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Abstract
This paper argues for a ‘human-centered’ approach to knowledge discovery from
movement data through the use of visualization and mapping. As movement data
becomes more available and diverse in dimension and resolution, mapping becomes
particularly important in the exploratory analysis of movement trajectories and for
capturing patterns and structures in large origin-destination flow data sets. Move-
ment phenomena (e.g. ranging from micro-movements of humans and animals to
macro-level mobility, to migration flows, to spread of viruses) are complex dynamic
processes which are realized in a multidimensional location-time-context space. This
paper provides a comprehensive overview of various visualization techniques for
mapping movement through the lens of cartography and with a special focus on the
‘human user’ (e.g. data scientist, analyst, domain expert, etc.). We systematically
characterize and categorize available techniques based on their visual specifications
and functional capacities for human control, map-interaction, and design flexibility.
These elements are beneficial to enhance the user’s capacities for map reasoning
and knowledge discovery. Trends and gaps in the literature on movement visualiza-
tion over the past ten years are discussed. Our review suggests that future research
should focus more on the role of the ‘human’ in the development of human-centered
visual analytic and exploratory tools, while providing functionalities for mapping
uncertainty and protecting individual privacy in knowledge discovery of movement.
These tools should be guided by a cartographic framework and visual principles
specifically pertinent to movement.

KEYWORDS
Movement visualization, movement analytics, geovisualization, visual analytics,
exploratory analysis, cartography, GPS trajectory, knowledge discovery,
human-centered data science.

1. Introduction

More than half a century ago the quantitative revolution in the social sciences brought
about paradigmatic change in methods and tools used by geographers to study spa-
tiotemporal phenomena. Several decades later in a similar manner the evolution of
location-aware technologies (LATs) including Global Positioning Systems (GPS), ubiq-
uitous computing, and big mobility data culminated in the development of an inte-
grated science of movement to study and understand the behavior of moving individ-
uals or phenomena in space and time (Demšar et al., 2021; Dodge, 2021; Miller et al.,
2019). This emerging interdisciplinary field is dominated by topics in human mobility
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and animal ecology focusing on computational and visualization techniques for cap-
turing, exploring, analyzing, and modeling movement phenomena at both individual
and aggregate level using massive amounts of tracking data. The goal is to construct
knowledge and learn about the underlying mechanisms governing individuals’ move-
ment across the disciplinary boundaries (Laube, 2014; Miller et al., 2019). This article
takes a systematic look at the techniques used for mapping and visual analysis of
movement trajectories and flows, and provides a perspective on the opportunities and
future outlook of cartographic research in this area. The focus is on the way in which
these tools aid human quantitative and visual reasoning for knowledge discovery. This
article considers movement data that are collected at both individual and aggregate
levels in the forms of trajectories and Origin-Destination (O-D) flows. These data can
include GPS and telemetry trajectories of humans or animals, the general path of
infectious diseases through the spread of viruses across different geographic areas, the
aggregate flow counts of people or goods transported from one place to the other, or
the trajectories of hurricanes recorded as the geographic location of the eye center over
time.

Fundamentally, the study of movement involves multiple processes as described in
Demšar et al. (2021) and Dodge (2021): In bottom up approaches, data-driven ana-
lytics tools transform raw movement data into useful symbolic representations to help
us understand movement and its underlying mechanisms. Top down approaches use
theories and expert knowledge to model and predict movement. In both approaches,
mapping, data visualization, and communication with domain experts are fundamen-
tal for meaningful knowledge construction, reasoning, and validation of methods and
outcomes. More specifically, visualization tools are the primary means of visual explo-
ration and communication, in essence supporting computational movement analysis
and simulation. Mapping serves an integral role in the visual communication of move-
ment, enabling the ‘human’ users to explore and gain insight from large amount of
tracking data. The use of theoretically-grounded visualization techniques and carto-
graphic approaches can enhance the exploratory analysis of movement data (G. An-
drienko, Andrienko, Chen, et al., 2017), communication between method developers
and domain experts in interdisciplinary collaborations, as well as the dissemination of
geographic knowledge (Maceachren & Brewer, 2004).

With the increasing availability of movement tracking data since the early
2000s, there has been a steady rise in research focusing on the development of
(geo)visualization and visual analytics methods to map movement (see Figure 1).
However, after 20 years of research in this area and significant achievements in the
representation of complex movement patterns and origin-destination flows, there are
still persistent challenges to the effective graphical representation of movement, es-
pecially for large movement data sets (G. Andrienko, Andrienko, Chen, et al., 2017;
Cöltekin et al., 2017; Cöltekin et al., 2018). A number of scholars have provided state-
of-the-art reviews in this area (see for example G. Andrienko, Andrienko, Chen, et
al. (2017), Goncalves et al. (2015), and He et al. (2019)). There is no one standard
way to structure or categorize geovisualizations and visual analytic methods for move-
ment. He et al. (2019) provide an exhaustive overview of visualization techniques and
methods for moving objects, yet these methods are not contextualized in broader im-
plications for Cartography and current state of the field. Other reviews mainly focused
on the synthesis of research in visual analytics and methods of analysis from move-
ment ecology and human mobility with a varying degree of interest in visualization
(G. Andrienko, Andrienko, Chen, et al., 2017; N. Andrienko & Andrienko, 2013; Bach
et al., 2017; W. Chen et al., 2015; Demšar et al., 2015; Edelhoff et al., 2016; Goncalves
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et al., 2015; Long & Nelson, 2013; Seidel et al., 2018; Shamoun-Baranes et al., 2012;
Stein et al., 2017).

This paper aims to achieve three objectives: First, to describe a framework for a
‘human-centered’ approach to knowledge discovery from movement data highlight-
ing the importance of visualization and mapping in data-driven movement analytics
(Section 3). Second, to identify the fundamental characteristics –including both car-
tographic specifications and functional capacities– that are essential to empower the
user and increase human performance for reasoning and knowledge discovery using
movement data (Section 4). Third, to characterize and categorize existing movement
visualization techniques through a systematic clustering approach based on their key
cartographic and functional characteristics (Section 5). Using examples from the lit-
erature we discuss different categories of movement visualization techniques based
on their functional purpose (Ward et al., 2010): presentation (to convey and present
information), exploration (to explore data and generate hypothesis), analysis and con-
firmation (to assist in the analysis of data and test a hypothesis). Finally, we provide
an overview of current trends, research gaps, and opportunities for the future research
on movement visualization.

2. Background

2.1. Visualization in Movement Research

The early graphic representations of movement dating back to the 1800s (Friendly
& Denis, 2001; Steiner, 2019) include the flow map created by Harness depicting the
transportation of passengers in Ireland, and the map of Napoleon’s Russian campaign
made by Charles Minard (Kraak, 2014). Later works by geographers like Ullman (1957)
and Berry (1968) utilized visualization of flows to identify the structure of regional
spatial interactions through the analysis of commodity flows. Hägerstrand (1970) of-
fered a different illustration of human movement with the notions of space-time paths
and prisms using a three dimensional representation, in which the horizontal plane rep-
resents geographic space and the vertical dimension represents time and boundaries
represent spatiotemporal constraints on travel. Hägerstrand provided an individual
perspective of human activity space which can be used to model accessible locations
along the individuals’ travel paths considering their movement mode and available
time (Miller, 1991).

- - - Figure 1 near here - - -

Among the earliest computer-drawn flow maps are those compiled by Kern and
Rushton (1969), Wittick (1976) and Tobler (1981). These maps were generated based
on aggregate origin-destination (O-D) flows —often collected in matrix forms— repre-
senting banknote circulation, Census, movement and migration counts between differ-
ent locations. Flow maps are typically used to represent aggregate movement, transport
or social networks. Trajectory maps are a more granular version of flow maps depicting
the travel paths of individuals as a series of line segments connecting tracking points.
With the advent of civilian GPS receivers and other LATs, tracking movement became
cheaper and more ubiquitous by the 2000s. Detailed movement data of individuals are
now available at finer granularity. The greater availability and variety of tracking data
sparked the development of computational movement analytics. This simultaneously
gave rise to visualization techniques and (geo)visual analytic approaches for movement
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in support of computational research as seen in Figure 1. The figure displays this con-
current rise in research interest, using results from the citation report tool in the Web
of Science for the four sets of keywords as shown in the legend.

A review of recent literature suggests that interest in topics relevant to movement
visualization has been rising since 2007, especially in terms of geovisualization and vi-
sual analytic approaches (see Figure 1). These visualizations range from simple maps of
trajectories in static displays to more complex dynamic and interactive visualizations
representing movement patterns at different granularities in space and time. Following
the pioneering illustrations of Harness, Minard, and Tobler, flow maps (represented
as flow lines and vectors) and flow density maps have been the dominant methods
for the visualization of movement between places, often at the aggregate level. Move-
ment visualizations of discrete trajectories represented as a set of time-ordered points
connected with polylines in two and three dimensional spaces were transpired by the
introduction of moving object and space-time paths models for trajectory databases
(Güting et al., 2000; Hornsby & Egenhofer, 2002). Although visual analytics has dom-
inated the visualization literature since 2007, most of these complex spatiotemporal
representations of movement are not easily interpreted or navigable due to the inherent
complexity of movement processes. Complexity of movement visualization generally
depends on several factors, including overall number of moving objects (or movement
flows), context variables, and representation dimensions. In the Section 4, we provide
more information on these variables and discuss how they are mapped.

2.2. Mapping Movement: location, time, attributes

Movement is spatiotemporal in nature and as such it can be mapped using location-
based and time-based representations (Yuan et al., 2014). The location of a moving
entity at the individual level is often represented as an object-based representation,
commonly using a moving point or line objects (Güting et al., 2000; Peuquet, 1994).
For aggregate movement, location is often represented via an underlying geographic
map, tessellation, or a raster grid. For example, see Figures 2 and 3 for different
representations.

The simplest two-dimensional spatial representation of a moving object, a GPS
track, contains a series of points (fixes), where geographical information is encoded as
a longitude-latitude pairs over time. By default the information that can be communi-
cated via such display is rather scarce, but one can generate more informative visual-
izations by connecting these fixes into vectors (line segments) and altering their display
parameters, like width, color, opacity and directionality (see Figures 2a and 11a). This
presentation however is insufficient to communicate information about time (duration,
start, end time) and direction. Following the model proposed by Hägerstrand (1970),
a three dimensional space-time cube (STC) representation of movement paths has
been used to illustrate the progression of movement through time (Figure 2b). The
STC representation adds a time component to the spatial axes of the geovisualization
(Figure 2b). In doing so, this representation adds complexity on top of the basic geo-
graphic representation: converting a 2D line into a 3D space-time path, and likewise
a polygon –e.g., a location uncertainty buffer or an activity space– into a 3D space-
time geometry –e.g., a cylinder or a prism–. Space-time prisms may also be viewed
as representations of inherent uncertainty about a trajectory of a moving object (i.e.,
possible locations accessible along the path), linking geovisualizations to probabilistic
tools from statistics and movement ecology, like the Brownian bridge, for home range
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and space utilization estimation (Buchin et al., 2012; Kie et al., 2010; Tracey et al.,
2014). Overall, the cube has been an integral part of interactive visual environment
within GIS, and has gone through multiple implementations over the last two decades
(Demšar & Virrantaus, 2010; Gatalsky et al., 2004; Kapler & Wright, 2005; Kraak,
2003; Lins et al., 2013).

- - - Figure 2 near here - - -

Visualizations at this level of abstraction (as in Figure 2) work well for the path of
a single object, but they quickly become cluttered and/or occluded when the number
of objects increases, or more contextual parameters are represented. To simplify the
display for multiple objects, various analytical techniques such as filtering, clustering,
and aggregation may be applied. Flow maps are often used to communicate movement
information of groups of entities between different locations. These maps may depict
volume and direction of flows in the form of density maps or using vector lines with
varying graphic characteristics, such as line width, line color and directionality (see for
example Figure 3). The color here is used to convey information about the magnitude
of migration flows between different regions.

- - - Figure 3 near here - - -

The STC (as seen in Figure 2b) is only one approach to spatio-temporal represen-
tation in geography (Vasiliev, 2006). Another way is the timeline approach, in which
movement events are connected to a timeline in the order in which they occur (Kraak
et al., 2014). To communicate the additional complexity inherited from temporal lay-
ering, cartographers utilize interactivity (Kwan, 2000) and animation (Harrower et al.,
2008; Xavier & Dodge, 2014). Indeed, these visual displays make it possible to con-
vey the information about dynamic properties of a moving object more efficiently. As
for aspatial representations of time, they typically come from the field of information
visualization. Aigner et al. (2011) surveys the most common visualization techniques
for time-oriented data categorizing them into six main categories, including the frame
of reference (abstract vs spatial), number of variables, arrangement of axes (linear,
polar, branched), time primitives, exploratory capability of display (static, dynamic,
interactive), and visualization environment (i.e. dimensionality).

A single 2D or 3D display is quite limited in the amount of information that it
can convey on multifaceted movement data (i.e. tracking data geo-enriched with be-
havioral and environmental information). Coordinated multiple views (G. Andrienko
& Andrienko, 2007; Roberts, 2007) enable several visual displays to work in unison,
by providing a user with several different types of representation (both spatial and
aspatial). A number of existing work utilize this concept in prototyping visual ana-
lytics and exploratory tools (W. Chen et al., 2018; Pu et al., 2014; Shi et al., 2017).
Ultimately, the effectiveness and efficiency of geovisualization and spatio-temporal in-
ference making is determined by the choice of visual variables and types of graphic
displays (Fabrikant et al., 2010; Garlandini & Fabrikant, 2009).

In this paper, we characterize different techniques for the visualizations of move-
ment by describing important cartographic and functional elements utilized in those
visualizations. We mainly focus on research published between 2010-2020 in geogra-
phy, computer science, and movement ecology. This paper adds to some of the earlier
reviews such as the work by N. Andrienko and Andrienko (2013) focusing on earlier
approaches offered in the 2000s and prior to 2013 for mapping and visual analytics of
movement, and Kraak (2014)’s book focusing on different techniques to mapping time
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and space-time processes.

3. Human-Centered Knowledge Discovery from Movement Data

In geographic knowledge discovery (GKD) (Miller, 2008) we rely on raw observations
collected and archived mainly in digital formats to identify novel and useful geographic
knowledge that is hidden in the data using analytical tools such as machine learning,
artificial intelligence (AI), and other data science methods. Empowered by GKD ap-
proaches, movement data science has emerged as an interdisciplinary research field in
which various users including data owners, analysts, developers of methods, domain
experts, and data scientists collaborate together in order to combine raw observation
with expert knowledge using computational techniques to generate data-driven insights
on movement (Dodge, 2021). Computational movement analytics involves methods de-
veloped for processing movement data, trajectory analysis, movement pattern mining,
analyzing the associations between movement and its embedding context, machine
learning, classification and quantification of movement behaviors, to name but a few
(Dodge, 2021; Laube, 2014). These approaches rely on data-driven analysis to enable
the ‘human’ (i.e. user) to infer useful knowledge about the behavior of movement phe-
nomena and the associations with their embedding environment from raw observations.
The outcomes of these approaches are often numerical and categorical values repre-
senting different types and frequencies of movement patterns, or characterizing forms
and densities of movement flows that are captured in the data. If the data and the
outcomes of computational algorithms are not properly mapped or communicated in
visual forms, they can be cognitively incomprehensible, making it very challenging for
the ‘human’ to generate useful knowledge and interpret the results, especially in cases
which involve large complex data and collaborative work in interdisciplinary data sci-
ence research (Maceachren & Brewer, 2004; Sacha, 2018). Therefore, we need to couple
computational methods with suitable mapping and visualization techniques to enhance
knowledge construction through visual reasoning (MacEachren et al., 2004). To do so,
we argue for a ‘human-centered’ approach to knowledge discovery of movement. We
base our model on the Human-Centered Artificial Intelligence (HCAI) framework pro-
posed by Shneiderman (2020) to increase human performance through various levels
of control on the tools and computer automation. Based on the HCAI model, it is
essential that depending on the task or the purpose of the analysis and the desired
interaction level, our computational and visualization tools provide optimal capacities
for human control and computer automation to enhance human ability for a reliable
knowledge discovery. A human-centered approach ensures that the ‘human’ has a cen-
tral role in knowledge construction, and the process is not fully automated through
machine learning and AI algorithms. Besides data collection, method development and
validation, the participation of the ‘human’ spans a range of important tasks includ-
ing visual reasoning, hypothesis generation, inference, interpretation, and knowledge
creation, as well as visual validation of outcomes.

- - - Figure 4 near here - - -

Inspired by Sacha (2018) and the HCAI framework (Shneiderman, 2020), Figure 4
illustrates our proposed framework for a ‘human-centered approach’ to knowledge dis-
covery from movement data. In this framework, the ‘human’ – ranging from public to
specialized users– plays a key role in different stages of data-driven science (DiBiase,
1990) by creating, utilizing, validating, controlling or interacting with analytical and
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visualization tools for quantitative and visual reasoning. By incorporating different
levels of user control and automation — as described in Shneiderman (2020)– car-
tographic mapping and information visualization tools can assist our computational
approaches and enable the ‘human’ to interact with the map and accomplish different
tasks in the process of knowledge discovery. Human’s visual and quantitative reasoning
performance can be enhanced and facilitate through properly designed communicative
and exploratory visualizations and visual analytic tools. Using these tools, the frame-
work follows the Cartography Cube (MacEachren, 1994) to emphasize the level of
human interaction with the map and the purpose of visualization for presentation and
synthesis of information, generation and confirmation of hypotheses, and exploration
of data, as described in detail in Roth (2013). These tools support movement data
science and knowledge discovery in several ways, as follows (Figure 4):

Communicative Visualizations are normally designed with a lesser capacities for
human control but various degrees of automation (examples range from paper maps
to interactive web maps). These visualizations are used to map data to convey and
present information about the subject phenomena and support synthesis of information
regarding structures and anomalies captured in the data (e.g. trends, spatial and
temporal extents, outliers, simple patterns, etc.). They also enable the presentation
and delivery of analytical outcomes and constructed knowledge in a form that is easy
to visually perceive and understand (e.g. maps, animations, graphs). Communicative
Visualizations can also facilitate validation of computational methods by providing
the means to monitor the work of algorithms and simulations. These visualizations
form the building blocks of more complex and interactive exploratory visualizations
and visual analytic tools.

Exploratory Visualization tools leverage interactive interfaces and communicative
visualizations to empower users by offering a high degree of control over what is
mapped and how it is represented through flexible designs. These tools enable visual
exploration of the data to reveal unexpected or hidden patterns and movement-context
dependencies in observations. Therefore, they can be used as data-driven hypothesis
generation and confirmation tools to facilitate knowledge construction.

Visual Analytics tools enable knowledge discovery often from large and complex
movement data and supported with a high level of human-map interaction and ex-
ploratory functions. Compared to exploratory visualizations, visual analytics tools are
often designed to provide a higher degree of computer automation and a relatively
lesser degree of human control over design by offering a predefined set of computa-
tional algorithms and visualization forms. All three categories of mapping and visual-
ization tools support human visual reasoning to infer and interpret knowledge about
the underlying processes and behaviors captured in the data.

In the process of knowledge discovery from movement data, cartographic mapping
and information visualization of movement facilitate human visual reasoning and in-
ference to construct knowledge on the behavior of movement processes. The ‘human’
component in this framework applies mapping and information visualization in differ-
ent capacities: (1) data owners, analysts, or general users often apply communicative
and exploratory visualizations to explore data, present information, gain insights into
the behavior of moving phenomena, and perhaps confirm scientific hypothesis using
mapped results; (2) data scientists and domain experts use different types of visualiza-
tions to develop or test hypotheses, explore data and discover patterns, and interpret
the outcomes of computational approaches, (3) more specialized data scientists and
developers of methods use or develop exploratory and visual analytic tools to con-
struct data-driven knowledge. They also use visualization to monitor the work process
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of algorithms and validate outcomes. Depending on the research setting these different
roles can be taken by a single individual or multiple individuals in a collaborative re-
search. Visualization can significantly facilitate analytical reasoning and provide means
for interdisciplinary collaborations between method developers and domain experts in
complex scientific discovery projects (MacEachren et al., 2004).

4. Fundamental Characteristics of Movement Visualizations

This section describes the key concepts that are essential in the cartography of move-
ment. We use these concepts to characterize existing movement visualizations. A set of
fundamental visual (Section 4.1) and functional (Section 4.2) elements are described
to set the stage for a systematic assessment and classification of different visualization
approaches to the cartography of movement. The classification is then provided in
Section 5.1.

4.1. Visual elements

4.1.1. Movement Data and Visualization Perspectives

Movement like any other spatiotemporal phenomena can be captured through two
different perspectives: Eulerian (e.g. cross-sectional snapshots of space at different
timestamps) and Lagrangian (e.g. time-series of locations over time) (Laube, 2014).
In the Eulerian perspective, movement of individuals and contextual information are
recorded at fixed locations using sensing devices at certain times. For instance, surveil-
lance cameras, Wi-Fi, Bluetooth, or check-in stations are used to record the presence
of individuals as they pass within range of or interact with these stations. Summa-
rized origin-destination matrices or check-in records (i.e. presence density) are the
most common forms for this mode of movement data collection. In the Lagrangian
perspective, as the individual moves, its movement is followed with a location-aware
sensor attached to the individual over time. Trajectories (as time-ordered sequences
of locations) are the most common form of representation for this mode of movement
data collection, which is often conducted through GPS tracking, wearable sensors,
radar telemetry, video tracking, and drones. Lagrangian representation employs the
perspective of “following” a moving object and recording its locational information
at a certain sampling rate (fixed or irregular). In contrast, the Eulerian representa-
tion entails tabulating locational data by monitoring the frequency of moving objects
appearing at fixed observational points, also known as check-points (Laube, 2017;
Turchin, 1998).

Existing movement visualizations offered in the literature can handle both La-
grangian and Eulerian data to varying extents (see Figure 6): Some visualizations
map the path of moving phenomena in space over time (i.e. the Lagrangian perspec-
tive) and some provide an aggregated view of movement patterns (G. Andrienko,
Andrienko, Fuchs, et al., 2017; Wood et al., 2010) or a summary of movement flows
(Guo & Zhu, 2014; Yang et al., 2017) at different locations based on O-D matrices
(i.e. Eulerian perspective). Visualization can also be used to transfer data obtained
from one perspective into another. For instance, GPS trajectory data collected using
the Lagrangian approach can be translated to an Eulerian view of aggregated speeds
over different segments of the road network (G. Andrienko, Andrienko, Chen, et al.,
2017). Similarly, depending on the data granularity, check-in and O-D records can be
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used to reconstruct the path of moving entities over time (S. Chen et al., 2016; Ma
et al., 2020). In this paper, we focus on the movement perspective of the visualizations
rather than the perspective of their input data set.

4.1.2. Movement Components Captured

Movement is realized in a multidimensional space including location, time, and context.
For a meaningful representation of movement, therefore various components need to
be considered. Following Kraak (2014), we use the pyramid framework proposed in
Mennis et al. (2000) to describe different components of movement for mapping and
visualization purposes. (See Figure 5.)

- - - Figure 5 near here - - -

Object: what is captured? Mennis et al. (2000, p 500) describes ‘object’ as “a
geographic conceptual entity that has a unique and cohesive identity, and is related to
a specific combination of observational data stored in the location, time, and theme
perspectives.” Here, ‘object’ may represent moving entities (e.g. humans, animals,
vehicles, viruses), the paths of spatiotemporal processes (e.g. hurricanes, migration,
commuting), or events (e.g. activities, stop episodes, move episodes, movement pat-
terns, flows) which can be derived from movement data. In the study of movement, we
are sometimes interested in mapping movement paths of one or a few discrete objects
(e.g. Figure 2a), but more often the goal is to map movement path or flow counts of
a large groups of moving entities or their aggregate patterns (N. Andrienko & An-
drienko, 2013). For example, see Figure 10a,b capturing migration flows between US
counties or states, respectively.

Location: what path or where? Location describes the position of the moving
object in a geographic or abstract space or the spatial extent of the movement. It
is often in the form of two (i.e. (xi, yi), (λi, φi), where λi is the longitude φi is the
latitude of the point) or three dimensional coordinates (i.e. (xi, yi, zi), (λi, φi, Hi)).
The location can also be represented as a convex hull or a bounding box enclosing all
tracking points captured over a period of time. The path of discrete moving objects
are often represented through the Lagrangian perspective using trajectories or flow
lines. In aggregated movement maps using the Eulerian perspective, the location is
embedded in the density or O-D maps. It can also be represented by the underlying
grid that is used to aggregate the counts. It is important to note that the granularity
of the grid representing the space impacts the aggregation outcomes. (Figure 5).

Time: when, how long or how often? Time represents the timestamp (ti) or
the duration (∆T ) of movement. Time can be conceptualized as a linear process (e.g.
moving forward along a trajectory) or a cyclic process (e.g. daily commutes, seasonal
patterns of migratory birds). Time can be mapped in different forms: as an attribute
label to movement features, as a linear timeline, as a third dimension (e.g. in space-
time cube), or using animation (Kraak, 2014).

Attributes: how and what conditions? Attributes describe the characteristics
of movement (e.g. mode, movement parameters) or the conditions and circumstances
within which the movement happens. These attributes can be categorized into two
different types of parameters: (1) Movement parameters are measurable quantities of
movement which can be derived from raw trajectories or obtained directly using sensors
(Dodge et al., 2008). Examples of movement parameters include speed, acceleration,
turn angle, and direction; (2) Context parameters are variables describing the state of
the moving entity and the characteristics of the embedding environment as described
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in Section 2.2.
It is important to note that, we consider information on behavior, movement events,

and activity types under context parameters. Bertin’s visual variables (Bertin, 1973)
are often used in the form of charts or thematic maps to represent various aspatial as-
pects of movement data including movement parameters (e.g. speed, acceleration, flow
counts, travel distance, etc.) and context parameters (e.g. weather condition, behav-
ioral mode) (Bernard et al., 2013; Dodge et al., 2013; Wu et al., 2016). The geographic
context of movement is often captured by overlaying movement visualization on a
geographic map or satellite imagery of the area (Xavier & Dodge, 2014).

4.1.3. Movement Data Representation Forms

Regardless of the movement perspective used in data collection or for visualization,
movement can be captured using both vector or raster representations:

Vector representation uses a set of primitive visual forms: points, lines, and poly-
gons. Points use custom symbols of different shapes, sizes, colors, and so on to represent
the locations of moving entities (in the Lagrangian perspective) or recording stations
(in the Eulerian perspective) on maps or scatter plots (G. Andrienko, Andrienko,
Fuchs, et al., 2017; Q. Liu et al., 2018; Scheepens, Van De Wetering, et al., 2014).
Lines are relevant to the representation of trajectories (Lagrangian), and to flow lines
and vector fields (Eulerian) representing a path or direction of movement (Guo, 2009;
Tobler, 1981). A trajectory is commonly represented as a set of lines connecting a time-
ordered sets of locations (T = {(x0, y0, t0), (x1, y1, t1), ..., (xi, yi, ti), ..., (xn, yn, tn)}).
Polygons are used in movement data as density contours (Scheepens, Wetering, et al.,
2014), bounding boxes, and convex hulls mainly representing the activity space of
moving entities which can be derived from both Lagrangian and Eulerian data sets.

Raster representation uses regular grids or irregular tessellations to capture den-
sity of movement flows (Zhu et al., 2019), such as variations in movement parameters
or traffic counts (G. Andrienko, Andrienko, Fuchs, et al., 2017). In this case, the cell
values capture movement parameters in an aggregate form in space.

Both vector and raster representations can be displayed using a two or three dimen-
sional reference system (Dübel et al., 2014). Movement patterns are often visualized
using these basic forms and thematic representations by applying computational ana-
lytic techniques such as segmentation, aggregation, and clustering to summarize com-
monalities or variations in movement parameters within geographic or environmental
context (N. Andrienko & Andrienko, 2013).

4.1.4. Cartographic Features

Most visualizations of movement trajectories or movement patterns are categorized
under thematic multivariate cartographic representations depending on the number of
movement components captured in the visualization. Often a combination of visual
variables (e.g. position, color value and hue, shape, size, orientation, texture) are used
to portray different movement or context parameters over vector and raster represen-
tations (Demšar et al., 2014; Xavier & Dodge, 2014), for example as shown in Figures
2 and 10. Since we are interested in how movement is visualized in cartographic envi-
ronments and graphic displays, we further introduce the following axes of comparison
to characterize different visualization approaches:

Cartographic space (2D versus 3D) describes the dimensionality of the carto-
graphic environment used to map movement. This can include two dimensional maps
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for geographic representation of movement, charts for aspatial and temporal represen-
tations of movement and context parameters and three dimensional space-time cubes
for spatiotemporal representation of movement.

Display forms (static versus dynamic) describe the type of output visualiza-
tion in terms of static or dynamic representations. Static displays provide a snapshot
of movement at a single timestamp or an aggregation of movement patterns or flows
over a period of time. Static displays are better suited for visualizing the Eulerian per-
spective of movement (viewing movement or patterns from a fixed location). Dynamic
displays provide a time-lapse of movement phenomena by representing movement and
changes in movement patterns over time. Dynamic displays are useful for visualizing
the Lagrangian view of trajectories or for illustrating an animated view of temporal
changes in movement patterns using the Eulerian perspective.

4.2. Functional elements

4.2.1. Dimensions of the Cartography Cube

In cartography, maps fulfill both communicative and exploratory functions. With de-
velopment of Geographic Information Systems (GIS), computer graphics and scientific
visualization, the role of interactivity increased, giving rise to a new type of visualiza-
tion, geovisualization, where a user plays a more proactive role in knowledge creation
and discovery (Cöltekin et al., 2018). Central to this term, is the conceptual frame-
work of the Cartography Cube (so-called Cartography3) developed by MacEachren
(1994) and MacEachren et al. (2004). This model extended an earlier Swoopy diagram
(DiBiase, 1990) of human-map interaction paradigm, in effect, amending a thinking-
communicating continuum and the corresponding research steps (explore, analyze,
synthesize, present). We utilize this Cartography3 framework here to categorize the
surveyed visualization tools along the three continua:

Users (specialized – public or novice). Many of the (geo)visualizations in the re-
viewed corpora are designed by researchers for specialized users, such as other
researchers or practitioners. Generally, some domain knowledge is required to
make inferences, but the capabilities of interaction and sense-making are avail-
able for both novice and amateur users. Most of the reviewed papers and vi-
sualizations are specifically tailored for academic journals, and are therefore
primarily used by private users.

Interaction (low - medium - high). Cartographic interaction implies a dialogue
between a map and a user instrumentalized through a digital device (Roth,
2013). User interaction is facilitated by functions for zooming, panning, data
manipulation, rotation, change of perspective, brushing, and highlighting. The
higher the interaction capability, the more varied cartographic representations
can be generated to support different forms of visual thinking. We score papers
that had multiple coordinated views and dynamic querying capabilities as high,
whereas pan-only and zoom-in/out functionality corresponded to lower interac-
tion.

Task (knowledge construction – information presentation). This measures
the primary purpose of a visualization along the continuum of discovery and
construction of knowledge or presentation of information. Visual analytic
and geovisualization tools are clustered around knowledge construction by
offering advanced interactive tools to enhance the user’s performance for data
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exploration, identification and interpretation of patterns. Static maps and
non-interactive dynamic displays are traditionally used for presentation and to
convey information.

4.2.2. Advanced Exploratory Functions

Exploratory functions encompass different interactive elements enabling user to in-
teract with the visualization tools and the data (see Section 4.2.1). Besides basic
interaction functions, most exploratory and visual analytic tools provide an advanced
visual interface which incorporates multiple coordinated views (MCV) and navigation
functions to query and visualize different perspectives, filter and highlight a subset
of data, or the captured variables (G. Andrienko & Andrienko, 2007; Roberts, 2007;
Robinson et al., 2017). The interface often include a combination of 2D maps, 3D
space-time cube, parallel coordinate plots, tabular view, 2D or 3D charts, circular flow
maps, etc. (Itoh et al., 2016; Tominski et al., 2012; Wu et al., 2016; Zhang et al., 2014).
These interactive interfaces incorporate both dynamic and static displays as well as 2D
or 3D cartographic environments. We denote two advanced exploratory functions in
the assessed visualizations in the summary table: MCV and dynamic querying (brush-
ing, filtering, highlighting, etc). These advanced interactive tools provide the ‘human’
user with more control to alter the visualization parameters and use it to construct
knowledge. While other primitive map-interaction tools (e.g. zoom/pan) offer limited
capacities for the users to interact with the map content.

4.2.3. Design Flexibility

Having flexible tools that enable users to generate different visualizations of the same
data is essential in human-centered movement data science. Here, ‘design flexibility’
encapsulate both dimensions of the HCAI model (Shneiderman, 2020) where the de-
sign can provide various levels of human control or computer automation. A more
flexible design offers advanced interactive tools such as MCV and other exploratory
tools and functions that can be controlled by the user to alter the visualization as
desired. However, a less flexible design involves more automated analytics and is often
accompanied by a set of predefined visualization forms that cannot be customized by
the user. The functions for flexible visualization are rarely seen in advanced visual
analytic tools. In most existing tools, the user has limited control over the visual ele-
ments and the analytical functions (see section 4.1) incorporated in the tool. Often the
output visualization method, movement perspective, and visual variables representing
movement components are predefined and cannot be changed by the user. The user
capability mainly lies in changing the query or selecting different subsets of the data to
visualize rather than manipulating the visualization display itself. A few exploratory
tools offer some flexibility in terms of changing visual variables in displaying movement
parameters (Xavier & Dodge, 2014).

5. Classification of Movement Visualizations

5.1. Methods

We use 40 relevant papers published during 2010-2020 in leading journals including
Cartography and Geographic Information Science (CaGIS), Information Visualization,
Geographic Information Science, IEEE Transaction on Visualization and Computer
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Graphics, as well as transportation and movement ecology journals to provide a clas-
sification of different types of movement visualizations. The techniques offered in the
papers are evaluated and scored along the 21 visual and functional elements described
above (Table 1). A graphical summary of the scores for each paper is provided in Fig-
ure 6. In order to provide a systematic classification of the techniques for mapping and
visualization of movement, the surveyed papers are then clustered using the identified
elements.

Since different methods of unsupervised clustering may produce divergent config-
urations, we minimize such tendencies via consensus clustering. Consensus clustering
refers to the procedure in which potentially conflicting partitions are aggregated to
produce a more robust clustering. A two-step process is employed (see Figure 3 in
Supplementary Materials): First, the papers are clustered separately based on the
visual and functional elements. Second, the groupings are aggregated to produce a
common visual-functional clusters. The Gower’s distance is used as it is better suited
for mixed type binary and categorical variables used for the classification. The op-
timal number of clusters is identified via NbClust R package (Charrad et al., 2014).
The final clusters are delineated based on community detection analysis and consensus
clustering. A more detailed specification of the clustering approach is provided in the
Supplementary Materials.

- - - Table 1 near here - - -

- - - Figure 6 near here - - -

5.2. Clustering on Visual Elements

The clustering on visual elements resulted in two very well pronounced clusters: Clus-
ter V1 (red, n=25 papers) and Cluster V2 (blue, n=15 papers) are (Figure 7a). Cluster
V1 is characterized by the following criteria: 1) 24 out of 25 papers utilize Eulerian rep-
resentation of movement; 2) 24 of 25 papers represent an aggregate of moving objects.
In contrast, Cluster V2 is characterized predominantly by Lagrangian representations
of discrete objects. Furthermore, Cluster V2 includes six papers that visualize some
form of contextual movement parameters. None of the other elements appear to be
important to the clustering on visual components.

5.3. Clustering on Functional Elements

Clustering on functional variables (Figure 7b) produced two clusters: Cluster F1 (red,
n=24 papers) and Cluster F2 (blue, n=16 papers). Cluster F1 appears to include
many more visualizations with multiple coordinated views (17 versus 3) as well as
dynamic querying capabilities (19 versus 2) as compared to cluster F2. Furthermore,
the interactivity score for Cluster F1 is within the range of medium to high, whereas
there is only one paper in Cluster F2 which scored ’high’ on interactivity. On the
flexibility scale, 15 out of 16 papers within Cluster F2 scored low.

- - - Figure 7 near here - - -
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5.4. Combined Visual-Functional Clustering

The final combined grouping of papers based on both visual and functional elements is
illustrated in Figure 7c. Overall there are three discernible clusters denoted by number
and color (‘1’ purple, n=13 papers; ‘2’ brown, n=16 papers; ‘3’ green, n=11 papers).
Summarized statistics on the elements for each visual-functional cluster is provided in
Figure 8 (also see Table 1 in the Supplementary Materials).

- - - Figure 8 near here - - -

5.4.1. Cluster 1: Interactive Visual Analytic of Aggregate Movement

Cluster 1 (denoted in purple, n=13 papers) is monocentric, as only V1/F1 groupings
are present (Figures 6, 7c, and 8). Most of the visualization techniques employ the Eu-
lerian perspective (12 papers) and aggregate (13 papers) representations of a moving
object. Interestingly, this cluster contains papers with the highest percentage of visu-
alizations that are two-dimensional (13 papers), and provide representations of time
(13 papers) and movement parameters (10 papers). On the functional side, almost
the entire cluster has either MCV (12 papers) or offer dynamic querying (9 papers)
capabilities. In this cluster, 12 papers rank ‘medium’ on the flexibility scale, and eight
papers score ‘high’ on interaction. This cluster is representative of traditional visual
analytic tools.

One example member of this cluster is Von Landesberger et al. (2016), which utilizes
a graph-based representation, named MobilityGraphs (Figure 9a), to analyze variation
in spatio-temporal traffic flows over a longer time series data. Their work demonstrates
a visualization tool that is based on Eulerian perspective as well as aggregate represen-
tation of a moving object and is both 2D and static. On the functional side, multiple
coordinated views and dynamic querying capabilities are available. It offers a high
level of user interaction, while its flexibility is medium. That is, the data views and
representation forms are fixed, but interface functionality allows the user to actively
engage in the exploratory data analysis. Another indicative example in this category,
Krueger et al. (2016), constructs trajectories from geo-tagged tweets to derive aggre-
gate movement patterns (Figure 9b). The authors employ a complex interface that
enable the users to utilize both MCV and dynamic querying to effectively inspect the
aggregated data visually.

- - - Figure 9 near here - - -

5.4.2. Cluster 2: Communicative Visualization Methods to Map Aggregate Movement

Cluster 2 (brown, n=16 papers) is duocentric (Figures 6, 7c, and 8). It amalgamates
papers that were previously classified as V1/F2 and V2/F2. The papers in this cat-
egory are principally concerned with visualization methods presentation rather than
exploratory data analytics. These visualizations are more rigid in their form, which is
denoted by lower flexibility score and single view interfaces. Aggregate representations
of moving objects are much more common in this cluster (13 papers), as well as Eule-
rian representations (15 papers). Only five papers have embedded the time component
in visualization, and two papers have dynamic movement representations (see Table 1
in the Supplementary Materials).

- - - Figure 10 near here - - -

The number of papers offering MCV and dynamic querying is lowest among this
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cluster: three and two papers, respectively. Moreover, the number of papers that have
low flexibility is the highest (15 papers). On user interaction, the cluster is evenly
divided between low and medium interactivity levels. A representative sample of work
in this cluster is illustrated in Figures 10 and 3. These techniques (Demšar et al., 2014;
Demšar & Virrantaus, 2010; Guo & Zhu, 2014; Hyougo et al., 2014; Wood et al., 2010)
utilize static representations of aggregated flows and trajectories at different spatial
scale. Of the four illustrated papers only (Demšar et al., 2014) has an embedded time
component, as well as 3D representation (Figure 10b). None of the four offers an MCV
or real-time brushing/filtering.

5.4.3. Cluster 3: Exploratory and Dynamic Visualization of Trajectories

Cluster 3 (denoted in green, n=11 papers) combines the techniques clustered under
V2/F1 (Figures 6, 7c, and 8). This cluster is characterized by visualizations based
on the Lagrangian movement perspective (9 papers) of discrete moving objects (9 pa-
pers), and the highest proportion of dynamic visualizations (6 papers) with contextual
movement attributes (5 papers). On the functional side, 10 papers feature visualiza-
tions with dynamic querying capabilities. Furthermore, this cluster has the only two
papers that rated ’high’ on the flexibility scale: (Fukaya & Misue, 2018; Xavier &
Dodge, 2014), and 10 papers rank ’high’ on user interaction. It is worth noting, that
due to the high interactivity and exploratory characteristics of these tools, there is
some overlap between Cluster 3 and Cluster 1, with majority of interlinks centered on
the work of Anwar et al. (2014), X. Liu et al. (2017), and Tominski et al. (2012).

Two representative examples (Fukaya & Misue, 2018; Xavier & Dodge, 2014) dy-
namically visualize movement trajectories of discrete objects by utilizing multiple vi-
sual variables, including location, time, movement and context parameters (Figure
11). Both tools score high on interactivity and flexibility, as alterations in symbology
can be used to amend data exploration tasks.

- - - Figure 11 near here - - -

6. Discussion: Trends and Gaps in Movement Visualization

As shown in this paper, visualization of movement has remained a popular field over the
past 10 years. A variety of methods and tools corresponding to the outlined groups has
been developed in different areas for a human-centered knowledge discovery from move-
ment data: communicative visualization (mainly reflected in Cluster 2), exploratory
visualization (majority located in Cluster 3), and visual analytic tools (predominantly
in Cluster 1). In this section, we discuss these categories in the light of the identified
visual and functional elements, and highlight trends and gaps.

6.1. Human-centered Visualization Tools

The classification has identified important criteria in delineating visualization tech-
niques, namely the visual and functional elements (Table 1). Among the elements,
functions for user interaction capabilities and general flexibility providing more control
for the human user are extremely important in designing tools for ’human-centered’
exploratory data analysis. These capabilities enable a higher level of human-map in-
teraction for knowledge discovery from movement data. We view flexibility in design
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and functions for integration of different visual elements to be central in the future
development of movement visualizations.

Our comparative review of exploratory and visual analytic tools (Figure 8) suggests
that exploratory visualization tools enable users with more flexibility and user-control
in terms of how the data can be visualized, while visual analytic tools often provide
a predefined view of data that is created using automated computational analysis
and that the user is not able to modify. We propose that the future of visualization
in movement data analysis should move towards human-centered visual analysis – a
combination of exploratory and visual analytic groups of tools with a more optimum
functionalities in terms of user-control and automation that would enable switching
between Lagrangian and Eulerian movement perspectives, as well as between different
representations of a moving object. This new generation of visualizations would be
equally capable of real-time filtering of large volumes of data and at the same time
flexible enough to put users in control of visual display to alter graphic variables as they
see fit. This assembly would alleviate the rigidity of form, function and representation
prevalent in most contemporary tools.

Additionally, this would contribute to further personalization of analytical tools,
where the ultimate focus of the design is not data and/or function, but also visual ap-
pearance and user preferences. The design and production of such tools would require
large computational capacity, as well as optimized software to enable flexible real-time
knowledge discovery. And while some of the surveyed papers offer methods that utilize
GPU rendering for real-time filtering and brushing of large volumes of data, it is un-
clear how other tools would scale-up with the increase in volume of data, or whether
modularity can be used to create a universal tool. Two scenarios are possible: develop-
ment of these capabilities within existing GIS platforms (ArcGIS, QGIS, GRASS GIS,
etc.) or the creation of a new open-source platform for movement analysis, most likely
web-based, with embedded functionality to mix and match computational algorithms
and visual displays for both types of Eulerian and Lagrangian data.

6.2. Trends in Mapping Movement Context

Our review suggests that with the exception of a few works (Itoh et al., 2016; Li,
Wang, et al., 2020; Ni et al., 2017; van den Berg et al., 2018; Xavier & Dodge, 2014;
Zhang et al., 2014), of which five are located in the exploratory visualization group (see
Figure 8), the focus of most visualizations is on movement and its patterns rather than
conveying information about the the relationships between movement and its context.
It is important to integrate more context parameters in the multivariate representa-
tion of movement to contextualize observed patterns and explore associations between
context and movement parameters. It seems logical that these five visualizations em-
ploy the Lagrangian perspective, because context parameters are more easily mapped
on discrete representations of moving objects (trajectories) as a series of locational
fixes. In the Eulerian representations, where the origin-destination links are already
presented in aggregate forms, the spatial and temporal attribution of contextual infor-
mation may prove difficult, especially when the aggregating location and time window
(filter) is large. Today’s generation of multifaceted movement data obtained using
multi-modal sensors poses a challenge to the traditional point and line representations
of movement as isolated geometric moving point or trajectory objects. Therefore, more
fundamental research is needed to identify or devise more plausible and meaningful
movement visualizations capable of capturing its different facets including location,
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time, and context in the cartography of movement (Dodge, 2021; Miller et al., 2019).
For example, Dodge et al. (2013) and Xavier and Dodge (2014) showed by apply-
ing multivariate representation of trajectory data enriched with movement speed and
wind information, one can explore weather and movement dependencies and learn how
tailwind support drives albatrosses foraging flights (see Figures 2 and 11a).

6.3. Generic and Broadly Applicable Movement Visualization Tools

Our review suggests that there is still a very noticeable difference between the visual-
izations from movement ecology, Cartography, GIScience, or Information Visualization
communities. This mainly stems from both differences in tools and methodologies uti-
lized by the disciplines, as well as the underlying scientific questions and the hypotheses
motivating the research. On the other hand, the most interesting and experimental vi-
sualizations appear at the intersection of these fields, where new sensors and visualiza-
tion tools are coupled with one another. While most of the visualizations are tailored
towards the use by other researchers, specialists, practitioners and decision-makers,
there are some tools that are surprisingly well-suited to be used for communication in
broader application domains (S. Chen et al., 2016; Demšar et al., 2014; Guo & Zhu,
2014; Xavier & Dodge, 2014). In future research, it is important to come up with
more generic visualization tools capable of handling both animal movement and dif-
ferent forms of human movement data. This reaffirms the importance of the functional
and representational flexibility of tools for movement analysis. Ideally, more flexibility
should help bridge the gap between the domains of application.

6.4. Flexibility for Multi-Scale Movement Representations

Movement occurs at multiple scales over space and time (Dodge, 2021). Movement
patterns are formed through a cascade of embedded movement ranging from micro
movements at local scales to more complex behavioral patterns at larger geographic
scales and over longer time periods. In developing visualizations, the tendency is often
to provide a single fixed scale representation of the data, although with zoom and
pan functions or time sliders the user is able to change the geographic and temporal
extents of the representation. This, however, does not change the granularity of what
is being presented in the visualization. In order to fully benefit from visual analytic
and exploration tools, the future generation of visualizations should enable users to
re-scale movement representations. This is a challenging task that has been taken up
by cartographers in the context of geographic mapping through automatic generaliza-
tion approaches for automatic and seamless changing of the level of details (Brassel &
Weibel, 1988; Brewer & Buttenfield, 2007; Howard et al., 2008; Weibel, 1995). How-
ever, movement visualizations have yet to provide support for a seamless multi-scale
representation. Examples of existing work to attempt this include methods for multi-
scale mapping of movement flows (Yin et al., 2016) and activity patterns (Zhao et al.,
2008). Similar techniques should be adopted by the movement visualization community
to seamlessly change the granularity of mapped patterns and movement information
as the visualization scale changes in space and time. This is especially important for
large movement data sets of long-term and complex trajectories or O-D matrices .
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6.5. Call for a Cartographic Framework to Guide Cognitive Evaluation
and Usability Studies

Although visualization of movement is grounded in well-established methods from
(geo)visualization and (geo)visual analytics, there are still persistent challenges to ef-
fective graphical representation, particularly with regard to design principles (Cöltekin
et al., 2017; Cöltekin et al., 2018). Like other cartographic research, usability studies
are central to the development and evaluation of cognitively plausible visualizations.
In envisioning the future of cartographic research, Griffin et al. (2017) argue that “un-
derstanding how maps are insightful is more important than ever” as we continue to
utilize larger and more diverse spatial and temporal datasets. This will also be critical
in the future of movement visualization as movement datasets becomes larger and finer
in spatial and temporal granularity. Most of the reviewed papers in this article lack a
thorough and systematic investigation of the cognitive understanding and usability of
the representations or the visual exploratory and analytical tools. Evaluations are of-
ten conducted based on the specific group of expert users for whom the visualizations
are created. This may lead to limited applicability of the developed techniques for a
broader audience. It is therefore important to develop a generic cartographic frame-
work describing a set of visual principles for mapping movement, which can then be
used to guide the evaluation of movement visualizations in different applications. In the
era of ever-increasing data volume and detail, design principles must be assessed with
an understanding of cognitive implications, such as decluttering visual-spatial displays
to reduce cognitive load (Amini et al., 2015; Fabrikant et al., 2010; Hegarty, 2011).
Furthermore, these principles must be extended to human-computer interaction to
address the dynamics of cartographic environments and usability issues (MacEachren
& Kraak, 2001; Slocum et al., 2001).

7. Conclusion and Future Work

This paper highlights the role of cartography and data visualization in computational
movement analytics. We argue for a human-centered approach to knowledge discov-
ery from movement data, in which visualization techniques and visual analytic tools
are designed to provide various levels of human control and automation to support
data-driven analytics and enhance human visual and quantitative reasoning. Through
a systematic comparison of techniques used in mapping and visualizing movement,
this paper reviews the advancements, functionalities, and gaps in the current state
of movement cartography. In doing so, we also provide a set of recommendations for
future research in this field. We use 40 research papers published between 2010-2020,
to characterize and categorize different techniques developed for mapping movement
data. Based on the similarities in the characteristics of different visualization tech-
niques we applied a clustering approach to group the papers and assign them into
the three main categories of movement visualizations: communicative visualizations,
exploratory visualization of trajectories, and visual analytic tools for aggregate move-
ment. We also identified crucial elements that are central to differentiating between
the groupings, namely movement perspective (Lagrangian/Eulerian), representation
view of a moving object (discrete/aggregate), presence of contextual parameters, mul-
tiple coordinated views, dynamic querying capability, interactive functionality and
flexibility.

We propose that human-centered visualization flexibility is crucial in the transition
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from knowledge presentation to knowledge discovery, as it provides an investigator
with the tools to tell more than one story with a data set. Typically, visualizations are
developed for one specific use case or as a proof of concept. Once the algorithm is pro-
grammed and the interface is laid out, the user can only go so far with the inferences.
Thus, it is critical to strike a balance between an instantiation and generalizability in
the design of visual analytic tools. More transferable tools with open-ended question-
ing is required to answer the call of knowledge discovery in the age of big data and
spatial data science. Recognizing the significance and in response to the identified gap
in the literature, our future research will focus on the development of a cartographic
framework for mapping movement.

Acknowledgment

This work is supported by the National Science Foundation Award No.1853681. The
authors wish to thank the editor, the anonymous reviewers, and Crystal Bae for their
valuable feedback.

References

Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time-
oriented data. Springer Science & Business Media. https://doi.org/10.1007/
978-0-85729-079-3

Amini, F., Rufiange, S., Hossain, Z., Ventura, Q., Irani, P., & McGuffin, M. J. (2015).
The Impact of Interactivity on Comprehending 2D and 3D Visualizations of
Movement Data. IEEE Transactions on Visualization and Computer Graphics,
21 (1), 122–135. https://doi.org/10.1109/TVCG.2014.2329308

Andrienko, G., & Andrienko, N. (2007). Coordinated Multiple Views: A Critical
View. Fifth International Conference on Coordinated and Multiple Views in
Exploratory Visualization (CMV 2007), 72–74. https : / / doi . org / 10 . 1109 /
CMV.2007.4

Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R., & Zhao, Y. (2017). Visual
analytics of mobility and transportation: State of the art and further research
directions. IEEE Transactions on Intelligent Transportation Systems, 18 (8),
2232–2249. https://doi.org/10.1109/TITS.2017.2683539

Andrienko, G., Andrienko, N., Fuchs, G., & Wood, J. (2017). Revealing patterns and
trends of mass mobility through spatial and temporal abstraction of origin-
destination movement data. IEEE Transactions on Visualization and Com-
puter Graphics, 23 (9), 2120–2136. https ://doi . org/10 .1109/TVCG.2016 .
2616404

Andrienko, N., & Andrienko, G. (2013). Visual analytics of movement: An overview of
methods, tools and procedures. Information Visualization, 12 (1), 3–24. https:
//doi.org/10.1177/1473871612457601

Anwar, A., Nagel, T., & Ratti, C. (2014). Traffic origins: A simple visualization tech-
nique to support traffic incident analysis. 2014 IEEE Pacific Visualization
Symposium, 316–319. https://doi.org/10.1109/PacificVis.2014.35

Bach, B., Dragicevic, P., Archambault, D., Hurter, C., & Carpendale, S. (2017). A
Descriptive Framework for Temporal Data Visualizations Based on Generalized

19



Space-Time Cubes. Computer Graphics Forum, 36 (6), 36–61. https://doi.org/
10.1111/cgf.12804

Beecham, R., & Wood, J. (2014). Exploring gendered cycling behaviours within a large-
scale behavioural data-set. Transportation Planning and Technology, 37 (1),
83–97. https://doi.org/https://doi.org/10.1080/03081060.2013.844903
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Graser, A., Schmidt, J., Roth, F., & Brändle, N. (2019). Untangling origin-destination
flows in geographic information systems. Information Visualization, 18 (1),
153–172. https://doi.org/10.1177/1473871617738122

Griffin, A. L., Robinson, A. C., & Roth, R. E. (2017). Envisioning the future of car-
tographic research. International Journal of Cartography, 3, 1–8. https://doi.
org/10.1080/23729333.2017.1316466

Guo, D. (2009). Flow mapping and multivariate visualization of large spatial inter-
action data. IEEE Transactions on Visualization and Computer Graphics, 15,
1041–1048. https://doi.org/10.1109/TVCG.2009.143

Guo, D., & Zhu, X. (2014). Origin-destination flow data smoothing and mapping.
IEEE Transactions on Visualization and Computer Graphics, 20 (12), 2043–
2052. https://doi.org/10.1109/TVCG.2014.2346271
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Figure Captions

Figure 1. Total number of citations for topics in movement visualization by year in refereed journals and
conferences reported in the Web of Science. The keywords used to extract the information are: TOPIC 1

(shown in purple) ‘geovisualization’ and ‘movement’; TOPIC 2 (shown in green) ‘GPS’ and ‘trajectory’ and

‘visualization’; TOPIC 3 (shown in orange) ‘moving object’ and ‘visualization’; TOPIC 4 (shown in blue)
‘visual analytics’ and ‘movement’ (source: Web of Science).

Figure 2. Mapping a GPS trajectory of a Galapagos Albatross using a) 2D spatial, and b) 3D space-time

cube representations. A series of points over time represents the a) spatial locations and b) spatio-temporal
coordinates of recorded GPS fixes. A line connecting the points in the order of time represents the bird’s path

as a) a 2D trajectory and b) a 3D space-time path. In a), a simple canvas map (white areas representing

water and gray areas representing land) is used as a geographic frame of reference. In b), a gray line
represents the geographic footprint of the 3D space-time path. Tailwind support as an environmental context

variable is represented using graduated colors. The albatross was tracked during June-September 2008 with a

temporal sampling rate of 90 minutes (Dodge et al., 2013). The permission to re-use this figure is granted to
the author through the Creative Commons Attribution License 4.0.

Figure 3. Mapping movement flows: A set of flow lines represents net migration flows between different

regions in the US. Flow lines are overlaid on top of a density map representing the net migration rates
(source: Guo and Zhu (2014)). The permission to use this figure is granted by IEEE.

Figure 4. A framework for human-centered knowledge discovery from movement data, where computational
data-driven analytics and modeling are facilitated by cartographic maps and interactive and exploratory

visualizations to empower the ‘human’ for enhanced quantitative and visual reasoning.

Figure 5. A pyramid model for the representation of movement, modified from Kraak (2014).

Figure 6. Summary characteristics of visualization techniques for movement. Clusters are denoted by

colored nodes ( 1 , 2 , 3 ). Filled and empty symbolize the presence or absence of a certain element,

respectively. Ordinal elements are denoted with text inside the node, where L corresponds to low, M - to

medium, and H - to high.

Figure 7. Network graphs of functional and visual clustering results. a) Clustering on visual elements
(Cluster V1 in red, Cluster V2 in blue). b) Clustering on functional elements (Cluster F1 in red, Cluster F2

in blue). c) Clustering on visual and functional elements combined.

Figure 8. The aggregated number of papers per element per cluster.

Figure 9. Example of Visualizations for Cluster 1 : a) Cluster result window as presented by

Von Landesberger et al. (2016); and b) TravelDiff interface (Krueger et al., 2016). Permission to use the

figures is granted by IEEE.

Figure 10. Examples of Visualizations for Cluster 2 : a) Movement of people from Kawasaki station.

Amoeba representation (Hyougo et al., 2014). Permission to use the figure is granted by IEEE; b) Stacked

space-time density for a single bird using a linear decay function (Demšar et al., 2014). The figure and
permission to use is obtained from Dr. Demšar; and c) County-to-county migration as an OD map (Wood

et al., 2010). Permission to use this figure is granted by Dr. Wood.

Figure 11. Examples of Visualization for Cluster 3 : a) The last frame of an animated map representing GPS
trajectories of nine Galapagos Albatrosses and the impact of tail-head wind speed (shown in graduated

blue-red colors) on their movement speed (represented as line thickness) (Xavier & Dodge, 2014), and b) Two
frames of an animated map visualizing vessel trajectories with corresponding collision risk values (represented

with proportional ‘HalfMoon’ symbols) over time. (Fukaya & Misue, 2018). Permission to use figure b) is

granted by IEEE.
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Table

Table 1. An overview of the visual and functional elements used to characterize movement visualizations. For
the binary variables, the encoding value 1 means that the variable is applied or is present in the visualization.

Category # Elements Element type
(encoding)

V
is

u
a
l

Visualization perspectives
1 Lagrangian binary (0/1)
2 Eulerian binary (0/1)

Movement components

3 Discrete binary (0/1)
4 Aggregate binary (0/1)
5 Location binary (0/1)
6 Time binary (0/1)
7 Movement parameters binary (0/1)
8 Context parameters binary (0/1)

Movement data
Representation forms

9 Vector binary (0/1)
10 Raster binary (0/1)

Cartographic features

11 2D binary (0/1)
12 3D binary (0/1)
13 Dynamic binary (0/1)
14 Static binary (0/1)

F
u

n
c
ti

o
n

a
l

Dimensions of Cube3

13 Specialized users binary (0/1)
15 Novice/general users binary (0/1)
16 Interaction ordinal (low/med/high)
17 Knowledge construction binary (0/1)
18 Information presentation binary (0/1)

Advanced Exploratory
Functions

19 Multiple coordinated views binary (0/1)
20 Dynamic querying binary (0/1)

Design Flexibility 21 Flexibility ordinal (low/med/high)
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