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SUMMARY

Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention
in neuroscience. Besides offering powerful techniques for data analysis, ANNs provide a new approach for
neuroscientists to build models for complex behaviors, heterogeneous neural activity, and circuit connectiv-
ity, as well as to explore optimization in neural systems, in ways that traditional models are not designed for.
In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to
study neuroscientific questions. We first discuss basic concepts and methods of ANNs. Then, with a focus
on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis,
structure, and learning of ANNs to better address a wide range of challenges in brain research. To help
readers garner hands-on experience, this Primer is accompanied with tutorial-style code in PyTorch and

Jupyter Notebook, covering major topics.

1. ARTIFICIAL NEURAL NETWORKS IN NEUROSCIENCE

Learning with artificial neural networks (ANNSs), or deep learning,
has emerged as a dominant framework in machine learning
nowadays (LeCun et al., 2015), leading to breakthroughs across
a wide range of applications, including computer vision (Krizhev-
sky et al.,, 2012), natural language processing (Devlin et al.,
2018), and strategic games (Silver et al., 2017). Some key ideas
in this field can be traced to brain research: supervised learning
rules have their roots in the theory of training perceptrons, which,
in turn, was inspired by the brain (Rosenblatt, 1962); the hierar-
chical architecture (Fukushima and Miyake, 1982) and convolu-
tional principle (LeCun and Bengio, 1995) were closely linked to
our knowledge about the primate visual system (Hubel and Wie-
sel, 1962; Felleman and Van Essen, 1991). Today, there is a
continued exchange of ideas from neuroscience to the field of
artificial intelligence (Hassabis et al., 2017).

At the same time, machine learning offers new and powerful
tools for systems neuroscience. One utility of the deep learning
framework is to analyze neuroscientific data (Figure 1). Indeed,
the advances in computer vision, especially convolutional neu-
ral networks, have revolutionized image and video data pro-
cessing. For instance, uncontrolled behaviors over time, such
as micro-movements of animals in a laboratory experiment,
can now be tracked and quantified efficiently with the help of
deep neural networks (Mathis et al., 2018). Innovative neuro-
technologies are producing a deluge of big data from brain
connectomics, transcriptome, and neurophysiology, the ana-
lyses of which can benefit from machine learning. Examples
include image segmentation to achieve detailed, micrometer
scale, reconstruction of connectivity in a neural microcircuit
(Januszewski et al., 2018; Helmstaedter et al., 2013), and esti-
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mation of neural firing rate from spiking data (Pandarinath
et al., 2018).

This Primer will not be focused on data analysis; instead, our
primary aim is to present basic concepts and methods for the
development of ANN models of biological neural circuits in the
field of computational neuroscience. It is noteworthy that
ANNs should not be confused with neural network models in
general. Mathematical models are all “artificial” because they
are not biological. We denote by ANNs specifically models that
are in part inspired by neuroscience yet for which biologically
justification is not the primary concern, in contrast to other types
of models that strive to be built on quantitative data from the two
pillars of neuroscience: neuroanatomy and neurophysiology.
The use of ANNs in neuroscience (Zipser and Andersen, 1988)
and cognitive science (Cohen et al., 1990) dates back to the early
days of ANNs (Rumelhart et al., 1986). In recent years, ANNs are
becoming increasingly common model systems in neuroscience
(Yamins and DiCarlo, 2016; Kriegeskorte, 2015; Sussillo, 2014;
Barak, 2017). There are three reasons for which ANNs or deep
learning models have already been, and will likely continue to
be, particularly useful for neuroscientists.

First, fresh modeling approaches are needed to meet new
challenges in brain research. Over the past decades, computa-
tional neuroscience has made great strides and become an inte-
grated part of systems neuroscience (Abbott, 2008). Many in-
sights have been gained through integration of experiments
and theory, including the idea of excitation and inhibition balance
(van Vreeswijk and Sompolinsky, 1996; Shu et al., 2003) and
normalization (Carandini and Heeger, 2011). Progress was also
made in developing models of basic cognitive functions, such
as simple decision making (Gold and Shadlen, 2007; Wang,
2008). However, real-life problems can be incredibly complex;
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Figure 1. Reasons for Using ANNs for

Neuroscience Research

(Top left) Neural/Behavioral data analysis. ANNs

can serve as image processing tools for efficient

pose estimation (color dots). Figure inspired by

Nath et al. (2019).

(Top right) Modeling complex behaviors. ANNs can

- perform object discrimination tasks involving chal-

Choice lenging naturalistic visual objects. Figure adapted
from Kar et al. (2019).

Modeling complex behavior (Bottom left) lllustrating that ANNs can be used to

model complex neural activity/connectivity pat-
terns (blue lines).

An optimization perspective (Bottom right) Understanding neural circuits from an
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optimization (arrows) of an objective function in an
abstract space of amodel constrained by the neural
network architecture (colored space).
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the underlying brain systems are often difficult to capture with
“hand-constructed” computational models. For example, object
classification in the brain is carried out through many layers of
complex linear-nonlinear processing. Building functional models
of the visual systems that achieve behavioral performance close
to that of humans remained a formidable challenge not only for
neuroscientists but also for computer vision researchers. By
directly training neural network models on complex tasks and
behaviors, deep learning provides a way to efficiently generate
candidate models for brain functions that otherwise could be
near impossible to model (Figure 1). By learning to perform a va-
riety of complex behaviors of animals, ANNs could serve as po-
tential model systems for biological neural networks, comple-
menting nonhuman animal models for understanding the
human brain.

A second reason for advocating deep networks in systems
neuroscience is the acknowledgment that relatively simple
models often do not account for a wide diversity of activity pat-
terns in heterogeneous neural populations (Figure 1). One can
rightly argue that this is a virtue rather than a defect because
simplicity and generality are hallmarks of good theories. How-
ever, complex neural signals also tell us that existing models
may be insufficient to elucidate mysteries of the brain. This is
perhaps especially true in the case of the prefrontal cortex. Neu-
rons in prefrontal cortex often show complex mixed selectivity to
various task variables (Rigotti et al., 2010, 2013). Such complex
patterns are often not straightforward to interpret and under-
stand using hand-built models that by design strive for simplicity.
ANNs are promising to capture the complex nature of neural
activity.

Third, besides providing mechanistic models of biological sys-
tems, machine learning can be used to probe the “why” question
in neuroscience (Barlow, 1961). Brains are biological machines
evolved under pressure to compute robustly and efficiently.
Even when we understand how a system works, we may still
ask why it works that way. Similar to biological systems evolving
to survive, ANNs are trained to optimize objective functions given

various architectural constraints (the number of neurons, econ-
omy of circuit wiring, etc.) (Figure 1). By identifying the particular
objective and set of constraints that lead to brain-resembling
ANNSs, we could potentially gain insights into the evolutionary
pressure faced by biological systems (Richards et al., 2019).

In this pedagogical Primer, we will discuss how ANNs can
benefit neuroscientists in the three ways described above. In
section 2, we will first introduce the key ingredients common in
any study of ANNSs. In section 3, we will describe two major ap-
plications of ANNs as neuroscientific models: convolutional net-
works as models for sensory, especially visual, systems and
recurrent neural networks as models for cognitive and motor
systems. In sections 4 and 5, we will overview how to customize
the analysis and architectural design of ANNSs to better address a
wide range of neuroscience questions. To help the readers gain
hands-on experience, we accompany this Primer with tutorial-
style code in PyTorch and Jupyter Notebook (https://github.
com/gyyang/nn-brain), covering all major topics.

2. BASIC INGREDIENTS AND VARIATIONS IN ANNs

In this section, we will introduce basic concepts in ANNs and
their common variations. Readers can skip this section if they
are familiar with ANNs and deep learning. For a more thorough
introduction, readers can refer to Goodfellow et al. (2016).

2.1. Basic Ingredient: Learning Problem, Architecture,
and Algorithm

A typical study using deep networks consists of three basic in-
gredients: learning problem, network architecture, and training
algorithm. Weights of connections between units or neurons in
a neural network are constrained by the network architecture,
but their specific values are randomly assigned at initialization.
These weights constitute a large number of parameters, collec-
tively denoted by @, which also includes other model parameters
(see below), to be trained using an algorithm. The training algo-
rithm specifies how connection weights change to better solve
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Figure 2. Schematics of Common Neural Network Architectures
(A) A multi-layer perceptron (MLP).

Kernel size (Hefght, Wiath)

(B) A recurrent neural network (middle) receives a stream of inputs (left). After training, an output unit (right) should produce a desired output. Figure inspired by

Mante et al. (2013).

(C) Arecurrent neural network is unrolled in time as a feedforward system with each layer corresponding to the network state at one time step. ¢; and r; describe
the network state and output activity at time t, respectively. ¢; is a function of r;_ and the input x;.

(D) A convolutional neural network for processing images. Each layer contains a number of channels (four in layer 1, six in layer 2). A channel (represented by a
square) consists of spatially organized neurons, each receiving connections from neurons with similar spatial preferences. The spatial extent of these connections

is described by the kernel size. Figure inspired by LeCun et al. (1998).

a learning problem, such as to fit a dataset or perform a task. We
will go over a simple example in which a multi-layer perceptron
(MLP) is trained to perform a simple digit classification task using
supervised learning.

Learning Problem

In supervised learning, a system learns to fit a dataset contain-
ing a set of inputs {x},i=1,---,N. Each input x) is paired with
a target output ygget. Symbols in bold represent vectors (col-

umn vectors by default). The goal is to learn parameters 6 of
a neural network function F(-, ) that predicts the target out-
puts given inputs, ¥ =F(x(,8) =y .. In the simple digit-
classification task MNIST (LeCun et al., 1998), each input is
an image containing a single digit, while the target output is a
probability distribution over all classes (0, 1, ..., 9) given by a
ten-dimensional vector or simply an integer corresponding to
the class of that object.

More precisely, the system is trained to optimize the value of
an objective function or, commonly, minimize the value of a

loss function L=13"L (y(’>, y{j;j,get), where L(y(’), yﬁgrget> quan-
tifies the difference between the target output yfgrget and the

actual output y,

Network Architecture

ANNSs are incredibly versatile, including a wide range of architec-
tures. Of all architectures, the most fundamental one is an MLP
(Rosenblatt, 1958, 1962) (Figure 2A). An MLP consists of multiple
layers of neurons, where neurons in the /-th layer only receive in-
puts from the (/ — 1)-th layer and only project to the
(I'+1)-th layer.
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r=x, (Equation 1)

r=f(WOrtY +p"), 1<i<N, (Equation 2)

y = WM N1 4 pN), (Equation 3)

Here, x is an external input, r!) denotes the neural activity of
neurons in the /-th layer, and W) is the connection matrix from
the (I — 1)-th to the I-th layer. f( -) is a (usually nonlinear) activa-
tion function of the model neurons. The output of the network is
read out through connections W), Parameters b") and b™) are
biases for model neurons and output units, respectively. If
the network is trained to classify, then the output is often
normalized such that ij,- =1, where y; represents the predicted
probability of class j.

When there are enough neurons per layer, MLPs can, in the-
ory, approximate arbitrary functions (Hornik et al., 1989). How-
ever, in practice, the network size is limited, and good solutions
may not be found through training even when they exist. MLPs
are often used in combination with, or as parts of, more modern
neural network architectures.

Training Algorithm

The signature method of training in deep learning is stochastic
gradient descent (SGD) (Robbins and Monro, 1951; Rumelhart
et al., 1986). Trainable parameters, collectively denoted as 6,
are updated in the opposite direction of the gradient of the
loss, dL/d6. Intuitively, the j-th parameter ¢; should be reduced
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by training if the cost function L increases with it and increased
otherwise. For each step of training, because it is usually too
expensive to evaluate the loss using the entire training set, the
loss is computed using a small number M of randomly selected
training examples (a minibatch), indexed by B = {k1,-,ku},

I—batch = & ZL (y(k) ) yggget) ;
keB

(Equation 4)

hence the name “stochastic.” For simplicity, we assume a mini-
batch size of 1 and omit batch in the following equations (Lpatch
will be referred to as L, etc.). The gradient, dL/d8, is the direction
of parameter change that would lead to the maximum increase in
the loss function when the change is small enough. To decrease
the loss, trainable parameters are updated in the opposite direc-
tion of the gradient, with a magnitude proportional to the learning
rate n,

oL .
Af= — ey (Equation 5)
Parameters such as W and b are usually trainable. Other pa-
rameters are set by the modelers and called hyperparameters,
for example, the learning rate 5. A crucial requirement for
computing gradients is differentiability —namely, derivatives of
functions in the model are well defined.
For a feedforward network without any intermediate (hidden)
layer (Rosenblatt, 1962), processing a single example x (mini-

batch size 1),

y=Wx+b, orequivalently, yi=> Wx+b;, (Equation 6)

i
computing the gradient is straightforward,

oL dy oL .
—dy OW; a0 (Equation 7)

aW,,

with dyx/0Wj equal to x; when k=i, otherwise 0. In vector

notation,
aL oL + .
—=—x". Equat
W ayx (Equation 8)

Here, we follow the convention that L /0W and dL /dy have the
same form as W and y, respectively. Assuming that

1 .
L= EHy — Ytarget ” =5 Z Ytarget/ , (Equation 9)
we have,
oL .
6W (y ytarget) ) (Equatlon 10)
aL _
AWj o« — = (ytarget.f —y/)X,- (Equation 11)

w;

This modification only depends on local information about the
input and output units of each connection. Hence, if yiarget; > Vi
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Wj; should change to increase the net input and AW has the
same sign as x;. The opposite is true if yiarget <Vi.

For a multi-layer network, the differentiation is done using the
back-propagation algorithm (Rumelhart et al., 1986; LeCun,
1988). To compute the loss L, the network is run in a forward
pass (Equations 1, 2, and 3). Next, to efficiently compute the
exact gradient dL/d6, information about the loss needs to be
passed backward, in the opposite direction of the forward
pass, hence the name backpropagation.

To illustrate the concept, consider an N-layer linear feedfor-
ward network (Equations 1, 2, and 3, but with f(x)=x). To
compute oL/OW", we need to compute dL/or®). From
D = w0 L pU+Y  we have

(I+1)

aL aL  dr; aL T dL
= w(+1) _ (1+1)
or" - Zar.’”) or? _Zar(/n)"/‘/ﬂ _Z[W L, ar/n)

i J J i J J ]

(Equation 12)

In vector notation,

aL [W('”)]T oL

5 e _ [W(I”)] T [W(Hz)] T dL

ori+a
(Equation 13)

Therefore, starting with dL/dy, oL/dr") can be recursively
computed from aL/ar!+", for =N — 1,---,1. This computation
flows in the opposite direction of the forward pass and is called
the backward pass. In general, backpropagation applies to neu-
ral networks with arbitrary differential components.

Computing the exact gradient through backpropagation is
considered unrealistic biologically because updating connec-
tions at each layer requires precise, non-local information of
connection weights at downstream layers (in the form of connec-
tion matrix transposed, Equation 13).

2.2. Variations of Learning Problems/Objective
Functions

In this and the following sections (2.3 and 2.4), we introduce
common variations of learning problems, network architectures,
and training algorithms.

Traditionally, learning problems are divided into three kinds:
supervised, reinforcement, and unsupervised learning problems.
The difference across these three kinds of learning problems lies
in the goal or objective. In supervised learning, each input is
associated with a target. The system learns to produce outputs
that match the targets. In reinforcement learning, instead of
explicit (high-dimensional) targets, the system receives a series
of scalar rewards. It learns to produce outputs (actions) that
maximize total rewards. Unsupervised learning refers to a
diverse set of problems in which the system is not provided
with explicit targets or rewards. Due to space limitations, we
will mainly focus on networks trained with supervised learning
in this Primer.

Supervised Learning
As mentioned before, for supervised learning tasks, input and

target output pairs are provided {(x(’), yigrget> } The goal is to
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minimize the difference between target outputs and actual out-
puts predicted by the network. In many common supervised
learning problems, the target outputs are behavioral outputs.
For example, in a typical object classification task, each input
is an image containing a single object, while the target output
is an integer corresponding to the class of that object (e.g.,
dog, cat, etc.). In other cases, the target output can directly be
neural recording data (Mclntosh et al., 2016; Rajan et al., 2016;
Andalman et al., 2019).

The classical perceptual decision-making task with random-
dot motion (Britten et al., 1992; Roitman and Shadlen, 2002)
can be formulated as a supervised learning problem because
there is a correct answer. In this task, animals watch randomly
moving dots and report the dots’ overall motion direction by
choosing one of two alternatives, A or B. This task can be simpli-

fied as a network receiving a stream of noisy inputs xti) at every
time point t of the i-th trial, which can represent the net evidence
in support of A and against B. At the end of each trial t= T, the
system should learn to report the sign of the average input
nyrget =sign((x\");), +1 for choice A and —1 for choice B.
Reinforcement Learning

For reinforcement learning (Sutton and Barto, 2018), a model (an
agent) interacts with an environment, such as a (virtual) maze. At
time step t, the agent receives an observation o; from the envi-
ronment, produces an action a; that updates the environment
state to s¢,1, and receives a scalar reward r; (negative value
for punishment). For example, a model navigating a virtual
maze can receive pixel-based visual inputs as observations oy,
produce actions a; that move itself in the maze, and receive re-
wards when it exits the maze. The objective is to produce appro-
priate actions a; given past and present observations that maxi-
mize cumulative rewards ) ,r;. In many classical reinforcement
learning problems, the observation o; equals the environment
state s;, which contains complete information about the envi-
ronment.

Reinforcement learning (without neural networks) has been
widely used by neuroscientists and cognitive scientists to study
value-based learning and decision-making tasks (Schultz et al.,
1997; Daw et al., 2011; Niv, 2009). For example, in the multi-
armed bandit task, the agent chooses between multiple options
repeatedly, where each option produces rewards with a certain
probability. Reinforcement learning theory can model how the
agent’s behavior adapts over time and help neuroscientists
study the neural mechanism of value-based behavior.

Deep reinforcement learning trains deep neural networks us-
ing reinforcement learning (Mnih et al., 2015), enabling applica-
tions to many more complex problems. Deep reinforcement
learning can, in principle, be used to study most tasks performed
by lab animals (Botvinick et al., 2020) because animals are usu-
ally motivated to perform the task via rewards. Although many
such tasks can also be formulated as supervised learning prob-
lems when there exists a correct choice (e.g., perceptual deci-
sion making), many other tasks can only be described as rein-
forcement learning tasks because answers are subjective
(Haroush and Williams, 2015; Kiani and Shadlen, 2009). For
example, a perceptual decision-making task in which there is a
correct answer (A, not B) can be extended to assess animals’
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confidence about their choice (Kiani and Shadlen, 2009; Song
et al., 2017). In addition to the two alternatives that result in a
large reward for the correct choice and no reward otherwise,
monkeys are presented a sure-bet option that guarantees a
small reward. Since a small reward is better than no reward, sub-
jects are more likely to choose the sure-bet option when they are
less confident about making a perceptual judgement. Reinforce-
ment learning is necessary here because there is no ground-truth
choice output: the optimal choice depends on the animals’ own
confidence level at their perceptual decision.

Unsupervised Learning

For unsupervised learning, only inputs {x)} are provided; the
objective function is defined solely with the inputs and the
network parameters L (x, ) (no targets or rewards). For example,
finding the first component in principal-component analysis
(PCA) can be formulated as unsupervised learning in a simple
neural network. A single neuron y reading out from a group of
input neurons x, (y =w T x), can learn to extract the first principle
component by maximizing its variance Var(y) while keeping its
connection weights normalized (||w|| = 1) (Oja, 1982).

Unsupervised learning is particularly relevant for modeling
development of sensory cortices. Although widely used in ma-
chine learning, the kind of labeled data needed for supervised
learning, such as image-object class pairs, is rare for most ani-
mals. Unsupervised learning has been used to explain neural re-
sponses of early visual areas (Barlow, 1961; Olshausen and
Field, 1996) and, more recently, of higher visual areas (Zhuang
et al., 2019).

Compared to reinforcement and unsupervised learning, su-
pervised learning can be particularly effective because the
network receives more informative feedback in the form of
high-dimensional target outputs. Therefore, it is common to
formulate a reinforcement/unsupervised learning problem (or
parts of it) as a supervised one. For example, consider an unsu-
pervised learning problem of compressing high-dimensional in-
puts x into lower-dimensional representation z while retaining
as much information as possible about the inputs (not neces-
sarily in the information-theoretic sense). One approach to this
problem is to train autoencoder networks (Rumelhart et al.,
1986; Kingma and Welling, 2013) using supervised learning. An
autoencoder consists of an encoder that maps input x into a
low-dimensional latent representation z=fencode(X) and a
decoder that maps the latent back to a high-dimensional repre-
sentation y =fgecode(Z). TO make sure z contains information
about x, autoencoders use the original input as the supervised
learning target, Viarget = X.

2.3. Variations of Network Architectures

Recurrent Neural Network

Besides MLP, another fundamental ANN architecture is recur-
rent neural networks (RNNs) that process information in time
(Figure 2B). In a “vanilla” or EIman RNN (Elman, 1990), activity
of model neurons at time t, ry, is driven by recurrent connectivity
W, and by inputs x; through connectivity W,. The output of the
network is read out through connections W,,.

ci=W,r,_i +W,x; +b,, (Equation 14)
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ri=f(c) (Equation 15)

y;=Wyr:+b,. (Equation 16)

Here, c; represents the cell state, analogous to membrane po-
tential or input current, while r; represents the neuronal activity.
An RNN can be unrolled in time (Figure 2C) and viewed as a
particular form of an MLP,

ri=f(W.ri_1+Wex:+b,), fort=1,---T. (Equation 17)

Here, neurons in the t-th layer r; receive inputs from the (t —
1)-th layer r;_1 and additional inputs from outside of the recur-
rent network x;. Unlike regular MLPs, the connections from
each layer to the next are shared across time.

Backpropagation also applies to an RNN. While backpropaga-
tion in an MLP propagates gradient information from the final
layer back (Equation 13), computing the gradient for an RNN in-
volves propagating information backward in time (backpropaga-
tion-through-time, or BPTT) (Werbos, 1990). Assuming that the
loss is computed from outputs at the last time point T and a linear
activation function, the key step of BPTT is computed similarly to
Equation 13 as

oL _ v 0L _

oL [ T]z aL
a"t_ ral’tn_ r

ore.o

(Equation 18)

With an increasing number of time steps in an RNN, weight
modifications involve products of many matrices (Equation 18).
An analogous problem is present for very deep feedforward net-
works (for example, networks with more than ten layers). The
norm of this matrix product, || [W,T]T ||, can grow exponentially
with T if W, is large (more precisely, the largest eigenvalue of
W, > 1) or vanish to zero if W, is small, making it historically diffi-
cult to train recurrent networks (Bengio et al., 1994; Pascanu
et al., 2013). Such exploding and vanishing gradient problems
can be substantially alleviated with a combination of modern
techniques, including network architectures (Hochreiter and
Schmidhuber, 1997; He et al., 2016) and initial network connec-
tivity (Le et al., 2015; He et al., 2015) that tend to preserve the
norm of the backpropagated gradient.

Convolutional Neural Networks

A particularly important type of network architecture is convolu-
tional neural network (Figure 2D). The use of convolution means
that a group of neurons will each process its respective inputs
using the same function—in other words, the same set of
connection weights. In a typical convolutional neural network
processing visual inputs (Fukushima et al., 1983; LeCun et al.,
1990; Krizhevsky et al., 2012; He et al., 2016), neurons are orga-
nized into N¢hannel “channels” or “feature maps.” Each channel
contains Nheight X Nwigth neurons with different spatial selectivity.
Each neuron in a convolutional layer is indexed by a tuple i=
(ic,iH, iw), representing the channel index (ic) and the spatial
preference indices (iy, iw). The i-th neuron in layer / is typically
driven by neurons in the previous layer (bias term and activation
function omitted),
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0} _ E (! (1-1)
rfcfH"W T L VVI'CWWJC/H/W'}C/H/W'
JclHiw

(Equation 19)

Importantly, in convolutional networks, the connection
weights do not depend on the absolute spatial location of the
i-th neuron; instead, they depend solely on the spatial displace-
ment (i —jn,iw —jw) between the pre- and postsynaptic
neurons.

wh o py?

IcIHlw JeIHIw ic.jc

(it — s bw — jw).- (Equation 20)

Therefore, all neurons within a single channel process different
parts of the input space using the same shared set of connection
weights, allowing these neurons to have the same stimulus
selectivity with receptive fields at different spatial locations.
Moreover, neurons only receive inputs from other neurons with
similar spatial preferences, i.e., when |iy —ju| and |iw —jw|
values are small (Figure 2D).

This reusing of weights not only dramatically reduces the num-
ber of trainable parameters but also imposes invariance on pro-
cessing. For visual processing, convolutional networks typically
impose spatial invariance such that objects are processed with
the same set of weights regardless of their spatial positions.

In a typical convolutional network, across layers, the number
of neurons per channel (Nheight X Nwigth) decreases (with coarser
spatial resolution) while more features are extracted (with an
increasing number of channels). A classifier is commonly at the
end of the system to learn a particular task, such as categoriza-
tion of visual objects.

Activation Function

Most neurons in ANNSs, like their biological counterparts, perform
nonlinear computations based on their inputs. These neurons
are usually point neurons with a single nonlinear activation func-
tion f( -) that links the sum of inputs to the output activity. The
nonlinearity is essential for the power of ANNs (Hornik et al.,
1989). A common choice of activation function is the Rectified
Linear Unit (ReLU) function, f(x)=max(x,0) (Glorot et al,
2011). The derivative of ReLU at x =0 is mathematically unde-
fined but conventionally set to 0 in practice. ReLU and its vari-
ants (Clevert et al., 2015) are routinely used in feedforward net-
works, while the hyperbolic tangent (tanh) function is often
used in recurrent networks (Hochreiter and Schmidhuber,
1997). ReLU and similar activation functions are asymmetric
and non-saturating at high value. Although biological neurons
eventually saturate at high rate, they often operate in non-satu-
rating regimes. Therefore, traditional neural circuit models with
rate units have also frequently used non-saturating activation
functions (Abbott and Chance, 2005; Rubin et al., 2015).
Normalization

Normalization methods are important components of many
ANNSs, in particular, very deep neural networks (loffe and Szeg-
edy, 2015; Baet al., 2016b; Wu and He, 2018). Similar to normal-
ization in biological neural circuits (Carandini and Heeger, 2011),
normalization methods in ANNs keep inputs and/or outputs of
neurons in desirable ranges. For example, for inputs x (e.g., stim-
ulus) to a layer, layer normalization (Ba et al., 2016b) amounts to
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a form of “Z scoring” across units, so that the actual input X; to
the i-th neuron is

Xi=7 ';MH?, (Equation 21)
= (x), (Equation 22)
o= \/{(x—w? +e (Equation 23)

where (x;) refers to the average over all units in the same layer; n
and o are the mean and variance of x. After normalization,
different external inputs lead to the same mean and variance
for X, set by the trainable parameters y and B. The values of y
and B do not depend on the external inputs. The small constant
€ ensures that o is not vanishingly small.

2.4. Variations of Training Algorithms

Variants of SGD-Based Methods

Supervised, reinforcement, and unsupervised learning tasks can
all be trained with SGD-based methods. Partly due to the sto-
chastic nature of the estimated gradient, directly applying SGD
(Equation 5) often leads to poor training performance. Gradually
decaying learning rate value m during training can often improve
performance, because a smaller learning rate during late training
encourages finer-tuning of parameters (Bottou et al., 2018).
Various optimization methods based on SGD are used to
improve learning (Kingma and Ba, 2014; Sutskever et al.,
2013). One simple and effective technique is momentum (Sutsk-
ever et al., 2013; Polyak, 1964), which on step j updates param-
eters with A8Y) based on temporally smoothed gradients v,

aLv)
+—

) = yyt-1
vV =uv
llt 60 I

O<pu<1 (Equation 24)

N/ (Equation 25)

Alternatively, in adaptive learning rate methods (Duchi et al.,
2011; Kingma and Ba, 2014), the learning rate of individual
parameter is adjusted based on the statistics (e.g., mean and
variance) of its gradient over training steps. For example, in the
Adam method (Kingma and Ba, 2014), the value of a parameter
update is magnified if its gradient has been consistent across
steps (low variance). Adaptive learning rate methods can be
viewed as approximately taking into account curvature of the
loss function (Duchi et al., 2011).

Regularization

Regularization techniques are important during training in order
to improve generalization performance by deep networks. Add-
ing a L2 regularization term, Lyeg :AZ,I-W,/?, to the loss function
(Tikhonov, 1943) (equivalent to weight decay; Krogh and Hertz,
1992) discourages the network from using large connection
weights, which can improve generalization by implicitly limiting
model complexity. Dropout (Srivastava et al., 2014) silences a
randomly selected portion of neurons at each step of training.
It reduces the network’s reliance on particular neurons or a pre-
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cise combination of neurons. Dropout can be thought of as
loosely approximating spiking noise.

The choice of hyperparameters (learning rate, batch size,
network initialization, etc.) is often guided by a combination of
theory, empirical evidence, and hardware constraints. For
neuroscientific applications, it is important that the scientific
conclusions do not rely heavily on the hyperparameter
choices. And if they do, the dependency should be clearly
documented.

3. EXAMPLES OF BUILDING ANNs TO ADDRESS
NEUROSCIENCE QUESTIONS

In this section, we overview two common usages of ANNs in ad-
dressing neuroscience questions.

3.1. Convolutional Networks for Visual Systems
Deep convolutional neural networks are currently the standard
tools in computer vision research and applications (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; He et al., 2016,
2017). These networks routinely consist of tens, sometimes hun-
dreds, of layers of convolutional processing. Effective training of
deep feedforward neural networks used to be difficult. This train-
ability problem has been drastically improved by a combination
of innovations in various areas. Modern deep networks would be
too large and therefore too slow to run, not to mention train, if not
for the rapid development of hardware such as general purpose
GPUs (graphics processing units) and TPUs (tensor processing
units) (Jouppi et al., 2017). Deep convolutional networks are usu-
ally trained with large naturalistic datasets containing millions of
high-resolution-labeled images (e.g., Imagenet; Deng et al.,
2009), using training methods with adaptive learning rates
(Kingma and Ba, 2014; Tieleman and Hinton, 2012). Besides
the default use of convolution, a wide range of network architec-
ture innovations improves performance, including the adoption
of ReLU activation function (Glorot et al., 2011), normalization
methods (loffe and Szegedy, 2015), and the use of residual con-
nections that can provide an architectural shortcut from a
network layer’s inputs directly to its outputs (He et al., 2016).
Deep convolutional networks have been proposed as compu-
tational models of the visual systems, particularly of the ventral
visual stream or the “what pathway” for visual object information
processing (Figure 3) (Yamins and DiCarlo, 2016). These models
are typically trained using supervised learning on the same im-
age classification tasks as the ones used in computer vision
research and, in many cases, are the exact same convolutional
networks developed in computer vision. In comparison, classical
models of the visual systems typically rely on hand-designed
features (synaptic weights) (Jones and Palmer, 1987; Freeman
and Simoncelli, 2011; Riesenhuber and Poggio, 1999), such as
Gabor filters, or are trained with unsupervised learning based
on the efficient coding principles (Barlow, 1961; Olshausen and
Field, 1996). Although classical models have had success at ex-
plaining various features of lower-level visual areas, deep convo-
lutional networks surpass them substantially in explaining neural
activity in higher-level visual areas in both monkeys (Yamins
et al., 2014, Cadieu et al., 2014; Yamins and DiCarlo, 2016)
and humans (Khaligh-Razavi and Kriegeskorte, 2014). Besides
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Figure 3. Comparing the Visual System and Deep Convolutional Neural Networks

The same image is passed through monkey’s visual cortex (top) and a deep convolutional neural network (bottom), allowing for side-by-side comparisons
between biological and ANNs. Neural responses from IT is best predicted by responses from the final layer of the convolutional network, while neural responses
from V4 is better predicted by an intermediate network layer (green dashed arrows). Figure adapted from Yamins and DiCarlo (2016).

being trained to classify objects, convolutional networks can
also be trained to directly reproduce patterns of neural activity
recorded in various visual areas (Vicintosh et al., 2016; Prenger
et al., 2004).

In a classical work of comparing convolutional networks with
higher visual areas (Yamins et al., 2014), Yamins and colleagues
trained thousands of convolutional networks with different archi-
tectures on a visual categorization task. To study how similar the
artificial and biological visual systems are, they quantified how
well the network’s responses to naturalistic images can be
used to linearly predict responses from the inferior temporal
(IT) cortex of monkeys viewing the same images. They found
that this neural predictivity is highly correlated with accuracy
on the categorization task, suggesting that better IT-predicting
models can be built by developing better-performing models
on challenging natural image classification tasks. They further
found that unlike IT, neural responses from the relatively lower vi-
sual area, V4, is best predicted by intermediate layers of the net-
works (Figure 3).

As computational models of visual systems, convolutional
networks can model complex, high-dimensional inputs to
downstream areas, useful for large-scale models using pixel-
based visual inputs (Eliasmith et al., 2012). This process has
been made particularly straightforward with the easy access
of many pre-trained networks in standard deep learning frame-
works like Pytorch (Paszke et al., 2019) and Tensorflow (Abadi
et al., 2016).

3.2. RNNs for Cognitive and Motor Systems
RNNs are common machine learning tools to process se-
quences, such as speech and text. In neuroscience, they have
been used to model various aspects of the cognitive, motor,
and navigation systems (Mante et al., 2013; Barak et al., 2013;
Sussillo et al., 2015; Yang et al., 2019; Wang et al., 2018; Cueva
and Wei, 2018). Unlike convolutional networks used to model vi-
sual systems that are trained on large-scale image classification
tasks, recurrent networks are usually trained on specific cogni-
tive or motor tasks that neuroscientists are studying. By
comparing RNNs trained on the same tasks that animals or hu-
mans performed, side-by-side comparisons can be made be-
tween RNNs and brains. The comparisons can be made at
many levels, including single-neuron activity and selectivity,
population decoding, state-space dynamics, and network re-
sponses to perturbations. We will expand more on how to
analyze RNNs in the next section.

An influential work that uses RNNs to model cognition involves
a monkey experiment for context-dependent perceptual deci-
sion making (Mante et al., 2013). In this task, a fraction (called
motion coherence) of random moving dots moves in the same di-
rection (left or right); independently, a fraction (color coherence)
of dots are red, and the rest are green. In a single trial, subjects
were cued by a context signal to perform either a motion task
(judging the net motion direction is right or left) or a color task
(deciding whether there are more red dots than green ones).
Monkeys performed the task by temporally integrating evidence
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for behavioral relevant information (e.g., color) while ignoring the
irrelevant feature (motion direction in the color task). Neurons in
the prefrontal cortex recorded from behaving animals displayed
complex activity patterns, where the irrelevant features are still
strongly represented even though they weakly influence behav-
ioral choices. These counter-intuitive activity patterns were
nevertheless captured by an RNN (Mante et al., 2013). Exam-
ining the RNN dynamics revealed a novel mechanism by
which the irrelevant features are represented but selectively
filtered out and not integrated over time during evidence accu-
mulation.

To better compare neural dynamics between RNNs and bio-
logical systems, RNNs used in neuroscience often treat time
differently from their counterparts in machine learning. RNNs in
machine learning are nearly always discrete time systems (but
see Chen et al., 2018), where state at time step t is obtained
through a mapping from the state at time step t — 1 (Equations
14 and 15). The use of a discrete time system means that stimuli
that are separated by several seconds in real life can be provided
to the network in consecutive time points. To allow for more bio-
logically realistic neural dynamics, RNNs used in neuroscience
are often based on continuous time dynamical systems (Wilson
and Cowan, 1972; Sompolinsky et al., 1988), such as

ar

TS r(t) +f(W.r(t)+ Wex(t) + b,). (Equation 26)

Here, 7 is the single-unit timescale. This continuous-time sys-
tem can then be discretized using the Euler method with a time
step of At(<7),

r(t+ At ~r(t) +§ (1) + F(W,r(t) + W,x(t) + b,)].
(Equation 27)

Besides gradient descent through backpropagation, a
different line of algorithms has been used to train RNN models
in neuroscience (Sussillo and Abbott, 2009; Laje and Buono-
mano, 2013; Andalman et al., 2019). These algorithms are based
on the idea of harnessing chaotic systems with weak perturba-
tions (Jaeger and Haas, 2004). In particular, the FORCE algo-
rithm (Sussillo and Abbott, 2009) allows for rapid learning by
modifying the output connections of an RNN to match the target
using a recursive least-square algorithm. The network output
y(t) (assumed to be one-dimensional here) is fed back to the
RNN through wy,,

o _

TS r(t)+f(W,r(t)+ W,x(t) + wy(t) + b,), (Equation 28)

y(t) =w, r(t). (Equation 29)

Therefore, modifying the output connections amounts to a
low-rank modification (wfbwyTS of the recurrent connection
matrix,

Tﬂ_ —r(t)+ f( [W, + wfbw;}r(t) +W,x(t) +b,>.

dt~
(Equation 30)

1056 Neuron 107, September 23, 2020

Neuron

4. ANALYZING AND UNDERSTANDING ANNs

Common ANNs used in machine learning or neuroscience are
not easily interpretable. For many neuroscience problems, they
may serve better as model systems that await further analyses.
Successful training of an ANN on a task does not mean knowing
how the system works. Therefore, unlike most machine learning
applications, a trained ANN is not the end goal but merely the
prerequisite for analyzing that network to gain understanding.

Most systems neuroscience techniques to investigate biolog-
ical neural circuits can be directly applied to understand artificial
networks. To facilitate side-by-side comparison between artifi-
cial and biological neural networks, activity of an ANN can be
visualized and analyzed with the same dimensionality reduction
tools (e.g., PCA) used for biological recordings (Mante et al.,
2013; Kobak et al., 2016; Williams et al., 2018). To understand
causal relationship from neurons to behavior, an arbitrary set
of neurons can be lesioned (Yang et al., 2019) or inactivated
for a short duration, akin to optogenetic manipulation in physio-
logical experiments. Similarly, connections between two
selected groups of neurons can be lesioned to understand the
causal contribution of cross-population interactions (Andalman
et al., 2019).

In this section, we focus on methods that are particularly useful
for analyzing ANNs. These methods include optimization-based
tuning analysis (Erhan et al., 2009), fixed-point-based dynamical
system analysis (Sussillo and Barak, 2013), quantitative compar-
isons between a model and experimental data (Yamins et al.,
2014), and insights from the perspective of biological evolution
(Lindsey et al., 2019; Richards et al., 2019).

Similarity Comparison

Analysis methods such as visualization, lesioning, tuning, and
fixed-point analysis can offer detailed intuition into the neural
mechanisms of individual networks. However, with the relative
ease of training ANNSs, it is possible to train a large number of
neural networks for the same task or dataset (Mlaheswaranathan
et al., 2019; Yamins et al., 2014). With such volume of data, it is
necessary to take advantage of high-throughput quantitative
methods that compare different models at scale. Similarity com-
parison methods compute a scalar similarity score between the
neural activity of two networks performing the same task (Kriege-
skorte et al., 2008; Kornblith et al., 2019). These methods are
agnostic about the network form and size and can be applied
to artificial and biological networks alike.

Consider two networks (or two populations of neurons), sized
Ny and N, respectively. Their neural activity in response to the
same D task conditions can be summarized by a D-by-N1 matrix
R and a D-by-N, matrix R, (Figure 4A). Representational simi-
larity analysis (RSA) (Kriegeskorte et al., 2008) first computes
the dissimilarity or distances of neural responses between
different task conditions within each network, yielding a D-by-
D dissimilarity matrix for each network (Figure 4B). Next, the cor-
relation between dissimilarity matrices of the two networks is
computed. A higher correlation corresponds to more similar rep-
resentations.

Another related line of methods uses linear regression (as used
in Yamins et al, 2014) to predict R, through a linear
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(A) The neural response to an image in a convolutional neural network trained to classify handwritten digits. The network consists of two layers of convolutional

processing, followed by two fully connected layers.

(B) Dissimilarity matrices (each D-by-D) assessing the similar or dissimilar neural responses to different input images. Dissimilarity matrices are computed for
neurons in layers 1 and 4 of the network. D = 50. Images are organized by class (0, 1, etc.), five images per class. Neural responses to images in the same class are
more similar, i.e., neural representation more category based, in layer 4 (right) than layer 1 (left).

(C) Preferred image stimuli found through gradient-based optimization for sample neurons from each layer. Layers 1 and 2 are convolutional, therefore their
neurons have localized preferred stimuli. In contrast, neurons from layers 3 and 4 have non-local preferred stimuli.

transformation of Ry, Ro =WR);. The similarity corresponds to
the correlation between R, and its predicted value WR;.

Complex Tuning Analysis

Studying tuning properties of single neurons has been one of
the most important analysis techniques in neuroscience (Kuf-
fler, 1953). Classically, tuning properties are studied in sensory
areas by showing stimuli parameterized in a low-dimensional
space (e.g., oriented bars or gratings in vision; Hubel and Wie-
sel, 1959). This method is most effective when the neurons
studied have relatively simple response properties. A new
class of methods treats the mapping of tuning as a high-
dimensional optimization problem and directly searches for
the stimulus that most strongly activates a neuron. Gradient-
free methods such as genetic algorithms have been used to

study complex tuning of biological neurons (Yamane et al,
2008). In deep neural networks, gradient-based methods can
be used (Erhan et al., 2009; Zeiler and Fergus, 2014). For a
neuron with activity r(x) given input x, a gradient-ascent opti-
mization starts with a random xg and proceeds by updating the
input x as

ar
X=X+ AX; AX:n&.

(Equation 31)

This method can be used for searching the preferred input to
any neuron or any population of neurons in a deep network (Er-
han et al., 2009; Bashivan et al., 2019; see Figure 4C for an
example). It is particularly useful for studying neurons in higher
layers that have more complex tuning properties.
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Figure 5. Analyzing Tuning Properties of a Neural Network Trained
to Perform 20 Cognitive Tasks
In a network trained on multiple cognitive tasks, the tuning property of model
units to individual task can be quantified. x axis, recurrent units; y axis, different
tasks. Color measures the degree (between 0 and 1) to which each unit is
engaged in a task. Twelve clusters are identified using a hierarchical clustering
method (bottom, colored bars). For instance, cluster 3 is highly selective for
pro- versus anti-response tasks (Anti) involving inhibitory control; clusters 10
and 11 are involved in delayed match to sample (DMS) and delayed non-match
to sample (DNMS), respectively; cluster 12 is tuned to DMC. Figure adapted
from Yang et al. (2019).

Normalized task variance

Clusters

The space of x may be too high dimensional (e.g., pixel space)
for conducting an effective search, especially for gradient-free
methods. In that case, we may utilize a lower-dimensional space
that is still highly expressive. A generative model learns a function
that maps a lower-dimensional latent space to a high-dimen-
sional space such as pixel space (Kingma and Welling, 2013;
Goodfellow et al., 2014). Then, the search can be conducted
instead in the lower-dimensional latent space (Ponce et al., 2019).

ANNSs can be used to build models for complex behavior that
would not be easily done otherwise, opening up new possibilities
such as studying encoding of a more abstract form of informa-
tion. For example, Yang et al. (2019) studied neural tuning of
task structure, rather than stimuli, in rule-guided problem solv-
ing. An ANN was trained to perform many different cognitive
tasks commonly used in animal experiments, including percep-
tual decision making, working memory, inhibitory control, and
categorization. Complex network organization is formed by
training, in which recurrent neurons display selectivity for a sub-
set of tasks (Figure 5).

Dynamical Systems Analysis
Tuning properties provide a mostly static view of neural repre-
sentation and computation. To understand how neural networks
compute and process information in time, it is useful to study the
dynamics of RNNs (Mante et al., 2013; Sussillo and Barak, 2013;
Goudar and Buonomano, 2018; Chaisangmongkon et al., 2017).
One useful method to understand dynamics is to study fixed
points and network dynamics around them (Strogatz, 2001). In
a generic dynamical system,

ar

P F(r) (Equation 32)
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a fixed point rss is a steady state where the state does not
change in time, F(rss)=0. The network dynamics at a state
r=rss+ Ar around a fixed point rss is approximately linear,

% =F(r)=F(res+ Ar) =F(rss) + J(rss)Ar, d—Atr =J(rss)Ar.

(Equation 33)

where J is the Jacobian of F, Jj; = dF; /dr;, evaluated at rgs. This is
a linear system that can be understood more easily, for example,
by studying the eigenvectors and eigenvalues of J(rss). In ANNs,
these fixed points can be found by gradient-based optimization
(Sussillo and Barak, 2013),

argmin, ||F(r)| . (Equation 34)

Fixed points are particularly useful for understanding how net-
works store memories, accumulate information (Mante et al.,
2013), and transition between discrete states (Chaisangmong-
kon et al., 2017). This point can be illustrated in a network trained
to perform a parametric working memory task (Romo et al.,
1999). In this task, a sample vibrotactile stimulus at frequency
f1 is shown, followed by a delay period of a few seconds; then
a test stimulus at frequency f, is presented, and subjects must
decide whether f, is higher or lower than f; (Figure 6A). During
the delay, neurons in the prefrontal cortex of behaving monkeys
showed persistent activity at a rate that monotonically varies
with fi. This parametric working memory encoding emerges
from training in an RNN (Figure 6B): in the state space of this
network, neural trajectories during the delay period converge
to different fixed points depending on the stored value. These
fixed points form an approximate line attractor (Seung, 1996)
during the delay period (Figure 6C).

There is a dearth of examples in computational neuroscience
that accounts for not just a single aspect of neural representation
or dynamics but a sequence of computation to achieve a com-
plex task. ANNs offer a new tool to confront this difficulty. Chai-
sangmongkon et al. (2017) used this approach to build a model
for delayed match-to-category (DMC) tasks. A DMC task (Fig-
ures 6D and 6E) starts with a stimulus sample, say a visual mov-
ing pattern, of which a feature (motion direction as an analog
quantify from 0° to 360°) is classified into two categories (A in
red, B in blue). After a mnemonic delay period, a test stimulus
is shown, and the task is to decide whether the test has the
same category membership as the sample (Freedman and As-
sad, 2006). After training to perform this task, a recurrent neural
network shows diverse neural activity patterns similar to parietal
neurons in monkeys doing the same task (Figure 6F). The trajec-
tory of recurrent neural population in the state space reveals
how computation is carried out through epochs of the task
(Figure 6G).

Understanding Neural Circuits from Objectives,
Architecture, and Training

All above methods seek a mechanistic understanding of ANNs
after training. A more integrative view links the three basic ingre-
dients in deep learning: learning problem (tasks/objectives),
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Figure 6. Understanding Network Computation through State Space and Dynamical System Analysis

(A-C) In a simple parametric working memory task (Romo et al., 1999), the network needs to memorize the (frequency) value of a stimulus through a delay period
(A). The network can achieve such parametric working memory by developing a line attractor (B and C).

(B) Trial-averaged neural activity during the delay period in the PCA space for different stimulus values. Triangles indicate the start of the delay period.

(C) Fixed points found through optimization (orange cross). The direction of a line attractor can be estimated by finding the eigenvector with a corresponding
eigenvalue close to 0. The orange line shows the line attractor estimated around one of the fixed points.

(D-G) Training both recurrent neural networks and monkeys on a delayed match-to-category task (Freedman and Assad, 2006). The task is to decide whether the
test and sample stimuli (visual moving pattern) belong to the same category (D). The two categories are defined based on the motion direction of the stimulus (red,
category 1; blue, category 2) (E). In an ANN trained to perform this categorization task, the recurrent units of the model display a wide heterogeneity of onset time
for category selectivity, similarly to single neurons recorded from monkey posterior parietal cortex (lateral intraparietal area, LIP) during the task (F). Neural
dynamics of a recurrent neural network underlying the performance of the DMC task (G). The final decision, match (AA or BB) or non-match (AB or BA) corre-
sponds to distinct attractor states located at separate positions in the state space. Similar trajectories of population activity have been found in experimental data.

Figure adapted from Chaisangmongkon et al. (2017).

network architecture, and training algorithm to the solution after
training (Richards et al., 2019). This approach is similar to an
evolutionary or developmental perspective in biology, which
links environments to functions in biological organisms. It can
help explain the computational benefit or necessity of observed
structures or functions. For example, compared to purely feed-
forward networks, recurrently connected deep networks are bet-
ter at predicting responses of higher visual area neurons to
behaviorally challenging images of cluttered scenes (Kar et al.,
2019). This suggests a contribution of recurrent connections to
classifying difficult images in the brain.

While re-running the biological processes of development and
evolution may be difficult, re-training networks with different ob-
jectives, architectures, and algorithms is fairly straightforward
thanks to recent advances in machine learning. Whenever
training of an ANN leads to a conclusion, it is good practice to
vary hyperparameters describing the basic ingredients (to a
reasonable degree) to explore the necessary and sufficient con-
ditions for the conclusion (Orhan and Ma, 2019; Yang et al., 2019;
Lindsey et al., 2019).

The link from the three ingredients to the network solution is
typically not rigorous. However, in certain simplified cases, the
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Figure 7. Training a Network with Dale’s Law

Connectivity matrix for a recurrent network trained on a perceptual decision-
making task. The network respects Dale’s law with separate groups of excit-
atory (blue) and inhibitory (red) neurons. Only connections between neurons
with high stimulus selectivity are shown. Neurons are sorted based on their
stimulus selectivity to choices 1 and 2. Recurrent excitatory connections be-
tween neurons selective to the same choice are indicated by two black
squares. Figure inspired by Song et al. (2016).

link can be firmly established by solving the training process
analytically (Saxe et al., 2013, 2019b).

5. BIOLOGICALLY REALISTIC NETWORK
ARCHITECTURES AND LEARNING

Although neuroscientists and cognitive scientists have had much
success with standard neural network architectures (vanilla
RNNs) and training algorithms (e.g., SGD) used in machine
learning, for many neuroscience questions, it is critical to build
network architectures and utilize learning algorithms that are bio-
logically plausible. In this section, we outline methods to build
networks with more biologically realistic structures, canonical
computations, and plasticity rules.

5.1. Structured Connections

Modern neurophysiological experiments routinely record from
multiple brain areas and/or multiple cell types during the same
animal behavior. Computational efforts modeling these findings
can be greatly facilitated by incorporating into neural networks
fundamental biological structures, such as currently known
cell-type-specific connectivity and long-range connections
across model areas/layers.

In common recurrent networks, the default connectivity is all to
all. In contrast, both local and long-range connectivity in biological
neural systems are usually sparse. One way to have a sparse con-
nectivity matrix W is by element-wise multiplying a trainable ma-

trix W with a non-trainable sparse mask M, namely W = VNI/(DM.
To encourage sparsity without strictly imposing it, a L1 regulariza-
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tion term 83" |Wj| can be added to the loss function. The scalar
coefficient B controls the strength of the sparsity constraint.

To model cell-type-specific findings, it is important to build
neural networks with multiple cell types. A vanilla recurrent
network (Equations 14, 15, and 16) (or any other network) can
be easily modified to obey Dale’s law by separating excitatory
and inhibitory neurons (Song et al., 2016),

E
CLLt: — rF +fe (Weer® — Wer' + Wex+bF),  (Equation 35)
ar , / .
E = —r+ f,(W,,_:rE — W,/r + W/XX + b )7 (Equatlon 36)

where an absolute function |-| constrains signs of the connec-
tion weights, e.g., Wge= ’VNVEE‘. After training an ANN to

perform the classical “random dot” task of motion direction
discrimination (Roitman and Shadlen, 2002), one can “open
the black box” (Sussillo and Barak, 2013) and examine the
resulting “wiring diagram” of recurrent network connectivity
pattern (Figure 7). With the incorporation of the Dale’s law,
the connectivity emerging from training is a heterogeneous
version of a biologically based structured network model of
decision making (Wang, 2002), demonstrating that machine
learning brought closer to brain’s hardware can indeed be
used to shed insights into biological neural networks.

The extensive long-range connectivity across brain areas
(Felleman and Van Essen, 1991; Markov et al., 2014; Oh et al.,
2014) can be included in ANNSs. In classical convolutional neural
networks (LeCun et al., 1990; Krizhevsky et al., 2012), each layer
only receives feedforward inputs from the immediate preceding
layer. However, in some recent networks, each layer also re-
ceives feedforward inputs from much earlier layers (Huang
etal.,2017; He et al., 2016). In convolutional recurrent networks,
neurons in each layer further receive feedback inputs from later
layers and local recurrent connections (Nayebi et al., 2018; Kietz-
mann et al., 2019).

5.2. Canonical Computation

Neuroscientists have identified several canonical computa-
tions that are carried out across a wide range of brain areas,
including attention, normalization, and gating. Here, we
discuss how such canonical computations can be introduced
into neural networks. They function as modular architectural
components that can be plugged into many networks. Inter-
estingly, canonical computations mentioned above all have
their parallels in machine-learning-based neural networks.
We will highlight the differences and similarities between
purely machine learning implementations and more biological
ones.

Normalization

Divisive normalization is widely observed in biological neural
systems (Carandini and Heeger, 2011). In divisive normaliza-
tion, activation of a neuron r; is no longer determined by its im-
mediate input /;, r;=f(l;). Instead, it is normalized by the sum of
inputs > _/; to a broader pool of neurons called the normaliza-
tion pool,
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(Equation 37)

ri=f l
T ’YE/I/'+O' ’

The specific choice of a normalization pool depends on the
system studied. Biologically, although synaptic inputs are addi-
tive in the drive to neurons, feedback inhibition can effectively
produce normalization (Ardid et al., 2007). This form of divisive
normalization is differentiable. So, it can be directly incorporated
into ANNs.

Normalization is also a critical part of many neural networks in
machine learning. Similar to divisive normalization, machine-
learning-based normalization methods (loffe and Szegedy,
2015; Ba et al., 2016b; Ulyanov et al., 2016; Wu and He, 2018)
aim at putting neuronal responses into a range appropriate for
downstream areas to process. Unlike divisive normalization,
the mean inputs to a pool of neurons is usually subtracted
from, instead of dividing, the immediate input (Equation 21).
These methods also compute the standard deviation of
inputs to the normalization pool, a step that may not be biologi-
cally plausible. Different machine-learning-based normalization
methods are distinguished based on their choice of a normaliza-
tion pool.

Attention

Attention has been extensively studied in neuroscience (Desi-
mone and Duncan, 1995; Carrasco, 2011). Computational
models are able to capture various aspects of bottom-up
(Koch and Ullman, 1987) and top-down attention (Reynolds
and Heeger, 2009). In computational models, top-down atten-
tion usually takes the form of a multiplicative gain field to the ac-
tivity of a specific group of neurons. In the case of spatial atten-
tion, consider a group of neurons, each with a preferred spatial
location x; and pre-attention activity F(X,-) for a certain stimulus.
The attended spatial location x4 results in attentional weights
@i(Xq), which is higher if x4 is similar to x;. The attentional weights
can then be used to modulate the neural response of neuron J,
ri(xq):a;(xq)F(xi). Similarly, feature attention strengthens the
activity of neurons that are selective to the attended features
(e.g., specific color). Such top-down spatial and feature attention
can be included in convolutional neural networks (Lindsay and
Miller, 2018; Yang et al., 2018).

Meanwhile, attention has become widely used in machine
learning (Bahdanau et al., 2016; Xu et al., 2015; Lindsay, 2020),
constituting a standard component in recent natural language
processing models (Vaswani et al., 2017). Although the machine
learning attention mechanisms appear rather different from
attention models in neuroscience, as we will show below, the
two mechanisms are very closely related.

In deep learning, attention can be viewed as a differentiable
dictionary retrieval process. A regular dictionary stores a number

of key-value pairs (e.g., word-explanation pairs) {(k(’>,v<’)>},

similar to looking up an explanation (v) of a word (k(’)). For
a given query q, using a dictionary involves searching for the

key k') that matches q, k) = q, and retrieving the corresponding
value, y =v). This process can be thought of as modulating

¢? CellPress

each value v) based on an attentional weight «; that measures
the similarity between the key k) and the query g. In the simple
binary case,
o= 1,
i 07

which modulated the output as

y= Za,-v(”.
i

if k) =q

otherwise (Equation 38)

(Equation 39)

In the above case of spatial attention, the i-th key-value pair is
(xi,r (x;)), while the query is the attended spatial location Xq. Each
neuron’s response is modulated based on how similar its
preferred spatial location (its value) x; is to the attended location
(the query) xg.

The use of machine learning attention makes the query-key
comparison and the value-retrieval process differentiable. A
query is compared with every key vector k% to obtain an atten-
tional weight (normalized similarity score) «;,

c;=score <q, k(’)) , (Equation 40)

aq, -+, ay = normalize(cq, -++,Cn), (Equation 41)

Here, the similarity scoring function can be a simple inner
product, score(q,k'"’)=qTk" (Bahdanau et al., 2016), and
the normalization function can be the softmax function,

Ci
@ = ——  such that > =1 (Equation 42)
i

Z/ec‘

The use of a normalization function is critical, as it effectively
forces the network to focus on a few key vectors (a few attended
locations in the case of spatial attention).

Gating

An important computation for biological neural systems is
gating (Abbott, 2006; Wang and Yang, 2018). Gating refers to
the idea of controlling information flow without necessarily dis-
torting its content. Gating in biological systems can be imple-
mented with various mechanisms. Attention modulation multi-
plies inputs to neurons by a gain factor, providing a graded
mechanism of gating at the level of sensory systems (Salinas
and Thier, 2000; Olsen et al., 2012). Another form of gating
may involve several types of inhibitory neurons (Wang et al.,
2004; Yang et al., 2016). At the behavioral level, gating often
appears to be all or none, as exemplified by effects such as in-
attentional blindness.

In deep learning, multiplicative gating is essential for popular
recurrent network architectures such as LSTM (long short-
term-memory) networks (Equation 43) (Hochreiter and Schmid-
huber, 1997; Gers et al., 2000) and GRU (gated recurrent unit)
networks (Cho et al., 2014; Chung et al., 2014). Gated networks
are generally easier to train and more powerful than vanilla
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Figure 8. Visualizing LSTM Activity in a Simple Memory Task

(A-C) A simple memory task.

(A) The network receives a stream of input stimulus, the value of which is
randomly and independently sampled at each time point.

(B) When the “memorize input” (red) is active, the network needs to remember
the current value of the stimulus (A) and output that value when the “report
input” (blue) is next active.

(C) After training, a single-unit LSTM can perform the task almost perfectly for
modest memory duration.

(D) When the memorize input is active, this network opens the input gate (al-
lowing inputs) and closes the forget gate (forgetting previous memory). It
opens the output gate when the report input is active.

RNNs. Gating variables dynamically control information flow
within these networks through multiplicative interactions. In a
LSTM network, there are three types of gating variables. Input
and output gates, g and g¢, control the inputs to and outputs
of the cell state ¢;, while forget gate gf controls whether cell state
c; keeps its memory ¢;_1.

i =ag(Wex; + Usri_q +by), (Equation 43)

gi =og(Wix; +Uiri_1 + b)),
g7 =ag(Wox; +Uori_1 +by),
Ct :giect—1 +g;®Uc(cht +Ucr;_1 +bc)7

ri=g? Oa(c).

Here, the symbol © denotes the element-wise (Hadamard)
product of two vectors of the same length z=x0®Oy means z; =
X;yi). Gating variables are bounded between 0 and 1 by the sig-
moid function g4, which can be viewed as a smooth differentiable
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approximate of a binary step function. A gate is opened or closed
when its corresponding gate value is near 1 or 0, respectively. All
the weights (W and U matrices) are trained. By introducing these
gates, a LSTM can, in principle, keep a memory in its cell state c;
indefinitely by having the forget gate gf =1 and input gate g} =0
(Figure 8). In addition, the network can choose when to read out
from the memory by setting its output gate gf =0 or 1. Despite
their great utility to machine learning, LSTMs (and GRUs) cannot
be easily related to biological neural circuits. Modifications to
LSTMs have been suggested so the gating process could be
better explained by neurobiology (Costa et al., 2017).

Although both attention and gating utilize multiplicative inter-
actions, a critical difference is that in attention, the neural mod-
ulation is normalized (Equation 42), whereas in gating it is not.
Therefore, neural attention often has one focus, while neural
gating can open or close gates to all neurons uniformly. An
important insight from machine learning is that gating should
be plastic, which should inspire neuroscientists to investigate
learning to gate in the brain.

Predictive Coding

Another canonical computation proposed for the brain is to
compute predictions (Rao and Ballard, 1999; Bastos et al.,
2012; Heilbron and Chait, 2018). In predictive coding, a neural
system constantly tries to make inference about the external
world. Brain areas will selectively propagate information that
is unpredicted or surprising while suppressing responses to ex-
pected stimuli. To implement predictive coding in ANNs, feed-
back connections from higher layers can be trained with a
separate loss that compares the output of feedback connec-
tions with the neural activity in lower layers (Lotter et al.,
2016; Sacramento et al., 2018). In this way, feedback connec-
tions will learn to predict the activity of lower areas. The feed-
back inputs will then be used to inhibit neural activity in lower
layers.

5.3. Learning and Plasticity

Biological neural systems are products of evolution, develop-
ment, and learning. In contrast, traditional ANNs are trained
with SGD-based rules mostly from scratch. The backpropaga-
tion algorithm of computing gradient descent is well known to
be biologically implausible (Zipser and Andersen, 1988). Incor-
porating more realistic learning processes can help us build bet-
ter models of brains.

Selective Training and Continual Learning

In typical ANNSs, all connections are trained. However, in biolog-
ical neural systems, synapses are not equally modifiable. Many
synapses can be stable for years (Grutzendler et al., 2002;
Yang et al., 2009). To implement selective training of connec-
tions, the effective connection matrix W can be expressed as a
sum of a sparse trainable synaptic weight matrix and a non-train-
able one, W = Wi + Wiy (Rajan et al., 2016; Masse et al., 2018).
Or more generally, selective training can be imposed softly by
adding to the loss a regularization term L,g that makes it more
difficult to change the weights of certain connections,

Lreg = 5ZMI'/(WU - Wfix,i/)2~

i

(Equation 44)
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Here, M determine how strongly the connection W should
stick close to the value Wy .

Selective training of connections through this form of soft con-
straints has been used by continual learning techniques to com-
bat catastrophic forgetting. The phenomenon of catastrophic
forgetting is commonly observed when ANNs are learning new
tasks; they tend to rapidly forget previous learned tasks that
are not revisited (McCloskey and Cohen, 1989). One major class
of continual learning methods deals with this issue by selectively
training synaptic connections that are deemed unimportant for
previously learned tasks or knowledge while protecting the
important ones (Kirkpatrick et al., 2017; Zenke et al., 2017).
Hebbian Plasticity
The predominant idea for biological learning is Hebbian plasticity
(Hebb, 2005) and its variants (Song et al., 2000; Bi and Poo,
2001). Hebbian plasticity is an unsupervised learning method
that drives learning of connection weights without target outputs
or rewards. It is essential for classical models of associative
memory, such as Hopfield networks (Hopfield, 1982), and has
a deep link to modern neural network architectures with explicit
long-term memory modules (Graves et al., 2014).

Supervised learning techniques, especially those based on
SGD, can be combined with Hebbian plasticity to develop
ANNSs that are both more powerful for certain tasks and more
biologically realistic. There are two methods to combine Hebbian
plasticity with SGD. In the first kind, the effective connection ma-
trix W =W + A is the sum of two connection matrices, W trained
by SGD, and A driven by Hebbian plasticity (Ba et al., 2016a; Mi-
coni et al., 2018),

A(t+1)=2A(t) +qrrT. (Equation 45)

Or in component form,

At + 1) = 2A;(t) + ;. (Equation 46)

In addition to training a separate matrix, SGD can be used to
learn the plasticity rules itself (Bengio et al., 1992; Metz et al.,
2018). Here, the plasticity rule is a trainable function of pre-
and postsynaptic activity,

Aj(t+1)=24;(t) +f(r;,r;, 0). (Equation 47)

Because the system is differentiable, parameters @, which
collectively describe the plasticity rules, can be updated with
SGD-based methods. In its simplest form, f(r;, r;, @) = nrir, where
0={n}. Here, the system can learn to become Hebbian (> 0) or
anti-Hebbian (n<0). Learning of a plasticity rule is a form of
meta-learning, using an algorithm (here, SGD) to optimize an in-
ner learning rule (here, Hebbian plasticity).

Such Hebbian plasticity networks can be extended to include
more complex synapses with multiple hidden variables in a
“cascade model” of synaptic plasticity (Fusi et al., 2005). In
theory, properly designed complex synapses can substantially
boost a neural network’s memory capacity (Benna and Fusi,
2016). Models of such complex synapses are differentiable
and therefore can be incorporated into ANNs (Kaplanis
et al., 2018).

¢? CellPress

Short-Term Plasticity

In addition to Hebbian plasticity that acts on the timescales from
hours to years, biological synapses are subject to short-term
plasticity mechanisms operating on the timescale of hundreds
of milliseconds to seconds (Zucker and Regehr, 2002) that can
rapidly modify their effective weights. Classical short-term plas-
ticity rules (Mongillo et al., 2008; Markram et al., 1998) are formu-
lated with spiking neurons, but they can be adapted to rate
forms. In these rules, each connection weight w = wux is a prod-
uct of an original weight w, a facilitating factor u, and a
depressing factor x. The facilitating and depressing factors are
both influenced by the presynaptic activity r(t),

% ] —Tx(t) —u(tx(t)r(t), (Equation 48)
du _ U-—u(t)

+U( —u(t)r(t). (Equation 49)

dt Ty

High presynaptic activity r(t) increases the facilitating factor
u(t) and decreases the depressing factor x(t). Again, the equa-
tions governing short-term plasticity are fully differentiable, so
they can be incorporated into ANNs in the same way as Hebbian
plasticity rules (Masse et al., 2019).

Masse et al. (2019) offers an illustration of how ANNs can be
used to test new hypotheses in neuroscience. It was designed
to investigate the neural mechanisms of working memory, the
brain’s ability to maintain and manipulate information internally
in the absence of external stimulation. Working memory has
been extensively studied in animal experiments using delayed
response tasks, in which a stimulus and its corresponding motor
response are separated by a temporal gap when the stimulus
must be retained internally. Stimulus-selective self-sustained
persistent activity during a mnemonic delay is amply docu-
mented and considered as the neural substrate of working mem-
ory representation (Goldman-Rakic, 1995; Wang, 2001). Howev-
er, recent studies suggested that certain short-term memory
traces may be realized by hidden variables instead of spiking ac-
tivity, such as synaptic efficacy that by virtue of short-term plas-
ticity represents past events (Stokes, 2015; Mongillo et al., 2008).
When an ANN endowed with short-term synaptic plasticity is
trained to perform a delayed response task, it does not make
an a priori assumption about whether working memory is repre-
sented by hidden synaptic efficacy or neural activity. It was
found that activity-silent state can accomplish such a task only
when the delay is sufficiently short, whereas persistent activity
naturally emerges from training with delay periods longer than
the biophysical time constants of short-term synaptic plasticity.
More importantly, training always gives rise to persistent activity,
even with a short mnemonic delay period, when information
must be manipulated internally, such as mentally rotating a
directional stimulus by 90°. This work illustrates how ANNs can
contribute to resolving important debates in neuroscience.
Biologically Realistic Gradient Descent
Backpropagation is commonly viewed as biologically unrealistic
because the plasticity rule is not local (see Equation 13). Efforts
have been devoted to approximating gradient descent with
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algorithms more compatible with the brain’s hardware (Lillicrap
et al., 2016; Guerguiev et al., 2017; Roelfsema and Holtmaat,
2018; Lillicrap et al., 2020).

In feedforward networks, the backpropagation algorithm can
be implemented with synaptic connections feeding back from
the final layer (Xie and Seung, 20083). This implementation as-
sumes that the feedback connections precisely mirror the feed-
forward connections. This requirement can be relaxed. If a
network uses fixed and random feedback connections, the feed-
forward connections would start to approximately mirror the
feedback connections during training (@ phenomenon called
“feedback alignment”), allowing for training loss to be decreased
(Lillicrap et al., 2016). Another challenge of approximating back-
propagation with feedback connections is that the feedback in-
puts carrying loss information need to be processed differently
from feedforward inputs carrying stimulus information. This issue
can be addressed by introducing multi-compartmental neurons
into ANNs (Guerguiev et al., 2017). In such networks, feedfor-
ward and feedback inputs are processed separately because
they are received by the model neurons’ soma and dendrites,
respectively.

These methods of implementing the backpropagation algo-
rithm through synapses propagating information backward are
so far only used for feedforward networks. For recurrent net-
works, the backpropagation algorithm propagates information
backward in time. Therefore, it is not clear how to interpret the
backpropagation in terms of synaptic connections. Instead, ap-
proximations can be made such that the network computes
approximated gradient information as it runs forward in time (Wil-
liams and Zipser, 1989; Murray, 2019).

For many neuroscientific applications, it is probably not
necessary to justify backpropagation by neurobiology. ANNs
often start as “blank slate”; thus, training by backpropagation
is tasked to accomplish what for the brain amounts to a combi-
nation of genetic programming, development, and plasticity in
adulthood.

6. FUTURE DIRECTIONS AND CONCLUSION

Recent years have seen a growing impact of ANN models in
neuroscience. We have reviewed many of these efforts in the
section “Biologically Realistic Network Architectures and
Learning.” In this final section, we outline other existing chal-
lenges and ongoing work to make ANNs better models of
brains.

Spiking Neural Networks

Most biological neurons communicate with spikes. Harnessing
the power of machine learning algorithms for spiking networks
remains a daunting challenge. Gradient-descent-based training
techniques typically require the system to be differentiable, mak-
ing it challenging to train spiking networks because spike gener-
ation is non-differentiable. However, several recent methods
have been proposed to train spiking networks with gradient-
based techniques (Courbariaux et al., 2016; Bellec et al., 2018;
Zenke and Ganguli, 2018; Nicola and Clopath, 2017; Huh and
Sejnowski, 2018). These methods generally involve approxi-
mating spike generation with a differentiable system during
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backpropagation (Tavanaei et al., 2019). Techniques to effec-
tively train spiking networks could prove increasingly important
and practical, as neuromorphic hardware that operates naturally
with spikes becomes more powerful (Merolla et al., 2014; Pei
et al., 2019).

Standardized Protocols for Developing Brain-like
Recurrent Networks

In the study of mammalian visual systems, the use of large data-
sets such as ImageNet (Deng et al., 2009) was crucial for produc-
ing neural networks that resemble biological neural circuits in the
brain. The same has not been shown for most other systems.
Although many studies have shown success using neural net-
works to model cognitive and motor systems, each work usually
has its own set of network architectures, training protocols, and
other hyperparameters. Simply applying the most common ar-
chitectures and training algorithms does not consistently lead
to brain-like recurrent networks (Sussillo et al., 2015). Much
work remains to be done to search for datasets/tasks, network
architectures, and training regimes that can produce brain-
resembling artificial networks across a wide range of experi-
mental tasks.

Detailed Behavioral and Physiological Predictions
Although many studies have reported similarities between
brains and ANNs, more detailed comparisons have revealed
striking differences (Szegedy et al., 2013; Hénaff et al., 2019;
Sussillo et al., 2015). Deep convolutional networks can achieve
similar or better performance on large image classification
tasks compared to humans; however, the mistakes they
make can be very different from the ones made by humans
(Szegedy et al., 2013; Rajalingham et al., 2018). It will be impor-
tant for future ANN models of brains to aim at simultaneously
explaining a wider range of physiological and behavioral phe-
nomena.

Interpreting Learned Networks and Learning Processes
With the ease of training neural networks comes the difficulty of
analyzing them. Granted, neuroscientists are not foreign to anal-
ysis of complex networks, and ANNs are still technologically
easier to analyze compared to biological neural networks. How-
ever, compared to network models with built-in regularities and
small numbers of free parameters, deep neural networks are
notoriously complex to analyze and understand and will likely
become even more so as we build more and more sophisticated
neural networks. This difficulty is rooted in the use of optimiza-
tion algorithms to search for parameter values. Since the optimi-
zation process in deep learning has no unique optima, the results
of optimization necessarily lack the degree of regularities built in
hand-designed models. Although we can attempt to understand
ANNSs from the perspective of its objectives, architectures, and
training algorithms (Richards et al., 2019), which are described
with a much smaller number of hyperparameters, the link from
these hyperparameters to network representation, mechanism,
and behavior is mostly informal and based on intuition.

Despite the difficulties mentioned above, several lines of
research hold promise. To facilitate understanding of learned
networks, one can construct variants of neural networks that
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are more interpretable. For example, low-rank recurrent neural
networks utilize recurrent connectivity matrices with low-dimen-
sional structures (Mastrogiuseppe and Ostojic, 2018), allowing
for a more straightforward mapping from network connectivity
to dynamics and computation.

The dynamics of learning in neural networks can be studied
analytically in deep linear networks (Saxe et al., 2013) and very
wide nonlinear networks, i.e., networks with a sufficiently large
number of neurons per layer (Jacot et al., 2018). In another line
of work, the Information Bottleneck theory proposes that
learning processes in neural networks are characterized by two
phases: the first extracts information for output tasks (predic-
tion), and the second discards (excessive) information about in-
puts (compression) (Shwartz-Ziv and Tishby, 2017; see also
Saxe et al., 2019a). Progress in these directions could shed light
on why neural networks can generalize to new data despite hav-
ing many parameters, which would traditionally indicate over-
fitting and poor generalization performance.

Conclusion

ANNs present a novel approach in computational neurosci-
ence. They have already been used, with a certain degree of
success, to model various aspects of sensory, cognitive, and
motor circuits. Efforts are underway to make ANNs more bio-
logically relevant and applicable to a wider range of neurosci-
entific questions. In a sense, instead of being viewed as
computational models, ANNs can be studied as model sys-
tems, like fruit flies, mice, and monkeys, but are easily carried
out to explore new task paradigms and computational ideas.
Of course, one can be skeptical about ANNs as model sys-
tems, on the ground that they are not biological organisms.
However, computational models span a wide range of biolog-
ical realism; there should be no doubt that brain research will
benefit from enhanced interactions with machine learning and
artificial intelligence. In order for ANNs to have a broad impact
in neuroscience, it will be important to devote our efforts in two
areas. First, we should continue to bring ANNs closer to neuro-
biology. Second, we should endeavor to “open the black box”
thoroughly after learning to identify neural representation, tem-
poral dynamics, and network connectivity that emerge from
learning, leading to testable insights and predictions by neuro-
biological experiments. Recurrent neural dynamics emphasized
in this Primer represent a salient feature of the brain; further
development of strongly recurrent ANNs will contribute to ac-
celeration of progress in neuroscience.
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