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Abstract

Characterizing the relation between weight structure and input/output statistics is fundamen-
tal for understanding the computational capabilities of neural circuits. In this work, | study
the problem of storing associations between analog signals in the presence of correlations,
using methods from statistical mechanics. | characterize the typical learning performance in
terms of the power spectrum of random input and output processes. | show that optimal syn-
aptic weight configurations reach a capacity of 0.5 for any fraction of excitatory to inhibitory
weights and have a peculiar synaptic distribution with a finite fraction of silent synapses. |
further provide a link between typical learning performance and principal components analy-
sis in single cases. These results may shed light on the synaptic profile of brain circuits,
such as cerebellar structures, that are thought to engage in processing time-dependent sig-
nals and performing on-line prediction.

Author summary

A general analysis of learning with biological synaptic constraints in the presence of statis-
tically structured signals is lacking. Here, analytical techniques from statistical mechanics
are leveraged to analyze association storage between analog inputs and outputs with excit-
atory and inhibitory synaptic weights. The linear perceptron performance is characterized
and a link is provided between the weight distribution and the correlations of input/out-
put signals. This formalism can be used to predict the typical properties of perceptron
solutions for single learning instances in terms of the principal component analysis of
input and output data. This study provides a mean-field theory for sign-constrained
regression of practical importance in neuroscience as well as in adaptive control
applications.

Introduction

At the most basic level, neuronal circuits are characterized by the subdivision into excitatory
and inhibitory populations, a principle called Dale’s law. Even though the precise functional

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020

1/24


https://orcid.org/0000-0001-5430-7559
https://doi.org/10.1371/journal.pcbi.1008536
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008536&domain=pdf&date_stamp=2021-01-08
https://doi.org/10.1371/journal.pcbi.1008536
https://doi.org/10.1371/journal.pcbi.1008536
http://creativecommons.org/licenses/by/4.0/

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

role of Dale’s law has not yet been understood, the importance of synaptic sign constraints is
pivotal in constructing biologically plausible models of synaptic plasticity in the brain [1-5].
The properties of synaptic couplings strongly impact the dynamics and response of neural cir-
cuits, thus playing a crucial role in shaping their computational capabilities. It has been argued
that the statistics of synaptic weights in neural circuits could reflect a principle of optimality
for information storage, both at the level of single-neuron weight distributions [6, 7] and inter-
cell synaptic correlations [8] (e.g. the overabundance of reciprocal connections). A number of
theoretical studies, stemming from the pioneering Gardner approach [9], have investigated the
computational capabilities of stylized classification and memorization tasks in both binary
[10-13] and analog perceptrons [14, 15], using synthetic data. With some exceptions men-
tioned in the following, these studies considered random uncorrelated inputs and outputs, a
usual approach in statistical learning theory. One interesting theoretical prediction is that non-
negativity constraints imply that a finite fraction of synaptic weights are set to zero at critical
capacity [6, 15, 16], a feature which is consistent with experimental synaptic weight distribu-
tions observed in some brain areas, e.g. input fibers to Purkinje cells in the cerebellum.

The need to understand how the interaction between excitatory and inhibitory synapses
mediates plasticity and dynamic homeostasis [17, 18] calls for the study of heterogeneous
multi-population feed-forward and recurrent models. A plethora of mechanisms for excit-
atory-inhibitory (E-I) balance of input currents onto a neuron have been proposed [19, 20]. At
the computational level, it has recently been shown that a peculiar scaling of excitation and
inhibition with network size, originally introduced to account for the high variability of neural
firing activity [21-27], carries the computational advantage of noise robustness and stability of
memory states in associative memory networks [13].

Analyzing training and generalization performance in feed-forward and recurrent net-
works as a function of statistical and geometrical structure of a task remains an open problem
both in computational neuroscience and statistical learning theory [28-32]. This calls for sta-
tistical models of the low-dimensional structure of data that are at the same time expressive
and amenable to mathematical analyses. A few classical studies investigated the effect of
“semantic” (among input patterns) and spatial (among neural units) correlations in random
classification and memory retrieval [33-35]. The latter are important in the construction of
associative memory networks for place cell formation in the hippocampal complex [36].

For reason of mathematical tractability, the vast majority of analytical studies in binary and
analog perceptron models focused on the case where both inputs and outputs are independent
and identically distributed. In this work, I relax this assumption and study optimal learning of
input/output associations with real-world statistics with a linear perceptron having heteroge-
neous synaptic weights. I introduce a mean-field theory of an analog perceptron in the pres-
ence of weight regularization with sign-constraints, considering two different statistical
models for input and output correlations. I derive its critical capacity in a random association
task and study the statistical properties of the optimal synaptic weight vector across a diverse
range of parameters.

This work is organized as follows. In the first section, I introduce the framework and pro-
vide the general definitions for the problem. I first consider a model of temporal (or, equiva-
lently, “semantic”) correlations across inputs and output patterns, assuming statistical
independence across neurons. I show that optimal solutions are insensitive to the fraction of E
and I weights, as long as the external bias is learned. I derive the weight distribution and show
that it is characterized by a finite fraction of zero weights also in the general case of E-I con-
straints and correlated signals. The assumption of independence is subsequently relaxed in
order to provide a theory that depends on the spectrum of the sample covariance matrix and
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the dimensionality of the output signal along the principal components of the input. The
implications of these results are discussed in the final section.

Results
Mean-field theory with correlations
Consider the problem of linearly mapping a set of correlated inputs x;,, withi € 1, ..., Nand
u=1,...,Pfrom Ng = fgN excitatory (E) and Ny = (1 — f;) inhibitory (I) neurons, onto an out-
put y, using a synaptic vector w, in the presence of a learnable constant bias current b (Fig 1).
To account for different statistical properties of E and I input rates, we write the elements of
the input matrix as (X),, = x,, = X, + 0,{; withx; = X, fori < feNand x; = x, fori > feN
and the same for ;. At this stage, the quantities &;, have unit variance and are uncorrelated
across neurons: (&, &;,) = 6;;C,,. In the following, we refer to x and y as signals and y as a time
index, although we consider general “semantic”correlations across the patterns x,, [34]. The
output signal has average (y,) = y and variance ((y, — 7)) = o;. We initially consider output
signals y, with the same temporal correlations as the input, namely (dy, dy,) = C,,, where
Y, =y+ Jyéyu.

For a given input-output set, we are faced with the problem of minimizing the following
regression loss (energy) function:

12 N 2 Ny N
E(WW,xv}V) :§Z<Zwixiﬂ+b_yu> +72W12 (1)
i=1

n=1 i=1

with w; > 0 for i < fgN, w; < 0 otherwise. The rationale for using a regularization term lies not

X

I

Fig 1. Schematic of the learning problem. A linear perceptron receives N correlated signals (input rates of pre-
synaptic neurons) x;, and maps them to the output y, through Ng = fgN excitatory and Ny = (1 - fg)N plastic inhibitory
weights w;, plus an additional bias current b.

https://doi.org/10.1371/journal.pcbi.1008536.g001
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only in alleviating ill-conditioning due to input correlations, but also in controlling the meta-
bolic cost of synaptic plasticity and transmission. Preliminary numerical experiments showed
that the typical vector w that solves this sign-constrained least square problem has a squared
norm Y1 w? = O(1), irrespectively of the L2 regularization, as in the special case of i.i.d
input/output and non-negative synaptic weights [15]. Synaptic weights w; are thus of
O(1/+/N), hence the scaling of the regularization term Ny and the bias current b = I/N. In
order to consider a well defined N — oo limit for E and the spectrum of the matrix C, we take
P = aN, with «a called the load, as is costumary in mean-field analysis of perceptron problems
[9].

Optimizing with respect to the bias b naturally yields solutions w for which

Ngwpxy + Now, X, +b =y (2)
where we call w, = Nlc > = O(1/+/N) the average excitatory and inhibitory weight, with
¢ € {E, I}. We call this property balance, in that the same scaling is used in balanced state theory
of neural circuits [21, 22, 24].

In order to derive a mean-field description for the typical properties of the learned synaptic
vector w, we employ a statistical mechanics framework in which the minimizer of E is evalu-
ated after averaging across all possible realizations of the input matrix X and output y. To do
so, we compute the free energy density

=———(logZ),, (3)

where Z = [du (w)e P" is the so-called partition function and the measure du(w) =
[L:0(w,)dw]]1,.,0(—w,)dw, implements the sign-constraints over the synapic weight vector
w. The brackets in Eq (3) stand for the quenched average over all the quantities x;, and y,,, and
the inverse temperature 8 will allow us to select weight configurations w that minimize the
energy E. The free energy density facts as a generating function from which all the statistical
quantities of interest can be calculated by appropriate differentiation and taking the § — oo
limit. In particular, we will be interested in the (normalized) average loss € = (—f,) and the error

€ |X"w + b — y[*), corresponding to the average value of the first term in Eq (1), where

=
b is a P-dimensional vector containing b in every element. The average in Eq (3) can be com-
puted in the N — oo limit with the help of the replica method, an analytical continuation tech-
nique that entails the introduction of a number # of formal replicas of the vector w. A general
expression for f can be obtained in the large N limit using the saddle-point method. The crucial
quantity in our derivation is the (replicated) cumulant generating function Z s, for the (mean-
removed) input x and output y, which can be easily expressed as a function of the eigenvalues
M p =1, ..., aN of the covariance matrix C, plus a set of order parameters to be evaluated self-

consistently (Methods).

Critical capacity

The existence of weight vectors w’s with a certain value of the regression loss E in the error
regime (e > 0) is described by the so-called overlap order parameter Aq,,. In the replica-based
derivation of the mean-field theory, overlap parameters are introduced with the purpose of
decoupling the w;s over the i index, and represent the scalar-product of two different configu-
rations of the weights w (Methods: Replica formalism: ensemble covariance matrix (EC)). For
finite f, the quantity Aq, = fAq,, represents the variance of the synaptic weights across differ-
ent solutions. In the asymptotic limit # — oo of Eq (3), a simple saddle-point equation for Ag,,
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can be derived when b is chosen to minimize Eq (1):

A 1
A —2 N = Ag
qw<1 + Aéwk>p(k) 2 P (4)

where p(A) is the distribution of eigenvalues of C.

In the absence of weight regularization (y = 0), we define the critical capacity a, as the maxi-
mal load & = P/N for which the patterns x, can be correctly mapped to their outputs y, with
zero error. When the synaptic weights are not sign-constrained, the critical capacity is obvi-
ously ¢, = 1, since the matrix X is typically full rank. In the sign-constrained case, a, is found
to be the minimal value of o such that Eq (4) is satisfied for 0 < Ag,, < +oc. Noting that the
left-hand side in Eq (4) is a non-decreasing function of Ag, with an asymptote in ¢, the order
parameter Ag,, goes to + oo as the critical capacity is approached from the right. We thus find
for y = 0 the surpisingly simple result:

%, =05 (5)

As shown in Fig 2A in the case of i.i.d. x and y, the loss has a sharp increase at & = 0.5. This
holds irrespectively of the structure of the covariance matrix C and the ratio of excitatory
weights fg. In Fig 2A, we also show the average minimal loss € for increasing values of the regu-
larization parameter y.

In [15], the authors showed that, in the case with excitatory synapses only and uncorrelated

02%2
inputs and outputs, o, approaches 0.5 in the limit when the quantity ;- goes to zero, and ana-
E
lyzed which conditions on inputs and outputs statistics lead to maximize capacity. Here we
take a complementary approach, where the x and y statistics are fixed and capacity is optimized
within the error regime, so that the optimal bias I/N is well defined in terms of minimizing

(E) at any load a. The bias optimization leads to a massive simplification of the saddle-point
equations and makes results independent of the E/I ratio and the input/output statistics

A B
. ihioéy e A" —4— ZL, | optimal =0
e y=0.05 15 \ ——h,l=-1 15
e y=0.1 \
s y=02 1.0 1.0
. Y= 0.3
© y=04 = 0.5 05 ©
0.0 0.0
e —4— ¢, | optimal ~55
21 Sl Sl g
0.2 0.4 0.6 0.8 1.0 0 1000 2000 3000 4000 5000
a N

Fig 2. Critical capacity and weight balance. A: Average loss € for a linear perceptron with f; = 0.8 positive synaptic weights in the case of
iid. input X and output y for increasing values of the regularization y. Parameters: N = 1000, X; = X; = 6, = 6, =y = 0, = 1. Each

point is an average across 50 samples. Full lines show the theoretical results. B: Mean-field component 4 (left axis, purple) and weight-
input correlation ¢ (right axis, red) for increasing dimension N in the case where the bias current b = I /N is either learned (I optimal) or
fixed at the outset (I = -1) for fg = 1, ¥ = 0.1, @ = 0.8. Inputs X and output y are time-correlated with un-normalized Gaussian covariance C,

7 =10 (see text). The remaining parameters are as in A. The asymptotic value h = y = 1 is highlighted by the purple dotted line, the value
¢ = 0 by the red dotted line as guide for the eye.

https://doi.org/10.1371/journal.pchi.1008536.9002
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(Methods: EC, Saddle-point equations). One may observe that, in the particular case studied by
[15], @, is maximal for very large I, due to the divergence of the norm of w at critical capacity
for an optimal bias in the absence of regularization.

The independence of our results with respect to the E/I ratio for an optimal bias current sig-
nals a local gauge invariance, as observed by [37, 38] for a sign-constrained binary perceptron.
Indeed, calling g; = sign w;, we can write the mean-removed outputas 3" | g|w,|¢,¢" and
redefine the &s as g,&", without changing their occurrence probability. This establishes an
equivalence to a linear perceptron with non-negative weights (see [37] for more details), once
the mean contribution has been removed. Any residual dependence of o, or € on external
parameters must therefore be ascribed to the volume of weights satisfying Eq (2), for a sub-
optimal external current b.

For a generic value of the bias current b, there are strong deviations from the condition in
Eq (2). In Fig 2B, we compare the value of the average output ¥ with i = Y NWX, + b,
and also plot the residual term ¢ = 7 > °. 6w,x;,, where we decomposed the weight vector
components as w, = w, + 0w, for ¢ € {E, I}. The quantity c measures weight-rate correlations
that are responsible for the cancelation of the O(v/N) bias.

The deviation from Eq (2), shown here for a rapidly decaying covariance of the form

=

C,, = e »7, has been previously described in the context of a target-based learning algorithm
used to build E-I-separated rate and spiking models of neural circuits capable of solving input/
output tasks [3]. In this approach, a randomly initialized recurrent network nr is driven by a
low dimensional signal z. Its currents are then used as targets to train the synaptic couplings of
a second (rate or spiking) network #g, in such a way that the desired output z can later be line-
arly decoded from the self-sustained activity of ns. Each neuron of ng has to independently
learn an input/output mapping from firing rates x to currents y, using an on-line sign-con-
strained least square method. In the presence of an L2 regularization and a constant b o< v/ N
external current, the on-line learning method typically converges onto a solution for the recur-
rent synaptic weights for which Eq (2) does not hold. As also shown in [3], in the peculiar case
of a self-sustained periodic dynamics (in which case off-diagonal terms of the covariance
matrix C,, do not vanish for large y or v) the two contributions h and c scale approximately
like v/N and cancel each other to produce an O(1) total average output y = h + c. In the effort
to build heterogeneous functional network models, the emergence of synaptic connectivity
compatible with the balanced scaling thus depends on the statistics of incoming currents. Ad-
hoc regularization can be avoided by adjusting external currents onto each neuron.

Power spectrum and synaptic distribution

The theory developed thus far applies to a generic covariance matrix C. To connect the spectral
properties of C with the signal dynamics, we further assume the x;, to be N independent sta-
tionary discrete-time processes. In this case, C,,, = C(u — v) is a matrix of Toeplitz type [39],
leading to the following expression for the average minimal loss density in the N — oo limit:

o [T M)
“Ton ) d 1+ Ag M(9)

with Ag,, given by Eq (4). The function A(¢) can be computed exactly in some cases (Methods:
Power spectrum and synaptic distribution) and corresponds to the average power spectrum of
the x and y stochastic processes. Fig 3 shows two representative input signals with Gaussian
and exponential covariance matrix C (Fig 3A) and a comparison between the average power
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Fig 3. Eigenvalues of C and Fourier spectrum. A: Examples of excitatory input signals x;, (i € E) with two different
. . . . . =]
covariance matrices C. Top: rbf covariance, 7 = 10. Bottom: exponential covariance C,= e, 7= 10. Parameters:

X = 1, 0 = 0.3. B: Theoretical eigenvalue spectrum of C with 7 = 10 versus average power spectrum for positive wave
numbers across N = 2000 independent processes with P = 1000 time steps.

https://doi.org/10.1371/journal.pcbi.1008536.9003

spectrum of the input and the analytical results for the eigenvalue spectrum of the matrix C
(Fig 3B). From now on, we use the terms Gaussian or rfb (radial basis function) indistinguish-

. . ) _e?
ably to denote the un-normalized Gaussian function C,, = e 2.

As shown in Fig 4A in the case of input x and output y with rbf covariance, the squared
norm of the optimal synaptic vector w (red curve) is in general a non-monotonic function of
a, its maximum being attained at bigger values of « as the time constant 7 increases. We also
show the minimal loss density € and the mean error €,,, for ¥ = 0.1. The curves in Fig 4A are
the same for any ratio f: the use of an optimal bias current b cancels any asymmetry between

B C
— il ey -2 J—
theory theory 0.25! = 50
% @ +  Gauss H
. Eer -4 exponential 0.201 2025
w|? = g
o —6 I\, 0.151 =0.00
2
o
-8 0.10
0.05
-10
00 05 15 20 00 05 10 15 20 000 ——=¢ 0 5
a wVN

Fig 4. Learning temporally structured signals. A: Minimal loss ¢, error €,,, and norm of the weight vector w as a function of the load ¢ for a

linear perceptron trained on a time-correlated signal. Covariance matrix C is of rbf type with 7 = 2. Parameters: N = 1000, fz = 0.8, y = 0.1,

X, =X, = 0y =0, =y = ¢, = L. B: Optimal bias b for the two sets of signals with rbf (black curve) and exponential (yellow curve) covariance C, with r
= 2. Theoretical curves show the value Iv/N + 7, where I has been computed from the saddle-point equations (Methods: EC, Saddle-point equations).
Parameters as in A. Each point in A and B is an average across 50 samples. C: Probability density of non-zero synaptic weights w,/N of a linear
perceptron with N = 1000, a fraction f = 0.8 of excitatory weights, trained on P = 600 exponentially correlated input x and output y. The 6 function in
zero is omitted for better visualization. Parameters: 7= 10, y = 0.1, X, = X, = 1, o1 = 20g = 0.4. The histogram is an average across 50 realizations of
input/output signals. Inset: full histogram of synaptic weights w,v/N.

https://doi.org/10.1371/journal.pchi.1008536.g004

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 7124


https://doi.org/10.1371/journal.pcbi.1008536.g003
https://doi.org/10.1371/journal.pcbi.1008536.g004
https://doi.org/10.1371/journal.pcbi.1008536

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

E and I populations. For a finite y, the minimal average loss € for a given fi decreases as either
o or grincrease. For a given set of parameters f; and ¥, the optimal bias b will in general
depend on the load o and the structure of the covariance matrix C, as shown in Fig 4B.

Using the same analytical machinery employed for the calculation of the free energy Eq (3),
the probability distribution of the typical weight w; can be easily derived. This can be seen by
employing a variant of the replica trick (Methods: Distribution of synaptic weights) that links
the so-called entropic part of fto (p(w;)), expressed in terms of the saddle-point values of the
same (conjugated) overlap parameters employed thus far. Interestingly, the optimal bias b
implies that half of the synapses are zero, irrespectively of fg and the properties of the covari-
ance matrix C. The probability density of the synaptic weights is composed of two truncated
Gaussian densities with zero mean for the E and I components, plus a finite fraction py = 0.5 of
zero weights.

We show in Fig 4C the shape of the optimal weight distribution for a linear perceptron with
80% excitatory synapses, trained on exponentially correlated x and y and with a ratio oy/0g = 2.
It is interesting to note that, in the presence of an optimal external current, both the means of
the Gaussian components and the fraction of silent synapses do not depend on the specific
properties of input and output signals.

The shape of the synaptic distribution appeared in previous studies both in the binary [8,
11, 13] and linear perceptron [15]. In the linear case with only excitatory synapses [15], for a
fixed bias b = /N, the fraction of zero E weights is larger than 0.5 at criticality. It generally
depends on input parameters and the load in the error region a < ¢.. Let us also mention that
a similar property is also apparent in the binary perceptron, where the scale of the typical solu-
tions is set by robustness [13] to input and output noise. For weights w, = O(1/y/N), the spar-
sity of critical solutions generically depends on properties of E and I inputs. For weights of
O(1/N), robust solutions have a fraction of zero E weights generically larger than 0.5 [6, 11].
When inhibitory synapses are added, their weights are less sparse [11]. Interestingly, in the
case without robustness, half of the E and I weights are zero at critical capacity for all fz > 0.5.

The dynamic properties of input/output mappings affect the shape of the weight distribu-
tion in a computable manner. As an example, in a linear perceptron with non-negative synap-
ses, the explicit dependence of the variance of the weights on the input and output auto-
correlation time constant is shown in Fig 5A for various loads a. Previous work considered an
analog perceptron with purely excitatory weights as a model for the graded rate response of
Purkinje cells in the cerebellum [15]. In the presence of heterogeneity of synaptic properties
across cells, a larger variance in their synaptic distribution is expected to be correlated with
high frequency temporal fluctuations in input currents. Analogously, the auto-correlation of
the typical signals being processed sets the value of the constant external current that a neuron
must receive in order to optimize its capacity.

When the input and output have different covariance matrices C* # C’, a joint diagonaliza-
tion is not possible in general (Methods: EC, Energetic part). We can nevertheless write an
expression (Eq (23)) that holds when input and output patterns are defined on a ring (with
periodic boundary conditions) and use it as an approximation for the general case. Fig 5B
shows good agreement between numerical experiment and theoretical predictions for the
error €., and the squared norm of the synaptic weight vector w, when input and output pro-
cesses have two different time-constants 7, and 7,..

Sample covariance and dimensionality

In the discussion thus far, we assumed independence across the “spatial” index i in the input.
It is often the case for input signals to be confined to a manifold of dimension smaller than N,
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Fig 5. Input/Output time constants and learning performance. A: Variance of synaptic weights (fz = 1) for a linear
perceptron of dimension N = 1000 trained on rbf-correlated signals with increasing time constant 7 for three different values
of the load @.. Parameters: y =0.1,x, = X, = 6, = 0, = y = 6, = 1. B: Average error €, in the case where input and output
signals have two different covariance matrices, for increasing time constant 7, of the output signal y. Parameters: N = 1000, f
=08,7y=0L%, =% =y =0, = 1,01 =20 = 0.6, C" rbf with 7, = 1, C" rbf with various values of 7. Inset: norm of the
weight vector w. Full lines show analytical results. Points are averages across 50 samples.

https://doi.org/10.1371/journal.pcbi.1008536.9005

a feature that can be described by various dimensionality measures, some of which rely on
principal component analysis [40, 41]. In order to relax the independence assumption, we
build on a framework originally introduced in the theory of spin glasses with orthogonal cou-
plings [42-44] and further developed in the context of adaptive Thouless-Anderson-Palmer
(TAP) equations [45-47]. In the TAP formalism, a set of mean-field equations is derived for a
given instance of the random couplings (in our case, for a fixed input/output set). In its adap-
tive generalization [46], the structure of the TAP equations depends on the specific data distri-
bution, in such a way that averaging the equations over the random couplings yields the same
results of the replica approach. Here, following previous work in the context of information
theory of linear vector channels and binary perceptrons [48-51], we employ an expression for
an ensemble of rectangular random matrices and use the replica method to average over the
input X and output y.

Let us write the input matrix (X),, = X, + ¢,,,, with { = US V7, § being the matrix of singu-

in?
lar values. To analyze the properties of the typical case, we start from a generic singular value
distribution S and consider i.i.d. output y,. In calculating the cumulant generating function
Ztsy» we perform a homogeneous average across the left and right principal components U
and V (Methods: SC, Energetic part). Calling pg:+(L) the eigenvalue distribution of the sample

. . T . .
covariance matrix £, we can express Z¢ s, in terms of a function G, ; of an enlarged set of

overlap parameters, which depends on the so-called Shannon transform [52] of pg(A), a quan-
tity that measures the capacity of linear vector channels. The resulting self-consistent equa-
tions, which describe the statistical properties of the synaptic weights w;, are expressed in
terms of the Stieltjes transform of pg+(A), an important tool in random matrix theory [53]
(Methods: SC, Saddle-point equations).

We show the validity of the mean-field approach by employing two different data models
for the input signals. In the first example, valid for o < 1, all the P vectors Sﬂ are orthogonal to
each other. This yields an eigenvalue distribution of the simple form p(A) = aé(A - 1) + (1 — @)
(M), for which the function G, ;, can be computed explicitly [51]. Additionally, we use a syn-

2

thetic model where we explicitly set the singular value spectrum of € to be s(at) = ye **, with
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Fig 6. Sample-based PCA and learning performance. A: First three components of inputs &, with Gaussian singular value spectrum s for two different
values of g, (color coded top panels). Parameters: N = 100, P = 300. B: Average error ¢,,, for three different singular value spectra of the input sample
covariance matrix: orthogonal model and Gaussian model with increasing o, (see main text for definition of g,). Outputs are i.i.d Gaussian. Parameters:
N=1000,fz=0.8,7y=0.1,%; = X, = y = 6, = 1, 01 = 20 = 0.6. B: Average error ¢, for input with orthogonal-type covariance and output y with rbf-

type covariance with decreasing o, (see main text for the definition of 0,). All remaining parameters as in A. Full lines show analytical results. Points are

averages across 50 samples.

https://doi.org/10.1371/journal.pcbi.1008536.9006

a normalization factor ensuring matrix & has unit variance. The shape of the singular value
spectrum s controls the spread of the data points &, in the N-dimensional input space, as
shown in Fig 6A. As shown in Fig 6B for i.i.d Gaussian output, learning degrades as o,
decreases, since inputs tend to be confined to a lower dimensional subspace rather than being
equally distributed along input dimensions.

For N large enough (in practice, for N = 500), the statistics of single cases is well captured
by the equations for the average case (self-averaging effect). To get a mean-field description
for a single case, where a given input matrix X is used, we further assume we have access to
the linear expansion ¢, of the output y in the set {v,} of the columns of the V matrix, namely
y =y + 0,Vc. The calculation can be carried out in a similar way and yields, for the average

regression loss, the following result:

7\,},

— = 6
e ©)

a ~
2
e==0
27"
2

The average in Eq (6) is computed over the eigenvalues A* of the sample covariance matrix,
which correspond to the PCA variances, and ¥, = ¢2 (Methods: SC, Energetic part). The quan-
tity A, can be computed from a set of self-consistent equations that link the order parameter
Aq,, and the first two moments of the synaptic distribution. To better understand the role of
the parameter /~\W, it is instructive to compare Eq (6) with the corresponding result for uncon-

strained weights, which can be derived from the pseudo-inverse solution w* = &+t &y
(Methods: SC, i.i.d. and unconstrained cases). The average loss is:

o, N
€unc = 50,V 77 T = 7
w2 yy<7L +V>ww' @)

Comparing Eqs (7) and (8), we find that /N\w acts as an implicit regularization in the sign-con-
strained case. The mean-field theory is thus carried out through a diagonalization over inde-
pendent contributions along the components v, with prescribed input and output variances
A" and W, respectively. The coupling between different components, induced by the averages

(*)x, and the sign-constraints, is incorporated in the effective regularization A , acting on

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 10/24


https://doi.org/10.1371/journal.pcbi.1008536.g006
https://doi.org/10.1371/journal.pcbi.1008536

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

each component equally, that depends only on the structure of the input x (see Eqs (56) and
(67) in Methods)).
In Fig 6C, we show results when the dimensionality of the output y along the (temporal)

o2

components of the input is modulated by taking c(a) = e 7} The perceptron performance
improves as the output signals spreads out across multiple components v,. The case of i.i.d.
output is recovered by taking ¢, = 1.

Discussion

In this work, I investigated the properties of optimal solutions of a linear perceptron with sign-
constrained synapses and correlated input/output signals, thus providing a general mean-field
theory for constrained regression in the presence of correlations. I treated both the case of
known ensemble covariances and the case where the sample covariance is given. The latter
approach, built on a rotationally invariant assumption, allowed to link the regression perfor-
mance to the input and output statistical properties expressed by principal component
analysis.

I provided the general expression of the weight distribution for regularized regression and
found that half of the weights are set to zero, irrespectively of the fraction of excitatory weights,
provided the bias is optimized. The shape of the synaptic distribution has been previously
described in the binary perceptron with independent input at critical capacity, as well as in the
theory of compressed sensing [54]. I elucidated the role of the optimal bias current and its rela-
tion to the optimal capacity and the scaling of the solution weights. This analysis also shed
light on the structural properties of synaptic matrices that emerge when target-based methods
are used for building biologically plausible functional models of rate and spiking networks.

The theory presented in this work is relevant in the effort of establishing quantitative com-
parisons between the synaptic profile of neural circuits involved in temporal processing of
dynamic signals, such as the cerebellum [55-57], and normative theories that take into account
the temporal and geometrical complexity of computational tasks. On the other hand, the con-
struction of progressively more biologically plausible models of neural circuits calls for norma-
tive theories of learning in heterogeneous networks, which can be coupled to dynamic mean-
field analysis of E-I separated circuits [24, 25, 58].

As shown in this work, the interaction between correlational structure of input signals, syn-
aptic metabolic cost and constant external current shapes the distribution of synaptic weights.
In this respect, the results presented here offer a first approximation (static linear input-output
associations) to account for heterogeneities of the fraction between E and I inputs to single
cells in local circuits. Even though a heterogeneous linear neuron is capable of memorizing N/
2 associations without error for any E/I ratio, the optimal bias does depend on fg, its minimal
value being attained for f; = 0.5. Input current in turn sets the neuron’s operating regime and
its input/output properties. Moreover, trading memorization accuracy (small output error €,,,)
for smaller weights (small |w|?) could be beneficial when synaptic costs are considered (y > 0).
It is therefore likely that, for an optimality principle of the 80/20 ratio to emerge from purely
representational considerations, dynamical and metabolic effects should be examined all
together.

The importance of a theory of constrained regression with realistic input/output statistics
goes beyond the realm of neuroscience. Non-negativity is commonly required to provide
interpretable results in a wide variety of inference and learning problems. Off-line and on-line
least-square estimation methods [59, 60] are also of great practical importance in adaptive con-
trol applications, where constraints on the parameter range are usually imposed by physical
plausibility.
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In this work, I assumed statistical independence between inputs and outputs. For the sake
of biological plausibility, it would be interesting to consider more general input-output corre-
lations for regression and binary discrimination tasks. The classical model for such correla-
tions is provided by the so-called teacher-student (TS) approach [61], where the output y is
generated by a deterministic parameter-dependent transformation of the input x, with a struc-
ture similar to the trained neural architecture. The problem of input/output correlations is
deeply related to the issue of optimal random nonlinear expansion both in statistical learning
theory [62, 63] and theoretical neuroscience [41, 64], with a history dating back to the Marr-
Albus theory of pattern separation in cerebellum [65]. In a recent work, [28] introduced a
promising generalization of TS, in which labels are generated via a low-dimensional latent
representation, and it was shown that this model captures the training dynamics in deep net-
works with real world datasets.

A general analysis that fully takes into account spatio-temporal correlations in network
models could shed light on the emergence of specific network motifs during training. In net-
works with non-linear dynamics, the mathematical treatment quickly gets challenging even
for simple learning rules. In recent years, interesting work has been done to clarify the relation
between learning and network motifs, using a variety of mean-field approaches. Examples are
the study of associative learning in spin models [8] and the analysis of motif dynamics for sim-
ple learning rules in spiking networks [66]. Incorporating both the temporal aspects of learn-
ing and neural cross-correlations in E-I separated models with realistic input/output structure
is an interesting topic for future work.

Methods
Replica formalism: Ensemble covariance matrix (EC)

Using the Replica formalism [67], the free energy density is written as:

10

The function Z" can be computed by considering a finite number # of replicas of the vector w
and subsequently taking a continuation # € R. The introduction of # replicas allows to factor-
ize (Z"),,, over individual weights w;, at the cost of coupling different replicas after the averages
over the x and y are performed. Introducing a small set of overlap order parameters, factoriza-
tion across replicas is restored, so that in the large N limit the replicated partition function
takes the form (Z"),, = e ", In the following, we will usually drop the subscript in the aver-
age <'>x,y-

To simplify the formulas, we introduce the O(1) weights J, = ¢,2/Nw,. In terms of these
rescaled variables, the loss function in Eq (1) takes the form:

B2 =333 e+ %zgwm—yﬂ) SN

by virtue of x,, = X, + 7,{,,. We proceed by inserting the definitions M* = = S P Lir.+

iu®

IVNand A, =Y} &, 2 — 0,5y, with the aid of appropriate & functions. The averaged
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replicated partition function (Z") is:

A, du, dM“dM“
) = [T [ 11 e
27r/
IR BB DRV T ) D
e

i

(10)

where:

Z

&oy

- <e’zw“““ (Zxé"“%’”y‘”‘) > (11)

&oy

In Eq 10, we used a Fourier expansion of the  functions and introduced the real variables u,,
as conjugate variables for A,,,. Analogously, we employed the purely imaginary M for the
variables M“. Once the the average is carried out, second cumulants of £ and 8y get coupled to
replica mixing terms of the form J;, J;;, which can be dealt with by introducing appropriate
overlap order parameters Ng® = S | ], J,, with the use of n(n + 1)/2 additional & functions,
together with their conjugate variables g q " Cumulants of higher order will not contribute to
the expression in the large N limit. Expanding the 6 functions for the overlap parameters we
get the expression

ab ab a
() / dq dq dM*dM* D MURMIND N g NG +aNG (12)
a<b 27T/N 2”/\/_

where the two contributions G, and G, respectively called energetic and entropic part, will be
calculated separately in the following for ease of exposition. Owing to the convexity of the
regression problem, we use a Replica Symmetry (RS) [67] ansatz ¢* = g, + J,,Aq,, and
M*=M.

EC, Entropic part. The total volume of configurations w,, for fixed values of the overlap
parameters is given by the entropic part:

& = / [1r0,)e D L 22‘“ T2 (13)

where we called 5, = i‘: with ¢ € {E, 1}, and n; = ng (; = i) if i € E (i € 1). Using the RS ansatz
4y =4, - 5ab@andlfd“ =M, we get:

7ézi (Aéw+%) Za]zzaJquWZiZa ]i”]ibiMZiaﬂi/m
eNGs — / Hdﬂ(]a)e ; b (14)

Using the explicit definition of the measure du(J) o< [[,..0(J;)dJ.] [,,0(—J,)dJ;, one has, up to
constant terms:

o _1 P ) 2 dw —s.11.M
= flog / [1.e Q(A""‘*o%) 2D sy o (15)
0 a

ce{E,I}

where we introduced the notations f; = 1 — fg and sg = —s; = 1. In order to disentangle the term
Son JJp = S J)2, we employ the so-called Hubbard-Stratonovich transformation
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2

& = | Dze*, where Dz = dz Z\;Z Taking the limit # — 0 one gets:

/ Dzlog / de” Aqw ;)“f(“/a ol (16)
ce{E I}

EC, Energetic part. In order to compute the energetic part, we first need to evaluate the
average with respect to £ and 8y in Eq (11). Performing the two Gaussian integrals we get:

2
V4 = ei%z;wZubqﬁvhu“”u“bc‘i" 7%2#\'Zahu“uu‘bc (17)

&0y
from which:
NG / H dAwd” a *4 eS8 D it G
na (18)
EODDIICED PR e

where we performed a translation A, + M* — y — A . In the special case C* = ¢’ = C, we

canuse C= VAV to jointly rotate A, — V' A, and u, — Vu,,, thus leaving scalar products
invariant. By doing so, we obtain, within the RS ansatz:

g
e™NGr /HdA duua -4 ua At zzuzah D+ 0abAdy ) tyatiyp by

ja

A S 15, (7-5,)

where {, =¥, V,,. Using a Hubbard-Stratonovich transformation on the term X, 4y, 41,
after some algebra, we obtain:

Z (q, + )X, + (M- y)° (20)

1
aNG, = —= ) log(1 + pAq,\
E 2 ; W 1+ pAq,,
Observing that the free energy only depends on M through the term (M — 7)” in G,, we conve-
niently eliminate the quantities {, at this stage, using the simple saddle-point relation

M=y (21)

thus getting:

6, = 5 og(1 + B0, ~§ (0 ) (5. )

The brackets (-), in Eq (22) stand for an average over the eigenvalue distribution p(X) of C in
the N — oo limit, assuming self-averaging. A similar expression for G, was previously derived
in [34] for spherical weights, i.e. >}, w? = 1, in the presence of outputs Y. generated by a
teacher linear perceptron. To map Eq (45) in [34] to Eq (22), one substitutes (1 — g) — Aq,,
(observing that g** = 1 thanks to the spherical constraint) and sets R = 0, since the learning
task only involves patterns memorization.

When C* # , we can derive a similar expression under the assumption of a ring topology
in pattern space (corresponding to periodic boundary conditions in the index y): in this case,
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both covariance matrices are circulant and may be jointly diagonalized by discrete Fourier
transform [33, 34]. In the main text, we show that the expression

1 B g\ + a2
= - 1 1 Ag W) — — el P

yields good results also when C* and C are covariance matrices of stationary discrete-time
processes.

EC, Saddle-point equations. All in all, the free energy density in the saddle-point approx-
imation is:

A A
—pf = —MH%(AQWMW) —%

1 B g\ + o\
— = STlog(1+ pAg 2} = LN Dle T
2NXH: o8 ( +PAq, #) 2NZ 1+ BAg + (24)

14

) 7; AAW+[£—;}' +sc(zw/qw*’7uM)/
1 d (q Uc)
E fc/Dz og/0 Je

ce{E.I}

The saddle-point equations stemming from the entropic part can be written as:

Ag,, = ((P)). = (0)). (25)
g, = (). (26)
I+ Z ”Ic<<]>/>z =0 (27)

ce{E.I}

where the averages (-);and (), in Eqs (25)-(27) are taken with respect to the mean-field distri-
bution of the ] weights:

pUsz) o« > fp.Us2) (28)

ce{E.I}

pi2) ox Os e H ) () (29)

where z is a standard normal variable and 6 is the Heaviside function: 6(x) = 1 when x > 0 and
0 otherwise. Eq (25) is obtained by differentiating Eq (24) with respect to 4,, and then perform-
ing an integration by part in z. Eq (26) is easily obtained by subtracting Eq (25) from the sad-
dle-point condition over Ag,,, while Eq (27) originates from the derivative w.r.t. M.

In the f — oo limit, the unicity of solution for y > 0 implies that Ag,, — 0. We therefore
use the following scalings for the order parameters:

BAq, = A, (30)
q,=pC (31)
Ag, = PA (32)

M = BBVC (33)
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while g, = O(1). In this scaling, Eqs (25)-(27) take the form:

. f.
Ag, = — H(s.1.B) 34
C;{E;}A to o
@ = f ((1 + ’/IQBZ) (ScncB) - SC’/’CBG(]/ICB)) (35)
ce{E,I} (A —+ LZ)
I fo (o
== — (n:BH(s.n.B) — s.1.G(1.B) 36
L c;:u At ( ) _
where G(x) = XT *—and H(x) = [ Dz. The two remaining saddle-point equations are:

1 g+ W
C=_> nr—rh (37)

N n (1 + Aqwky)

1 A,
A= S L —

N; 11 AG (38)

Optimizing fwith respect to the bias b = Iv/N immediately implies B = 0, by virtue of Eq (33),
and greatly simplifies the saddle-point equations. Using the scaling assumptions Eqs (30)-(33)
together with the saddle-point Eqs (34)-(38), we get Eq (4) in the main text, that is valid for

any a for y > 0. In the unregularized case (y = 0), it describes solutions in the error regime a >

a.. The optimal bias b can be computed by Iv/N using Eq (36), that is valid up to an O(1) term
equal to y (Fig 4B). Keeping only the leading terms in the limit # — oo, Eq (24) can be written
as:

—#f =—ppvr+Lag, Tng,

q,\, + ok,

/VN

Z 1+ Aqwxx (39)

%C > ﬁ (1 + n:B*)H(s.1.B) — 5,n.BG(n.B))

ce{EI} oz

From the definition of the free energy density —SNf = (log [ du(w)e™PE), one has that
% = 0,( ff). Using Eq (39) and the relevant saddle-point equations, the expression for the
average minimal energy density is then:

o’ A

y
== T s A x (40)
2N £~1+ Ag, N\,

Also, noting that d, E = %ZL w?, we can compute the average squared norm of the weights
v =31 (w?) by v=23,f. We thus obtain:

L

y=C 5 ((1+n’B*)H(s.n.B) — 5.1.BG(1.B)) (41)

(21} g2 (A + 7>
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2 .
The error €,,, = 55 (|X"w 4 b — y|”) can be then computed bye,,, = € —Zv.

Distribution of synaptic weights

The synaptic weight distribution appearing in Eqs (28) and (29) can be obtained using a vari-
ant of the replica trick [6, 67]. Using the expression Z ' =lim,, _, , Z"~", the density of excit-
atory weights can be written as:

pOw) =tim [ TTdun)o(m, = w)e 2 (42)

n—0

where we picked the first E weight in the first replica wy; without loss of generality. The calcu-
lation proceeds along the same lines as for the entropic part above, since the energetic part
does not depend on w, explicitely. Isolating the first replica and taking the limit #» — 0, one
gets the expression

2
-4 (Aéwffg) +(24/aw e ) g
E

[4

pUy) = 007,) / Dz (43)

s g
ﬂ)OO d]e > (AqWJraé)Jr(z\/a ;1EM)I

and analogously for the I weights. This expression holds for uncorrelated inputs and outputs
and any fixed bias b, as well as for any correlated x and y with optimal bias b, where deviations
from Eq (2) do not occur. In the f — o0, using the scaling relations Eqs (30)-(33), it can be

easily shown that the mean-field weight probability density of the rescaled weights v Nw;, is a
superposition of a 6 function in zero and two truncated Gaussian densitites:

PVEW) = py(B)3(w) + 3 [G(VNwW: M, Z,)0(s.) ()

ce{E.I}

where the mean and standard deviation of the Gaussians G(-;M, X) are:

nBvV'C

M, =
g A+ r (45)
O-C
VC
Z=——7 (46)
oA+~
o

c

This weight density is valid for y > 0 at any o and at critical capacity for y = 0. The fraction of
zero weights is given by:

po(B) = feH(—n:B) + (1 — f,)H(n,B)
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Spectrum of exponential and rbf covariance

. . lu—l
For the exponential covariance C,, = e~ 7, one has [33]:

1—x
}\4 e —
(9) 1—2xcos¢p+ x2
luvf?
with x = e*. In the rbf case C,=¢ 57, the spectrum can be computed by Fourier series

[39], yielding

o) =8, (5.%)

with 9,(z,q) = 1 + 232, ¢" cos(2nz) the Jacobi theta function of 3rd type.

Replica formalism: Sample covariance matrix (SC)

Also in the case of a sample covariance matrix, we are interested in statistically structured
inputs and output. An independent average across x and y would result in a simple depen-
dence on the variance of y in the energetic part. To capture the geometric dependence between
x and y, we thus extend the calculations in [50, 51] to the case where the linear expansion of y,
on the right singular vectors V., is known, by taking 6y, = ¥, V,,, c,.

In order to compute the replicated cumulant generating function Eq (11), we again intro-
duce overlap parameters g*, whose volume is given by the previously computed entropic part
G,. The fact that the entropic part is unchanged in turn implies that the mean-field weight dis-
tribution takes the form of Eq (44), with the values of {A, B, C} being determined by a new set
of saddle-point equations.

SC, Energetic part. Using again the expressions (X),, = X, + 0,¢,, and { = US V7, the rep-
licated cumulant generating function for the joint (mean-removed) input and output is:

Z., = <exp (iZijsaa —~ iaycTZﬁa> > (47)
¢ ? pUaita)

where we used the change of variables J,, = >, U,.J,, and i o = 2 Vil The average in Eq

(47) is taken over the joint distribution p(J , &#,) resulting from averaging over the Haar mea-
sure on the orthogonal matrices U and V. For a single replica, Z; 5, will only depend on the

72 52 ~
squared norms Q, = > i%" andQ, =3, “L of the two vectors J and . We can therefore write

the average in the following way:
(exp(i] "Sit — i0,cTi)) ;0 O /5(|7|2 — NQ,)d(|a]* — PQ,)e’ s*-ine'a (48)

Introducing Fourier representation for the § functions, we are left with an expression involving
an N + P dimensional Gaussian integral:

dA, dA, sao, A, ~ Awi2 Aupz 2 Ton o Tn
/ w u eTWJr“T d]dﬁe—T\]\ ——H|u] +1]TSu—xaycTu

Ami 4Ami

N+p

=S A P 2 0 (49)
= (2) 5 / dAwdAueA Ry P g ot ./\/l*%exp _% (0 c)M™!
(4mi) 2 c
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where
AL, —iS
M =
—isT A1,
and 1 is the identity matrix of dimension K. Following [51], the determinant can be easily cal-
culated:
1 1"y (N — min(N, P))
—log det =— log(A; + A, A —
108 det M N;og(kJr A+ . (50)
— (log(A" + A, A))x + (0 — 1)log A,

where the limit is taken for N — oo and the average is with respect to the eigenvalue distribu-
tion p(1”). As for the quadratic portion of the Gaussian integral, calling A}, = ¢}, we will use the
shorthand

N 1" AN 1 &N
<7J‘+AA>X E13 Aix th 2 A (51)
wilu/ ax k min(N,P)+
Considering now the replicated generating function, all the n(n + 1) cross-product
J,-J,=17,-J,and u, - u, = @, - i1, must be conserved via the multiplication of Uand V.
Together with the overlap parameters Ng** = > J..J,,» we additionally introduce the quantities
= Uualhy, thus obtaining;:

o _ /HdA iy, (P ) 257, 5, (s 59) 52
€.

pa

In the RS case, we again take g% = g, + 0,,Aq,, and, similarly for the u’s, g¢** = —q, + J,,Aq,.
In the basis where both g and g are diagonal, the expression for Zg 5, becomes

n
Zi by = <eij’{sal —iaycT /ity HeibeSﬁh> (53)

b=2

so, calling G. +lim

n0l0g Z: 5 , we have:
aF(Aqw’ Aqu) 8F(Aqw7 Aqu) 2
2gf.ﬁy = F(Aqu Aqu) + qw aAq - qu aAq - OCO';K(AM” Au) (54)

gy T

with the function F given by:
F(x7 )’) = EXtI’/\W,AM{_<10g(7\‘)C + AwAu)>)Lx - (O( - 1) log Au + wa + OCAuy}

(55)
—logx —alogy — (14 o)

and K(A,,A,) = A, (=2—),.,,- In Eq (54), it is intended that A,, and A,, are implied by the
w u AN q p y

AVERUN
Legendre Transform conditions:

1
=), =

a—1 1
aAqu B AM + Aw<)\'x + AWAM>)\,X (57)
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The remaining terms in the energetic part G, involve the g% overlaps and their conjugated

parameters ¢. Introducing the RS ansatz g = g, + 9, Aq“;q“, the calculation follows along
the same lines of the section SC, Energetic part. We get:

2gé:‘5)’ Qu + (M _)_/)2

2G, =—=+Aq,(Aq, — q,Aq, —log(1+ pAq,) — 58
gE o + qu( qu qu) + qu qu Og( + ﬁ qu) B 1+ ﬁAqu ( )
Eliminating M, g, and Ag, at the saddle-point in Eq (58), G, reduces to:
Gy , =D 4 1
— T u u u _1 A 59
gE o + 2ﬁ 2Aqu+20g qu ( )
SC, Saddle-point equations. The final expression for the free energy density
- Ag q.,/A
—Bf = —¥1+ = (Aq, +q,) - 25T+ G + a0, (60)
implies the following saddle-point equations:
OF
Aq,+=——=0 1
Ty Ad. (61)
o o OF
= I T )
Aq, B 0Aq, 2
O°F O°F , OK
q, = — — 63
T ong, " 0hq,8q, " "7 OAg, ()
2 2
s OF OF , OK (64)

A~ Toag ~ T oAq,Aq, T % BAg,

in addition to the entropic saddle-point Eqs (25)-(27), which are unchanged. The saddle-point
values of the conjugate Legendre variables A,,, A, greatly simplify the expression for the first
and second derivatives of F. Indeed, from Eqgs (61) and (62) one has:

1 A
A=p" (66)
or, setting A, = A :
A,=-L a4 67
w Aqw ( )

In particular, Eq (56) shows that Ag,, is expressed by a Stieltjes transform of p(1*) and the first
term in Eq (55) is its Shannon transform. In the limit 8 — oo, using the following additional
scaling relations for the u overlaps:

q, =g, (68)

Aq, = PAq, (69)
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we get the expression for the energy density:

g% N
G_ZU;AW< o = >
A +A, o

SC, i.i.d. and unconstrained cases. Either setting K = 0 or >’ = 0 reverts back to the i.i.d.
output case. In the special case of i.i.d. inputs, the eigenvalue distribution is Marchenko-Pastur

\/(7\‘ B 7;;[)757\4 _ )") (70)

p(h) =

withd,, = (1+ Va)?, from which F(Aq,,, Aq,) = — 2Aq,Aq,. The saddle-point
equations are essentially the same as the ones in the section EC, Saddle-point equations with
¢ =C =9,.

my 1y ny

Let us also note that, in the simple unconstrained case, taking for simplicity X, = 0 and
b =0, the entropic part can be worked out to be, up to constant terms:

2G, = logAq,, + Aq; - Br(Aq, +4,) (71)

w

which, at the saddle-point, implies A, = 7. The mean-field distribution p(v/Nw) is a zero-
mean Gaussian with variance v = g,,. Using the properties of the Hessian of the Legendre
Transform, it is easy to show that:

— aal =0 & 7
Duvune OA, (W +9)° 2N

- 2< i > (73)
€ = —0 T
unc 2 yy 7\‘ +V .-

These expressions can also be derived from the pseudo-inverse solution (we take y = 0 for
simplicity) w* = (€7 + 7)™ &y, by taking an average across £ and y in the two expressions:

v= (0w = Te(Ey e (8 +9)7) (74)
(B) =3 (") — 3 Te(oy' €' (& +9)) 75)

The ii.d. output case also follows by performing independent averages over y and &.

Acknowledgments

The author would like to thank L.F. Abbott and Francesco Fumarola for constructive criticism
of an earlier version of the manuscript.

Author Contributions
Conceptualization: Alessandro Ingrosso.
Formal analysis: Alessandro Ingrosso.

Investigation: Alessandro Ingrosso.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 21/24


https://doi.org/10.1371/journal.pcbi.1008536

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

Methodology: Alessandro Ingrosso.

Software: Alessandro Ingrosso.

Validation: Alessandro Ingrosso.
Visualization: Alessandro Ingrosso.

Writing - original draft: Alessandro Ingrosso.

Writing - review & editing: Alessandro Ingrosso.

References

1. SongHF, Yang GR, Wang XJ. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive
Tasks: A Simple and Flexible Framework. PLOS Computational Biology. 2016; 12(2):1-30. https://doi.
org/10.1371/journal.pcbi.1004792 PMID: 26928718

2. Nicola W, Clopath C. Supervised learning in spiking neural networks with FORCE training. Nature Com-
munications. 2017; 8(1):2208. https://doi.org/10.1038/s41467-017-01827-3 PMID: 29263361

3. Ingrosso A, Abbott LF. Training dynamically balanced excitatory-inhibitory networks. PLOS ONE. 2019;
14(8):1-18. https://doi.org/10.1371/journal.pone.0220547 PMID: 31393909

4. Kim CM, Chow CC. Learning recurrent dynamics in spiking networks. eLife. 2018; 7:e37124. hitps://doi.
org/10.7554/eLife.37124 PMID: 30234488

5. Brendel W, Bourdoukan R, Vertechi P, Machens CK, Denéve S. Learning to represent signals spike by
spike. PLOS Computational Biology. 2020; 16(3):1-23. https://doi.org/10.1371/journal.pcbi.1007692
PMID: 32176682

6. Brunel N, Hakim V, Isope P, Nadal JP, Barbour B. Optimal Information Storage and the Distribution of
Synaptic Weights: Perceptron versus Purkinje Cell. Neuron. 2004; 43(5):745—-757. https://doi.org/10.
1016/S0896-6273(04)00528-8 PMID: 15339654

7. Barbour B, Brunel N, Hakim V, Nadal JP. What can we learn from synaptic weight distributions? Trends
in Neurosciences. 2007; 30(12):622—-629. https://doi.org/10.1016/}.tins.2007.09.005 PMID: 17983670

8. Brunel N. Is cortical connectivity optimized for storing information? Nature Neuroscience. 2016; 19
(5):749-755. https://doi.org/10.1038/nn.4286 PMID: 27065365

9. Gardner E. The space of interactions in neural network models. Journal of Physics A: Mathematical and
General. 1988; 21(1):257-270.

10. Clopath C, Nadal JP, Brunel N. Storage of correlated patterns in standard and bistable Purkinje cell
models. PLoS computational biology. 2012; 8(4):e1002448—e1002448. https://doi.org/10.1371/journal.
pcbi.1002448 PMID: 22570592

11. Chapeton J, Fares T, LaSota D, Stepanyants A. Efficient associative memory storage in cortical circuits
of inhibitory and excitatory neurons. Proceedings of the National Academy of Sciences. 2012; 109(51):
E3614-E3622. https://doi.org/10.1073/pnas.1211467109 PMID: 23213221

12. Zhang D, Zhang C, Stepanyants A. Robust Associative Learning Is Sufficient to Explain the Structural
and Dynamical Properties of Local Cortical Circuits. Journal of Neuroscience. 2019; 39(35):6888—6904.
https://doi.org/10.1523/JNEUROSCI.3218-18.2019 PMID: 31270161

13. Rubin R, Abbott LF, Sompolinsky H. Balanced excitation and inhibition are required for high-capacity,
noise-robust neuronal selectivity. Proceedings of the National Academy of Sciences. 2017; 114(44):
E9366—E9375. https://doi.org/10.1073/pnas.1705841114 PMID: 29042519

14. SeungHS, Sompolinsky H, Tishby N. Statistical mechanics of learning from examples. Phys Rev A.
1992; 45:6056—6091. https://doi.org/10.1103/PhysRevA.45.6056 PMID: 9907706

15. Clopath C, Brunel N. Optimal Properties of Analog Perceptrons with Excitatory Weights. PLOS Compu-
tational Biology. 2013; 9(2):1-6. https://doi.org/10.1371/journal.pcbi. 1002919 PMID: 23436991

16. Gutfreund H, Stein Y. Capacity of neural networks with discrete synaptic couplings. Journal of Physics
A: Mathematical and General. 1990; 23(12):2613—-2630. https://doi.org/10.1088/0305-4470/23/12/036

17. Isaacson JS, Scanziani M. How Inhibition Shapes Cortical Activity. Neuron. 2011; 72(2):231-243.
https://doi.org/10.1016/j.neuron.2011.09.027 PMID: 22017986

18. Field RE, D’amour JA, Tremblay R, Miehl C, Rudy B, Gjorgjieva J, et al. Heterosynaptic Plasticity Deter-
mines the Set Point for Cortical Excitatory-Inhibitory Balance. Neuron. 2020; https://doi.org/10.1016/j.
neuron.2020.03.002. PMID: 32213321

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 22/24


https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.1371/journal.pcbi.1004792
http://www.ncbi.nlm.nih.gov/pubmed/26928718
https://doi.org/10.1038/s41467-017-01827-3
http://www.ncbi.nlm.nih.gov/pubmed/29263361
https://doi.org/10.1371/journal.pone.0220547
http://www.ncbi.nlm.nih.gov/pubmed/31393909
https://doi.org/10.7554/eLife.37124
https://doi.org/10.7554/eLife.37124
http://www.ncbi.nlm.nih.gov/pubmed/30234488
https://doi.org/10.1371/journal.pcbi.1007692
http://www.ncbi.nlm.nih.gov/pubmed/32176682
https://doi.org/10.1016/S0896-6273(04)00528-8
https://doi.org/10.1016/S0896-6273(04)00528-8
http://www.ncbi.nlm.nih.gov/pubmed/15339654
https://doi.org/10.1016/j.tins.2007.09.005
http://www.ncbi.nlm.nih.gov/pubmed/17983670
https://doi.org/10.1038/nn.4286
http://www.ncbi.nlm.nih.gov/pubmed/27065365
https://doi.org/10.1371/journal.pcbi.1002448
https://doi.org/10.1371/journal.pcbi.1002448
http://www.ncbi.nlm.nih.gov/pubmed/22570592
https://doi.org/10.1073/pnas.1211467109
http://www.ncbi.nlm.nih.gov/pubmed/23213221
https://doi.org/10.1523/JNEUROSCI.3218-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/31270161
https://doi.org/10.1073/pnas.1705841114
http://www.ncbi.nlm.nih.gov/pubmed/29042519
https://doi.org/10.1103/PhysRevA.45.6056
http://www.ncbi.nlm.nih.gov/pubmed/9907706
https://doi.org/10.1371/journal.pcbi.1002919
http://www.ncbi.nlm.nih.gov/pubmed/23436991
https://doi.org/10.1088/0305-4470/23/12/036
https://doi.org/10.1016/j.neuron.2011.09.027
http://www.ncbi.nlm.nih.gov/pubmed/22017986
https://doi.org/10.1016/j.neuron.2020.03.002
https://doi.org/10.1016/j.neuron.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32213321
https://doi.org/10.1371/journal.pcbi.1008536

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

19. Hennequin G, Agnes EJ, Vogels TP. Inhibitory Plasticity: Balance, Control, and Codependence. Annual
Review of Neuroscience. 2017; 40(1):557-579. https://doi.org/10.1146/annurev-neuro-072116-031005
PMID: 28598717

20. Ahmadian Y, Miller KD. What is the dynamical regime of cerebral cortex? arXiv:190810101. 2019.

21. van Vreeswijk C, Sompolinsky H. Chaos in Neuronal Networks with Balanced Excitatory and Inhibitory
Activity. Science. 1996; 274(5293):1724—1726. https://doi.org/10.1126/science.274.5293.1724 PMID:
8939866

22. van Vreeswijk C, Sompolinsky H. Chaotic Balanced State in a Model of Cortical Circuits. Neural Com-
put. 1998; 10(6):1321—1371. https://doi.org/10.1162/089976698300017214 PMID: 9698348

23. RenartA, de la Rocha J, Bartho P, Hollender L, Parga N, Reyes A, et al. The Asynchronous State in
Cortical Circuits. Science. 2010; 327(5965):587-590. https://doi.org/10.1126/science.1179850 PMID:
20110507

24. Kadmon J, Sompolinsky H. Transition to Chaos in Random Neuronal Networks. Phys Rev X. 2015;
5:041030.

25. Harish O, Hansel D. Asynchronous Rate Chaos in Spiking Neuronal Circuits. PLOS Computational Biol-
ogy. 2015; 11(7):1-38. https://doi.org/10.1371/journal.pcbi.1004266 PMID: 26230679

26. Brunel N. Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons.
Journal of Computational Neuroscience. 2000; 8(3):183—208. https://doi.org/10.1023/
A:1008925309027 PMID: 10809012

27. Tsodyks MV, Sejnowski T. Rapid state switching in balanced cortical network models. Network: Com-
putation in Neural Systems. 1995; 6(2):111—-124. https://doi.org/10.1088/0954-898X_6_2_001

28. GoldtS, Mézard M, Krzakala F, Zdeborova L. Modelling the influence of data structure on learning in
neural networks: the hidden manifold model. arXiv:190911500. 2019.

29. ChungsS, Lee DD, Sompolinsky H. Classification and Geometry of General Perceptual Manifolds. Phys
Rev X. 2018; 8:031003.

30. CohenU, Chung S, Lee DD, Sompolinsky H. Separability and geometry of object manifolds in deep
neural networks. Nature Communications. 2020; 11(1):746. https://doi.org/10.1038/s41467-020-
14578-5 PMID: 32029727

31. Rotondo P, Lagomarsino MC, Gherardi M. Counting the learnable functions of geometrically structured
data. Phys Rev Research. 2020; 2:023169. https://doi.org/10.1103/PhysRevResearch.2.023169

32. Pastore M, Rotondo P, Erba V, Gherardi M. Statistical learning theory of structured data.
arXiv:200510002. 2020.

33. Monasson R. Properties of neural networks storing spatially correlated patterns. Journal of Physics A:
Mathematical and General. 1992; 25(13):3701-3720. https://doi.org/10.1088/0305-4470/25/13/019

34. Tarkowski W, Lewenstein M. Learning from correlated examples in a perceptron. Journal of Physics A:
Mathematical and General. 1993; 26(15):3669—3679. https://doi.org/10.1088/0305-4470/26/15/017

35. Monasson R. Storage of spatially correlated patterns in autoassociative memories. Journal de Physique
1. 1998; 3(5):1141-1152. https://doi.org/10.1051/jp1:1993107

36. Battista A, Monasson R. Capacity-Resolution Trade-Off in the Optimal Learning of Multiple Low-Dimen-
sional Manifolds by Attractor Neural Networks. Phys Rev Lett. 2020; 124:048302. https://doi.org/10.
1103/PhysRevLett.124.048302 PMID: 32058781

37. Amit DJ, Wong KYM, Campbell C. Perceptron learning with sign-constrained weights. Journal of Phys-
ics A: Mathematical and General. 1989; 22(12):2039-2045. https://doi.org/10.1088/0305-4470/22/12/
009

38. Amit DJ, Campbell C, Wong KYM. The interaction space of neural networks with sign-constrained syn-
apses. Journal of Physics A: Mathematical and General. 1989; 22(21):4687-4693. https://doi.org/10.
1088/0305-4470/22/21/030

39. Gray RM. Toeplitz and Circulant Matrices: A Review. Foundations and Trends in Communications and
Information Theory. 2006; 2(3):155—-239. https://doi.org/10.1561/0100000006

40. Abbott LF, Rajan K, Sompolinsky H. Interactions between Intrinsic and Stimulus-Evoked Activity in
Recurrent Neural Networks. arXiv:09123832. 2009.

41. Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF. Optimal Degrees of Synaptic
Connectivity. Neuron. 2017; 93(5):1153-1164.€e7. https://doi.org/10.1016/j.neuron.2017.01.030 PMID:
28215558

42. Marinari E, Parisi G, Ritort F. Replica field theory for deterministic models. Il. A non-random spin glass
with glassy behaviour. Journal of Physics A: Mathematical and General. 1994; 27(23):7647—-7668.
https://doi.org/10.1088/0305-4470/27/23/011

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 23/24


https://doi.org/10.1146/annurev-neuro-072116-031005
http://www.ncbi.nlm.nih.gov/pubmed/28598717
https://doi.org/10.1126/science.274.5293.1724
http://www.ncbi.nlm.nih.gov/pubmed/8939866
https://doi.org/10.1162/089976698300017214
http://www.ncbi.nlm.nih.gov/pubmed/9698348
https://doi.org/10.1126/science.1179850
http://www.ncbi.nlm.nih.gov/pubmed/20110507
https://doi.org/10.1371/journal.pcbi.1004266
http://www.ncbi.nlm.nih.gov/pubmed/26230679
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1023/A:1008925309027
http://www.ncbi.nlm.nih.gov/pubmed/10809012
https://doi.org/10.1088/0954-898X_6_2_001
https://doi.org/10.1038/s41467-020-14578-5
https://doi.org/10.1038/s41467-020-14578-5
http://www.ncbi.nlm.nih.gov/pubmed/32029727
https://doi.org/10.1103/PhysRevResearch.2.023169
https://doi.org/10.1088/0305-4470/25/13/019
https://doi.org/10.1088/0305-4470/26/15/017
https://doi.org/10.1051/jp1:1993107
https://doi.org/10.1103/PhysRevLett.124.048302
https://doi.org/10.1103/PhysRevLett.124.048302
http://www.ncbi.nlm.nih.gov/pubmed/32058781
https://doi.org/10.1088/0305-4470/22/12/009
https://doi.org/10.1088/0305-4470/22/12/009
https://doi.org/10.1088/0305-4470/22/21/030
https://doi.org/10.1088/0305-4470/22/21/030
https://doi.org/10.1561/0100000006
https://doi.org/10.1016/j.neuron.2017.01.030
http://www.ncbi.nlm.nih.gov/pubmed/28215558
https://doi.org/10.1088/0305-4470/27/23/011
https://doi.org/10.1371/journal.pcbi.1008536

PLOS COMPUTATIONAL BIOLOGY Optimal learning with excitatory and inhibitory synapses

43. Parisi G, Potters M. Mean-field equations for spin models with orthogonal interaction matrices. Journal
of Physics A: Mathematical and General. 1995; 28(18):5267-5285. https://doi.org/10.1088/0305-4470/
28/18/016

44. Cherrier R, Dean DS, Lefevre A. Role of the interaction matrix in mean-field spin glass models. Phys
Rev E. 2003; 67:046112. https://doi.org/10.1103/PhysRevE.67.046112 PMID: 12786441

45. Opper M, Winther O. Tractable Approximations for Probabilistic Models: The Adaptive Thouless-Ander-
son-Palmer Mean Field Approach. Phys Rev Lett. 2001; 86:3695-3699. https://doi.org/10.1103/
PhysRevLett.86.3695 PMID: 11329302

46. Opper M, Winther O. Adaptive and self-averaging Thouless-Anderson-Palmer mean-field theory for
probabilistic modeling. Phys Rev E. 2001; 64:056131. https://doi.org/10.1103/PhysRevE.64.056131
PMID: 11736038

47. Opper M, Winther O. Expectation Consistent Approximate Inference. Journal of Machine Learning
Research. 2005; 6:2177-2204.

48. TakedaK, Uda S, Kabashima Y. Analysis of CDMA systems that are characterized by eigenvalue spec-
trum. Europhysics Letters (EPL). 2006; 76(6):1193—1199. https://doi.org/10.1209/epl/i2006-10380-5

49. Kabashima Y. Inference from correlated patterns: a unified theory for perceptron learning and linear
vector channels. Journal of Physics: Conference Series. 2008; 95:012001.

50. Shinzato T, Kabashima Y. Learning from correlated patterns by simple perceptrons. Journal of Physics
A: Mathematical and Theoretical. 2008; 42(1):015005. https://doi.org/10.1088/1751-8113/42/1/015005

51. Shinzato T, Kabashima Y. Perceptron capacity revisited: classification ability for correlated patterns.
Journal of Physics A: Mathematical and Theoretical. 2008; 41(32):324013. https://doi.org/10.1088/
1751-8113/41/32/324013

52. Tulino AM, Verdu S. Random Matrix Theory and Wireless Communications. Foundations and Trends in
Communications and Information Theory. 2004; 1(1):1-182. https://doi.org/10.1561/0100000001

53. TaoT. Topics in Random Matrix Theory. Graduate studies in mathematics. American Mathematical
Soc.;. Available from: https://books.google.com/books?id=Hjq_JHLNPTOC.

54. Ganguli S, Sompolinsky H. Statistical Mechanics of Compressed Sensing. Phys Rev Lett. 2010;
104:188701. https://doi.org/10.1103/PhysRevLett.104.188701 PMID: 20482215

55. MarrD. Atheory of cerebellar cortex. The Journal of physiology. 1969; 202(2):437—470. https://doi.org/
10.1113/jphysiol.1969.sp008820 PMID: 5784296

56. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends in Cognitive Sciences.
1998; 2(9):338-347. https://doi.org/10.1016/S1364-6613(98)01221-2 PMID: 21227230

57. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. Encoding of error and learning to correct that error by
the Purkinje cells of the cerebellum. Nature Neuroscience. 2018; 21(5):736—743. https://doi.org/10.
1038/s41593-018-0136-y PMID: 29662213

58. Mastrogiuseppe F, Ostojic S. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.
PLOS Computational Biology. 2017; 13(4):1—-40. https://doi.org/10.1371/journal.pcbi.1005498 PMID:
28437436

59. ChenJ, Richard C, Bermudez JM, Honeine P. Variants of Non-Negative Least-Mean-Square Algorithm
and Convergence Analysis. IEEE Transactions on Signal Processing. 2014; 62(15):3990-4005. https:/
doi.org/10.1109/TSP.2014.2332440

60. Nascimento VH, Zakharov YV. RLS Adaptive Filter With Inequality Constraints. IEEE Signal Processing
Letters. 2016; 23(5):752—756. https://doi.org/10.1109/LSP.2016.2551468

61. Engel A, Van den Broeck C. Statistical mechanics of learning. Cambridge University Press; 2001.

62. Mei S, Montanari A. The generalization error of random features regression: Precise asymptotics and
double descent curve. arXiv:190805355. 2019.

63. Gerace F, Loureiro B, Krzakala F, Mézard M, Zdeborova L. Generalisation error in learning with random
features and the hidden manifold model. arXiv:200209339. 2020.

64. BabadiB, Sompolinsky H. Sparseness and Expansion in Sensory Representations. Neuron. 2014; 83
(5):1213-1226. https://doi.org/10.1016/j.neuron.2014.07.035 PMID: 25155954

65. Cayco-Gajic NA, Silver RA. Re-evaluating Circuit Mechanisms Underlying Pattern Separation. Neuron.
2019; 101(4):584—602. https://doi.org/10.1016/j.neuron.2019.01.044 PMID: 30790539

66. Ocker GK, Litwin-Kumar A, Doiron B. Self-Organization of Microcircuits in Networks of Spiking Neurons
with Plastic Synapses. PLOS Computational Biology. 2015; 11(8):1-40. https://doi.org/10.1371/journal.
pcbi.1004458 PMID: 26291697

67. Mézard M, Parisi G, Virasoro M. Spin Glass Theory and Beyond. World Scientific Lecture Notes in
Physics; 1987.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008536 December 28, 2020 24/24


https://doi.org/10.1088/0305-4470/28/18/016
https://doi.org/10.1088/0305-4470/28/18/016
https://doi.org/10.1103/PhysRevE.67.046112
http://www.ncbi.nlm.nih.gov/pubmed/12786441
https://doi.org/10.1103/PhysRevLett.86.3695
https://doi.org/10.1103/PhysRevLett.86.3695
http://www.ncbi.nlm.nih.gov/pubmed/11329302
https://doi.org/10.1103/PhysRevE.64.056131
http://www.ncbi.nlm.nih.gov/pubmed/11736038
https://doi.org/10.1209/epl/i2006-10380-5
https://doi.org/10.1088/1751-8113/42/1/015005
https://doi.org/10.1088/1751-8113/41/32/324013
https://doi.org/10.1088/1751-8113/41/32/324013
https://doi.org/10.1561/0100000001
https://books.google.com/books?id=Hjq_JHLNPT0C
https://doi.org/10.1103/PhysRevLett.104.188701
http://www.ncbi.nlm.nih.gov/pubmed/20482215
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1113/jphysiol.1969.sp008820
http://www.ncbi.nlm.nih.gov/pubmed/5784296
https://doi.org/10.1016/S1364-6613(98)01221-2
http://www.ncbi.nlm.nih.gov/pubmed/21227230
https://doi.org/10.1038/s41593-018-0136-y
https://doi.org/10.1038/s41593-018-0136-y
http://www.ncbi.nlm.nih.gov/pubmed/29662213
https://doi.org/10.1371/journal.pcbi.1005498
http://www.ncbi.nlm.nih.gov/pubmed/28437436
https://doi.org/10.1109/TSP.2014.2332440
https://doi.org/10.1109/TSP.2014.2332440
https://doi.org/10.1109/LSP.2016.2551468
https://doi.org/10.1016/j.neuron.2014.07.035
http://www.ncbi.nlm.nih.gov/pubmed/25155954
https://doi.org/10.1016/j.neuron.2019.01.044
http://www.ncbi.nlm.nih.gov/pubmed/30790539
https://doi.org/10.1371/journal.pcbi.1004458
https://doi.org/10.1371/journal.pcbi.1004458
http://www.ncbi.nlm.nih.gov/pubmed/26291697
https://doi.org/10.1371/journal.pcbi.1008536

