RATIONALITY OF DESCENDENT SERIES FOR HILBERT AND
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ABSTRACT. Quot schemes of quotients of a trivial bundle of arbitrary rank on a nonsin-
gular projective surface X carry perfect obstruction theories and virtual fundamental
classes whenever the quotient sheaf has at most 1-dimensional support. The associ-
ated generating series of virtual Euler characteristics was conjectured to be a rational
function in [OP1] when X is simply connected. We conjecture here the rationality of
more general descendent series with insertions obtained from the Chern characters of
the tautological sheaf. We prove the rationality of descendent series in Hilbert scheme
cases for all curve classes and in Quot scheme cases when the curve class is 0.
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0. INTRODUCTION

0.1. Motivation. Let X be a nonsingular projective surface, and let X" denote the
Hilbert scheme of points. A well-known formula of Géttsche [G&] expresses the topolog-
ical Euler characteristics of the Hilbert schemes in terms of the Dedekind eta function

(1) > e(xygr = <q‘i n(q)

n=0

>—e(X) |

Gottsche’s formula reflects the action of the Heisenberg algebra on the cohomology of
X" constructed by [Gr, NJ.

There are at least two possible directions of extending (1). First, we may view X[
as the moduli space of rank 1 sheaves with trivial determinant. The higher rank moduli
spaces of sheaves over X play a central role in Vafa-Witten theory [TT, VW]. Explicit

expressions for the generating series of the rank 2 and 3 moduli spaces are conjectured in
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[GK1, GK2]. Since the higher rank moduli spaces may be singular, the Euler character-
istics are replaced by virtual analogues which take into account the deformation theory
of the moduli space.

In a different direction, we may promote X[ to more general Hilbert and Quot

schemes and study the corresponding virtual invariants.

0.2. Quot schemes and virtual Euler characteristics. Let X be a nonsingular
projective surface, let f € Hy(X,Z) be an effective curve class of X, and let N > 1
be an integer. Consider the Quot scheme Quoty(CY,3,n) parameterizing short exact

sequences
(2) 0-S—-CV"20x—-Q—0

where
rank @ =0, c1(Q) =5, x(Q) =n.
As explained in [MOP1, OP1], Quoty (CY, 3,n) carries a canonical 2-term perfect ob-

struction theory and a virtual fundamental class of dimension
vdim = x(S,Q) = Nn + (2.

The virtual fundamental class of the Quot scheme was used in [MOP1] to prove Lehn’s
conjecture [Le] for K3 surfaces.!

The virtual Euler characteristic is defined using the virtual tangent complex of the
canonical obstruction theory [FG]. By analogy with the Poincaré-Hopf theorem, we set
e (Quotx (CV, B, n)) = / (T Quot) € Z,

[Quotx (CN,8,n)]"™
where ¢ denotes the total Chern class. The virtual tangent bundle is given by

T""Quot = Ext% (S, Q)
at each short exact sequence (2).
The generating series of virtual Euler characteristics,

(3) ZXNB = Z e""(Quoty (CV, B,n)) ¢",

ne”L
was introduced and studied in [OP1]. For fixed X, N, and £,

vdim QuotX((CN,ﬁ,n) =Nn+p32<0

for n sufficiently negative, hence Zx n g has a finite polar part. The following rationality
property was conjectured? in [OP1].
ISee [MOP2, MOP3, V] for further developments.

2The conjecture can also be made for surfaces which are not simply connected, but we will not study
non simply connected surfaces here (except in the 8 = 0 case).
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Conjecture 1. Let X be a nonsingular projective simply connected surface, and let
be an effective curve class. The series Zx n g is the Laurent expansion of a rational

function in q.
Conjecture 1 is known to be true in the following five cases:

e For all N > 1, the series Zx n g is rational if
(i) X is any surface and g = 0 [OP1],
(ii) X is a surface of general type® with p, > 0 and 3 is any effective curve class
[L, OP1],
(iii) X is an elliptic surface® with p, > 0 [L, OP2].
e For N =1, the series Zx 1 g is also rational if
(iv) X is a blow-up and  is a multiple of the exceptional divisor [L, OP1],

(v) X is a K3 surface with reduced invariants for primitive curve classes [OP1].

Our first result here is a resolution of Conjecture 1 in case N = 1.

Theorem 1. Let X be a nonsingular projective simply connected surface, and let 3 be
an effective curve class. The generating series Zx 1 g of virtual Euler characteristics is

the Laurent expansion of a rational function in q.

In the N = 1 case, the Quot scheme Quoty(C!,3,n) is simply a Hilbert scheme of
points and curves in X. Theorem 1 is therefore about the virtual Euler characteristics
of such Hilbert schemes of surfaces. A crucial idea in our proof is to transform the
geometry to the moduli space of stable pairs [PT1, PT2] on surfaces and to use the

associated Jacobian fibration.

0.3. Rationality of descendent series. How special is the rationality of the generating
series (3) of virtual Euler characteristics? We propose here a wider rationality statement
for descendent series.

Let X be a nonsingular projective simply connected surface, and let Quotx (C", 3,n)

be the Quot scheme parameterizing quotients (2). Let
7 : Quotx (CV,8,n) x X — Quotx(CY,3,n),
T Quotx (CV,8,n) x X — X

be the two projections. Let

Q — Quotx (CV,8,n) x X

3Property (ii) is proven in [OP1] for simply connected minimal surfaces of general type with p, > 0
and a nonsingular canonical divisor. The assumptions other than py > 0 were removed in [L]. A similar
analysis was done in [L] at the level of x_,-genera.

4Pr0perty (iii) is proven in [OP2] for simply connected minimal elliptic surfaces. These assumptions
were removed in [L] at the level of x_,-genera.
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be the universal quotient. For a K-theory class a € K9(X), we define
ol = Ry, (Q @ mia) € K°(Quotx (CV, 8,n)).

A generalization of the series (3) of virtual Euler characteristics is defined as follows.

Let ay,...,ap € K°(X), and let ki, ...,k be non-negative integers. Set
(4) Zxnplat,...;aelkr,... k)=

21" / . chi (") -+ chy, (™) (T Quot)
nez [QUOtX (CN7ﬁ7n)]Vlr

The Chern characters in (4) may be viewed as descendent insertions. Hence, we view

Zx,n,glat,...,ap|ki,... k) as a descendent series.

Conjecture 2. The descendent series Zx yg(oi,,...,o0|k1,...,ke) is the Laurent ex-

pansion of a rational function in q.
We can prove Conjecture 2 in case either § =0 or N = 1.

Theorem 2. Let X be a nonsingular projective surface. For B =0, the series

Zx,no(at,...,ap |k, ..., k) € Q((q))

is the Laurent expansion of a rational function in q.

Theorem 3. Let X be a nonsingular projective simply connected surface, and let 8 be

an effective curve class. For N = 1, the series

ZX,l,ﬁ(alv"' 7a£‘k17"'7kf) € @((Q))

1s the Laurent expansion of a rational function in q.

The rationality statements for surfaces here are parallel to the rationality of the descen-
dent series for stable pairs on 3-folds, see [P] for a survey and [PP1, PP2, PP3, PT1, PT2]
for foundational results. Whether the descendent series (4) satisfy relations such as the
Virasoro constraints for stable pairs [OOP, MOOP] is an interesting question for further
study.

Descendent integrals against the (non-virtual) fundamental class of the Hilbert scheme
of points of a surface have been studied by Carlsson [C]; the descendent series are proven
to be quasi-modular. The virtual fundamental class regularizes the descendent geometry
in two ways: the theory can be defined more generally for Quot schemes of quotients
supported on curves and the answers are rational functions.

The study of the virtual invariants of Quot schemes of surfaces can also be considered
in K-theory. For recent results and conjectures related to the rationality of descen-
dent series in K-theory, see [AJLOP]. Section 3.2 of [AJLOP] also contains subsequent

developments regarding Conjecture 2 for all surfaces with p, > 0.
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1. VIRTUAL EULER CHARACTERISTICS: THEOREM 1

1.1. Obstruction theory. We start the proof of Theorem 1 with an explicit description
of the Hilbert scheme and the obstruction theory in the N =1 case.

Let X be a nonsingular projective surface. When N = 1, the following isomorphism
was proved in [F|:

Quotx (C!, B, n) ~ XMl Hilbgs .

Here, X" is the Hilbert scheme of m points of X, Hilbg is the Hilbert scheme of divisors
of X in the class 3, and
BB+ Kx)

m=n4 ==L

Under this isomorphism, each pair (Z, D) € X [m] Hilbg yields a short exact sequence
0—=1z(-D)—>Ox - Q —0.
The Hilbert scheme Hilbg parameterizes only pure dimension 1 subschemes. There is an
Abel-Jacobi map
Alg : Hilbg — Pic’(X), D~ Ox(D),
with fibers given by projective spaces of possibly varying dimension. As noted in [DKO],

Hilbg carries a virtual fundamental class of dimension

Vdimg = W;[{X) .

The virtual fundamental class of Quotx (C!, 3,n) was identified in [L] to equal

(5) [Quotx (C*, 8,m)]"™ = e(B) 1 ([ X1™]] x [Hilbg]"™)
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where
B = RHom,(Ow,O(D)).
Here

WX x XM Dc X xHilbg
are the universal families, and
71 X x XM x Hilbg — X" x Hilbg
is the projection.
When X is simply connected, the Hilbert scheme Hilbg = IP is a projective space of

dimension h°(B3) — 1. The obstruction bundle for Quotx (C', 3,n) given above simplifies
to the expression found in [OP1]:

v
(6) Obs = (H'(M) — H'(M)) ® L + (M[ml) ® L+ CPs.
Here

M=Kx—-p
and the superscript ( )™ denotes the usual tautological bundle over the Hilbert scheme
of points X ™. Furthermore,

L=0p(1).

Theorem 1 is established whenever p, > 0. For surfaces of positive Kodaira dimension,
the claim follows by cases (ii) and (iii) discussed after Conjecture 1 in Section 0.2. The
only remaining cases are K3 surfaces and their successive blowups. Invariants of K3
surfaces vanish unless 8 = n = 0, see MOP1]. Theorem 6 of [L] determines the invariants
of blowups in terms of explicit rational functions, see also Section 3.2.5 below.

We assume pgy = 0 for the remainder of Section 1. Since 3 is an effective curve class,

the condition p, = 0 implies
HY(M)=HKx —)=0.
The obstruction bundle therefore further simplifies to
Obs = H' (M) ® L + (M[m])v ®L.

1.2. Rationality. For a nonsingular scheme S endowed with a perfect obstruction the-

ory and obstruction bundle Obs, the virtual Euler characteristic is given by

e'ir(§) = /M e(Obs) - s((gi)) .

In our situation (assuming p, = 0),

vir 1 _ R (8) )V c(TX[m}) . c(g)x(ﬁ)
e""(Quotx (C*, 3,n)) /X[mePq(ﬁ) e<£®(M ) ) c<£®(M[m})V> )
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We can integrate out the hyperplane class to reduce the dimension of the projective

space to x(8) — 1. Theorem 1 follows from the following result.

Proposition 1. Let V' be a finite dimensional vector space, and let M — X be a line

bundle over a nonsingular projective surface. The series

S v [y .
ZXMszqn./ e(£®(M[n1> ).c<TX ) - <(TP(V))
TS ey

c(ce (M)

s a rational function in q.

In fact, we will prove a stronger claim. For a rank r vector bundle £ — S over a

scheme S with Chern roots x1, ..., x,, define
J 1
7 Py(FE) = —_—.
For a finite sequence B = (b1, ..., b;) of non-negative integers, we set

l
P(E,B) = [[ P(E)".
=1

Write
P (M), B)

¢ ((ari)Y)

Proposition 2. For all pairs (X, M), non-negative integers a, and finite sequences B,

ZialonB) =30 [ oo ((107)") et
n=0 5

the series Zx nrla, B] is a rational function in q.

Proposition 2 implies Proposition 1 by the following argument. Let { = ¢1(£) denote

the hyperplane class on P(V'). We analyze the expressions appearing in Proposition 1.

First,
Y =S oo ()
e<£®(M )> ;g <(M ))

Next, we write 21, ...z, for the Chern roots of M. We have

n

1 1
c(ﬁ@(M[n})V> :Z.Hlla:ﬁC'

We expand
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which yields

where

Hy= Y (I—a) 7t (-,
The integral in Proposition 1 becomes

v c [} > -
Lo (S5 (7)) 0850 (S ) e

where dimV = v.

After integrating out ¢ over P(V'), we are led to expressions of the form

with a + 7 < v — 1. Crucially, both a and j are bounded by dim V' = v, independently
of n. Furthermore, each H; is symmetric in the Chern roots so can be expressed as a

polynomial in the power sums

1
=2 Gy

i=1
in a fashion which is independent of n. Explicitly, we have

ZtJH _exp<ztfd>.

These remarks reduce the proof of Proposition 1 to Proposition 2.
1.3. Proof of Proposition 2.

1.3.1. Strategy. We will prove Proposition 2 in two steps:

(i) We first reduce to special rational geometries via universality considerations.
(ii) A geometric argument using the moduli space of stable pairs will be given for

rational surfaces X with a sufficiently positive line bundle M.

1.3.2. Universality. Fix £ > 0. We form the generating series

P ((MW)V,B)
e((ar)Y)

The above expression is multiplicative in the sense that if X = X; L X5, then

0 0 ¢
(8) Y)((,M Y)(ﬁ M, Y)(<2)7M2 ’

Y= > 3 ,ZZq"t“ / _a<(M["])V) o(TX )
B=(b1,...,b¢) by n>0 a>0
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where M7, My are the restrictions of M to X7, X5 respectively. Claim (8) is a consequence
of the following observations
x= ] x"xxi
ni+ne2=n
M[n] _ I_l Ml[m] as) M2[n2]
ni1+no=n
v v v
P, <(M[”]) ) - || ~ ((M{"”) > +P, ((MQ[”Q}) ) .
ni1+ns=n
The factorials in the definition of Y)((giw are engineered to offset the prefactors appearing
in the binomial expansion P% of the third identity above.

(2
As a consequence of above multiplicativity and the arguments of [EGL], we have

)

for universal series A1, Ao, A3, A4 in the variables ¢, t, 21, . . ., zp. To prove Proposition 2,

we must show that
: : K2 .
Coefficient of @25 .. ~z§£ in A, % ~A§(0X) - AR Ex - AM?

is a rational function in gq.
Our method is to study special geometries (X, M). Several choices are possible here®,

for instance we could pick

(a) X is the blowup of P? at 1 point and M = dH — eFE,
(b) X is the blowup of P? at 2 points and M = dH — e1 Fy — eaFs.

For the arguments of the following subsection, we will require M sufficiently positive.
For a concrete discussion, the results of [R] are useful. Specifically, if  is a fixed integer,
a line bundle M, assumed not to equal a multiple of (—Kx), is k-very ample provided
that the following inequalities hold

(@) d>e+r, e>xr,

(b)) d>e1+es+k, e1>kK, e3>k

We will furthermore assume®

(c) there exists a divisor L on X such that L - M = 1.
Such an L can be chosen in the form
L=dH-€E or L=dH —¢€\E, —e,E)
provided

5The simplest geometry X = P? places numerical restrictions leading, at least a priori, to less precise
results regarding the denominators of the answers.
6In the absence of (c), we have less control on the denominators of the rational functions thus obtained.
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(¢) ged(d,e) =1 and ged(d, eq,e2) = 1.

To complete the proof of Proposition 2 for arbitrary geometries, we need the following

result.

Lemma 1. Fiz ¢ > 0 and k > 0. Assume that for all 0 < a < k, and all nonnegative
b17 R b[ﬂ

. . K2 . 2
Coefficient of 20 ... Z?Z in A% A%‘(OX) ARTEx A M

is a rational function in q for (X, M) as above. Then the same coefficients are rational
in q for all pairs (X, M).

Proof. Examples (a) and (b) give the rationality of the relevant coefficients in the ex-

pressions

22 .2
AS - Ay AF¥FE AP and AT A - ApRtertea . g7

By varying d, e, eq, eo for sufficiently large values with respect to x subject to the con-
ditions above, we can reconstruct Ay, As, A3, A4 and conclude that their corresponding

coefficients are rational in q. O

1.3.3. Special geometries. We verify here the hypotheses of Lemma 1 for pairs (X, M)
satisfying all conditions above. The argument however applies more generally for suffi-

ciently positive line bundles M — X.

To keep the notation simple, we assume B = () throughout Section 1.3.3. Thus

0 soia=Ee [ () ) ().

where s denotes the Segre class. We will indicate how to proceed with the general case
B # () in Section 1.3.7.

We begin by representing the Chern class ¢,_q (M ["]) by a natural geometric cycle.
To this end, we pick a general linear system |V| in |M| satisfying the following two
properties:

(i) dim|V| = q,

(ii) the curves in |V] are irreducible and reduced.
This can be achieved if the coefficient d of the hyperplane class in M is chosen sufficiently
large. Specifically, by [KT, Proposition 5.1], the assumption (ii) is satisfied as soon as
M is (2a + 1)-very ample. We write

m:C—|V|
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for the universal curve. When regarded as the base of 7, we write B instead of |V|. Let
(/B =B

denote the relative Hilbert scheme of points. For all n, the space (C/B)[" is a nonsingular

projective variety of dimension
dim(C/B)" =n +a

by [GS, Theorem 46]. The assertion uses the assumption that M is sufficiently positive,

in particular, we need M to be a-very ample. Furthermore, we have a natural morphism
j: (/B = xnl,

Pick sq, ..., S, a basis for |V, viewed as sections of M. Each section s of M induces
a tautological section s/ of the bundle M[™ via restriction
£ —se, s¢€ H(M®O) = MM
Here ¢ C X is a length n subscheme of X. We therefore obtain sections
sgﬂ, cee s([l"]

of MW — X" The degeneracy locus of these sections consists of subschemes & of X
such that

§CCy

for some curve C, of the linear system |V|. We therefore conclude
(10) Jo(C/B = ey (M) 0 [ x1T)

We can rewrite (9) using equality (10) as

Zxula = iqn./x[n] Chn—a ((M[n])v> ce(TXMy s ((M[n})v>
B iqn(_ma /(C/B)m JreT Xt - 3% <(MM)V)

= (=1)"Z¢/,m(—q),

where we define
> v
Z = ¢ / j*e <TX["1 — (M ) .
C/B,M( ) nZ:;) /B ( )

We prove the rationality of Z¢ /5 7. The key step is to show that the generating series

encodes expressions of the form

(%) (=1)" (p1(n) + 2™ - pa(n)) for polynomials p;,ps .
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Series of the form
o0

> (D) (pi(n) +2" - pa(n) ¢
n=0

are rational functions in ¢.” Hence, we will deduce Proposition 2 from the following

result.

Lemma 2. For sufficiently positive line bundles M — X satisfying conditions (d' ), (V' ),
and ('), and families of curves C — B satisfying (i) and (ii), the expression

\
(11) / e (TXW - (MM) >
/By

is of the form (x) for polynomials pi(n) and pa(n).

1.3.4. Proof of Lemma 2. We let H — C denote a relatively ample line bundle for the
family

m:C— B.
For instance, we may pick

H=j*L

for the line bundle L whose existence was assumed in (c). Then, H has fiber degree 1.

The following structures will play an important role in the proof of Lemma 2:
(i) the relative moduli space 9t — B of torsion free rank 1 sheaves of degree 0 over
the fibers of 7 : C — B,
(ii) the universal sheaf
J — M x B C
constructed in [AK] for families of reduced irreducible curves,
(iii) the universal subscheme
Z,— /B xzc,
(iv) the universal subscheme W, of X" x X.
We write
T:M XB C—Mm
for the base change of 7 : C — B. We consider the sheaves
T, H—->MxpC
where pullback from C is understood for the second line bundle. We set
"As a consequence, the denominators of the series of Euler characteristics (3) are products of 1 — ¢

and 1 — 2¢ with various exponents. The same assertion holds true for the descendent series of Theorem
3. The example of Subsection 3.2.4 with 8 = 0 also has the same denominators.
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For n sufficiently large, P,, has fibers of constant dimension (by cohomology vanishing),

so IP,, a projective bundle over 971. We write
We will regard the relative Hilbert scheme (C/B)™ as a (subspace of the) moduli space
P of stable pairs
(F,s:0x — F)
on X as explained in [PT2, Proposition B8|. Here,
a(F)=aM), x(F)=1-g+n

with g denoting the arithmetic genus of the linear series |M|. We furthermore require
that the support of F' be contained in B = |V|. The correspondence between the relative

Hilbert scheme and stable pairs can be summarized as follows. For each subscheme
§C Gy,

the canonical sequence
0—=1I¢ = Ocy — O — 0
dualizes to
0 = Oc, = Home,(I¢, 0) = Extt, (O, 0) =0,
where the last term has dimension zero and length n. Setting

F =1 = Homg,(I¢,0),
we obtain a stable pair
s:0x - F
on X with the stated numerical invariants. By a result of [PT2],
Eaxtg'(Ie,0) = 0.

Hence, the above dual can be interpreted as RHomg,(I¢, O) in the derived category.

As a consequence of the above identifications, there is a natural morphism
(12) ™ (C/B)M =P,
Indeed, for the moduli space of stable pairs, we have a natural morphism
(13) P—-M, (F,s:0x >F)—FH™".

We used here that H has fiber degree 1, so that the twist F' ® H~" has fiber degree 0.
The fiber of the morphism (13) over a sheaf J € 9t is

PH(J @ H™).
The universal structure

Z, = (/BN x5C = P, x5C = MxpC
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satisfies
(14) Iy =T H" ® (.

In the above, duals are interpreted in the derived category.
We now examine the integrand which appears in Lemma 2. The following tautological

structures over 91 will be needed in the analysis.

(A) Consider the diagram
C N X.
M- B
For a bundle W — X, we define
W = p*Rm, j*W — M.

(B) Consider the diagram
C x B M —-C.
m
For a bundle V — C, we set
V, — M, Vo =R (VT @H™"),
vV — M, VI =Ext%(JY @H V),
VT —am, VT =Ext%(JY, Ve J").
Pullbacks from the factors were suppressed in the expressions above. In partic-
ular, the above constructions make sense and will be used for bundles V pulled
back from X.
By relative duality, we have
(15) Vi = Exti(JY@H V)
= Extt(V,J' @ H " @wep)’ (1]
= R (JVoH "0V @wes) (1]
= (VV X WC/B)Z [1} .
The above constructions make sense for K-theory classes V as well.

Returning to Lemma 2, we now compute the pullbacks of the various tautological

structures under the morphism

j: (/BN = xnl,
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Lemma 3. There are K-theory classes a,, 8 on C and v on MM for which

J* <TX[”] - (M["])V) =v+an- G+ (Bn)"  Gn

over (C/B)" — P, — M. Furthermore, o has rank —1 and 3 has rank 0.

Proof. We compute the two pullbacks separately.

(i) First, recall

(16)

(i)

(17)

M = Rpr, (M @ Op,)
where W,, denotes the universal subscheme on X "] x X and
pr: XM x x — xl

The pullbacks on M are omitted.
The pullback under j is computed via the fibers of

m:(C/B)M xzC — (c/B)M.
We find
FMM =Rr (M ®0z).
Writing in K-theory
Oz, =0-Iz,=0-7g" -H " ("
via equation (14), we obtain

MM =21 — My, -t

15

Here, we have used the notations introduced in (A) and (B) above applied to the

line bundle M — C — X.

We now turn to 7*TX™. The alternating sum
v
ol _pxlnl 4 ((KX)[n]>
computes fiber by fiber the complex
Ext’(Ow, Ow) — Ext' (Ow, Ow) + Ext*(Ow, Ow)
for subschemes W of X. In families,
v
J* (OW =T (Kx)) ) = j*Ext% (Ow,, Ow,)

where the subscript X indicates the relative Ext’s over the projection

pr: XM« x — xl,
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We seek to relate the relative Ext and Ext? 5z where the second Ext is com-

puted via the projection
m:(C/B)M xzC — (c/B)M.
The key identity is
(18) 7 Ext% (Ow,, Ow,) = Extg 5(0z,,0z,) — Extg 5(0z, ® N, Oz,) .
Here, N is the conormal bundle of the inclusion
t:C—=>BxX,

so that
0= N = "Qpux/s— Qg — 0
or equivalently
0= N = Qx = Qe —0.

Equation (18) is the relative analogue of [T, Lemma 3.42] which gives the exact-

ness of the sequence
Extf, (Og, O¢) — Ext’y (O¢, O¢) — Extgl(o£ N, 0¢) = Exta'l((’)g, O¢) = ...

for subschemes & C Cp. To apply [T], we observe that A/ ‘ C is the conormal bundle
of C, — X, which follows by restricting the defining exact sequence to Cp.®

With (18) understood, and by invoking (17), we find
v
(19) ]‘*TX[n] _ j*O[n] _|_j* <(Kx>[n]> — EXtE/B(Ogn, Ogn) + EXtE/B(OZn ®/\f, Ogn) .
The calculations in (i), specifically (16), yield the first two terms above
o =0-0,-¢!

and
v

Voo
7 (M) = R = ((Kx),) G
We examine the last two terms in (19). Substituting

Oz, =0 - J"HT"G!

8We have
0 — Toré (Qe/s,Oc,) —>/\/’|Cb —>QX|Cb - Qc, — 0.

Tor' is supported on the finitely many singularities of Cp. Since N | c is locally free, Tor' vanishes.

Therefore, V| c, 18 the conormal bundle.
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yields
Ext® 5(0z,,0z,) = Extg(0—J"H "¢, 0-TH T
= O +Extg)p(7",J") ~Rm (T @ H ™) - ("
—Extg (T @H T, 0) - G
= 040" -0, =0 Ca.
An entirely similar calculation shows that

Ext® 5(0z, @N,0z,) =NV + (NV)" = (W), -Gt = (VY)) - Gn

!/
n

Collecting the last four equations into (19) we find

17

FTXI = (K + NV + (W) =00 = (WY) ¢t + (O; - (NY), - ((Kx)n)v) “Cn

!/
n

From (i) and (ii), we find that

5 <TX["]—<M[”]>V> _ BN (W) -0 - (W), -G

+ (0; — (M) (M) — ((KX)n)V) .

Using relative duality (15) for the last terms, we rewrite the above answer as

(Kx' + NV-M"+N)" =0 - (W), ¢!

(= loegm) + W @)+ O0)Y = ((5x0,0") -G,

which establishes Lemma 3.

We return now to the proof of Lemma 2. First, we have
P, = P(e),)
where
€, =RT (T @H") =Ext2(J' @H ™, 0) =0,

in the notation (B) above. By Lemma 3, expression (11) becomes

(20) / - om - G (Ba) - Ga)

which we will prove is of the form (x) for sufficiently large n.

The classes a and  have ranks —1 and 0 respectively. Therefore,
rank o, = n +ry, rank 8, =19, rank e, =n+r3+1,
for constants 71,79, 73. Let m denote the dimension of 9, and let

d=m+r;3.
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We obtain
/ C(’}/ + ap - erl + (ﬁn)v : gn) = Z / Cu(’)/) : cv(an : Cy?l) : Cw((ﬁn)v : gn) .
n utv+w=n+d """

The usual formulas give

’. /rank o )
-1 -
colom -G t) = < o

0

) eilom) - en(Ga) - (1)

cwl(B)” 6 =3 (M

Jj=0

v (rank Bn - j) i ((Ba)Y) - er(Ga)

We therefore are led to the expressions

S ot (T (22]) [ e aten) 650t

v—1 w—7
0,10, 17 ey

Integrating out ¢, over the fibers of
P, — 9,

we rewrite expressions (11) and (20) as

(21) S o /sm ca(r) - cilem) - ¢ ((B)Y) - en(—€l)

uti+j+k=m

(n) _ ye—ifntri—i) ra—j
N

vtw=i+j+k+(n+rs)

where

The number of terms in this binomial sum could potentially grow with n. However, i, j, k
are bounded independently of n.
Lemma 4. For alli,j,k, J,gl,z is of the form ().

Lemma 5. There exists M > 0 and K-classes uéi),...,ug\? on M, for 1 < i < 3,
satisfying

M

o = > .
/=0
M

(Bn)v = ZTLZMEQ),
=0

M

3

—€, = Zne,ug).
=0
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Assuming Lemmas 4 and 5, we return to (21) and the proof of Lemma 2. For any
classes gy on M with 0 < ¢ < M, we have

M M )
Ci (Z ”eﬂﬂ) = [H (14 c1pe) + c2(pe) + - -)n'] :
=0 (1)

=0

Furthermore,
nz ne
(14 cr(pe) + ca(pe) +...)" = EI CI(ue)<I> :

where [ is a multi-index. Therefore

o ($50) = Sentronimn (1) (1) ().

where, for degree reasons,
ol + ...+ |In| =1
Thus I;’s have entries bounded by i < m, and the above expression is therefore polyno-

mial in n. As a result, (21) becomes

M M M
S [t () e () (ol
utitj+k=m m =0 =0 =0

which is of the form (x) by Lemma 4 and the above observations. The proof of Lemma

2 will therefore be complete once Lemmas 4 and 5 are proven. (]

1.3.5. Proof of Lemma 4. The notation

new

vV = —q, w"

V=w—j, a=r—i, b=ra—j, c=r3+k

will be more convenient for us. With the new conventions, the expression in Lemma 3
becomes
n+a\/[b
om= 3" (-1)1}( . ) <w> = Coeffnie(1 — )" (14 z)°.
vt+w=n+c
We rewrite the above as a residue

(1—z)" . (14 x)°
xn+c+1

o™ = Res,_o dx .

We change variables

1—=z 1
= r=——
T y+1

so that the differential form transforms to

w=—y"" (y+2)" (y+1)°dy,

y:

for some constant e. Thus

n)

o = Resy—oo w = —Resy—_1w — Resy—_sw,
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via the Residue Theorem. There are no poles for w at y =0

The residues at

y=-1,y=-2

for n sufficiently large.

correspond to the two terms of (x). Indeed, for y = —1, we have

Res,— 14" (y+2)°- (y+1)°dy = Res,—o (z —1)"" (2 +1)"-2°dz

= Coeff,—c-1 (z —
SC s
v+w=—e—1

D™ (24 1)

)

The latter sum is finite, hence manifestly polynomial in n. A similar calculation shows

that the residue at y = —2 is of the form
(—2)" - polynomial in n,

completing the proof.

0

1.3.6. Proof of Lemma 5. We present the argument for a,,. The proofs of the other two

statements are the same. Consider the class

r=H-—-1

viewed in the K-theory of C. Since C is nonsingular and projective, the Chern character

gives an isomorphism

ch: K(C)@Q — A*(C)® Q.

Clearly ch(x) € A>%(C), hence ch(x)™ = 0 for degree reasons, for some M > 0. So

in K-theory, hence

We conclude

and therefore

]zwj(—wl (‘Y) CHT L TVa =0

i=0
in K(9M x g C). Pushing forward via 7 to 9, we obtain

i(_l)i‘ (?) cap_; = 0.
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This linear recursion in the a’s can be solved explicitly. Note that the characteristic

equation
M
- (M
S (M) rm
i=0 !
has M repeated roots all equal to 1. O

1.3.7. The case B # (). The last step of the proof of Proposition 2 is to treat the case
when the sequence B # 0.

The argument is similar to the B = () case, but for completeness we indicate the main

points. We wish to prove that
P (0.5

Zxaila, B] = nzzoqn ) /XW Cr—a <<M[n})v> .C(TX[H]) ) ) <(M[n])v)

is rational in ¢. Following the reasoning in Section 1.3.3 and using Lemma 3, it suffices

to show

[ ctrangit+ (67 6P <j* (m)” ,B>

is of the form (%), for n large enough. This is analogous to Lemma 2.
By (16), we have

g (j* (MW)V> = B(T") + By (-M);] - Gn)

where we have extended the definition of P, given in (7) to K-theory by linearity. We
multiply out the P,’s for the values of b determined by the sequence B. Since M is a

K-theory class on 9, we can combine terms of the form P,(M v) and c(vy) into a single

cohomology class A over 971. We are led to expressions of the form

(22) / A clan - Gl (Bn)” o) P (W)Y Ga) = P, (MY Ga)

for nonnegative integers by, ..., bp,.
Recall from Section 1.3.4 that

(—M), = R, (Mo T @H™).

By inspecting the fiber degree, we see that (—M ), is represented by a vector bundle for
n sufficiently large, and we write 1, ..., z, for the Chern roots. The rank r depends on
n linearly. We have

r

y 1
B, ((_M)n ’ C") - Zl (1—z; + Cl(Cﬂ))b ‘
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We expand

TG T (1+1£sz> i( )1—i>)§+b

=0

Thus

oo
Py ((—M),, - Cn) :ZEE: <_;b> -c1(Gn)"  Pegy (—M)n)
=0
where the classes p on 91 have terms of mixed degrees. In fact, the p’s are series in
the Chern classes of the argument whose coefficients are independent of n. The only
exception is the constant term which is linear in n being equal to the rank.

Expression (22) becomes

—or\ (b O V) ey (C)fatetm
h;m@l) (o) [ &+ oG+ (80”616
Ptrtn ((<M)) Pty ((~M)n)

To go further, we apply the same reasoning that led to equation (21). Accounting for

the extra p’s and their prefactors, the above expression becomes

S o / A cian) - ¢((Ba)") - cr(—€h) - Pay (—M)n) -+ Pa, (—M),)
i,5,k,a
where
bLh+br=a1,....0n+by=am.
The prefactor here equals
=3 () () o (T (),
0,w,b,0

where in the summation we have

—

(23) vhw+ ) =i+j+k+(n+rs), (+b=

Each integral over 91 is polynomial in n. Indeed, dimension constraints select only
finitely many homogeneous pieces from the p’s and from A, of bounded degree. We then

argue by invoking Lemma 5 applied to

O, (/871) ’ nﬂ (_M)n

combined with the analysis that followed the statement of the Lemma.
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To conclude, it remains to prove ¢(™ is of the form (%), the analogue of Lemma 4. We

have
(n) _ —by —bm, o qyw—i n+ry—1i\[(re—7J
otka = X () (o) e () G5)
« 2 /. v—1 w—j
v,w,b,l
R )
o’ 1| v—1 w—j

where the Vandermonde identity was used in the last line to sum over ¢ +. ..+, = |{|.

Writing |¢| 4+ v = v/, and using the Vandermonde identity one more time, we obtain

)  _ —i((lal =m) + (n+r —i)\ (r2—j
owa= >, (1" Z( v —i w—j)"
v’ +w=n+const

This is exactly the type of expression considered in Lemma 4. The proof of Proposition

2 is complete. O

1.3.8. Example. We illustrate the methods used in the proof of Proposition 2 with the

computation of the series

(24) Z = iq” /X[n] Cn—1 ((M[n]>v> ce(TXMy . s <(M[n])v>

in the special case

X=BxF— B and M =0p(1),
where B = F = P!, The family of curves in the fiber class C — B is isomorphic to the
surface X — B, and the relative Hilbert scheme of points is the product

c/B)" =B x P".
By (14), the universal subscheme
Z, > Cxp(C/B)M =X xp"
satisfies
Iz, = Op(—n) @ Opn(—1).
We represent
et (M) = (/B = (B x P

CNC o qynet * il _ (sl V>.
Z ;q( 1) /BXWJC<TX (M )

Here, we continue to write

so that

j:BxP"— X"
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for the natural morphism. Let
m: X xP"— B xP"
denote the projection. We compute the tautological structures
MM = R (M®0z,)
= Rm(M — M ® Op(—n) @ Opn(—1))
= 0p(1)+C" '@ 0p(1) ® Opn(-1).
Similarly,
Ol = 04+C" ! @ Opn(-1),
I E)M = ~0p(=2) + C* & Op(~2) © Opn(~1).
By (19), we have
Frxi — ol 4 <( KX)M)V ~ Ext®5(0z,,0z,) + Ext® 5(0z,,02,) ® Op(2).
Here, we have used
N =Qp =0p(-2).
Furthermore,
Exte 5(0z,,0z,) = Ext};p(0—Op(—n)® Opn(-1),0 — Op(—n) ® Opr(-1))
= C’00p+C" ' ®0p(~1) - C"" @ Op(1).
After substituting, we find
7 (TX["] - (MW)V> = (~Op — Op(—1) + 05(2)) + C" 1 @ O5(2) ® Opn(—1)
+C"M @ Opn(1) —C" 1 @ Op(—1) @ Opn(1).

With A, ¢ denoting the hyperplane classes on B and P", we arrive at the integral
1+2h 1—C+2n\"""
[ g (1cray
Bxpr 1 —h 1+¢—nh
The last expression equals
1+ 2h 1—C+2n\""
ffr,en (1 (R . B =(=1)" - (4n — 10).
Coettper 500t (5E2) T = a0
) as

Hence, we can write (24

_ q(6—10q)
Z = Zq (10 — 4n T -aF

For another example, if X is a K 3 surface and M = Oy, the series

T iq Jr o () ) ey (ar) ) = 20
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was computed in Proposition 40 of [OP1].
Evaluating (24) in closed form for all pairs (X, M) is likely possible.

2. DESCENDENT SERIES OF PUNCTUAL QUOT SCHEMES: THEOREM 2

2.1. Overview. The goal here is to prove Theorem 2. Throughout Section 2, we set
B = 0. We will establish the rationality of the descendent series

ijN(Ckl, RNeY) | ki,..., ]{7@) = Z q" - / Chk1 (Oé[ln]) st Chke (agn]) C(TVirQUOt) .

[Quot x (CN )] "™

Our argument follows the strategy of the proof of Theorem 18 of [OP1].

2.2. Proof of Theorem 2. We will explain shortly that for fixed rank «; = r;, the

series Zx n(ou,...,0q4|k1,..., k) is given by universal expressions in the Chern classes
of the «;’s. Furthermore, for each k1, ..., ks, the series

ZX7N(041,...,ag‘kl,...,kg)
is additive in a7, ..., ap separately. Thus, invoking the splitting principle, it suffices to

assume that
rank a; = 1forall 1 < </,
The proof below can also be directly written for a;’s of arbitrary ranks, at the expense

of more complicated notation.

Since the Chern character is polynomial in the Chern classes, we equivalently consider

the series
m .
7=3¢" / o () g, (al) - (T Quot).
n=0 [Quotx (CN,n)]"™
Let x1,...,x, be formal variables. Write

e =1+zc1 +2%co+...

for the total Chern class, and set

W = Z qn . / Cay (a[ln]) . Ca, (agn}) . C(TvirQuot) )
n=0

[Quotx (CN, )]Vlr

The series Z is found by extracting the coefficient of :clfl . ]Z‘ in W:
1 1 ok ol
=i ..
k1! ky! 8k1x1 akfxg T1=...=2;=0

As in [OP1], we have a factorization

W = AKX BX HCC1 ;). Kx DC1(042 . 62 (i) H FCl a;)-c1(ay)
i=1 1<i<j<e
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for universal series A, B, C;, D;, E;, F;; that depend on g and x,,,. We study the rationality
of these series and of their x,,-derivatives.
To this end, we pick convenient geometries. Take a nonsingular projective surface X

which admits a nonsingular connected canonical curve
t:C—X
of genus g. We move the calculation to the punctual Quot scheme of the curve C":
¢ : Quot(CN,n) — Quotx (CV,n).
By [OP1, Lemma 34], we have
L [Quotc((CN,n)] =(=1)" [QuotX(CN,n)]

vir
Furthermore, as remarked in equation (42) of [OP1], in K-theory we have the decompo-
sition
(25) KTV Quot  (CN,n) = TQuot(CN,n) 4+ Ty, .
Here, T,, — Quot(CY, n) is the virtual bundle given pointwise over the quotient
CV"®0c = Q
by the expression
Tn = Ext(Q,Q© 0),
where © = N¢/x is the associated theta characteristic. As a consequence, we have
o0
W = Z @ (=" - / Cor (Fan) -+ gy (Vo) - ¢(TQuote) - ¢(Ty) -
n—0 Quotc (CN n)

The above expression does not depend on the surface X, which we will ignore from now
on. It follows then that

B=1, D;=1, E;=1, F;; =1.

Therefore, for 5; = t*ay, we have
W= ¢"(-1)" / ey (B1) ++ ex, (B]") - e(TQuotc) - ¢(Ty)
n—0 Quotc (CN n)
with the factorization
W = AL, Cf1(51) o C;l(ﬁz) )

We will establish that the x,,-derivatives of the series A and C,, are rational in ¢ after

setting the x’s to 0. To study these series, we may pick again convenient geometries:

C =P, B;=0p(d)
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for arbitrary integers d;. Therefore
(2600 W=3 ¢"(-1)" / Ca (O(d)1M) - ¢, (O(dg)") - (T Quotpr) - o(Ty,) -
n—=0 Quotp; (CV,n)

It suffices to show the rationality of the x,,-derivatives of W.
We use Atiyah-Bott equivariant localization to compute (26). We let the torus C* act
on CV with weights

wly...,WN,

thus inducing an action on Quotp: (CY,n). The fixed loci were noted in [OP1] to be

isomorphic to
ol . x olN] — pra o L PN
for partitions
ny+...+ny=n.

Equivariant localization applied to (26) thus yields

[e.e]
(27) W = an : Z / Contr(ny,...,ny) .
n=0 Pr1x...xP*"N

ni+...+ny=n
The expression
Contr(ny,...,ny)
encodes the contribution of the fixed loci. In the absence of the descendent classes

c(O(d)™), the contribution was determined explicitly in [OP1] in the proof of Theorem

18, via a calculation of the normal bundles of the fixed loci. The answer is
Contr(nl, .. ,nN) = (_1)nN+(g) . (I)l(hl)nl R (I)N(hN)nN . \I/(hl, e ]’Ln)

for the rational functions

N
®;(hi) = [ [ (1 = hi +w; —wy) - T](hi +wj —wi) ™",
j=1 ji

\P:H(hl—hj+wj—wz)2H(1—|—hl—|—w]—wz) (1+hl—hj+wj —wi)_l
i<j i
. H(h’ + w; — wi)_l .
J#i
We must modify these rational functions to account for the descendent insertions.
We will use Lemma 27 of [OP1]. For N = 1, over C"l = P", the tautological classes

can be expressed in K-theory as

O(d)" = (d+1) - Opn + (=d +n —1) - Opn(—1).
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Letting the torus act on O(d)!™ fiberwise with weight w and writing h for the hyperplane

class, we obtain
o (O@Mw]) = (1 + zw)™ - (1 + a(w — h))~Hn1,
For N > 1, restricting O(d)[n} to the fixed locus

P ox ... x PN

yields
N N
SRS | (R | (R T B
=1 i=1

with h; denoting the hyperplane classes of each factor. The new contributions to (27)
thus become

N
2

Contr(ni,...,nx) = (1™ ) . &y (h)™ - Sy (hy)™ - U(hy, ..., hn)

for the new rational functions
N l

(I)Z(hz) = H(l — h; +w; — wj) . H(hz + wj — wi)_l . H (1 + xm(wi — hz)) ,

j=1 i m=1

U =T (hs = hy+wj —w)® - [T+ hi + wj — wi) - (14 s = hyj +w; —w;) ™

1<J ,J
l
T+ wy —wi) T T+ @ (ws = )~ - (14 2pang) et
J#i i m=1

We conclude
W= " (1))
n=0

ST [ Y] By )™ - B ()™ ()

ni+...+ny=n
The brackets in the above series are used to denote the coefficient of the relevant mono-
mial.

By Lagrange-Biirmann’s formula [G], we obtain
Ny U
W= (=13 = (hy,.. ok
( ) 2 K( 1, 3 N)

where as usual

< (- 3055)

and h; is the solution to the equation
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satisfying h;(¢ = 0) = 0. At the end, we also set the equivariant weights w; equal to
ZETO.
We define

We then have

h;
=X hz — Wy
Let g1,...,gn be the solutions’ to
X(9) = (=1)"q

with initial conditions

9i(qg =0) = —w;.
The g; are power series in ¢ whose coefficients are rational functions in {w;} and {z,}.
Thus

hi = gi + w;
is a solution to
hA
i (1 N
By~ TV
with h;(¢ = 0) = 0.
We can easily check
N N
d h; d
K(hy,...,hy) = h;i—1 = h;— log X(g;) .

Furthermore,

N
Uhy,.ohw) = [[hi- [l —9)” TIO+ g +ws) 1+ gi—g5)" - (g +wy) ™"
i=1

i<y 1]

N ¢
TITT A = giwa) ™ - (1 4 )L

i=1m=1
The expressions for K and W are evidently symmetric in g1, ..., gy, except for the factor
Hf\i 1 hi which appears in both. Hence the quotient

v
—(h1,...,h
K( 1 ) N)

can be expressed as a rational function in {g;}, {w;}, and {z,,} which is symmetric in
the {gz}

9There are other roots which we will deal with later. See equation (29).



30 DREW JOHNSON, DRAGOS OPREA, AND RAHUL PANDHARIPANDE

We rewrite the equation X(g) = (—1)¥q as P(g) = 0, where

N N ¢
P(9) :H(9+wi)—qn(9+wi—1 H (1—zmg)
=1 =1 m=1
N+t

(28) =Y Pig.
=0

The {g;} are roots of P. Hence, P factors as

IIg 9i) - (feg" + fo—1g"™ + -+ fo)

(29) = (9" +en1gV o) (fog'  feorgh o+ fo)

where e; is (—1) times the (N — 4)th elementary symmetric function in g;, and the f,,
are power series in ¢ with coefficients given by rational functions of {w;} and {z,,}. Now,
setting ¢ = 0, we see that

N

[1(g+w) =P(g.q=0)

i=1

(9 — 9i(0) - (fe(0)g" + fo—1(0)g" ™t + -+ + £0(0))

L

@
Il
—

(g +w;) - (fe(0)g" + fo—1(0)g" " + -+ + fo(0)).

—-

~.
[y

It follows then that f,,(0) = 0 for m > 0, and f,(0) = 1.
We claim that both {e;} and {f,,} are series in ¢ whose coefficients are polynomials
in {w;} and {z,,}. We will abbreviate this by saying that they “are polynomial”. So
far, we can see that this is true up to order 0. Let us assume, by induction, that this is
true to order p.
For m = ¢,{ —1,...,0, we compare the coefficient of ¢+

and (29). We have

in the expressions (28)

fn+ D fmiken—k = Py
E>1
Here, k goes up to the minimum of N and ¢ — m, and the sum is empty for m = /.
By inducting on m, we may assume that all the f,,, 45 are polynomial to order p + 1.
Since these f,,+r also have no constant term, the (p + 1)st term of ey_j is not needed
to compute the (p+ 1)st term of f,,1ren_k. In addition, P, n is known exactly and is

polynomial. Hence, we see that f,,, is polynomial to order p + 1.
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Now, for i = 0,..., N — 1, we compare the coefficients of g* in the expressions (28)
and (29). We have
eifot+ > eirfe="Pi.
E>1
By inducting on ¢, we may assume that the e;_j are polynomial to order p + 1. We
also know the fi are polynomial to order p + 1. We know that fy starts with 1, so it
has a multiplicative inverse which is also polynomial to order p + 1. It follows that e; is

polynomial to order p + 1. Our induction on p is complete.

We would like to see that any order derivative
ok ok
A ] F—
of /K is a rational function in ¢, after setting the w's to zero. This will follow from
the observations below.
Fix a rational function R of {g;}, {w;}, {xm} and ¢, which is symmetric in the {g;}.
Of course R can be rewritten as a rational function of {e;}, {w;}, {zm} and ¢. Setting

{w; =0} and {z,, =0} in (28) and (29), we obtain
gV —alg =D = (¢V +enagV T+ @) (fog' + Feoad T+ 4 o)
(where the bar indicates the evaluation at 0). These substitutions make sense since
we have established polynomiality of the coefficients in the previous paragraph. Conse-

quently
To =1-gq
and f,, = 0 for m > 0. Then ¢; is the coefficient of g’ in
N —qlg-1)"
l—gq

7o'V —alg—1)N) =2

Y

which is clearly a rational function in ¢. It follows that R is a rational function in q.
Next, we claim that the derivatives
OR
or,;
are also given by rational functions in {g¢;}, {w;}, {zm} and ¢, symmetric in the {g;}’s.
(We are viewing g; as functions of the independent variables {w;}, {xy,} and ¢.) Indeed,
we have
IR LR Dy
dx; = dgi Ou;

+ 0;R.
i=1
(Here 0;R means to take the z;-derivative treating the {g;} as constants.) The second

term 0;R is manifestly symmetric in the g’s since R is. Again because R is symmetric,
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we see that transposing ¢g; and g turns

For each fixed i, the derivative gg; can be expressed as a rational function in the g; (but
no other ¢’s), the {w;}, {z;,}, and ¢ by implicit differentiation applied to
X(g:) = (=1)"q.
Replacing g; with g in this formula therefore yields the formula for %. The claim now
J
follows since we sum over all 3.

Inductively, it follows that all higher derivatives of R are rational functions of {g;},

{w;}, {xm} and ¢, symmetric in the {g;}. This completes the proof of Theorem 2. [

2.3. Example. The proof of the Theorem gives an effective algorithm of computing the

descendent series for 8 = 0. We illustrate the case
N=2 a=0x,k=1,(¢=1.
Thus -
Z = Zq" . /[ chy (O - ¢(TV " Quot).
n=0

Quot x (C2,n)]""

When N = 1, for the Hilbert scheme of points, the boundary insertion cl((’)[”}) plays an

important role in the formalism of [Le].

Setting
w .
W = Z q" - / e (O (T Quot),

n—0 [Quot x (C2,n)]"""

we have
W = AKX

for some universal series A. No other universal functions are needed in this case. Thus

z- W :K%-AKi_l-a—A :

O =0 O =0
We already calculated
Al (-9 (1-6g+¢*)

in Theorem 18 of [OP1]. We furthermore claim

(30) OA|  2¢%- (1 —12¢ —33¢* 4+ 8¢°)
or|,_, (1—4q)3 '
This follows by the proof of Theorem 2. Indeed, we have
- v
A=Y | n(O) - (T Quotzn) - €(To) = —(gn + 101, g2+ w2)
4=0 Quotp; (C2,n)
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where g1, g2 solve the equation
(g+tw) (g+we)=q-1—g—w1) (1—g—w2)-(1—xg).
The expressions for ¥, ®;, K are explicitly given in the proof of the Theorem. Substitut-

ing and carrying out the implicit differentiation with respect to x, we arrive at expression
(30) claimed above.

3. DESCENDENT SERIES FOR THE HILBERT SCHEME: THEOREM 3

3.1. Descendents. The argument of Theorem 1 extends to prove the more general

descendent claim of Theorem 3. For each K-theory class a on X, we have defined
ol = R, (Q @ p*a)

on Quotx (CY, 3,n). The descendent series is given by

ZX7N75(051,...,Otg’k‘l,...,k‘g):

> 0"

neZ
To establish Theorem 3, we set N = 1, and show that the series

Zx1,p(at,...,aplki, ... k) € Q((q))

is the Laurent expansion of a rational function for a nonsingular projective simply con-

/ chy, (o) - chi, () - (T Quot)
[QUOtX ((CN 767”)]VH

nected surface X.
3.2. Proof of Theorem 3.

3.2.1. Hilbert schemes of points. We use again the isomorphism

B(B+ Kx)

QuotX((Cl,B,n):X[m}x]P’, m=mn-+ 5

where P denotes the linear system |3|. We will study the series
N ] ] (T X)) c(TP)
(B1)  Z=> g / chi (") -~ chiy (0) - e(Obs) - =75 55—

ne” Xmlxp

We identify the tautological structures appearing in (31). The universal quotient over
Quotx (CY, B,n) x X can be expressed in K-theory as

Q=0-TWwRO(-B)RILI=0-0(-B L' +0Ww20(-pB)aL™!
where W denotes the universal subscheme of X™ x X, and
L=0p(l) =P
denotes the tautological bundle. As a result

Ohee = H () 2 O — HY@) © L7 + ik @ £7!

uot
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where @ = a® O(—f). We have indicated by subscripts the locations of the tautological
constructions. Let ¢ = ¢;(£). Thus
ch(adl o) = x(@) = x(@) - e~ + ch(@fyi) - e~¢
which, in fixed degree k > 0, becomes
k; .
n ~ _C K ~|m _C k=j
el = 1@ - S Sl GO

After multiplying out the different Chern characters appearing in (31), we are led to

=0

expressions of the form

) [m]
Here, we have changed notation by removing the tilde’s from the o’s and relabeling
indices.'® Unless specified otherwise, all tautological structures o™ are from now on
understood to be over the Hilbert scheme of points X",

We will consider two cases depending upon the geometric genus of the simply con-
nected surface X. Furthermore, when the genus is positive, we first discuss surfaces

which are minimal, and then consider their blowups.

3.2.2. Minimal surfaces with pg > 0. Assume that X is simply connected minimal sur-

face. Then X is either a K3 surface, an elliptic surface, or a surface of general type.

e For K3 surfaces, the virtual fundamental class vanishes due to the presence of a trivial
factor in the obstruction bundle, unless § = m = 0 [MOP1]. There is nothing to prove
in the K3 case.

e If X minimal of general type, the virtual fundamental class of Quotx(C!, n,3) was

shown to vanish in [OP1, Section 5.3.3|, unless

(i) f=0or
(ii) = Kx and m = 0.

There is nothing to prove in case (ii). When = 0, we can use Theorem 2 or alternatively,

we can argue as follows. We have

Obs = ((KX)[ml)

see for instance (6). The series (32) becomes

=B it () S

\Y%
)

10The overall q shift does not affect rationality.
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We conclude by Proposition 3 below.

e Let X — C be a minimal elliptic surface with p, > 0. Since X is simply connected, we
must have C' = P!, by [Fr, Lemma VII.14]. We first argue that 8 must be a multiple of the
fiber. Note that 5 must be effective for the Quot scheme to be nonempty. Furthermore,
the expression for the obstruction bundle (6),
v
Obs = (H'(M) — HO(M)) ® L + (M[ml) ® L+ CPo
shows that the virtual fundamental class vanishes if
H'M)=0 < H'Kx-8)=0

due to the presence of the trivial factor. We may therefore assume Kx — [ is effective.

Since X is minimal, we find
Kx =(p,—1)f.
Since
(pg —1)f =B+ (Kx — B)
is an effective decomposition, 3 must be supported on fibers. By Zariski’s Lemma, 5% < 0
and f-Kx = 0. If 82 < 0 then

(33) B-(B—Kx)<0.
When inequality (33) is satisfied, the proof of Proposition 22 of [OP1] shows that the

virtual fundamental class vanishes. Proposition 22 of [OP1] is stated for surfaces of

general type, but the same argument applies here as well.'’ Thus
g =0,

so by Zariski’s Lemma = af for 0 <a <p, — 1.
Recording that

X(O(af)) =1+py, B(O(af)) =a+1,
we find that (6) becomes

\Y
Obs = —CP= 9@ L + (M[m}) ® L+ CPs

over XM x P% . We then obtain

e(Obs) = [e(ey e ( ()" e )]W)
(14 ¢)aPs - §1+g Con k((MW])V)]

(at+m)

HThis can also be seen via (5) since Hilbg has negative virtual dimension.
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The exponents of the hyperplane class ¢ over P* must be bounded by a. Thus, for degree
reasons, the only contribution reaching the necessary degree a + m occurs for k = 0 and
in this case

(34)  e(Obs) = [(1+)*™] ) X cm ((M[m})v> = <a _pg> [pt] x e ((M[m})v>

a
over P¢ x X[l

As a result of the above calculation, the series (32),

ZO" X)) e(TP)
m=0 ! /X [m] xpa C N (041 ) ke (ag ) e( S) C(Obs) ’

vanishes for k£ > 0. For k = 0, the expression simplifies to
. 00 [m]
a pg> m / [m] [m] [m] v C(TX )
. q chg, (™) -+ chg, (a )-e((M .
< a Tnzzo [m] 1 1 4 y4 c <(M[m])\/>
Proposition 3 below completes the argument.

Theorem 3 is established for all simply connected minimal surfaces with p, > 0.

3.2.3. Further descendent rationality. We prove here the following result that was used
in Subsection 3.2.2.

Proposition 3. The generating series

iqn-/x[n] Chkl(o‘[ln])"'Chke(OéLn])-e<<M[n])v> CE((?;;:T;\)/)

is a rational function in q for all pairs (X, M).

Proof. The proof is similar to that of Theorem 2, using the methods developed in [OP1].

Just as in Theorem 2, we may assume that
rank a; = 1 forall 1 <i¢ </.

Expressing the Chern character in terms of Chern classes, it suffices to show that the

e . n n Y c(TX["])
L B R (N B oy

series

is a rational function in q.

Let x1,...,x be formal variables. Write
Cp = 14 xe; + 2%c0 + ...

for the total Chern class, and set
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The series Z is found by extracting the coefficient of xlfl . ké in W:
1 1 ok o
A A
kll kg! 8"71:1;1 8’“@@7 S —,

Now, invoking the universality and multiplicativity results of [EGL], we find the factor-

ization
W — AK Bx(X) CM2 DM Kx H Ecl Oéz Kx FCQ(OZz) Gcl Olz) M H Hcl(az -C1 04])
=1 1<i<5<e

in terms of universal series that depend on ¢ and z;. To find these series, we can pick
convenient geometries. We may assume M is sufficiently positive, so that there exists C

a nonsingular connected curve in the linear system |M|. As explained in [OP1], we have
v
((0r0)) ] = o [o]

j: ol xnl

where

is the natural inclusion. By equation (33) of [OP1], we furthermore have

o((TX) = ¢ ((Ky)V) ().

Thus

W= [ el ol ()

or equivalently, in terms of Segre classes

i(—Q)" ./[n] Sz, ((_al)[n]) . ((_ae)[n]>

n=0 c
81 ((_M)[n]) . ((_KC)M) s (MY

Here, aq,- -+, ap, M are understood to be restricted from the surface X to the curve C.
Using Theorem 3 of [OP1], the last expression can be evaluated in closed form. Under
the change of variables

t
(1—=t) (1 —a1t) - (1 —agt)’

_q —
we have

L
(85)  Wigar,....w) = [[ (1 —at) @M (1 )™M (14 1) MHx a5
=1
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T

B=1, E=1, F=1 H;=L

with!2
It follows that

Furthermore, by universality, expression (35) for W holds for all geometries (X, M, a1, . ..
not only for those for which M is sufficiently positive.
Identity (35) for the values 1 = ... = zy = 0 implies
W(g,0,...,0) = (1—t)"M . (1 4¢) MKx
with
S SR I
1= 1 T T1og°
Evidently W(q,0,...,0) is a rational function of ¢ and hence also of ¢. In fact, the

expression we have obtained,

. 1—¢ M-Kx
(36) Wi(q,0,...,0) = (1 —q) '<1—2q> ,
is Corollary 38 of [OP1].
However, we can now also go further. We address all derivatives of W with respect to
x; via (35), as needed to complete the proof of Proposition 3. Clearly, the derivatives
ok o

_— = HS of
iz ez, RHS of (35)

r1=...=xp=0

are rational functions in ¢. For the left hand side of (35), we apply the chain rule

repeatedly using that

Jq t2 t
= 49 =71 3
Ox; z1=...=1p=0 -t r1=...=xy=0 1=t
For instance, the x; derivative equals
d oW —t2 oW
7W(Q7$17"'7x5) - 5 =t 90 =—1L;
df]}'l T1=...=1y=0 8q zlqzzligzzo 1 —t 83:1 xlq:...::l;;:o

We argued the left hand side is rational in ¢. Since %—Vg (¢,0,...,0) is rational in ¢ by

(36), we conclude that the same is true about the last term

ow

ox1 a=-15

r1=...=xp=0

12ye can show
a=17€2t2+263t373€4t4+...

where e; are the elementary symmetric functions in 1,z1,...,z¢,. We do not explain the latter formula
for a since it will not be used here.
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Equivalently,
ow
ox 1

r1=...=x,=0
is rational in ¢. Rationality of the higher order derivatives follows inductively. The proof

of Proposition 3 is complete. ([l

3.2.4. Ezample. We illustrate Proposition 3 with the computation of the series'3

n=0 [X[n]]

This expression is of the form considered in the Proposition. Indeed, by equation (33)
of [OP1] we have

[X[n}]“ . ((M[n1)v> il — el (M[n])v

for M = Kx. Write

> , oW
W = n., SO (i xiy — 7 =2
5 /[Xw]mc (O - (T X1 -

=0

Equation (35) for M = Kx expresses the answer in terms of a single universal series

W = AKX
where
1t t
(@2) =3 o i=—gHaTm
Thus
* Oz =0 .
By direct computation
Al _0-9® AL ¢*-(1-4dg)
o 1—=2¢7 0z, (1 —2q)?
In fact, it can easily be shown that all derivatives take the form
O"A B Pi(q)
Oxk |,y (1—q)? 2 (1—2¢)F!

for some polynomials P;. The denominators 1 — ¢ and 1 — 2¢ are consistent with the

proof of Theorem 1.

L3The same calculation can also be carried out using Theorem 2.
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3.2.5. Non-minimal surfaces with py > 0. For non-minimal surfaces, we prove Theorem
3 using the calculations of Section 3.2.2, combined with an observation that we learned
from Woonam Lim. Specifically, in the next paragraph, we will explain a special case of
Lemma 2 of [L] in our simpler setting. The argument rests on a deeper connection with
Seiberg-Witten theory and the notion of simple type.

Let X denote the blowup of a nonsingular projective simply connected surface X with

exceptional divisor F. For each curve class 5 on X and each integer k, consider the class
B=pB+kE

on X. We assume

(37) [QuotX((Cl,ﬁ, n)]

Assumption (37) is satisfied for all three classes of minimal surfaces considered in Section

vir

# 0 for somen — p-(f—Kx)=0.

3.2.2 as the reader can immediately verify. We claim that the same holds true on X:

[Quot)}(Cl,g, n)}Vlr # 0 for some n — - (5— Kz)=0.
By direct calculation,
B-(B-Kg) = - (B-Kx)—k(k—1) = —k(k—1)<0.
If the inequality is strict
6 ’ (6 - Kf{) <0,
the virtual fundamental class vanishes by the proof of Proposition 22 of [OP1] (as already
used in equation (33)). We must therefore have 3 - (5 — Kg)=0.

Applying the argument inductively to a sequence of blowups, we see that if X is a

possibly non-minimal surface with p; > 0, non-zero invariants only arise if

(38) B-(B-Kx)=0.
The latter condition can be used to explicitly calculate the virtual fundamental class.

Indeed, thanks to (38), and recalling the obstruction bundle from equation (6), we have
rank Obs = m + h%(B) — 1.

We now use the same reasoning that led to (34). For the current numerics, we similarly

compute over X[™ x P:

e(Obs) = [C@)hl(ﬁ)—hZ(ﬁ) e ((Mw)v - ,c)]

m+h0(8)~1

(1+ C)hl(ﬁ)—hz(ﬁ) ) i(l 4 C)kcm—k <<M[m])v>]

k=0

- R (o)

m+h0(B8)—1
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The argument then is completed in the same fashion as for elliptic surfaces in Section

3.2.2 by invoking Proposition 3.

3.2.6. Surfaces with p; = 0. We establish Theorem 3 for surfaces with p, = 0. We follow
here the proof in Section 1.2 closely. We have

\
Obs = HY (M) @ L + (M[”]) ®L.

By (32), we examine expressions of the form

Y 1 1y . of £YX(8)
an/ Ck+h (8) 'Chkl(agn])"'chkg(aén]) 'e<£® <M[n]>v> . (T X C(ﬁ)v |
n=0 Xl xp ) (£ . (M[n]) )

Expanding the terms that involve £ into powers of ¢ = ¢1(£) as in Proposition 2, we

obtain

Z q”/ Ck—&-hl(@) . Chk;1 (a[ln]) . Chk[ (O[Ln]) ) L}M

c((M[n])V)
' 3 e Cp_q m) Y ) . = AR "
(s () (Smem) e

J=0

Integrating out the powers of (, we equivalently prove the rationality of

)
(39) Zq /nchkl (aly. ..ch,ﬂe(ag”])-cna((MW)V>-c(TX[nl)-PC(EfM[Z})V’?

for fixed tuples (a, B, ki1, ..., k¢, a1, ..., ap). Following the proof of Proposition 2, we will

establish first universality and then rationality for sufficiently positive geometries.
For universality, we first turn all Chern characters into universal expressions in the

Chern classes:

Eq / P((MW)V)B).

TL n n v n
e (™) -+ e, () - g ((M[ ]) ) Ce(TXMY .

X c ((M[n])v>
We introduce formal variables x1, ..., x,, and form the generating series
(p) 21171 ZP nia [n] (n] [n] v
Yyu = Z bl !Zth n]cxl(al ) cx(ap ) Cnq (M )
B=(b1,...,bp) n>0a>0

o(TXM)y .
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The length of B equals the superscript p appearing on the left hand side. We must

extract
2 zb”
Coefficient of :z:lfl---:z?“i e N A ) Y)gp) .
bl! bp' ’

As in Section 1.3.2, Y)(g? 3\/[ is multiplicative and can be factored in terms of several univer-
sal power series. It suffices therefore to establish rationality (of the correct coefficient)
for special geometries.
Returning to expression (39), we pick a sufficiently positive M, and represent ¢,,_q (M [”})
by the relative Hilbert scheme
c/B" - B
of a linear system |V| C |M| as in Section 1.3.3. By the arguments of the same Section,

it suffices to consider expressions of the form

— o In] o In] 3 YN
> a chi, (") - chi, (77a)) (v + an - G Bu - G) - P (77 (M), B,
- (/B

where, as before,
j: (/BN - xnl,
Let p denote one of the classes a1, ..., ap. Invoking (16), we have

-k

Y =1 = G
and hence

(D -
(40) chy (1) = chi(m) = > o chi(pn) - e1(¢n)" .
i=0 )

Following the derivation of equation (22), we obtain

(41) / c1(Ga) o A el G+ (Ba) " Ca) - Poy (M) Ga) -+ Poy, (=M - Ca) -

n

Compared to (22), the extra terms are c¢1((,)° and the class p, which is a universal

polynomial in the Chern classes

ci(pin)
where p is one of the classes aq,...,ap. These extra terms arise from the product
expansion
chy, (7*ad) - chy, (7af™)
using (40). Crucially for us, s and the i’s are bounded from above by an expression that
depends on ki, ..., ky. Thus they are independent of n.
The rest of the argument is as in Sections 1.3.3 and 1.3.7: we expand all expressions

in powers of ¢1((,) and integrate over the fibers of

P, — M.
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Keeping track of the numerical modifications is not difficult. The powers ¢;1((,)* affect
the indices of various sums defining the prefactors o(™), see for instance (23). Since s is
fixed independently of n, the conclusions of Lemma 4 still hold. Furthermore, Lemma 5
can be applied to each of the additional terms c;(uy) for 1 being one of o, . . ., o In the
end, (41) is still an expression of the form (%). Rationality is therefore established. [
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