
ORTEGA: an object-oriented time-geographic

analytical approach to trace space-time contact patterns

in movement data

Somayeh Dodgea,∗, Rongxiang Sua, Jasper Johnsonb, Achara Simcharoenc,
Konstadinos Gouliasa, James L.D. Smithd, Sean C Ahearne

aDepartment of Geography, University of California Santa Barbara, USA
bDepartment of Geography, University of Minnesota, Twin Cities, USA

cConservation Ecology Program, King Mongkut’s University of Technology, Thailand
dDepartment of Fisheries, Wildlife & Conservation Biology, University of Minnesota,

Twin Cities, USA
eHunter College – CUNY, New York City

Abstract

This paper uses movement as a marker to study interactions in humans and

animals to better understand their collective behaviors. Interaction is an im-

portant driving force in social and ecological systems. It can also play a sig-

nificant role in the transmission of infectious diseases and viruses as witnessed

during the ongoing COVID-19 pandemic. Although a number of approaches

have been developed to analyze interaction using movement data sets, these

methods mainly capture concurrent and dyadic interaction (i.e. when two in-

dividuals have direct contact or move synchronously in the spatial proximity

of each other). Less work has been done on tracing interaction between multi-
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ple individuals, especially when the interaction occurs with a delay or via in-

direct contact (i.e. when individuals visit the same location asynchronously).

This paper introduces a new Object-oRiented Time-Geographic Analytical

approach (ORTEGA) to extract concurrent and delayed interaction patterns

between individuals in space and time. The method leverages the time-

geography framework to incorporate the effects of uncertainty and gaps in

movement data in the analysis of interaction and tracing contact patterns.

Using two different case studies and real GPS tracking data, the method is

evaluated in (1) detecting patterns of dyadic, intra and interspecific inter-

actions between two apex predators, tigers and leopards in Thailand; and

(2) tracing potential contacts between a large group of individuals of the

same and different households in San Jose, California. The results indicate

that tigers and leopards have an awareness of each other and their interac-

tion is mainly indirect and delayed. In the human context, the results show

that while individuals of the same household have more concurrent interac-

tion, members of different households follow similar patterns asynchronously

exhibiting delayed interaction. The delayed interactions and potential asyn-

chronous contacts are often underestimated by the common digital contact

tracing technologies. With this study we show how a generic method can be

used to identify interesting movement patterns across the human and animal

divide.

Keywords: Time geography, contact tracing, interaction analysis, wildlife

encounter analysis, delayed interaction, tiger leopard interaction
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1. Introduction1

Interaction and contact between individuals are important driving factors2

of many social and ecological systems. Collective behaviors of animals and3

humans result in complex social dynamics which can be observed through4

movement of individuals (Potts et al., 2014; Laube, 2014; Dodge et al., 2008).5

Movement patterns shape urban and natural ecosystem dynamics, structure6

human and wildlife social networks, and are essential to understanding hu-7

man and wildlife interactions. There have been advances in the analysis8

of spatial interactions, but less research has focused on the temporal as-9

pects of interaction between moving individuals. Specifically, approaches10

to analyzing temporal delays in spatial proximity are lacking. These de-11

layed interactions are critical in virus transmissions and exposure to airborne12

pathogens. As the decade turned to the 2020s, we witnessed the widespread13

transmission of Coronavirus disease 2019 (COVID-19) which led to a set of14

unprecedented non-pharmaceutical interventions (NPIs) implemented by the15

governments across the globe to mitigate the spread of SARS-CoV-2. Exam-16

ples of these NPIs include: policies for shelter-in-place, physical distancing,17

and contact tracing (Flaxman et al., 2020; Ferretti et al., 2020). Similar to18

influenza viruses, COVID-19 spreads via close contacts and through respi-19

ratory droplets that can stay in the air for some time (Centers for Disease20

Control and Prevention, 2020). Similarly, spatial proximity but delayed tem-21

poral response in animals can range up to weeks for scent marks to months22

for anthrax transmission. Therefore, our ability to analyze delayed interac-23

tion and trace contacts in human and animal social networks through their24

movements is critical to understanding social dynamics (Oliver et al., 2020;25
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Hoover et al., 2020).26

Movement data, whether obtained from wearable devices equipped with27

Global Positioning Systems (GPS) such as animal collars, smart watches,28

activity loggers, smart phones, or other location-aware technologies includ-29

ing Radio Frequency Identification (RFID) tags, motion sensors, Wi-Fi sen-30

sors, card readers, Bluetooth sensors, can be used to study the interaction31

between individuals and their space-time contact patterns. Recently, Apple32

and Google joined their efforts to include contact tracing functionalities us-33

ing the Bluetooth technology in their smart phones (Sainz, 2020). Similarly,34

many other companies have built digital contact tracing apps to track prox-35

imity between individuals in space and times and inform if a risky contact36

with an infected individual has occurred (Kitchin, 2020). However, most of37

these efforts focus on detecting synchronous interactions between individu-38

als. These technologies rely on the concurrent proximity between moving39

individuals to detect whether the individuals come within a certain distance40

of each other in space and at the same time. The proximity is identified ei-41

ther based on the intersection of Bluetooth signals of mobile devices carried42

by the individuals or the synchronous distance between individuals. These43

methods are not well suited to detect delayed interactions when spatial prox-44

imity occurs asynchronously. This requires techniques capable of estimating45

the potential paths of individuals and retaining information on their previous46

locations. Developing computational methods to detect delayed interactions47

can contribute to animal behavioral studies such as leadership and species48

competition, as well as research on estimating human exposure risks to air-49

borne pathogens or hazardous agents.50
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Recent advances in tracking technologies and quantitative techniques have51

enabled scientists to analyze more complex patterns of animal and human52

movement in relation to environmental and geographic contexts across space53

and time (Dodge, 2016; Long et al., 2018; Miller et al., 2019). Among these54

techniques, measuring and quantifying interaction and contact between mov-55

ing individuals have become a major interest in the areas of movement ecol-56

ogy, epidemiology, geographic information science (GIScience), computer sci-57

ence, and related disciplines (Potts et al., 2014; Joo et al., 2018). Arguing for58

an integrated science of movement, Miller et al. (2019) highlighted the impor-59

tance of developing new computational approaches to analyzing the spatial60

and temporal patterns of movements that are critical to gaining an under-61

standing of the collective movement behavior across the human and animal62

divide. This paper responds to this methodological challenge by developing63

and evaluating an analytical approach to trace critical space-time contacts64

in the social networks of humans and animals. While existing approaches65

provide valuable metrics to measure static interaction in space (i.e. the spa-66

tial overlap between activity spaces of individuals), our methods to quantify67

dynamic and temporally delayed movement interaction in space and time68

are less evolved (Miller, 2015). Most dynamic measures focus on quantifying69

dyadic interactions which occur synchronously (i.e. the proximity between70

two individuals in space over a time window) (Miller, 2015; Long et al., 2015;71

Joo et al., 2018). In a recent study, Hoover et al. (2020) developed a method72

to identify asynchronous interactions in animal dyads given a predefined time73

lag. As movement data increasingly become available in large volumes and74

heterogeneous forms, there is a need for more effective computational ap-75
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proaches to extract and model dynamic and temporally delayed interaction76

patterns in movements of multiple individuals.77

This study focuses on two types of dynamic interaction: concurrent inter-78

action and delayed interaction. Concurrent interaction occurs between indi-79

viduals when they move synchronously in spatial proximity of each other in80

a shared space and at the same time. In concurrent interaction, individuals81

can potentially come to a close or direct contact (i.e. interaction at close dis-82

tance at the same time). This is a key driver in the transmission of viruses or83

shaping social networks in humans and animals. Delayed interaction happens84

when individuals visit the same locations in space however asynchronously.85

This type of interaction occurs when individuals indirectly interact via a86

shared space however with a time lag. It can contribute to virus transmis-87

sion, for example, when individuals visit the same infected location with a88

time delay. In this work, we introduce and evaluate a novel Object-oRiented89

TimE-Geographic Analytical approach (ORTEGA) to trace concurrent and90

delayed interaction patterns between individuals in space and time through91

their movement trajectories. Our approach builds upon the time-geography92

model (Miller, 2005; Long et al., 2015) to measure the probability of con-93

tact along the trajectories of two moving entities. We use an object-oriented94

scheme to make the time-geography method ‘smart’ by modeling trajectories95

as objects with properties and behaviors (actions) which can memorize the96

previous locations, potential contacts, and times of interactions with other97

individuals along their movement paths. Our main contributions include:98

(1) an object-oriented approach which can be used to trace concurrent and99

delayed interaction patterns between dyads or multiple individuals; (2) a spa-100
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tial and temporal indexing technique to speed up the computation process;101

and (3) an approach to tracing temporally delayed contacts in the context of102

human contact tracing. Using GPS tracking data, we show how the proposed103

methodology can be applied to identify key interaction patterns among indi-104

viduals across the human and animal divide. This is important, as despite105

the common interest for studying spatial behavior in movement ecology and106

human mobility, there has been little scientific cross-fertilization across these107

domains (Miller et al., 2019). We use two case studies to evaluate the pro-108

posed methodology: The first study uses tracking data of tigers and leopards109

to demonstrate how our method can capture dyadic tiger-tiger (intraspecific)110

and leopard-tiger (interspecific) interactions. The second study uses human111

tracking data to identify concurrent and delayed interactions among multiple112

individuals of the same and different households in the context of contact113

tracing. The case studies also demonstrate how ORTEGA compares to the114

proximity-based approaches across different temporal scales.115

2. Movement Interaction116

Studying dyadic movement interaction has been a major interest in move-117

ment ecology. There are two different types of dyadic interactions: static118

interaction and dynamic interaction. Static interaction is when the space119

usage (i.e. activity space or home range) of two individuals intersects. Dy-120

namic interaction occurs when two individuals move in a shared geographic121

space or within the proximity of each other over a certain time interval (Potts122

et al., 2014; Miller, 2015).123

A common technique to quantify interaction spatially is to measure the per-124
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centage of the overlap between the activity spaces of the entities (Benhamou125

et al., 2014). The activity space in human context is often measured using126

convex hulls or time-geography measures as discussed later in Section 3.1127

(Miller, 2005; Long et al., 2015). The activity space in movement ecology128

context is computed using home range estimation measures such as convex129

hulls, Brownian Bridges, Kernel density estimation (Worton, 1987; Horne130

et al., 2007; Powell and Mitchell, 2012; Long et al., 2015). Another static131

measure is to compute the proportion of observations (e.g. occurrence or132

presence of two species) recorded within the spatial proximity of each other133

over the entire sampled locations regardless of observation time (Cole, 1949).134

Various measures have been offered to analyze dyadic interaction using tra-135

jectories. Long et al. (2014); Miller (2015); Joo et al. (2018) provide extensive136

reviews on these measures, including: the proximity index (Bertrand et al.,137

1996; Doncaster, 1990)—the frequency at which the two entities come near138

each other within a certain distance threshold, the coefficient of association139

(Cole, 1949)—the proportion of proximal fixes, the coefficient of sociality140

(Kenward et al., 1993)—the ratio of average raw distances between simul-141

taneous fixes (i.e. locations recorded at the same timestamps) against the142

average distance between non-simultaneous fixes, the coefficient of interac-143

tion—synchronous use or avoidance of a reference area, the joint potential144

path area (Long and Nelson, 2013)—the relative size of the potential en-145

counter area, and the correlation indices (Konzack et al., 2017)—correlation146

between movement parameters of the two individuals such as speed, direc-147

tion, step length, turn angle.148

Spatial proximity is the most common metric used in the interaction measures149
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described above. It is often computed using a kernel and a distance metric150

such as Euclidean distance. The proximity measure indicates the average151

number of times where the two entities meet within a spatial buffer of a152

certain threshold δ. Another way to measure spatial proximity is to compute153

the average distance between the entities over a kernel using a similarity154

measure (i.e. distance metric) such as the average Euclidean distance over a155

kernel, Edit distance, Frèchet distance, Hausdorff distance (Alt and Godau,156

1995; Guibas et al., 2000; Konzack et al., 2017).157

Existing dynamic measures quantify the closeness of moving entities in space158

at the same time using user defined spatial and temporal thresholds (Miller,159

2015). This approach involves using a spatial distance buffer around the160

individuals’ location for a certain time window, and if the buffers intersect161

in space and time, it can reasonably be assumed that those two individuals162

possibly interacted or came into contact given the uncertainty in their actual163

locations during the time window. A similar proximity-based approach is164

also applied in current Bluetooth-based contact tracing apps (Sainz, 2020).165

These technologies capture if individuals move in close proximity of each166

other or come to contacts based on the synchronous intersection between their167

Bluetooth signal range areas (i.e. which can be modeled as a spatial buffer).168

Long and Nelson (2013) enhances the definition of dynamic interaction by169

incorporating movement direction (i.e. azimuth) in addition to the distance.170

In their definition, two entities interact when their azimuth shows similarity171

over time. These measures require that the movement of individuals to be172

recorded simultaneously at the same sampling rates. Konzack et al. (2017)173

incorporated a similar measure to identify delayed interaction in trajectories174
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that follow similar paths with a time delay.175

Dynamic interaction measures which are based on a similarity or distance176

metric can be less effective when interacting entities do not follow a sim-177

ilar path simultaneously. These measures are less reliable when movement178

data are collected at different sampling rates or include gaps due to imperfect179

tracking or signal loss. Additionally, these approaches have limited capability180

to identify delayed interactions. In contrast, the potential path area (PPA)181

using the time-geography framework (Miller, 2005) provides a more robust182

method for discovering potential interaction between individuals at different183

time scales (Long et al., 2015; Hoover et al., 2020). The PPA represents184

possible locations that could be occupied by the individual between known185

timestamps given its maximum speed and a time budget. Long et al. (2015)186

showed the intersection of the potential path areas (called “joint PPA”) can187

identify potential locations for interaction between two entities in space and188

time. Hoover et al. (2020) further extended the joint PPA measure to identify189

delayed dyadic interaction (called “temporally asynchronous-joint potential190

path area (ta-jPPA)”) in animal pairs with a user-defined time-distance win-191

dow. In this paper, we enhance the PPA measure to quantify concurrent and192

delayed interactions between dyads and multiple tracked individuals in space,193

and provide a more flexible search approach to trace interaction patterns.194

3. Methods195

3.1. The time-geography framework196

This study uses the time-geography framework (Hägerstrand, 1970) to iden-197

tify potential concurrent and delayed interactions between moving individu-198
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als (hereafter referred to as ‘entities’ in the description of the methodology).199

In time geography, the activity space of a moving entity (i.e. the locations200

that are accessible to the entity) is mapped with a space-time prism in a201

three-dimensional space-time cube (Figure 1a). The prism is anchored at202

two fixed locations Pi and Pj (e.g. representing a pair of origin and desti-203

nation locations or the locations of two fixed activities). The shape of the204

prism is a function of the entity’s maximum speed capacity vmax and the time205

budget (∆t = tj− ti) to travel between the two locations (Miller, 2005). The206

potential path area (PPA) is the projection of the space-time prism on a two-207

dimensional geographic or Euclidean space. The PPAij ellipse delineates the208

spatial locations that are accessible to the moving entity during the interval209

[ti, tj]. Figure 1 illustrates the space-time prism and the potential path area210

of a moving entity between two locations Pi and Pj along its trajectory at211

the time interval [ti, tj].212

Following Long and Nelson (2015), we modify the space-time prism by dy-213

namically varying the maximum speed at different time intervals instead of214

using a fixed vmax for the entire trajectory. Here, vmax for a given time215

interval [ti, tj] is estimated using the speed values vij during the preceding216

time intervals in the data. The premise is that an entity does not always217

move at its maximum speed and the speed varies over time according to the218

entity’s activity type (i.e. commuting, leisure activity, foraging, hunting)219

or its transport mode (i.e. walking, biking, driving, etc.). Given a trajec-220

tory, T = {(x0, y0, t0), (x1, y1, t1), ..., (xi, yi, ti), ..., (xn, yn, tn)}, the maximum221

speed capacity vmax for the time interval [ti, tj] is estimated by a floating222

average of speed over an exponential kernel (Gijbels et al., 1999) of size m, a223
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Pj(xj ,yj ,tj)

di,m

dm,j

general movement direction Ai,m   accessible area during [ti , tm]   

Am,j  accessible area during [tm , tj] 

AAm

PPAi,j 

(a) 3D space-time prism                (b) Potential path area (PPA) 

Pi 
Pj

 ti  

tj

       potential path area between Pi and Pj

accessible area at time tm

function of speed (vmax )

Pi(xi ,yi ,ti)
Pi 

Pj

PPAi,j 

Modified from (Miller, 2005)

Figure 1: Illustration of (a) the space-time prism in a 3D space-time cube; (b) the com-
putation of PPAij as the potential path area in a 2D Euclidean space between tracking
points Pi(xi, yi, ti) and Pj(xj , yj , tj), where 1 ≤ i < j ≤ n and i < m < j. Modified from
Miller (2005).

smoothing constant of α, and an additional error term β using Equation (1).224

In this equation, m is the size of the exponential kernel, i is the index of the225

current point Pi in the trajectory, k is the location in the kernel. The speed226

values of m previous trajectory points contribute to the floating average of227

the speed of the current point si. However, their contribution is decreased228

by a smoothing constant α so that the contributions of the points further229

from the current location in the trajectory are suppressed multiplicatively230

in calculating vij. If α = 1 only the speed value of the current point (vi) is231

considered. The error term β controls the uncertainty of speed in the estima-232

tion of vmax enabling the entity to move faster than the previous speed. The233

parameter β can be set as the maximum rate of speed change (i.e. deviation234

from average speed) for a given behavior. For example, β = 1.25 allows 25%235
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deviation from the current average speed.236

si = α

m−1∑
k=0

(1− α)kvi−k with 0 < α ≤ 1

vmax = β ∗ si (1)

The potential path area between ti and tj, PPAij, can then be computed237

using the estimated vmax and the time budget as shown in Figure 1 and238

Equation (2), following Miller (2005); Long et al. (2015):239

di,m = (tm − ti) ∗ vmax radius of the accessible area during [ti, tm]

dm,j = (tj − tm) ∗ vmax radius of the accessible area during [tm, tj]

AAm = Ai,m ∩ Am,j accessible area at time tm

PPAij = ∪AAm (2)

3.2. Mapping interaction as the intersection between space-time prisms240

Given a trajectory T of length n, a series of space-time prisms between each241

pair of consecutive tracking points (i.e. Pi(xi, yi, ti) and Pi+1(xi+1, yi+1, ti+1),242

where 1 ≤ i ≤ n) can be used to estimate the locations that are accessible to243

the entity along its trajectory. The space-time prisms map the uncertainty244

in the activity spaces of the entities between known GPS locations. The245

intersection between the space-time prisms along the paths of the two moving246

entities can then be used to map the spatiotemporal overlap between their247

activity spaces as potential locations for dyadic interaction in space and time248
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(Long et al., 2015). In a two-dimensional Euclidean space, the intersection249

of the projected pairs of PPAs of the two entities delimits the potential area250

for a dyadic interaction during the time period over which the PPAs are251

calculated.252

Formally, let PPAe1ij be the potential path area between two consecutive GPS253

points Pi(xi, yi, ti) and Pj(xj, yj, tj) of entity e1, and PPAe2kl be the potential254

path area between two consecutive GPS points Pk(xk, yk, tk) and Pl(xl, yl, tl)255

of entity e2. Then, PPAintersect as the potential locations for interaction is256

quantified following Long et al. (2015) using Equation (3). If the time inter-257

vals of the two PPAs are the same or overlapped (i.e. [ti, tj] ∩ [tl, tk] 6= φ),258

then the PPAintersect (Equation 4) indicates a potential direct contact or con-259

current interaction. It is important to note that, the PPAintersect in this case260

represents all the locations that the two individuals could potentially come to261

close contact between the period [ti, tj]∩[tl, tk] and does not necessarily mean262

that the individuals intentionally or directly interacted. However, if the time263

constraint is relaxed (i.e. [ti, tj] ∩ [tl, tk] = φ or [ti, tj] ∩ [tl, tk] ≥ tlapse), the264

PPAintersect at different time intervals can identify potential delayed interac-265

tions via indirect contact after a time lapse tlapse (e.g. e2 goes to the same266

geographic area where e1 visited with a delay tlapse).267

PPAintersect = PPAe1ij ∩ PPA
e2
kl (3)

contact =


no contact, if PPAintersect = φ

concurrent, if PPAintersect 6= φ & [ti, tj] ∩ [tl, tk] 6= φ

delayed, otherwise

(4)
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Although closely related, our method to identify delayed interactions is dif-268

ferent from the one presented in Hoover et al. (2020) in two ways: (1)269

Hoover et al. (2020) consider two additional predefined parameters to set270

a time window tw (time before and after the tracking point) for a de-271

lay (these can be set by the domain expert) to intersect the PPA of en-272

tity e1 at time T1 (ti < T1 < ti+1) and the PPA of entity e2 at time T2273

(ti + twi < T2 < ti+1 + twj), (2) both Hoover et al. (2020) and Long et al.274

(2015) consider a finer resolution time-slicing approach to compute the acces-275

sible space at each time slice T (ti < T < ti+1) for each individual. However,276

our method considers the intersection of the PPAs in space over the entire277

time interval between the consecutive tracking points (e.g. [ti, ti+1]) and278

does not limit the accessible space to a specific timestamp T . Although the279

time-slicing approach makes PPAintersect more explicit to a specific times-280

tamp T , it poses several limitations: (a) it requires tracking data of both281

entities to be of a regular and perhaps an equal sampling rate, so that the282

interval can be sliced to a set of equal time increments δ (a predefined pa-283

rameter); (b) it increases the computation cost of recalculating PPAintersect284

at much higher frequencies per increment δ (i.e. ti < T + kδ < ti+1 where285

k = ti+1−ti
δ

) per entity, while ORTEGA only computes one PPA per interval286

[ti, ti+1] per entity; and (c) it assumes that the entities always move at con-287

stant speed Vmax between the two consecutive tracking points and therefore288

the highest probability of interaction always occurs along the beeline between289

the two consecutive tracking points of each entity. Moreover, in contrast to290

Hoover et al. (2020), our approach does not require predefined time-distance291

tw thresholds to identify delayed interaction over a fixed time lag period.292
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As explained later in Section 3.3, we develop a more flexible approach for293

tracing delayed interaction by incorporating an object-oriented scheme and294

a space-time index-based search algorithm to store and retrieve calculated295

PPAs and their intersections regardless of intersection time and without a296

need for frequent recalculation of PPAintersect on the fly for each specified297

time lag.298

3.3. ORTEGA methodology to trace contact patterns in space and time299

In order to trace contact patterns in the forms of concurrent and delayed300

interactions in movement data sets, we propose an Object-oRiented TimE-301

Geographic Analytical method (ORTEGA). First, we apply an object-oriented302

scheme which constructs trajectories as a set of interacting moving objects303

(or agents) to facilitate tracing possible PPA intersections (see Section 3.3.1).304

Then, the interaction analysis is applied using the PPAintersect measure and305

a spatiotemporal indexing approach to optimize the extraction of concurrent306

and delayed interactions via potential direct and indirect contacts between307

trajectories (see Section 3.3.2). The object-oriented model is used as the308

building block of our method to enhance the capacities of time-geography309

for a more complex and flexible interaction analysis, especially when more310

than two entities are involved. For example, it enables storing spatial and311

temporal characteristics of the PPAs and their intersections in the history312

of the data and using the information on demand. It can store information313

on possible interactions between PPAs of multiple agents as their properties314

(e.g. the time and location of first interaction, duration and number of inter-315

actions, etc.). The model is flexible, for example, to incorporate ‘behaviors’316

for the PPA ellipses to take actions when an interaction is detected or when317
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the time lag is too long for a meaningful interaction.318

3.3.1. The object-oriented scheme319

The object-oriented model is an important aspect of ORTEGA. Using a set320

of Class and Object definitions, the model enables moving entities to act321

like smart agents as self-contained objects with a set of properties and be-322

haviors that can interact with each other. In this model, a MovingObject323

class (Güting et al., 2000) is used to represent the moving entities. The324

UML diagram of the proposed object-oriented scheme is provided in Fig-325

ure 2. Each MovingObject can have a Trajectory object which itself is a326

series of MovingPoint objects. The proposed scheme models a space-time327

prism object (STPO) as an object class constructed from sequential pairs328

of MovingPoint objects. Each STPO has a unique identifier and records329

the intersections with the STPO of other Trajectory objects as an array330

of intersected STPOs (or in short iSTPO). The array iSTPO stores all331

possible intersected PPA ellipses for each STPO along the Trajectory of332

each MovingObject in the data set. This way, the information about the333

location and time of intersected PPAs are stored and can be retrieved when334

needed.335

3.3.2. Interaction analysis algorithm336

Figure 3 presents the algorithm for tracing possible contacts in movement337

data of multiple entities to identify concurrent and delayed interactions.338

Given a database of GPS tracking data including M moving objects, the339

Trajectory objects are first constructed using the object-oriented model de-340

scribed in Section 3.3.1, following a trajectory preprocessing step (Dodge341
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Figure 2: The object-oriented model applied in ORTEGA for moving object interaction
analysis.

et al., 2009) to eliminate outliers and erroneous data. Next, the space-time342

prisms and their corresponding potential path areas are calculated along the343

Trajectory of each MovingObject. These are stored as arrays of STPO and344

PPA objects embedded in Trajectory objects. In order to optimize the com-345

putation in large tracking data sets, a spatial and temporal indexing method,346

a ‘compressed kd-tree’ or CKD-tree (Caro et al., 2016; Bentley, 1975), is ap-347

plied based on the centroid points of the calculated STPOs. This way, only348

the PPA objects that are closer in space and within a given temporal interval349

are considered for interaction analysis.350

In order to trace contacts between M moving entities, one entity is considered351

as a reference MovingObject (e.g. MOr) (Figure 3). Then using the CKD-352

tree indexing, potential STPOs that are proximate to the STPOs of the353

reference MOr are retrieved. Once potential STPOs are retrieved, their354
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Figure 3: Workflow of the interaction analysis algorithm used in ORTEGA.

PPA ellipses are intersected with the PPA ellipses of the references MOr.355

For any pair of PPArij (i.e. the PPA of the reference MOr at interval [ti, tj])356

and PPAmkl (i.e. the PPA of the mth entity at interval [tk, tl]) that their357

intersection is not null (PPAintersect 6= φ), the intersecting PPAmkl is stored358

in the iSTPO array for further analysis. The advantage of this approach359

as compared to the existing dyadic interaction analysis techniques is that, it360

can be applied simultaneously to multiple entities and enhanced using parallel361
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computing. Since the identifiers, time and location of the intersected areas362

(i.e. PPAintersect) are stored in the iSTPO array as properties of a STPO363

object, the approach is flexible enough to retrieve all possible intersections364

among a group of moving entities. This is also useful for the detection of365

different types of movement patterns such as leader and follower, avoidance,366

or divergence.367

To detect concurrent interaction, the intersected PPAs for which [ti, tj] ∩368

[tk, tl] 6= φ are selected. These can be further analyzed to calculate the length369

of contact, the number of MovingObjects that the individual came into close370

contact, and the frequency of contacts. Delayed interaction can be extracted371

from the intersected PPAs stored in iSTPO using a time window. For372

example, we can retrieve all MovingObjects that visited the same location373

within a certain time of each other.374

4. Case Study I: Analysis of Dyadic Interactions in Animal Move-375

ment376

We evaluate the proposed performance of the methodology on mining dyadic377

interaction patterns between tigers and leopards in the Western Forest Com-378

plex in Thailand. The purpose of this case study is twofold: (1) to evaluate379

ORTEGA in analyzing dyadic movement interaction in a Euclidean space,380

(2) to conduct a comparative evaluation of ORTEGA and the proximity-381

based approach on GPS tracking data that are collected at relatively coarse382

frequencies and different sampling rates (15 min to 1 hour).383
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4.1. Animal GPS tracking data set384

Four tigers and one leopard were captured and fitted with VECTRONIC385

Aerospace GmbH collars (Simcharoen et al., 2014). Location data were ac-386

quired at 1 hour or 15 minute intervals over a period of four months as387

summarized in Table 1.388

Table 1: The duration and temporal intervals of tiger tracking data.

animal ID No.
points

temporal
resolution

start date end date home
range
area
(km2)

tiger 20080 1798 1 hour 2016-04-30 2016-09-16 57.12
tiger 20083 2751 1 hour 2016-04-30 2016-09-17 56.35
tiger 22901 4529 variable 2018-09-27 2019-02-02 49.68
tiger 22904 1998 1 hour 2018-09-27 2019-02-02 60.67
leopard 31898 7170 15 min 2018-09-27 2019-02-02 40.57

4.2. Tiger-tiger interaction389

A delayed interaction occurs when a tiger scent marks a tree and that mark390

is subsequently inspected hours or days later by another tiger. Tigers have391

large home ranges and scent marks serve as message boards to alert other392

tigers of territorial boundaries, and in the case of a female, her reproductive393

status. A female tiger scent marks intensively starting a week before she394

comes into estrous (Smith et al., 1989). A male patrolling a large territory395

encompassing several females is alerted that the female will soon be receptive.396

When the female becomes receptive, she reduces scent marking and begins397

repeated calling. The male response then brings them together (Ahearn398

et al., 2001). Scent marks that are detected and often over-sprayed up to399

three weeks later serve to demarcate territorial boundaries while reducing400
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the likelihood of direct encounters that can result in serious injuries to both401

animals and sometimes mortal injuries to the loser.402

Here, we demonstrate the applicability of the method to study the interac-403

tion between two female tigers (IDs: 20080 and 20083) sharing a boundary404

along one side of their home ranges. Figure 4a illustrates the GPS data and405

home ranges of the two tigers during the tracking period between April and406

September 2016. The home ranges are calculated as the convex hulls of 95%407

of GPS points (Worton, 1987). As seen in the 3D space-time cube repre-408

sentation of the tracking data in Figures 4a-b, the two tigers patrol their409

shared boundary often asynchronously, and rarely have direct encounters.410

These asynchronous messages reduced the likelihood of costly aggressive en-411

counters (Smith et al., 1989). We applied our method to extract concurrent412

and delayed interactions between the two tigers. The yellow PPAs in Figure413

4c illustrate the interactions between the two tigers allowing three hours.414

Figure 4d visualizes the frequency of detected interactions over a range of415

time lags from 30 minutes up to five weeks. To be specific, each bar repre-416

sents the frequency of the first visit of one tiger to the same location visited417

by the other tiger (i.e. first ellipse intersection) with a certain time delay.418

There are 53 close encounters within 3 hours out of a total of 6756 detected419

spatially intersected PPA pairs (Table 2). As the histogram shows, most of420

the interactions between the two tigers occur within one or two days of each421

other when the tiger scent appear to be the strongest. Few yellow marks422

in Figure 4c and low frequencies in Figure 4d within three hours indicate423

the small likelihood of tigers directly encountering each other. The visits to424

the same locations increase after one week and last until week three. Our425
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findings here support field observations in Thailand using camera traps and426

by human observers which indicate that tigers appear to detect scent marks427

only at a close spatial range (several meters at the most). In our field ob-428

servations, we can detect a mark for up to 21 days. However, the olfactory429

acuity of tigers is clearly much higher than humans; therefore, we see visits430

to the same locations up to even five weeks.431

(a) GPS tracking data and home ranges (b) 3D space-time cube representation 

(d) Frequency of interactions(c) Interaction between the two tigers

Figure 4: Interaction analysis of two female tigers (IDs: 20080 shown in blue and 20083
shown in red) sharing a boundary: (a) 2D representation of GPS tracking data and home
ranges; (c) 3D space-time cube representation of the tigers’ tracking data; (c) Intersected
PPAs highlighted in yellow indicates interaction allowing three hours of delay; and (d)
the frequency of interactions (first visits to the same locations) detected between the two
tigers over a range of time lags.
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Table 2: The total number of detected PPA intersections (spatial) among tigers and
leopards and the number of close encounters (interaction allowing three hours).

animal 1 animal 2 total PPA intersec-
tions

close encounters

tiger 20080 tiger 20083 6756 53 (0.784%)
tiger 22901 tiger 22904 40260 31 (0.077%)
leopard 31898 tiger 22901 41410 2 (0.005%)
leopard 31898 tiger 22904 41255 107 (0.259%)

4.3. Tiger-leopard interaction432

This experiment uses GPS tracking data of two tigers 22901 (young male)433

and 22904 (female) and a leopard 31898 (male) over the period between434

September 2018 and February 2019. Figure 5a (in the middle) illustrates435

the tracking data and home ranges of the three carnivores. The two tigers,436

a resident, breeding female and a subadult, non-reproductive male, share a437

portion of their home ranges. The leopard’s home range overlaps with both438

tigers, but is completely within the home range of tiger 22904. The two tigers439

were originally tracked with a sampling interval of one hour; however, the440

tracking frequency of tiger 22901 was increased later to 15 minutes. These441

data help to analyze the impact of temporal granularity (i.e. sampling rates)442

of tracking on the analysis of animal interaction. With this experiment, we443

demonstrate that in contrast to a simple proximity-based approach, in which444

tracking data must be of the same sampling rate and collected synchronously,445

our method is capable of handling tracking data of variable sampling rates.446

The results of interaction analysis using a three hour window between tigers447

22901 and 22904 indicate that these two animals only came into close contact448

31 out of 40260 times when their spatial path crossed (Figure 5b). This449

limited direct interaction over a period of four months may be explained by450
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the fact that there is no territorial competition between tigers of the opposite451

sex. Also, the male is not yet of breeding age and the female is raising young452

so she is not receptive. In contrast, females 20080 and 20083 are territorial,453

breeding females each defending a territorial boundary. They show a much454

higher rate of potential concurrent interactions, as they patrolled and likely455

marked their common boundary (see Section 4.2 and Table 2).456

The interaction analysis applied on this data set suggests that the leopard457

tends to avoid the two tigers in the area. The number of delayed interac-458

tions is much higher between the leopard and the two tigers with very few459

close encounters detected (Figure 5c-d). Out of the total of 41410 spatially460

intersecting PPA pairs, only two incidences of close contacts (i.e. encounter461

in space and time allowing three hours) were detected between tiger 22901462

and the leopard (Figure 5c). Figure 5d highlights 107 close contacts within463

a three hour window which occurred in the shared home range areas of tiger464

22904 and the leopard, out of the total of 41255 spatially intersecting PPA465

pairs. It is interesting to note that the number of near-concurrent inter-466

actions of the leopard with tiger 22904 is relatively higher than with tiger467

22901, as the leopard’s home range is contained within the home range of468

tiger 22904. Therefore, the larger shared space increases the probability of469

having close encounters between the two animals. The histograms in Figure470

5b-c represent the frequency of intersecting PPAs over a range of time lags471

from 30 minutes to 24 hours. The histogram suggests that the animals hap-472

pen to visit the locations visited by the other animal with a delay of 24 hours,473

while they keep distance for at least a few hours of each other. Based on474

biological observations delayed interaction between tigers and leopards after475
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(c) Interaction between 
leopard 31898 and tiger 22901 

(d) Interaction between 
leopard 31898 and tiger 22904 

(b) Interaction between 
tiger 22901 and tiger 22904 

(a) Tracking data and home ranges

Figure 5: Results of tiger-leopard interaction analysis using (a) GPS tracking data of two
tigers 22901 (in red) and 22904 (in green) and one leopard 31898 (in blue). Map and the
frequency of interactions over a range of time lag (b) between tigers 22901 and 22904; (c)
between tiger 22901 and leopard 31898; and (d) between tiger 22904 and leopard 31898.
The PPA intersections allowing three hours of delay are highlighted in yellow.

more than several hours does not have a significant meaning. In contrast,476

avoidance, quantified as little to no concurrent interaction or close contact477

within few hours, which is also confirmed in our interaction analysis, is key478

to the survival of the leopards when sharing the same geographic space with479

tigers.480
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As a simple experiment to compare ORTEGA to the proximity-based ap-481

proach and their sensitivity to data granularity, we applied both techniques482

on the 15-min data set of tiger 22901 and leopard 31898 and re-sampled483

the data to reduce its granularity (see Table 3). As the results suggest, the484

proximity-based approach is more sensitive to the sampling rate, while both485

approaches result in more false negatives as the sampling rate decreases.486

Table 3: Delayed interaction between tiger 22901 and leopard 31898 within 4 hours over
different sampling rates. A buffer size of 428 meters is used for the proximity-based
approach to detect the same number of interactions as in the ORTEGA approach using
the original data.

Data completeness
(data granularity)

ORTEGA proximity

100% (15-min) 54 54
50% (30-min) 32 8
25% (1 hour) 4 0

5. Case study II: Tracing Contacts Among Multiple Individuals487

In this case study, we evaluate the performance of the methodology on trac-488

ing contacts between a group of people from the same or different households489

using fine resolution GPS tracking data in a network space. We further in-490

vestigate the impact of varying temporal scales on the outcomes and evaluate491

the results in comparison to the proximity-based approach. As compared to492

the previous case study in which dyadic interactions of only two individuals493

were analyzed at the time, here we evaluate the method in identifying con-494

current and delayed interactions in a larger network of people. This can be495

useful in contact tracing applications when detection of possible encounters496

between individuals is critical to monitor and estimate infection exposure.497
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5.1. Human GPS tracking data set498

This study uses the GPS component of the 2012-13 California Household499

Travel Survey (CHTS) (NuStats, 2013), which includes human movement500

tracking data over a three-day period at a temporal resolution of three sec-501

onds. The data were collected using GlobalSat GPS Data Loggers that can502

be worn on the waist, clipped to a purse or backpack, or dropped in a pocket.503

From the CHTS data set, which covers most of California, we only used the504

data of respondents from San Jose as a test case. This subset contains GPS505

traces of 402 persons from 176 households and spans from February 3, 2012506

to January 31, 2013 (total of 75,770 GPS tracking points). Each GPS record507

contains information including: a person’s anonymous ID, location in longi-508

tude and latitude format, and local time. We only considered the GPS data509

from 5 am to 23:59 pm because humans mainly stay at home during the510

night and we were interested in day-time interactions. The original data are511

in much finer resolution than what is needed for the purposes of interaction512

analysis (i.e. human movement over three seconds might not be significant).513

Therefore, we down-sampled the data into 1-minute intervals. The original514

3-second sampling rate data result in very narrow PPAs which are basi-515

cally equivalent of using a beeline between the consecutive GPS points. Such516

fine resolution GPS tracking data can perhaps improve the performance of517

the proximity-based interaction analysis methods, but it is very expensive518

(computationally and financially) to collect tracking data at this very fine519

sampling rate. Our method does not require such fine sampling rate as the520

potential path area inherently incorporates the uncertainty of positioning521

and the accessible locations at times that the GPS data are not recorded.522
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Table 4, summarizes the results of applying interaction analysis on this data523

set. The results are described in the following sections. The first three exper-524

iments present the outcomes of ORTEGA on tracing concurrent interaction525

(defined as contacts within 5 minutes) as compared to a proximity-based ap-526

proach (see Section 5.2). The last four experiments summarize the outcomes527

of delayed interaction analysis using ORTEGA for a range of time lags from528

30 minutes to 3 hours (see Section 5.3).529

Table 4: Number of concurrent and delayed interactions detected among individuals of the
same and different households. As a reference for comparison to ORTEGA, the outcomes
of the proximity-based approach for concurrent interaction analysis using two buffer sizes
are provided.

Exp. method type parameters within
house-
hold

outside
house-
hold

total

1 proximity concurrent 5 min, 100 m 187 12 190
2 proximity concurrent 5 min, 500 m 198 59 257
3 ORTEGA concurrent 5 min 202 149 351
4 ORTEGA delayed 30 min 250 376 626
5 ORTEGA delayed 1 hour 279 542 821
6 ORTEGA delayed 2 hours 299 708 1007
7 ORTEGA delayed 3 hours 306 820 1126

5.2. Tracing concurrent interactions and comparison to the proximity-based530

approach531

The goal of this experiment is to compare ORTEGA to the proximity-based532

approach in detecting concurrent interactions between the 402 participants533

in the data set, and investigate the influence of temporal scale (i.e. sampling534

rate) on both methods. The proximity-based approach is implemented by535

intersecting spatial buffers of a certain distance threshold around synchronous536

GPS tracking points. In practice, often a user-defined time threshold is537
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considered to relax the restriction of requiring synchronous fixes which can538

be hard to achieve in real tracking data. Here, a five-minute time lag is539

considered to extract concurrent interactions using both approaches. In these540

experiments, two buffer sizes (i.e. 100 meters in Exp. 1 and 500 meters in541

Exp. 2) are considered (see Table 4). These buffer sizes are considered to542

account for average distance traveled by intermittent or continuous walking543

over a five-minute interval. The average distance traveled by walking is 100544

meters over one minute. Our proposed ORTEGA approach is not reliant545

on a buffer threshold or a set time window. Although in this experiment546

we considered the same 5-min time window to make it comparable to the547

proximity-based approach.548

Figure 6 represents two networks generated using Gephi (Bastian et al., 2009)549

based on the detected concurrent interaction (close contacts allowing 5 min-550

utes delay) among all individuals using (a) the proximity-based approach551

(with a buffer size of 100 m), and (b) the ORTEGA approach. The networks552

include 402 nodes (i.e. each node represents one person). The edges repre-553

sent the interactions between every pair of two persons. The lighter pink to554

beige represent less to no interactions, while more saturated pink to purple555

colors represent higher number of interactions. A comparison between the556

two networks (Figure 6 and Table 4) suggests that our approach is capable557

of finding more potential direct contacts between individuals, while a higher558

degree of concurrent interaction is detected among individuals of the same559

household. The network generated using ORTEGA unveils some clusters560

grouping people who interacted more with their own household members,561

while they had less close contacts with people outside their households. This562
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may indicate households with children who mainly traveled together and had563

fewer encounters with other individuals in the data set. A closer look into564

the generated network using ORTEGA reveals more details on the frequency565

of interactions between individuals within the same households and their566

connections to individuals of other households. For example, the zoomed-567

in network of person H01P01 (from household H01) in Figure 6 illustrates568

that she/he interacted closely with three of her/his household members and569

came into close contacts with four other persons from different households570

over the course of the three days tracking period (see also Table 5). The571

histograms in Figure 6 indicate that the proximity-based approach in this572

case missed most of the close contacts among people outside households as573

compared to our approach. Therefore, it resulted in a less structured and574

more homogeneous network with more isolated nodes. It is worth mentioning575

that the proximity-based approach resulted in a higher number of individ-576

uals with no direct contact as compared to our approach (isolated nodes in577

the middle of the networks). However, based on the CHTS survey data we578

know that most of these individuals lived and interacted with at least one579

other person. The data include 154 (out of 176) households with at least two580

persons. According to the histograms in Figure 6, ORTEGA also identified581

a higher number of possible close contacts between individuals of different582

households. This result indicates a higher chance of encountering more peo-583

ple from other households in a shared location at the same time (e.g. a584

grocery shop). However, the proximity-based approach could only identify585

close contacts between a handful of outside household individuals.586

The results indicate that in general the proximity-based approach detects587
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(a) Direct interactions applying the proximity-based approach

(b) Direct interactions applying the ORTEGA approach 

Figure 6: Illustration of the networks of individuals who came into close contacts (allow-
ing five minutes time lag) extracted applying (a) the proximity-based approach (using a
buffer size of 100 m) (b) the ORTEGA approach. The histograms show the frequency
of the concurrent interaction incidences detected between people of different households.
ORTEGA detects more concurrent interactions between people of different households as
compared to the proximity-based approach. The zoomed-in network shows that person
H01P01 interacted concurrently the most with person H01P04 from their own household.
They also came into close contact with four other people from three different households.

a smaller number of interactions as compared to our approach. The de-588

tected number of interactions increases when a larger buffer size is used. For589

example, with a buffer size of 500 meters (which is quite large for a meaning-590

ful human interaction), the proximity-based approach can detect almost the591

same number of interactions as ORTEGA did in terms of concurrent contacts592
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among individuals of the same households. However, household members593

tend to stay in close proximity to each other over a period of time when they594

travel together. These outcomes show that the proximity-based approach595

can significantly under-estimate the number of contacts given the buffer size.596

However, ORTEGA detects more potential concurrent interactions as it con-597

siders possible accessible locations to the moving entities. This comparison598

indicates that ORTEGA may be better suited to detect potential concurrent599

interactions (or close encounters) between individuals of different households600

as it extracts all possible cases for potential interactions. This observation is601

especially important in the context of contact tracing for infectious diseases602

and risk exposure in which an over-estimation might be more desired than603

the under-estimation of potential risky contacts. ORTEGA enables detection604

of possible contacts between individuals who may not travel together over605

an extended period of time and only come into contact for a short period of606

time. For example, when two individuals from different households happen607

to be in the same location (e.g. a grocery store or a gas station) at the same608

time for a few minutes. This is a key advantage of using a time-geographic609

approach over the proximity-based approach, which can under-estimate con-610

tacts given the selected buffer size and time threshold. The proximity-based611

approach might miss contacts when the locations of individuals have not been612

recorded at exact time when they happened to be close to each other or when613

a small buffer distance is used to represent the proximity (see Section 6 for614

more information). Using a larger temporal threshold and bigger buffer size615

may alleviate this problem but increases the uncertainty in contact tracing.616

The difference between the two approaches becomes even more pronounced617
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when the GPS sampling rate decreases (i.e. coarser temporal granularity).618

Figure 7 demonstrates the influence of temporal scales on concurrent in-619

teraction analysis (allowing 5 minutes) using both approaches for sampling620

rates of 1 min, 5 min, 10 min, 20 min, and 30 min. The proximity-based621

approach seems to be more prone to data granularity for outside household622

interaction when individuals are not tracked synchronously. The number of623

direct contacts identified by the proximity-based approach slightly decreases624

within households (Pearson’s R = −0.77, P − value = 0.1) and drops to zero625

outside households (Pearson’s R = −0.58, P − value = 0.3) as the sampling626

rate decreases. In contrast, the potential path area used in ORTEGA takes627

into account the potential locations accessible to the individuals between628

known GPS recordings. And therefore, while the number of identified con-629

tacts stays the same for people within households using ORTEGA (Pearson’s630

R = 0.05, P − value = 0.9), the chance of identifying potential interactions631

between individuals of different households becomes higher, although not632

significantly, as the sampling rate decreases due to larger PPAs (Pearson’s633

R = 0.79, P − value = 0.1).634

5.3. Tracing delayed interaction through indirect contacts635

Using ORTEGA and a range of time lags, the delayed interactions were636

computed in Table 4. The networks representing delayed interactions are637

provided in Figure 8. As the time lag increases, more distinct clusters are638

detected and the networks become more fragmented. These clusters represent639

individuals of both inside and outside households who share the same spatial640

patterns (i.e. spatial interaction) but may not necessarily encounter at the641

same time. The longer tails in the histograms resulting from longer time lags642
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Figure 7: The influence of temporal scale on identifying concurrent interactions (allowing
5 min) using ORTEGA and the proximity-based approach (of 100 m buffer) between
individuals of the same household and outside households.

represent the higher number of interactions detected among individuals of643

different households. This result indicates individuals of different households644

might visit similar locations over longer delays. That is, the chance of using645

the same space by more individuals becomes higher over a longer time period.646

The clusters in the fragmented network may indicate the households from the647

same neighborhoods who tend to use the same geographic space for their daily648

activities. With these clusters, we can detect a set of individuals that have649

similar spatial patterns but not necessarily following the same schedule. For650

example, people who go to the same gym or the same grocery shop but at651

different times of the day. This is the powerful aspect of our method which652

is capable of tracing delayed spatial interactions.653

A closer look into the network of person H01P01 (as shown in Figure 6) can654

inform us about how many individuals this person came into contact syn-655

chronously or visited the same location as other individuals asynchronously656
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(a) Delayed interaction within 30 min (b) Delayed interaction within 1 hour

(c) Delayed interaction within 2 hours (d) Delayed interaction within 3 hours

Figure 8: Illustration of the networks of individuals who had delayed interaction (i.e.
visited the same location) over a range of time lags (30 min, 1 hour, 2 hours, 3 hours). The
histogram shows the frequency of different number of delayed contacts between individuals
outside households.
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(Table 5). The outcomes indicate that this person interacted mostly with657

person H01P04 from the same household and person H02P02 from household658

H02. Overall, person H01P01 was in close contact (met with or visited the659

same locations at the same time) with four individuals outside the household660

(from households H02, H04, and H06) over the course of a three day tracking661

period. She/he visited the same locations as 10 other individuals from six662

other households after a temporal lag of 30 minutes to three hours. This is663

significant for finding possibility of exposure to viruses or other hazardous664

conditions that may last in the air for a period of time. In total, this per-665

son had concurrent or delayed contacts with 13 members of seven different666

households including their own household.667

Table 5: Cumulative number of concurrent and delayed interactions detected between
person H01P01 and other individuals within a range of time lags. The three individuals
above the horizontal line are from the same household as person H01P01, while the others
are from six different households (H02-H07).

interacted
with

within
5min

within
30min

within
1hour

within
2hours

within
3hours

H01P02 29 142 190 280 327
H01P03 9 40 69 173 303
H01P04 408 755 1059 1372 1476

H02P01 0 22 40 44 56
H02P02 15 19 63 104 137
H03P02 0 15 21 34 41
H04P01 0 0 25 46 48
H04P03 6 12 15 28 28
H04P04 0 0 11 11 15
H05P01 0 4 4 7 12
H06P01 5 8 27 34 49
H06P02 3 6 56 61 64
H07P01 0 9 9 17 17
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6. Discussion668

In this section, we discuss the performance and efficacy of the developed669

methods in light of the results described above. The strengths and weaknesses670

of the approach are presented in comparison with the classic proximity-based671

interaction analysis approach which is commonly used in the contexts of672

animal interaction and human contact tracing.673

6.1. Method parametrization674

Computation of the potential path area requires two parameters which can675

be derived from data: the time budget ∆t (which is typically calculated676

from the timestamps of known GPS points) and the maximum speed capac-677

ity Vmax. Our proposed approach calculates the maximum speed parameter678

based on the data itself by applying a floating average over an exponential679

kernel instead of using a predefined fixed value for maximum speed. There-680

fore, the PPAs are computed with the actual (data-driven) speed capacity681

of the individual for different behavioral modes and at each given time. The682

maximum variation from the average speed can also be calculated from the683

data itself. We allowed 25% variation from the computed average speed.684

This avoids having unreasonably large PPAs by setting a fixed large Vmax685

for the entire data set, which may result in more false positives in tracing686

potential contacts.687

The proximity-based approach requires setting a predefined distance thresh-688

old as the buffer size, as well as a user-defined time threshold for the search689

window to relax the requirement of having synchronous fixes. Setting larger690

distance and time thresholds result in a higher number of contacts. This is691
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a major limitation of the proximity-based approach. In contrast, ORTEGA692

is not reliant on a distance threshold or a set time window. Although in693

the experiments we considered the same five minutes time window for con-694

current interactions to make ORTEGA comparable to the proximity-based695

approach. Figure 9 schematically demonstrates the difference between buffer696

intersection in the proximity-based approach versus the PPA intersection697

used in ORTEGA in terms of sensitivity to buffer size and data granularity.698

Figure 9a shows a smaller buffer size might lead to more false negatives and699

under-estimation of contacts in the proximity-based approach.700

T1

T1

T3 T3

T2
T2

T4
T4

(a) Sensitivity to bu�er size (b) Sensitivity to data granularity

resampling

Figure 9: Illustration of method sensitivity to (a) buffer size and (b) data granularity. The
proximity-based approach is highly sensitive to the buffer size and temporal resolution of
the data. The ORTEGA approach does not rely on a buffer size and it outperforms the
proximity-based approach when the data is collected at lower frequencies.

In comparison to previous time-geographic approaches (Hoover et al., 2020;701

Long et al., 2015), ORTEGA is flexible to retrieve delayed interactions using702

any time window in the history of the data and does not depend on several703

time slicing and time window thresholds to compute concurrent and delayed704

interactions.705
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6.2. Data granularity and temporal scale considerations706

The original proximity-based approach is only able to detect proximate points707

collected at synchronous intervals unless this restriction is relaxed through708

a search window or kernel. Depending on the search window size, it might709

miss interactions that happened between known GPS points. For example,710

it might miss the cases where the individuals were close to each other but711

moved away from each other between two GPS fixes or when individuals712

move at different rates. In contrast, ORTEGA does not require synchronous713

sampling. The overlap of potential path areas of two individuals indicates714

their potential interaction between consecutive GPS recordings.715

Overall, both approaches are sensitive to the temporal resolution used in716

data collection (Figure 7). However, the proximity-based approach results in717

more underestimation or false negatives when data of coarser sampling rate718

is used. In Figure 9b notice the missed proximate points at time T2 after719

re-sampling using the proximity-based approach.720

A weakness of ORTEGA is that for data of coarser sampling rates (e.g. 1721

hour) it generates larger PPAs as compared to higher-resolution tracking722

data (e.g. 15 min) (Figure 5d). Although it is possible to intersect PPA723

pairs of different resolutions–which itself is a strength when compared to724

the proximity-based approach, their intersections results in a higher level of725

uncertainty in the detection of interaction. This situation may lead to more726

overestimation or false positive cases for interaction as explained in Section727

5.2. For example, the larger PPA of one hour duration for tiger 22904 might728

contain or intersect with several smaller 15-min PPAs of the leopard and it729

might not be possible to determine actual interaction time over the one hour730
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period.731

6.3. Computation consideration732

The efficiency of ORTEGA lies in lowering the computation cost that is as-733

sociated with the retrieval of potential concurrent and delayed interactions734

among multiple individuals. This is incorporated via two key elements of735

the methodology: (1) ORTEGA applies an object-oriented model to create736

MovingObjects as ‘smart agents’ which can retain information about the737

PPAs and their intersections along the trajectories of individuals. This way,738

the PPA polygons of MovingObjects only need to be computed and inter-739

sected between different tracks once. The PPAintersects and their associated740

time intervals are also stored as properties of PPAs for efficient retrieval of741

delayed intersections. (2) Using a CKD-tree indexing technique, ORTEGA742

applies space-time indexing to limit the search area for potential interactions743

to smaller regions and restricted time windows when needed, so the search744

does not incorporate the entire trajectories of all MovingObjects. This of-745

fers a more efficient approach as compared to the method proposed in Hoover746

et al. (2020), by reducing the need for on-the-fly and redundant computation747

of pairwise PPA intersections over long trajectories at finer time increments748

and for different time windows to identify potential delayed interactions. OR-749

TEGA retains all possible spatial intersections between PPAs, and therefore,750

potential delayed interactions can be retrieved on demand using an optimized751

search through the CKD-tree indexing.752

In comparison with the proximity-based approach which relies on a distance753

threshold comparison, the time-geographic interaction analysis approaches754

(as in ORTEGA) are overall more computationally intensive as they rely755
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on PPA ellipse computation and polygon intersection. To give a sense of756

the computation speed of both approaches, the interaction analysis between757

two GPS tracks (total of 265 points: track #1 with 183 GPS points and758

track #2 with 82 points) takes 3.88 seconds using ORTEGA (allowing 5 min759

delay) and 423 milliseconds using the proximity-based approach (allowing 5760

min delay, 100 m buffer) to run using a Macbook Pro laptop with 2.3 GHz761

8-Core Intel Core i9 processor, 16 GB RAM. In practice, the computation762

speed of the proximity-based versus PPA approaches can greatly vary based763

on the indexing methods used and the distribution of GPS points in the data.764

Though spatial and temporal indexing on larger data sets are necessary for765

both proximity-based approaches and PPA approaches to avoid exponential766

runtime growth, the indexing of simple radius proximity-based approaches767

is much simpler than index creation and index querying of multi-sized PPA768

polygons.769

For both ORTEGA and proximity-based approaches, first the GPS tracking770

data sets need to be preprocessed to remove erroneous points and outliers.771

The proximity-based approach involves a search through the list of points to772

pick the proximate points with a time difference of less than the minimum773

search window threshold. The search can be improved using an indexing ap-774

proach, especially for larger data sets. The ORTEGA approach involves cre-775

ating PPA ellipses for consecutive GPS points in the path of each trajectory.776

These collections of PPAs are then intersected while the computation is opti-777

mized by taking advantage of the characteristics of object-oriented program-778

ming and the CKD-tree indexing as described in the methodology. In our779

experiments both the proximity-based and ORTEGA approaches were con-780
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ducted in an object-oriented fashion to retain information about the points781

that interacted in the history of the data. This approach provides advan-782

tages and flexibility over a non-object-oriented approach, when dealing with783

delayed interactions.784

6.4. Application considerations and the context of interaction785

As shown, ORTEGA is a powerful tool to trace not only concurrent interac-786

tions, but also delayed interactions via indirect contacts in movement data787

of both animals and humans. However, it is important to note that the out-788

comes require a careful interpretation and perhaps consultation with domain789

experts. For example, it is important in any case study to contemplate a790

meaningful set of the conditions or criteria for concurrent and delayed in-791

teractions prior to the analysis. Here, we used domain expertise of a tiger792

biologist and an expert in travel behavior and transportation to set meaning-793

ful parameters and interpret the results. Moreover, we used field observations794

to back up the selected parameters. For example, we knew how long a tiger795

scent might last in nature for a meaningful delayed interaction.796

It is important to note that depending on the setting of the case study797

and data granularity, the detected concurrent interactions or close contacts798

might not actually mean that the individuals met or socially interacted. For799

example, if there is a busy coffee shop and two individuals arrive at the coffee800

shop within 5 minutes of each other, stay for an hour or so, then leave at the801

same time, it can reasonably be assumed that they interacted because they802

planned a meeting with each other for a set time. This is in contrast to two803

individuals who may have been in a coffee shop together for an hour or so804

of overlapping time, but arrived and left at totally different times, indicating805
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they were strangers who coincidentally were in the same coffee shop and806

did not interact. Other points to consider when analyzing interaction or807

tracing contacts are the impact of mode of transportation, physical or natural808

barriers, and 3D spaces in detecting meaningful contacts. For example, the809

interaction might not be meaningful when movement happens in separate810

cars on the same road or when moving individuals are separated by walls or811

different floors in multistory buildings or when animals are separated by a812

natural barrier such as a river.813

7. Conclusion and Future work814

This study presented a new object-oriented time-geographic analytical ap-815

proach (ORTEGA) to trace space-time contact patterns in movement data.816

The method is capable of detecting direct and indirect contacts to identify817

concurrent and delayed interactions between humans or animals in space and818

time. In contrast to existing approaches which are limited to the interaction819

analysis of two individuals, ORTEGA enables tracing interaction patterns820

among a group of moving individuals. Our approach uses the potential path821

area between GPS fixes to measure potential exposures that might have been822

missed due to small data gaps or irregular sampling rates. These are ma-823

jor problems in the proximity-based approaches which are employed in most824

existing contact tracking technologies using Bluetooth or GPS in cellphones.825

We applied and tested the proposed method on two different case studies826

using real GPS tracking data of animals (tigers and leopards) and humans827

(people of the same and different households) of different resolutions. The828

results showed that the proposed ORTEGA method performs better than829
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the classic proximity-based approach in tracing concurrent and delayed con-830

tact patterns in movement data, although at a higher computation cost. The831

outcomes suggest that the proximity-based approach underestimates contacts832

when individuals do not move together or are not tracked synchronously. As833

compared to the proximity-based approach, ORTEGA requires less param-834

eterization and is less sensitive to data granularity. By incorporating the835

time-geography framework, ORTEGA incorporates movement data uncer-836

tainty and potential accessible areas between known locations, and hence it837

is a more powerful approach. The proximity-based approach is more sensitive838

to the selected distance buffer size, tracking frequency, and the search time839

window. For future extensions, ORTEGA can be strengthened by embedding840

information on the context of movement and incorporating a probabilistic841

method to better represent movement across the potential path areas. Cur-842

rently, following the traditional time-geography model, ORTEGA assumes843

that the entire potential path area is accessible to the moving entity. To844

further extend the methodology it will be important to identify the duration845

of contacts which is a critical factor in the analysis of social interactions for846

both humans and animals. ORTEGA also opens the possibility of adding847

context-awareness (Ahearn et al., 2017) to interaction analysis by incorpo-848

rating behavioral, environmental, and geographic parameters that influence849

movement interaction patterns. Using ORTEGA and sample weights expan-850

sion it is possible to estimate the total number of persons that interact in a851

specific place. This approach can be used not only for disease transmission852

but also congestion and crowding management.853
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