
x\in \BbbR 

xrd\nu AI
=

1

n

n\sum 
i=1

\lambda i(AI)
r =

1

n
Tr(Ar

I).

Similarly, the rth moment of \~\nu AI
, denoted by \~mr(AI), is equal to

(4.9)

\~mr(AI) =

\int 
x\in \BbbR 

xrd\~\nu AI

=
1

n - 2

n - 1\sum 
j=2

\lambda i(AI)
r

=
1

n - 2
[Tr(Ar

I) - (( - 1)r + 1)\lambda n(AI)
r]

=
1

n - 2
[nmr(AI) - (( - 1)r + 1)\lambda n(AI)

r] .

To obtain an upper bound on \lambda n(AI), we first find necessary conditions that must
be satisfied by all moment sequences of \~\nu AI

, denoted by w2r+1 = \{ w\gamma \} \gamma \leq 2r+1. Since
the spectrum of AI is symmetric around 0, it follows that all odd moments of \nu AI

and \~\nu AI
are 0. As a result, in order for w2r+1 to be a moment sequence with respect

to \~\nu AI
, we must have

(4.10) w\gamma =

\left\{       
1 if \gamma = 1,

0 if \gamma > 1 and \gamma is an odd number,
1

n - 2
(Tr(A\gamma 

I ) - 2\lambda n(AI)
\gamma ) otherwise

for all \gamma \leq 2r + 1.
Moreover, the moment and localizing matrices of w2r+1 must be positive semi-

definite, as required by Theorem 4. More specifically, we let the moment matrix of
w2r+1 be defined entrywise by

(4.11) [Mr(w)]\alpha ,\beta = w\alpha +\beta ,

where \alpha , \beta \in \BbbN r. Let h1(x) = x - \lambda n(AI) and h2(x) = x+\lambda n(AI); hence, we have that
[ - \lambda n(AI), \lambda n(AI)] = \{ x \in \BbbR : h1(x) \geq 0, h2(x) \geq 0\} . Next, we define the localizing
matrices with respect to h1 and h2 by

(4.12) [Lr(h1,w)]\alpha ,\beta = \lambda n(AI)w\alpha +\beta  - w\alpha +\beta +1
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and

(4.13) [Lr(h2,w)]\alpha ,\beta = \lambda n(AI)w\alpha +\beta + w\alpha +\beta +1.

Since the support of \~\nu AI
is contained in [ - \lambda n(AI), \lambda n(AI)], both Lr(h1,w) and

Lr(h,w) must be positive semidefinite.
Subsequently, for \rho = \lambda n(AI), the moment sequence w2r+1 = \{ w\gamma \} \gamma \leq 2r+1 of

the auxiliary spectral measure \~\nu AI
must satisfy (4.10). Furthermore, the moment

and localizing matrices defined in (4.11)--(4.13) must be positive semidefinite (by
replacing \lambda n(AI) with the parameter \rho ). Next, we aim to find the maximum value of
the parameter \rho such that all the constraints above are satisfied.

Theorem 8. Let A be the adjacency matrix of a digraph G, and define AI =
j(A  - A\top ). Let r be an arbitrary positive integer. Denote by \omega  \star 

r the solution to the
following semidefinite program:

(4.14)

maximize
\rho ,\bfw 2r+1

\rho 

subject to (4.10),

Mr(w) \succeq 0, Lr(g1,w) \succeq 0, Lr(g2,w) \succeq 0,

where Mr(w) and Lr(gi,w) are defined in (4.11)--(4.13). Then
\omega  \star 

r

2 \geq \omega max for all
r \in \BbbN . Furthermore, \omega  \star 

r is a nonincreasing function of r \in \BbbN .
Note that, as described in subsection 4.1, the values of Tr(A\ell 

I) in (4.10) can be
computed using counts of subgraphs of G. Hence, we have that w \star 

r can be obtained us-
ing counts of subgraphs solely, providing an upper bound on the maximum imaginary
part in the spectrum of A.

Corollary 2. Let A be the adjacency matrix of a digraph G. Given a positive
integer r \in \BbbN , let w \star 

r be the optimal solution to (4.14). If A = A\top , then w \star 
r = 0 for

all positive integers r \in \BbbN .
Proof. When A = A\top , Tr(A\gamma 

I ) = 0 for all \gamma \in \BbbN . Therefore, from (4.21), given
an even integer \gamma \in \BbbN , we have that (n  - 2)w\gamma =  - 2\rho \gamma (by replacing \lambda n(AI) with
the optimization parameter \rho ). Since Mr(w) is positive semidefinite, all its diagonal
entries are nonnegative. As a consequence, \rho must equal to zero. Therefore, w \star 

r = 0.

The above corollary shows that the upper bound on \omega max(A) is tight when A is
a symmetric matrix. Consequently, the refined framework can also be used to obtain
tight bounds for undirected graphs.

4.3. Refined bounds on the spectral radius. In section 3, we have consid-
ered that the spectrum of A is contained in the square S = [ - \lambda n, \lambda n]

2. However,
more precisely, \tts \ttp \tte \ttc (A) is contained in a rectangle \^S = [ - \lambda n, \lambda n] \times [ - \omega max, \omega max].
Consequently, we define the polynomials \^g3(x) = \omega max  - x2 and \^g4(x) = \omega max + x2.
As required by Corollary 1, the localizing matrices of y2,d with respect to \^g3 and \^g4
must be positive semidefinite. In other words, we impose additional constraints on
the feasible sets in the optimization problems (3.24) and (3.39). This procedure is
summarized in Algorithm 4.2.

Consequently, we have utilized counts of different subgraphs to provide upper and
lower bounds on the spectral radius. In general, \omega max(A) is much smaller than \rho (A).
Thus, the obtained solution from Algorithm 4.2 achieves better performance than the
approach in section 3. Notice that not all subgraphs are needed to compute Tr(A\ell 

I)
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Algorithm 4.2. Refined upper and lower bounds of \lambda n.

Input: Positive integer r \in \BbbN , and \{ Tr(A\ell 
I),Tr(A

\ell )\} 2r+1
l=1

Output: Lower bound and upper bound on the spectral radius of G, denoted by \varrho  \star 
r

and \varrho  \star r , respectively.
1: Let d = 2r + 1.
2: Solve (4.14) and obtain w \star 

r .
3: Define matrices Lr(\^g3) and Lr(\^g4) entrywise by

[Lr(\^g3)]\bfitalpha \bfitbeta = w \star 
ry\bfitalpha +\bfitbeta  - y\bfitalpha +\bfitbeta +[0,1]\top and

[Lr(\^g4)]\bfitalpha \bfitbeta = w \star 
ry\bfitalpha +\bfitbeta + y\bfitalpha +\bfitbeta +[0,1]\top .

4: Define matrices \widetilde Lr(\^g3) and \widetilde Lr(\^g4) entrywise by

[\widetilde Lr(\^g3)]\bfitalpha \bfitbeta = w \star 
rz\bfitalpha +\bfitbeta  - z\bfitalpha +\bfitbeta +[0,1]\top and

[\widetilde Lr(\^g4)]\bfitalpha \bfitbeta = w \star 
rz\bfitalpha +\bfitbeta + z\bfitalpha +\bfitbeta +[0,1]\top .

5: Compute \varrho  \star 
r
via

(4.15)

\varrho  \star 
r
= arg min

\rho ,\bfy 2,d

\rho 

subject to (3.15)--(3.17),

Mr \succeq 0,

Lr(gi) \succeq 0 for i \in [4]

Lr(\^g3) \succeq 0, Lr(\^g4) \succeq 0.

6: Obtain \varrho  \star r via

(4.16)

\varrho  \star r = arg max
\rho ,\bfz 2,d

\rho 

subject to (3.30)--(3.33),\widetilde Mr \succeq 0,\widetilde Lr(gi) \succeq 0 for i \in [4],\widetilde Lr(\^g3) \succeq 0, \widetilde Lr(\^g4) \succeq 0.

and Tr(A\ell ). For example, when we consider using subgraphs of order less than or
equal to 5, we only need the counts of those subgraphs depicted in Figure 4.2.

Remark 5. The optimization programs in Algorithm 4.2 as well as (4.14) are
solved using a standard computation package in convex optimizations [52]. Notice
that the semidefinite programs considered in our framework are not dependent on
the size of the digraph G, and thus they can be solved efficiently. As an example,
consider r = 3 (i.e., d = 7); the matrices in (4.15) and (4.16) are in \BbbR 7\times 7. In fact, the
bottleneck in terms of computation comes from retrieving the counts of high-order
subgraphs in G. A MATLAB implementation of Algorithm 4.2 can be found in [53].
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by \~mr(AR), as follows:

(4.20)

\~mr(AR) =

\int 
x\in \BbbR 

xrd\~\nu AR
,

=
1

n - 1
[Tr(Ar

R) - \lambda n(AR)
r] .

As illustrated in (4.5), as well as Theorem 2, Tr(Ar
R) can be computed using counts

of certain subgraphs in G. As a consequence, \~mr(AR) can also be computed as a
linear combination of the counts of certain subgraphs in G. To find an upper bound
on \lambda n(AR), we provide below the necessary conditions that must be satisfied by all
moment sequences of \~\nu AR

, denoted by p2r+1.
According to (4.20), in order for p2r+1 to be a potential moment sequence of the

density \~\nu AR
, we must have

(4.21) p\gamma =
1

n - 1
[Tr(A\gamma 

R) - \lambda n(AR)
\gamma ]

for all \gamma \leq 2r + 1. Moreover, the moment matrix of p2r+1, defined entrywise by

(4.22) [Mr(p)]\alpha ,\beta = p\alpha +\beta 

for \alpha , \beta \in \BbbN r, must be positive semidefinite. Since A \in \{ 0, 1\} n\times n, the matrix AR =
A+A\top is entrywise nonnegative. It further follows that the largest eigenvalue of AR

is nonnegative, according to Perron--Frobenius theory. Subsequently, we have that
\tts \ttp \tte \ttc (AR) \subseteq [ - \lambda n(AR), \lambda n(AR)]. Let us define the polynomials \phi 1(x) = \lambda n(AR)  - x
and \phi 2(x) = \lambda n(AR)+x; hence, we have that \tts \ttp \tte \ttc (AR) \subseteq \{ x \in \BbbR : \phi 1(x) \geq 0, \phi 2(x) \geq 
0\} . Next, we define the localizing matrices with respect to \phi 1 and \phi 2 as

(4.23) [Lr(\phi 1,p)]\alpha ,\beta = \lambda n(AR)p\alpha +\beta  - p\alpha +\beta +1,

(4.24) [Lr(\phi 2,p)]\alpha ,\beta = \lambda n(AR)p\alpha +\beta + p\alpha +\beta +1

for \alpha , \beta \in \BbbN r. Then Corollary 1 indicates that Lr(\phi 1,p) and Lr(\phi 2,p) must be positive
semidefinite for the sequence p2r+1 to be a potential moment sequence of the density
\~\nu AR

.
Consequently, for \rho = \lambda n(AR), the moment sequence p2r+1 of the auxiliary mea-

sure \~\nu AR
must satisfy the above constraints. The upper bound on \lambda n(AR) can thus

be found by maximizing the parameter \rho subjected to the above constraints, as shown
in the following theorem.

Theorem 9. Let A be the adjacency matrix of a digraph G, and define AR =
A + A\top . Let r be an arbitrary positive integer and d = 2r + 1. Denote by p \star r the
optimal solution to the following semidefinite program:

(4.25)

maximize
\rho ,\bfp d

\rho 

subject to (4.21),

Mr(p) \succeq 0,

Lr(\phi 1,p) \succeq 0, Lr(\phi 2,p) \succeq 0,

where Mr(p), Lr(\phi 1,p), and Lr(\phi 2,p) are defined in (4.22)--(4.24). Then
p \star 
r

2 \geq \lambda n

for all r \in \BbbN . Furthermore, p \star r is a nonincreasing function of r \in \BbbN .
Since Tr(A\ell 

R) can be computed using counts of subgraphs of G, we have that p \star r
can be obtained via counts of subgraphs of G.
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5. Empirical results. In this section, we empirically demonstrate the validity of
our bounds on random digraphs (subsection 5.1) and on real networks (subsection 5.2).

5.1. Random directed graphs. We generate random directed graphs accord-
ing to the directed version of the Chung--Lu model [54]. More specifically, given a
positive integer n, we consider two sequences win = [win

1 , win
2 , . . . , win

n ]\top and wout =
[wout

1 , wout
2 , . . . , wout

n ]\top , representing the in-degrees and out-degrees of each vertex.
Furthermore, we let

\sum n
i=1 w

in
i =

\sum n
i=1 w

out
i = m. Then, according to [54], the entries

in A are given by

(5.1) Aij =

\Biggl\{ 
1 w.p.

win
i wout

j

m ,

0 otherwise.

Using this model, we can also generate Erd\H os--R\'enyi random digraphs by letting win =
wout = [pn, . . . , pn]\top for a prescribed value p \in (0, 1). As an example, we consider
the following parameters in our experiment: n = 500 and p = logn

n \approx 0.0124. Using
these parameters, we generate a numerical realization of the random digraph A. The
spectral radius of A equals \lambda n \approx 6.3002, whereas \omega max \approx 2.6373. From Theorem 7,
when r = 2, we have that \rho  \star r = 6.7806.

In addition to Erd\H os--R\'enyi random digraphs, we can specify win and wout to
generate random graph power-law degree distributions. As shown in [55], given

c, \beta , i0 \in \BbbR , we can define the sequence wi = c(i0 + i) - 
1

\beta  - 1 to generate a random
undirected graph whose degrees follow a power-law distribution with exponent \beta , i.e.,
the number of vertices with degree k is proportional to k - \beta . In particular, it is pos-
sible to ``control"" the maximum degree, denoted by \Delta , and average degree, denoted
by d, by using the following parameter selection:

(5.2) c =
\beta  - 2

\beta  - 1
dn

1
\beta  - 1 and i0 = n

\biggl( 
d(\beta  - 2)

\Delta (\beta  - 2)

\biggr) \beta  - 1

.

In our experiment, we generate a sequence w using the above method and let win =
wout = w. In addition, we consider the following parameters: n = 1500, \beta = 5,
d = 40, and \Delta = 120. Subsequently, from a random digraph realization, we have
that \lambda n \approx 42.8770, while \omega max \approx 6.3868. In Figure 5.1(a), we show the histogram of
in-degrees for the particular random digraph realization under consideration, while in
Figure 5.1(b), we show the evolution of the upper and lower bounds proposed in this
paper as the order of the subgraph counts used increases. For example, the outputs
of Algorithm 4.2 using counts of subgraphs of order up to 6 are an upper bound of
42.8777 and a lower bound of 42.8763, which are very tight in this case. Next, we
explore our framework on real artificial directed graphs.

5.2. Real-world directed graphs. We consider several real digraphs obtained
from [51] and [56]. In our first example, we examine the directed graph representing
flights between U.S. airports in 2010 containing 1,574 vertices and 28,236 edges. In
this digraph, each directed edge represents a flight connection from one airport to
another. In our experiment, we preserve connectivity of the digraph and remove the
edge weights. The spectral radius of the resulting (unweighted) digraph equals \lambda n =
99.1175, whereas \omega max = 2.881. We plot the eigenvalue spectrum of A in Figure 5.2.
Using the moment framework described in section 3, we obtain that our unrefined
bounds are \rho  \star 

2
= 47.1184 and \rho  \star 2 = 172.2931, when the counts of subgraphs of order

up to 5 are considered. To improve these bounds, we first find an upper bound on
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Fig. 5.1. In (a), we show the histogram of in-degrees of one realization of the Chung--Lu random
digraph. In (b), we show the normalized lower (solid line) and upper bounds, where the dashed and
dotted lines show the upper bound obtained using Theorem 5 and Algorithm 4.2, respectively.

Fig. 5.2. This figure shows the eigenvalue spectrum of the digraph representing flights between
airports in the U.S. The x-axis and y-axis are the real and imaginary parts of the eigenvalues of A,
respectively.

\omega max. Using Algorithm 4.2, for r = 2, we obtained that \omega  \star 
r/2 \approx 8.2776, which is an

upper bound on \omega max(A) = 2.881. With the help on this additional information, we
obtained that the refined lower bound and upper bound on the spectral radius equal
99.1167 and 102.9278, respectively.

In Tables 5.1 and 5.2, we illustrate the performance of our framework using other
real-world directed graphs. In these experiments, we fix r = 3 and compare the
performance of our bounds, with and without the refinement described in subsection
4.3. As previously indicated, the refined bounds are guaranteed to be no worse than
the bounds obtained without estimating the largest imaginary part. Moreover, as
r increases, the difference between the estimates using the two proposed methods
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Table 5.1
This table shows lower bounds on the spectral radius of various networks computed using The-

orem 5 (fifth column) and Algorithm 4.2 (last column).

Type Size \bfitlambda \bfitn \bfitomega \bfm \bfa \bfx \bfitrho \star 
\bfthree 

\bfitvarrho \star 
\bfthree 

Social 131 18.3488 1.2132 8.0349 8.4347

Social 168 21.8484 0.8023 9.6100 13.5492

Social 344 21.6719 1.26 10.7704 21.6712

Social 627 10.4766 1.2995 5.2389 5.2389

Airport 1574 99.1175 2.881 99.1167 99.1167

Wikipedia 8297 47.9430 8.4824 29.9651 29.9651

Table 5.2
This table shows upper bounds computed using Theorem 7 (column 3, denoted by \rho  \star 3), Theo-

rem 9 (column 4, denoted by p \star 3), and Algorithm 4.2 (last column), respectively.

Type Size \bfitlambda \bfitn \bfitrho \star 
\bfthree \bfitp \star 

\bfthree \bfitvarrho \star 
\bfthree 

Social 131 18.3488 22.2728 22.5450 20.7786

Social 168 21.8484 35.9181 22.5630 24.9591

Social 344 21.6719 24.7768 29.6324 24.7768

Social 627 10.4766 12.8224 18.9572 12.3289

Airport 1574 99.1175 99.1183 99.2906 99.1183

Wikipedia 8297 47.9430 50.3321 49.0404 47.9438

diminishes, as illustrated in Tables 5.1 and 5.2. However, the convergence rate of our
algorithm depends on the structure of the digraph. For example, we observe that,
using r = 3, the lower bound returned by Algorithm 4.2 equals \rho  \star 

3
computed using

Theorem 7 when we are considering the social network with n = 627 vertices.

6. Conclusion. The spectral radius of a digraph, i.e., the largest absolute value
of its (complex) eigenvalues, is a graph metric that is relevant for the behavior of
networked dynamical systems, such as epidemic processes, as well as graph-theoretic
problems, such as the independence number or the graph diameter. In general, the
spectral radius is a ``global"" graph metric, since its value cannot be computed unless
the entire network topology is known. In this paper, we have shown that, given
enough local information (i.e., subgraph counts), it is possible to approximate the
spectral radius of large-scale networks. In particular, we have developed a novel
mathematical framework to upper and lower bound the spectral radius of a digraph
from the counts of a collection of small subgraphs. More specifically, by leveraging
recent results on theK-moment problem, we have proposed a hierarchy of semidefinite
programs of small size allowing us to compute sequences of upper and lower bounds
on the spectral radius of a digraph using, solely, the counts of certain subgraphs. We
have illustrated the quality of our bounds using both random digraphs and real-world
directed networks.
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Appendix A. Proofs of lemmas and theorems.

Proof of Theorem 2. Given k \in \BbbN , we have

(A.1)

Tr(Ak) =

n\sum 
i=1

[Ak]ii,

=

n\sum 
i=1

\sum 
j1,...,jk - 1

[A]ij1 \cdot \cdot \cdot [A]jk - 1i.

In particular, since [A]ii = 0 for all i \in [n], we must have i \not = j1, jk - 1 \not = i and
j\ell \not = j\ell +1 for all \ell < k  - 1 in the above summation, since the term [A]ij1 \cdot \cdot \cdot [A]jk - 1i

vanished otherwise. We use i \rightarrow j1 \cdot \cdot \cdot jk - 1 \rightarrow i to represent a closed walk of length
k satisfying [A]ij1 \cdot \cdot \cdot [A]jk - 1i \not = 0. Notice that there may exist repetitive indices in
i \rightarrow j1 \cdot \cdot \cdot jk - 1 \rightarrow i; hence, we may have that | \{ i, j1, . . . , jk - 1, i\} | \leq k. Subsequently,
we have

(A.2)
\sum 

j1,...,jk - 1

[A]ij1 \cdot \cdot \cdot [A]jk - 1i =

k\sum 
s=2

\sum 
| \{ i,j1,...,jk - 1,i\} | =s

[A]ij1 \cdot \cdot \cdot [A]jk - 1i.

In other words, we can classify closed walks into subgraphs with orders less than or
equal to k. In particular, these subgraphs are weakly connected. Combining (A.2)
and (A.1), we have

(A.3) Tr(Ak) =

n\sum 
i=1

k\sum 
s=2

\sum 
| \{ i,j1,...,jk - 1,i\} | =s

[A]ij1 \cdot \cdot \cdot [A]jk - 1i.

Below, we analyze how the counts of order-k, weakly connected subgraphs contribute
to (A.2).

Let us consider a subgraph Gsub \subseteq G with order s \leq k. Without loss of generality,
we may relabel the vertices of Gsub by [s]. Consider a closed walk of length k in Gsub

such that the closed walk traverses each edge of Gsub at least once. Let \eta i,k(Gsub) be
the number of these closed walks starting at i \in [n]. Then each subgraph Gsub contrib-
utes

\sum s
i=1 \eta i,k(Gsub) number of walks in the summation in (A.3). Moreover, the num-

ber \eta i,k(Gsub) is the same for all Gh \in \ttI \tts \tto (Gsub). Let \eta k(Gsub) =
\sum s

i=1 \eta i,k(Gsub).
Then each class of subgraph contributes \ttC \tto \ttu \ttn \ttt (Gsub, G)\eta k(Gsub) to Tr(Ak). As a
result,

Tr(Ak) =

k\sum 
s=2

\sum 
Gsub\in \Omega s

\ttC \tto \ttu \ttn \ttt (Gsub, G)\eta k(Gsub).

In particular, let As be the adjacency matrix of Gsub; if Tr[A
k
s ] = 0, then

\eta i,k(Gsub) = 0

for all i \in [s].

Proof of Theorem 5. First, consider the spectral distribution \mu A and generate
from \mu A an infinite multisequence y2,\infty whose elements are given by y\bfitalpha = \BbbE \mu A

[x\bfitalpha ]
for all \bfitalpha \in \BbbN 2. The discussions before Theorem 5 show that, given a fixed r \in \BbbN , there
exists a finite subsequence in y2,\infty satisfying (3.15)--(3.17). Furthermore, according

to Corollary 1, this subsequence satisfies \~Mr \succeq 0, \~Lr(g1) \succeq 0, \~Lr(g2) \succeq 0, \~Lr(g3) \succeq 
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0, \~Lr(g4) \succeq 0. In other words, all the constraints in (3.24) are satisfied. Thus, we
can induce from y2,\infty a finite subsequence of moments that is feasible with respect
to (3.24). Consequently, the minimization in Theorem 5 leads to a lower bound on
\lambda n.

Similarly, for r > 1, we let \scrF r be the set of feasible solutions to (3.24). Since
\~Mr \succeq 0, it follows that all its principal submatrices are positive semidefinite. Thus,
\~Mr - 1 \succeq 0. Similar statements hold for \~Lr(g1), \~Lr(g2), \~Lr(g3), and \~Lr(g4). Thus, we
have that \scrF r \subseteq \scrF r - 1 and, consequently, \rho  \star l,2r+1 \geq \rho  \star l,2r - 1.

Proof of Theorem 7. It suffices to replace \mu A in the proof of Theorem 5 by \~\mu A.
The rest of the proof of this theorem follows exactly the same logic as the proof of
Theorem 5.

Proof of Theorems 8 and 9. By replacing \mu A in the proof of Theorem 5 by \~\nu AI

and \~\nu AR
, respectively, we can obtain that p \star r \geq \lambda n(AR) and \omega  \star 

r \geq \lambda n(AI) for every
r \in \BbbN . Combining these bounds with

\omega max(A) \leq \lambda n

\biggl( 
j(A - A\top )

2

\biggr) 
and

\lambda n(A) \leq \lambda n

\biggl( 
A+A\top 

2

\biggr) 
,

the result follows.
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