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ABSTRACT: The ubiquity of nitrogen-containing small molecules in medicine necessitates the continued search for improved meth-
ods for C–N bond formation. Electrophilic amination often requires a disparate toolkit of reagents whose selection depends on the 
specific structure and functionality of the substrate to be aminated. Further, many of these reagents are challenging to handle, engage 
in undesired side reactions, and function only within a narrow scope. Here we report the use of diazirines as practical reagents for the 
decarboxylative amination of simple and complex redox-active esters. The diaziridines thus produced are readily diversifiable to 
amines, hydrazines, and nitrogen-containing heterocycles in one step. The reaction has also been applied in fluorous phase synthesis 
with a perfluorinated diazirine. 

INTRODUCTION 
The selective transfer of heteroatoms is a powerful tool in or-

ganic synthesis that allows for the rapid conversion of inexpen-
sive commercial feedstocks to high value scaffolds for use in 
medicine, agrochemistry, chemical biology, and materials sci-
ence.

1 
 One general class of heteroatom transfer reagents with 

broad utility are three-membered strained heterocycles (Fig. 
1A). Dioxiranes (1) are often used for C–H oxidations to afford 
site-selectivity that is difficult or impossible to match with other 
methods.

1b 
 New applications for oxaziridines (2) are regularly 

reported; they are able to transfer either their nitrogen or oxygen 
depending on the reagent structure and reaction conditions.

2 
 

Both oxaziridiniums and diaziridiniums (3) have been more re-
cently developed as practical reagents.

3 
 Like oxaziridines, they 

may be used for either oxidation or amination. Diazirines (4), 
which are extensively used as carbene sources in chemical bi-
ology,

4 
 are notably lacking among this series of heterocycles 

with respect to heteroatom transfer. While scattered reports ex-
ist in the literature that demonstrate the ability for diazirines to 
act as an electrophilic source of nitrogen,

5 
 it is apparent that 

none leverage the full potential of these reagents. Given the gap 
in synthetic methodologies capable of selectively delivering ei-
ther amines or hydrazines from a single reagent, we investigated 
diazirines as a potential scaffold for single or double electro-
philic nitrogen transfer. 

As partly evidenced by their widespread utility in synthetic 
organic chemistry, chemical biology, and proteomics,

6 
 diazir-

ines are simple to prepare and their synthesis can be conducted 
on a relatively large scale that lends itself well to reagent devel-
opment (Fig. 1B). In principle, the monofunctionalization of di-
azirine 6 with a carboxylic acid equivalent would afford diaziri-
dine 5. This structure, while generally stable and isolable, can 
be converted to amines, hydrazines, and a variety of nitrogen-
containing heterocycles. Considered in a retrosynthetic manner,  

the use of diaziridine intermediates represents a “diversity-ena-
bling disconnection”, since diaziridine 5 may be thought of as 
both a masked amine and masked hydrazine. 

Figure 1. Synthetic methods for strain-release driven heteroa-
tom transfer. A. Heteroatom transfer via three-membered hetero-
cyclic reagents. B. Conceptual use of diaziridines as a “diversity-
enabling disconnection” in the synthesis of amines, hydrazines, and 
nitrogen-containing heterocycles. 

Herein we report the discovery, development, and application 
of diazirines as practical electrophilic amination reagents for the 
synthesis of amines, hydrazines, and nitrogen-containing heter-
ocycles. The use of a perfluorinated diazirine allows entry into 
fluorous phase chemistry, which both simplifies purification 
and affords access to the high throughput synthesis of large ni-
trogen-rich compound libraries critical to drug discovery. This 
work lays the foundation for a new class of strain-driven rea-
gents that can be used to rapidly forge C–N bonds on simple 
and complex scaffolds alike. 
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DEVELOPMENT AND SCOPE 
The initial investigation of diazirines as amination reagents 

was inspired by the work of Krespan and Barton, both of whom 
found that diazirines could react with alkyl radicals to form 
imines. Diazirine 7, upon heating to 165 ιC with an excess of 
cyclohexane (8), afforded a modest amount of imine 9 in addi-
tion to the typical carbene insertion product 10 (Fig. 2A).

5a 
 A 

more detailed study was later reported by Barton, where his 
eponymous thiohydroxamate ester 11 was found to react with 
diazirine 6 to afford a mixture of imine 12 and sulfide 13 (Fig. 
2B).

5b,5c 
 Unless a large excess of diazirine 6 was used (twenty 

equivalents), sulfide 13 was found to be the major product along 
with low yields of imine 12. Notably, these precedents lacked 
both practicality and what we viewed as the critical ability to 
retain both nitrogen atoms in the initial adduct. Thus, several 
significant challenges needed to be addressed in order to de-
velop a practical diazirine-based amination: (i) replacement of 
the photo- and thermally-labile thiohydroxamate ester 11 with 
a more bench-stable radical precursor, (ii) avoidance of either 
uncontrolled photochemical conditions or excessive heating 
that would be expected to convert the diazirine to its corre-
sponding carbene, (iii) reduction of the equivalents of diazirine 
required from approximately twenty (in Barton’s chemistry) to 
three or less, and, most importantly, (iv) avoidance of imine for-
mation and retention of both nitrogen atoms in the form of a 
diaziridine intermediate. 

Toward this end, N-(acyloxy)phthalimides (e.g. 14), com-
monly referred to as redox-active esters (RAE’s), were em-
ployed as a precursor for the alkyl radicals.

7 
 RAE’s have ex-

ploded in popularity in recent years, finding numerous applica-
tions in carbon-carbon and carbon-heteroatom bond formation.

8 
 

Among the many advantages of RAE’s are their simple and 
rapid preparation from ubiquitous carboxylic acids, ease of pu-
rification, and high bench-stability.

9 
 Furthermore, they may be 

converted to the corresponding alkyl radicals under either tran-
sition-metal catalyzed or photochemical conditions.

7 
 Despite 

their obvious advantages, the use of RAE’s in C–N bond for-
mation has been limited to several recent reports.

10 
 Each of 

these reactions require a tandem photoredox/copper catalyst 
system to form the C–N bond and all approaches are restricted 
to the addition of one nitrogen, either via a phthalimide,

10a 
 pri-

mary amine,
10c 

 or imine.
10d 

 

Exploration of the decarboxylative amination began with 
nickel-catalyzed conditions employing piperidine-derived RAE 
14 with diazirine 6 (Fig. 2C). Diazirine 6 was conveniently pre-
pared in a high-yielding, four-step sequence on decagram scale 
(Fig. S1).

11 
 While no amination product was observed with 

NiCl2-glyme/18 (entry 1), a 50% yield of diaziridine 15 was ob-
tained with NiCl2•6H2O/18. Importantly, no trace of imine 16 
was observed in the reaction mixture. In an attempt to improve 
the yields, the catalyst was changed to Fe(acac)3 and the reac-
tion screened with phosphine ligands (17, 19-21), varying 
amounts of Zn/TMSCl, and a chlorinated RAE (TCNHPI) (en-
tries 3-9). While the highest yield (76%) was observed with 
dppBz (17), dppb (21) was found to be an inexpensive alterna-
tive with only a slight decrease in yield. In cases where the RAE 
was prone to hydrolysis under the reaction conditions, 
FeCl3•6H2O was found to increase stability and lead to an im-
proved yield of the diaziridine (entry 6). Critically, the use of 
diazenes 22 or 23, perhaps the most commonly used electro-
philic amination reagents for the synthesis of hydrazines,

12 
 in 

place of diazirine 6 did not afford any corresponding amination  

products (entries 10-11). Instead, only reduction of the diazenes 
were observed under various conditions (Table S17). Lastly, 
contrary to all expectations, similar yields could be obtained 
without running the reaction under strict precautions, such as an 
inert atmosphere, anhydrous conditions, or complete elimina-
tion of ambient light (72%, entry 12). 

7 1.5 equiv. Zn/TMSCl 46 
8 without TMSCl 22 
9 TCNHPI ester 10 
10 22 instead of 6 0 
11 23 instead of 6 0 
12 no precautions 76 

Figure 2. Inspiration and development of the diazirine-based 
decarboxylative amination. A. Krespan’s reaction of diazirine 7 
with cyclohexane (8). B. Barton’s reaction of diazirine 6 with thio-
hydroxamate ester 11. C. Optimization of the reaction of diazirine 
6 with redox-active ester 14. All yields refer to isolated compounds. 

With optimized conditions in hand, the scope of the amina-
tion was explored with a wide variety of primary, secondary, 
and tertiary carboxylic acids (Fig. 3). The required RAE’s 25 
were prepared in generally high yields by treatment of the car-
boxylic acids 24 with N-hydroxyphthalimide in the presence of 
N,N’-diisopropylcarbodiimide  (DIC) and 4-(dimethyla-
mino)pyridine (DMAP) in multigram quantities.

9 
 The decar-

boxylative amination was successful with either cyclic or acy-
clic hydrocarbons and heterocycles such as tetrahydrofuran (31, 
48), piperidine (15, 38, 39, 41, 61), tetrahydropyran (40, 55), 
tetrahydrothiopyran (46), indoline (52), and oxetane (62). The 
observed functional group tolerance was quite broad: difluoro 
(29, 43) and trifluoromethyl groups (42), carbamates (38, 39), 
alcohols (44, 58, 65), ketones (45), sulfones (46), ethers (58, 
63), esters, (49, 53, 59), enones (54, 65), olefins (56, 58, 66), 
and lactones (58) were all tolerated. Highly sterically hindered 
bonds were formed with relative ease as shown in a menthol 
derivative 37 and numerous tertiary systems (60-66). The reac-
tion was also useful for preparing orthogonally protected mixed 
aminals such as indoline (52) and glutamic acid (53). The late-
stage functionalization of complex natural products and phar-
maceuticals was achieved with progesterone (54), mycophe-
nolic acid (58), gemfibrozil (63), glycerrhetinic acid (65), and 
abietic acid (66). The reaction was demonstrated both on gram-
scale and via a one-pot RAE formation/decarboxylative 

1 NiCl2•glyme/18 0 
2 NiCl2•6H2O/18 50 
3 dppe (19) 33 
4 dppp (20) 41 
5 dppb (21) 66 
6 FeCl3•6H2O/17 66 
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Figure 3. Scope of the decarboxylative amination of redox-active esters with diazirines. Reaction conditions: redox active ester (25, 0.1 
mmol, 1.0 equiv.), diazirine (6 or 26, 1.5 equiv. unless otherwise noted), Fe(acac)3 (20 mol%), dppBz (25 mol%), zinc (3 equiv.), TMSCl (3 
equiv.), DMF (0.3 mL), 60 ιC, 16 h. All yields refer to isolated compounds. 

a
Three equivalents of diazirine were used. 

problem, perfluorinated diazirine 26 was synthesized (Fig. S13) 
and tested under the standard reaction conditions. Gratifyingly, 
moderate to high yields were obtained for a variety of structur-
ally distinct substrates (55-59). Like other transition metal-cat-
alyzed reactions of redox-active esters, this transformation is 

amination sequence in the preparation of piperidine 15 in 
70% and 58% yield, respectively (Fig. S21 and S27). 

The reaction of primary RAEs with diazirine 6 proved to be 
challenging. Despite extensive attempts at optimization, includ-
ing the use of large excesses of diazirine 6, low yields or no 
reaction was observed with most substrates. To circumvent this 
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presumed to proceed via a radical mechanism, which is sup-
ported through trapping experiments with TEMPO (Fig. S35). 

DIVERSIFICATION TO AMINES, HYDRAZINES, 
AND HETEROCYCLES 

The utility and diversity of applications of the diazirine-based 
decarboxylative amination lies in the underexplored versatility 
of diaziridines (Fig. 4-6). By judicious choice of the reaction 
conditions, the diaziridine can be selectively hydrolyzed, leav-
ing either one or both nitrogen atoms on the substrate (Fig. 
4A).

5d,13 
 Thus, the diaziridines serve as “masked” amines or hy-

drazines and obviate the need for the troublesome purification 
of the highly polar free amines or hydrazines. Treatment of pi-
peridine derivative 15 with MsOH in ethanol effects a hydroly-
sis reaction to afford hydrazine 67 in 90% yield. Upon purifica-
tion as the mesylate salt, the yield of the hydrazine drops to 
55%, highlighting the utility of the diaziridine approach which 
avoids the isolation step. Instead, if the acid is coupled with a 
nucleophilic counterion (e.g. iodide), the hydrolysis occurs with 
concomitant N–N bond cleavage to afford amine 69. We have 
demonstrated fourteen such transformations (69a-n) on differ-
ent substrates to form the corresponding aliphatic amines in ex-
cellent yields for most cases (Fig. 4B). For more sensitive func-
tionality (e.g. 69g-h, 69k-l, and 69n), a combination of 
LiCl/TMSCl may be used to convert the diaziridine to the 
amine. In each of the cases, ketone 68 can be recovered and 
recycled into the diazirine reagent synthesis, boosting effi-
ciency and atom-economy. If desired, the amine synthesis can 
be combined with the decarboxylative amination in one-pot; the 
addition of LiCl into the initial reaction mixture affords amine 
69f in 63% isolated yield (Fig. 4C). 

To further demonstrate the practical utility of the decarboxy-
lative amination, the amine and hydrazine synthesis was then 
applied to a series of one-pot or telescoped syntheses of various 
medicinally-relevant heterocycles (Fig. 5). To leverage the one-
pot heterocycle synthesis via in situ generation of the amine, N-
tosylpiperidine diaziridine 15 was treated with HI in MeCN, 
followed by addition of the carbonyl or dibromide reagents to 
afford imidazole 70,

14 
 pyrrole 71,

15 
 and aziridine 72,

16 
 in good 

yields. 

MsOH, EtOH CF3  
Ph 

(R=Ts) 
alternate conditions: 

LiCl/TMSCl or 
HCl/I2 or HCl/NaI 

69a-j (76%) 

Figure 4. Diversification and one-pot heterocycle synthesis with 
diaziridines. A. Selective conversion of diaziridines to amines or 
hydrazines with recovery of ketone 68. B. Aliphatic amines synthe-
sized from the corresponding diaziridines. C. One-pot synthesis of 
amines from diazirines and redox-active esters. Isolated yields are 
reported. 

a
Yield determined by NMR. 

b
Isolated yield. 

c
HI/MeCN, 

RT. 
d
HCl/I2, EtOH, RT, 16 h. 

e
NaI/HCl, EtOH, RT, 16 h. 

fLiCl/TMSCl, EtOH, 60 �ιC,  16 h. 
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Figure 5. One-pot and telescoped syntheses of pharmaceutically relevant heterocycles from diaziridines. 
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Figure 6. Synthetic applications of diaziridines to pharmaceutically-relevant building blocks. A. Diversification of ketone-containing 
diaziridine 45 compared to literature methods. A. Inset. Pharmaceutical candidates whose synthetic routes required amine 69k and pyrazole 
84. B. Diversification of hydroxy-containing diaziridine 44 compared to literature methods. B. Inset. Pharmaceutical candidates whose 
synthetic routes required amine 69l and pyrazole 87. 

Alternatively, to prepare heterocycles via the in situ gener-
ated hydrazines, N-tosylpiperidine diaziridine 15 was treated 
with either p-TsOH or MsOH followed by various carbonyl de-
rivatives. In this manner, pyrazole 75 was obtained in 95% yield 
from 1,3-diketone 78 in the presence of p-TsOH.

5d 
 Pyridazinone 

76 and triazole 77 were obtained in a similar fashion from alde-
hyde 79 and formamide 80 in 64% and 58% yields, respec-
tively.

17 
 

With both the diversification reactions and heterocycle-
forming protocols in hand, our attention was turned to realizing 
improved synthetic routes to several commonly employed 
building blocks in medicinal chemistry: amines 69k and 69l and 
pyrazoles 84 and 87 (Fig. 6). These fragments have been used 
in the synthesis of numerous pharmaceutical candidates (88-95, 
Fig. 6A/B grey insets) spanning therapeutic areas from 
oncology to the treatment of coagulation disorders.

18 
 Keto 

diaziridine 45 was converted to amine 69k in 92% yield, a 
compound previously prepared via a sequence of protection, 
oxidation, and deprotection. The same diazidirine intermediate 
45 was also converted to pyrazole 84 in 64% yield. This one pot 
sequence involves in situ generation of the hydrazine and 
subsequent reaction with the dialdehyde obtained from 1,1,3,3-
tetraethoxypropane. To the best of our knowledge, the 
hydrazine derived from 45 is unknown in the literature and 
helps manifest a new route to pyrazole 84. Previously this 
compound was prepared from dione 82 through a sequence of 
monoketalization, reduction of the carbonyl, tosylation, SN2 
displacement with pyrazole, and deprotection, which affords 
the desired compound in 20% yield over five steps. 
Furthermore, similar building blocks were obtained through 
hydroxy diaziridine 44. In this case, amine 69l was isolated in 
95% yield and pyrazole 87 in 50% yield from diaziridine 44. 
Pyazole 87 was made from ketone 85 through a lengthy  

sequence of protection, hydrazone formation, simultanous 
reduction of the hydrazone and hydrogenolysis of the benzyl 
protecting group, deprotection, and ring-formation of the 
pyrazole (16% over five steps). In summary, this application 
highlights the diversification potential of diaziridines to amines, 
hydrazines, and nitrogen-containing heterocycles, the utility of 
diaziridines as masked amines and hydrazines, and, in some 
cases, more concise synthetic route alternatives made possible 
by the use of this method. 

APPLICATIONS TO FLUOROUS PHASE CHEM-
ISTRY 

Fluorous phase synthesis comprises a family of techniques 
that were developed to simplify the separation and purification 
of solution phase reaction mixtures on the basis of fluorine con-
tent.
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 Light fluorous phase chemistry requires a perfluorinated 

“tag” (typically C6F13 
 or 

 C8F17)  to be attached either to the sub-
strate (often via a protecting group) or the reagent/catalyst.
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After a given reaction, the perfluorinated molecules are easily 
separated from the non-perfluorinated components via fluorous 
solid-phase (F-SPE) extraction or other fluorous chromato-
graphic methods. One of the main challenges in the successful 
use of fluorous phase synthesis is identifying a suitable site in 
the substrate or reagents to install the perfluorinated tag that 
avoids negatively impacting reactivity.

19b 
 Since the trifluorome-

thyl group was already successfully embedded in diazirine 6, 
we postulated that the switch to the perfluoro group would 
maintain reactivity, and possibly enhance it. Furthermore, the 
inherent advantage in using the perfluorinated tag on the diazir-
ine is that it allows for simplified purification in both stages of 
the amination: synthesis of the diaziridine and conversion to the 
corresponding amine, hydrazine, or heterocycles. 
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Figure 7. Application of the decarboxylative amination of re-
dox-active esters with diazirines to fluorous phase synthesis. A. 
Chromatography-free F-SPE synthesis and purification of the dia-
ziridine intermediate 96. B. Chromatography-free F-SPE synthesis 
and purification of the amine 69f with concomitant recovery of ke-
tone 97. 

Under the standard reaction conditions, perfluorinated diazir-
ine 26 was found to react smoothly with piperidine-derived 
RAE 14. Upon completion of the reaction, the entire crude mix-
ture was applied to the F-SPE cartridge and washed with a sin-
gle aliquot of aqueous methanol (non-fluorous phase), which 
eluted all non-fluorous compounds and impurities such as N-
hydroxyphthalimide and the catalyst/ligand system. A second 
wash with anhydrous methanol (fluorous phase) afforded pure 
perfluorinated diaziridine 96 in 88% yield (Fig. 7A). Perfluori-
nated diaziridine 96 was readily converted to amine 69f as pre-
viously described. Purification under F-SPE conditions fur-
nished amine 69f in 82% yield in the non-fluorous phase wash, 
while ketone 97 was recovered in 87% yield in the fluorous 
phase wash (Fig. 7B). The use of perfluorinated diazirine 26 and 
its high yielding and high purity conversion to amine 69f with 
F-SPE demonstrates proof-of-concept for the use of diazirine-
based aminations in high-throughput library synthesis.
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CONCLUSIONS 
We have demonstrated that diazirines can serve as single and 

double electrophilic nitrogen transfer reagents in the decarbox-
ylative amination of redox-active esters. The initial reaction af-
fords diaziridines, which are selectively converted in one-
pot/telescoped reactions to amines, hydrazines, and various ni-
trogen-containing heterocycles. The method is suitable for pri-
mary, secondary, and tertiary substrates and exhibits a broad 
functional group tolerance. A perfluorinated diazirine was 
shown to enable the use of fluorous phase chemistry in both 
steps of the amination, which allows for the high throughput 
preparation of nitrogen-rich compound libraries without the 
need for chromatography. Given the diversity of high-value 
scaffolds readily accessible through the use of diazirines, these 
amination reagents are expected to be incorporated by practi-
tioners across research areas in both industrial and academic la-
boratories. The use of diazirines in reactions beyond the decar-
boxylative amination is well underway and will be reported in 
due course. 
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