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Abstract

This paper uses movement as a marker to study interactions in humans and
animals to better understand their collective behaviors. Interaction is an im-
portant driving force in social and ecological systems. It can also play a sig-
nificant role in the transmission of infectious diseases and viruses as witnessed
during the ongoing COVID-19 pandemic. Although a number of approaches
have been developed to analyze interaction using movement data sets, these
methods mainly capture concurrent and dyadic interaction (i.e. when two in-
dividuals have direct contact or move synchronously in the spatial proximity

of each other). Less work has been done on tracing interaction between multi-
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ple individuals, especially when the interaction occurs with a delay or via in-
direct contact (i.e. when individuals visit the same location asynchronously).
This paper introduces a new Object-oRiented Time-Geographic Analytical
approach (ORTEGA) to extract concurrent and delayed interaction patterns
between individuals in space and time. The method leverages the time-
geography framework to incorporate the effects of uncertainty and gaps in
movement data in the analysis of interaction and tracing contact patterns.
Using two different case studies and real GPS tracking data, the method is
evaluated in (1) detecting patterns of dyadic, intra and interspecific inter-
actions between two apex predators, tigers and leopards in Thailand; and
(2) tracing potential contacts between a large group of individuals of the
same and different households in San Jose, California. The results indicate
that tigers and leopards have an awareness of each other and their interac-
tion is mainly indirect and delayed. In the human context, the results show
that while individuals of the same household have more concurrent interac-
tion, members of different households follow similar patterns asynchronously
exhibiting delayed interaction. The delayed interactions and potential asyn-
chronous contacts are often underestimated by the common digital contact
tracing technologies. With this study we show how a generic method can be
used to identify interesting movement patterns across the human and animal
divide.

Keywords: Time geography, contact tracing, interaction analysis, wildlife

encounter analysis, delayed interaction, tiger leopard interaction
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1. Introduction

Interaction and contact between individuals are important driving factors
of many social and ecological systems. Collective behaviors of animals and
humans result in complex social dynamics which can be observed through
movement of individuals (Potts et al., 2014; Laube, 2014; Dodge et al., 2008).
Movement patterns shape urban and natural ecosystem dynamics, structure
human and wildlife social networks, and are essential to understanding hu-
man and wildlife interactions. There have been advances in the analysis
of spatial interactions, but less research has focused on the temporal as-
pects of interaction between moving individuals. Specifically, approaches
to analyzing temporal delays in spatial proximity are lacking. These de-
layed interactions are critical in virus transmissions and exposure to airborne
pathogens. As the decade turned to the 2020s, we witnessed the widespread
transmission of Coronavirus disease 2019 (COVID-19) which led to a set of
unprecedented non-pharmaceutical interventions (NPIs) implemented by the
governments across the globe to mitigate the spread of SARS-CoV-2. Exam-
ples of these NPIs include: policies for shelter-in-place, physical distancing,
and contact tracing (Flaxman et al., 2020; Ferretti et al., 2020). Similar to
influenza viruses, COVID-19 spreads via close contacts and through respi-
ratory droplets that can stay in the air for some time (Centers for Disease
Control and Prevention, 2020). Similarly, spatial proximity but delayed tem-
poral response in animals can range up to weeks for scent marks to months
for anthrax transmission. Therefore, our ability to analyze delayed interac-
tion and trace contacts in human and animal social networks through their

movements is critical to understanding social dynamics (Oliver et al., 2020;
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Hoover et al., 2020).

Movement data, whether obtained from wearable devices equipped with
Global Positioning Systems (GPS) such as animal collars, smart watches,
activity loggers, smart phones, or other location-aware technologies includ-
ing Radio Frequency Identification (RFID) tags, motion sensors, Wi-Fi sen-
sors, card readers, Bluetooth sensors, can be used to study the interaction
between individuals and their space-time contact patterns. Recently, Apple
and Google joined their efforts to include contact tracing functionalities us-
ing the Bluetooth technology in their smart phones (Sainz, 2020). Similarly,
many other companies have built digital contact tracing apps to track prox-
imity between individuals in space and times and inform if a risky contact
with an infected individual has occurred (Kitchin, 2020). However, most of
these efforts focus on detecting synchronous interactions between individu-
als. These technologies rely on the concurrent proximity between moving
individuals to detect whether the individuals come within a certain distance
of each other in space and at the same time. The proximity is identified ei-
ther based on the intersection of Bluetooth signals of mobile devices carried
by the individuals or the synchronous distance between individuals. These
methods are not well suited to detect delayed interactions when spatial prox-
imity occurs asynchronously. This requires techniques capable of estimating
the potential paths of individuals and retaining information on their previous
locations. Developing computational methods to detect delayed interactions
can contribute to animal behavioral studies such as leadership and species
competition, as well as research on estimating human exposure risks to air-

borne pathogens or hazardous agents.
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Recent advances in tracking technologies and quantitative techniques have
enabled scientists to analyze more complex patterns of animal and human
movement in relation to environmental and geographic contexts across space
and time (Dodge, 2016; Long et al., 2018; Miller et al., 2019). Among these
techniques, measuring and quantifying interaction and contact between mov-
ing individuals have become a major interest in the areas of movement ecol-
ogy, epidemiology, geographic information science (GIScience), computer sci-
ence, and related disciplines (Potts et al., 2014; Joo et al., 2018). Arguing for
an integrated science of movement, Miller et al. (2019) highlighted the impor-
tance of developing new computational approaches to analyzing the spatial
and temporal patterns of movements that are critical to gaining an under-
standing of the collective movement behavior across the human and animal
divide. This paper responds to this methodological challenge by developing
and evaluating an analytical approach to trace critical space-time contacts
in the social networks of humans and animals. While existing approaches
provide valuable metrics to measure static interaction in space (i.e. the spa-
tial overlap between activity spaces of individuals), our methods to quantify
dynamic and temporally delayed movement interaction in space and time
are less evolved (Miller, 2015). Most dynamic measures focus on quantifying
dyadic interactions which occur synchronously (i.e. the proximity between
two individuals in space over a time window) (Miller, 2015; Long et al., 2015;
Joo et al.; 2018). In a recent study, Hoover et al. (2020) developed a method
to identify asynchronous interactions in animal dyads given a predefined time
lag. As movement data increasingly become available in large volumes and

heterogeneous forms, there is a need for more effective computational ap-
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proaches to extract and model dynamic and temporally delayed interaction
patterns in movements of multiple individuals.

This study focuses on two types of dynamic interaction: concurrent inter-
action and delayed interaction. Concurrent interaction occurs between indi-
viduals when they move synchronously in spatial proximity of each other in
a shared space and at the same time. In concurrent interaction, individuals
can potentially come to a close or direct contact (i.e. interaction at close dis-
tance at the same time). This is a key driver in the transmission of viruses or
shaping social networks in humans and animals. Delayed interaction happens
when individuals visit the same locations in space however asynchronously.
This type of interaction occurs when individuals indirectly interact via a
shared space however with a time lag. It can contribute to virus transmis-
sion, for example, when individuals visit the same infected location with a
time delay. In this work, we introduce and evaluate a novel Object-oRiented
TimE-Geographic Analytical approach (ORTEGA) to trace concurrent and
delayed interaction patterns between individuals in space and time through
their movement trajectories. Our approach builds upon the time-geography
model (Miller, 2005; Long et al., 2015) to measure the probability of con-
tact along the trajectories of two moving entities. We use an object-oriented
scheme to make the time-geography method ‘smart’ by modeling trajectories
as objects with properties and behaviors (actions) which can memorize the
previous locations, potential contacts, and times of interactions with other
individuals along their movement paths. Our main contributions include:
(1) an object-oriented approach which can be used to trace concurrent and

delayed interaction patterns between dyads or multiple individuals; (2) a spa-
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tial and temporal indexing technique to speed up the computation process;
and (3) an approach to tracing temporally delayed contacts in the context of
human contact tracing. Using GPS tracking data, we show how the proposed
methodology can be applied to identify key interaction patterns among indi-
viduals across the human and animal divide. This is important, as despite
the common interest for studying spatial behavior in movement ecology and
human mobility, there has been little scientific cross-fertilization across these
domains (Miller et al., 2019). We use two case studies to evaluate the pro-
posed methodology: The first study uses tracking data of tigers and leopards
to demonstrate how our method can capture dyadic tiger-tiger (intraspecific)
and leopard-tiger (interspecific) interactions. The second study uses human
tracking data to identify concurrent and delayed interactions among multiple
individuals of the same and different households in the context of contact
tracing. The case studies also demonstrate how ORTEGA compares to the

proximity-based approaches across different temporal scales.

2. Movement Interaction

Studying dyadic movement interaction has been a major interest in move-
ment ecology. There are two different types of dyadic interactions: static
interaction and dynamic interaction. Static interaction is when the space
usage (i.e. activity space or home range) of two individuals intersects. Dy-
namic interaction occurs when two individuals move in a shared geographic
space or within the proximity of each other over a certain time interval (Potts
et al., 2014; Miller, 2015).

A common technique to quantify interaction spatially is to measure the per-
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centage of the overlap between the activity spaces of the entities (Benhamou
et al., 2014). The activity space in human context is often measured using
convex hulls or time-geography measures as discussed later in Section 3.1
(Miller, 2005; Long et al., 2015). The activity space in movement ecology
context is computed using home range estimation measures such as convex
hulls, Brownian Bridges, Kernel density estimation (Worton, 1987; Horne
et al., 2007; Powell and Mitchell, 2012; Long et al., 2015). Another static
measure is to compute the proportion of observations (e.g. occurrence or
presence of two species) recorded within the spatial proximity of each other
over the entire sampled locations regardless of observation time (Cole, 1949).
Various measures have been offered to analyze dyadic interaction using tra-
jectories. Long et al. (2014); Miller (2015); Joo et al. (2018) provide extensive
reviews on these measures, including: the prozimity index (Bertrand et al.,
1996; Doncaster, 1990)—the frequency at which the two entities come near
each other within a certain distance threshold, the coefficient of association
(Cole, 1949)—the proportion of proximal fixes, the coefficient of sociality
(Kenward et al., 1993)—the ratio of average raw distances between simul-
taneous fixes (i.e. locations recorded at the same timestamps) against the
average distance between non-simultaneous fixes, the coefficient of interac-
tion—synchronous use or avoidance of a reference area, the joint potential
path area (Long and Nelson, 2013)—the relative size of the potential en-
counter area, and the correlation indices (Konzack et al., 2017)—correlation
between movement parameters of the two individuals such as speed, direc-
tion, step length, turn angle.

Spatial proximity is the most common metric used in the interaction measures
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described above. It is often computed using a kernel and a distance metric
such as Euclidean distance. The prozimity measure indicates the average
number of times where the two entities meet within a spatial buffer of a
certain threshold §. Another way to measure spatial proximity is to compute
the average distance between the entities over a kernel using a similarity
measure (i.e. distance metric) such as the average Euclidean distance over a
kernel, Edit distance, Frechet distance, Hausdorff distance (Alt and Godau,
1995; Guibas et al., 2000; Konzack et al., 2017).

Existing dynamic measures quantify the closeness of moving entities in space
at the same time using user defined spatial and temporal thresholds (Miller,
2015). This approach involves using a spatial distance buffer around the
individuals’ location for a certain time window, and if the buffers intersect
in space and time, it can reasonably be assumed that those two individuals
possibly interacted or came into contact given the uncertainty in their actual
locations during the time window. A similar proximity-based approach is
also applied in current Bluetooth-based contact tracing apps (Sainz, 2020).
These technologies capture if individuals move in close proximity of each
other or come to contacts based on the synchronous intersection between their
Bluetooth signal range areas (i.e. which can be modeled as a spatial buffer).
Long and Nelson (2013) enhances the definition of dynamic interaction by
incorporating movement direction (i.e. azimuth) in addition to the distance.
In their definition, two entities interact when their azimuth shows similarity
over time. These measures require that the movement of individuals to be
recorded simultaneously at the same sampling rates. Konzack et al. (2017)

incorporated a similar measure to identify delayed interaction in trajectories
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that follow similar paths with a time delay.

Dynamic interaction measures which are based on a similarity or distance
metric can be less effective when interacting entities do not follow a sim-
ilar path simultaneously. These measures are less reliable when movement
data are collected at different sampling rates or include gaps due to imperfect
tracking or signal loss. Additionally, these approaches have limited capability
to identify delayed interactions. In contrast, the potential path area (PPA)
using the time-geography framework (Miller, 2005) provides a more robust
method for discovering potential interaction between individuals at different
time scales (Long et al., 2015; Hoover et al., 2020). The PPA represents
possible locations that could be occupied by the individual between known
timestamps given its maximum speed and a time budget. Long et al. (2015)
showed the intersection of the potential path areas (called “joint PPA”) can
identify potential locations for interaction between two entities in space and
time. Hoover et al. (2020) further extended the joint PPA measure to identify
delayed dyadic interaction (called “temporally asynchronous-joint potential
path area (ta-jPPA)”) in animal pairs with a user-defined time-distance win-
dow. In this paper, we enhance the PPA measure to quantify concurrent and
delayed interactions between dyads and multiple tracked individuals in space,

and provide a more flexible search approach to trace interaction patterns.

3. Methods

3.1. The time-geography framework

This study uses the time-geography framework (Hagerstrand, 1970) to iden-

tify potential concurrent and delayed interactions between moving individu-

10
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als (hereafter referred to as ‘entities’ in the description of the methodology).
In time geography, the activity space of a moving entity (i.e. the locations
that are accessible to the entity) is mapped with a space-time prism in a
three-dimensional space-time cube (Figure la). The prism is anchored at
two fixed locations P; and P; (e.g. representing a pair of origin and desti-
nation locations or the locations of two fixed activities). The shape of the
prism is a function of the entity’s maximum speed capacity v, and the time
budget (At = t; —t;) to travel between the two locations (Miller, 2005). The
potential path area (PPA) is the projection of the space-time prism on a two-
dimensional geographic or Euclidean space. The PPA,; ellipse delineates the
spatial locations that are accessible to the moving entity during the interval
[ti,t;]. Figure 1 illustrates the space-time prism and the potential path area
of a moving entity between two locations F; and P; along its trajectory at
the time interval [¢;,t;].

Following Long and Nelson (2015), we modify the space-time prism by dy-
namically varying the maximum speed at different time intervals instead of
using a fixed v,,,, for the entire trajectory. Here, v, for a given time
interval [t;,1;] is estimated using the speed values v;; during the preceding
time intervals in the data. The premise is that an entity does not always
move at its maximum speed and the speed varies over time according to the
entity’s activity type (i.e. commuting, leisure activity, foraging, hunting)
or its transport mode (i.e. walking, biking, driving, etc.). Given a trajec-
tory, T' = {(x0, Y0, t0), (X1, Y1,t1), s (Tiy Yir ti)y ovs (Tny Yny tn) }, the maximum
speed capacity Upq, for the time interval [¢;,t;] is estimated by a floating

average of speed over an exponential kernel (Gijbels et al., 1999) of size m, a

11
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function of speed (v, )

(a) 3D space-time prism (b) Potential path area (PPA)

( ) potential path area between P, and Pi O A, accessible area during [t, t,] 7 general movement direction

Modified from (Miller, 2005) (O A, accessible area during [t, , t]

accessible area at time ¢

Figure 1: Illustration of (a) the space-time prism in a 3D space-time cube; (b) the com-
putation of PPA;; as the potential path area in a 2D Euclidean space between tracking
points P;(z;,y;,t;) and Pj(z;,y;,t;), where 1 <i < j <n and i <m < j. Modified from
Miller (2005).

smoothing constant of a;, and an additional error term J using Equation (1).
In this equation, m is the size of the exponential kernel, ¢ is the index of the
current point P; in the trajectory, k is the location in the kernel. The speed
values of m previous trajectory points contribute to the floating average of
the speed of the current point s;. However, their contribution is decreased
by a smoothing constant « so that the contributions of the points further
from the current location in the trajectory are suppressed multiplicatively
in calculating v;;. If & =1 only the speed value of the current point (v;) is
considered. The error term 3 controls the uncertainty of speed in the estima-
tion of v,,,, enabling the entity to move faster than the previous speed. The
parameter 3 can be set as the maximum rate of speed change (i.e. deviation

from average speed) for a given behavior. For example, 8 = 1.25 allows 25%

12



236 deviation from the current average speed.

m—1
S; = aZ(l —a)fv_p with 0<a<1
k=0
Umaz = 5 * S (1)

27 The potential path area between t; and t;, PPA;;, can then be computed
238 using the estimated v,,,, and the time budget as shown in Figure 1 and

20 Equation (2), following Miller (2005); Long et al. (2015):

i = (b — i) * Upae  Tadius of the accessible area during [t;, t,,]
dmj = (t; — tm) * Umagy  1adius of the accessible area during [t,,,t;]
AA,, = A N Ay accessible area at time t,,

a0 3.2. Mapping interaction as the intersection between space-time prisms

2n Given a trajectory T of length n, a series of space-time prisms between each
22 pair of consecutive tracking points (i.e. Pj(x;,y;,t;) and Py (i1, Yiv1, tiv1),
23 where 1 < i < n) can be used to estimate the locations that are accessible to
a4 the entity along its trajectory. The space-time prisms map the uncertainty
25 in the activity spaces of the entities between known GPS locations. The
26 intersection between the space-time prisms along the paths of the two moving
27 entities can then be used to map the spatiotemporal overlap between their

us activity spaces as potential locations for dyadic interaction in space and time

13
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(Long et al., 2015). In a two-dimensional Euclidean space, the intersection
of the projected pairs of PP As of the two entities delimits the potential area
for a dyadic interaction during the time period over which the PPAs are
calculated.

Formally, let PP Af} be the potential path area between two consecutive GPS
points P;(z;,y;,t;) and Pj(x;,y;,t;) of entity ey, and PPA}; be the potential
path area between two consecutive GPS points Py (zk, yx, tx) and Py(zy, yi, t;)
of entity ey. Then, PPA; iersect as the potential locations for interaction is
quantified following Long et al. (2015) using Equation (3). If the time inter-
vals of the two PPAs are the same or overlapped (i.e. [t;,t;] N [t k] # ¢),
then the PP A;persect (Equation 4) indicates a potential direct contact or con-
current interaction. It is important to note that, the PP A;,icrsect in this case
represents all the locations that the two individuals could potentially come to
close contact between the period [t;,t;]N[¢;, tx] and does not necessarily mean
that the individuals intentionally or directly interacted. However, if the time
constraint is relaxed (i.e. [t;, t;] N [t;,tx] = ¢ or [t;, ;] N [ti, tk] > tigpse), the
PPAierseet at different time intervals can identify potential delayed interac-
tions via indirect contact after a time lapse tj4pse (€.8. €2 goes to the same

geographic area where e; visited with a delay #;qpse)-

PP Aipiersect = PPAS N PPAS (3)

no contact, if PPAintersect = ¢

contact =  concurrent, if PPAiersect 7 ¢ & [ti, t5] N0 [t tx] # #4)

delayed, otherwise
\
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Although closely related, our method to identify delayed interactions is dif-
ferent from the one presented in Hoover et al. (2020) in two ways: (1)
Hoover et al. (2020) consider two additional predefined parameters to set
a time window tw (time before and after the tracking point) for a de-
lay (these can be set by the domain expert) to intersect the PPA of en-
tity e; at time T) (t; < T} < t;+1) and the PPA of entity e; at time Ty
(ti + tw; < Ty < tiy1 + tw;), (2) both Hoover et al. (2020) and Long et al.
(2015) consider a finer resolution time-slicing approach to compute the acces-
sible space at each time slice T' (t; < T' < t;+1) for each individual. However,
our method considers the intersection of the PPAs in space over the entire
time interval between the consecutive tracking points (e.g. [t;,t;41]) and
does not limit the accessible space to a specific timestamp 7'. Although the
time-slicing approach makes PP A, erseet Mmore explicit to a specific times-
tamp T, it poses several limitations: (a) it requires tracking data of both
entities to be of a regular and perhaps an equal sampling rate, so that the
interval can be sliced to a set of equal time increments 0 (a predefined pa-
rameter); (b) it increases the computation cost of recalculating PP A;piersect
at much higher frequencies per increment § (i.e. ¢; < T + kd < t;11 where
k= %) per entity, while ORTEGA only computes one PPA per interval
[ti,ti11] per entity; and (c) it assumes that the entities always move at con-
stant speed V., between the two consecutive tracking points and therefore
the highest probability of interaction always occurs along the beeline between
the two consecutive tracking points of each entity. Moreover, in contrast to
Hoover et al. (2020), our approach does not require predefined time-distance

tw thresholds to identify delayed interaction over a fixed time lag period.

15



293

294

295

296

297

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

As explained later in Section 3.3, we develop a more flexible approach for
tracing delayed interaction by incorporating an object-oriented scheme and
a space-time index-based search algorithm to store and retrieve calculated
PPAs and their intersections regardless of intersection time and without a
need for frequent recalculation of PP A;,ersect 0N the fly for each specified

time lag.

3.3. ORTEGA methodology to trace contact patterns in space and time

In order to trace contact patterns in the forms of concurrent and delayed
interactions in movement data sets, we propose an Object-oRiented TimE-
Geographic Analytical method (ORTEGA). First, we apply an object-oriented
scheme which constructs trajectories as a set of interacting moving objects
(or agents) to facilitate tracing possible PPA intersections (see Section 3.3.1).
Then, the interaction analysis is applied using the PP A;,;ersect Measure and
a spatiotemporal indexing approach to optimize the extraction of concurrent
and delayed interactions via potential direct and indirect contacts between
trajectories (see Section 3.3.2). The object-oriented model is used as the
building block of our method to enhance the capacities of time-geography
for a more complex and flexible interaction analysis, especially when more
than two entities are involved. For example, it enables storing spatial and
temporal characteristics of the PPAs and their intersections in the history
of the data and using the information on demand. It can store information
on possible interactions between PPAs of multiple agents as their properties
(e.g. the time and location of first interaction, duration and number of inter-
actions, etc.). The model is flexible, for example, to incorporate ‘behaviors’

for the PPA ellipses to take actions when an interaction is detected or when

16
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the time lag is too long for a meaningful interaction.

3.3.1. The object-oriented scheme

The object-oriented model is an important aspect of ORTEGA. Using a set
of Class and Object definitions, the model enables moving entities to act
like smart agents as self-contained objects with a set of properties and be-
haviors that can interact with each other. In this model, a MovingObject
class (Giiting et al., 2000) is used to represent the moving entities. The
UML diagram of the proposed object-oriented scheme is provided in Fig-
ure 2. Each MovingObject can have a Trajectory object which itself is a
series of MovingPoint objects. The proposed scheme models a space-time
prism object (ST PO) as an object class constructed from sequential pairs
of MovingPoint objects. Each ST PO has a unique identifier and records
the intersections with the ST PO of other Trajectory objects as an array
of intersected STPOs (or in short :STPO). The array iSTPO stores all
possible intersected PPA ellipses for each ST PO along the Trajectory of
each MovingObject in the data set. This way, the information about the
location and time of intersected PP As are stored and can be retrieved when

needed.

3.3.2. Interaction analysis algorithm

Figure 3 presents the algorithm for tracing possible contacts in movement
data of multiple entities to identify concurrent and delayed interactions.
Given a database of GPS tracking data including M moving objects, the
Trajectory objects are first constructed using the object-oriented model de-

scribed in Section 3.3.1, following a trajectory preprocessing step (Dodge

17
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Figure 2: The object-oriented model applied in ORTEGA for moving object interaction
analysis.

et al., 2009) to eliminate outliers and erroneous data. Next, the space-time
prisms and their corresponding potential path areas are calculated along the
Trajectory of each MovingObject. These are stored as arrays of ST PO and
PP A objects embedded in Trajectory objects. In order to optimize the com-
putation in large tracking data sets, a spatial and temporal indexing method,
a ‘compressed kd-tree’ or CKD-tree (Caro et al., 2016; Bentley, 1975), is ap-
plied based on the centroid points of the calculated ST POs. This way, only
the PP A objects that are closer in space and within a given temporal interval
are considered for interaction analysis.

In order to trace contacts between M moving entities, one entity is considered
as a reference MovingObject (e.g. MO") (Figure 3). Then using the CKD-
tree indexing, potential ST POs that are proximate to the ST POs of the

reference M O™ are retrieved. Once potential ST PQOs are retrieved, their
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Figure 3: Workflow of the interaction analysis algorithm used in ORTEGA.

PPA ellipses are intersected with the PPA ellipses of the references MO".
For any pair of PPAJ; (i.e. the PPA of the reference M O™ at interval [t;,t;])

and PPAT! (i.e. the PPA of the m' entity at interval [t;,#]) that their

intersection is not null (PP Antersect 7 ¢), the intersecting PPAJ} is stored

in the «STPO array for further analysis. The advantage of this approach

as compared to the existing dyadic interaction analysis techniques is that, it

can be applied simultaneously to multiple entities and enhanced using parallel
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computing. Since the identifiers, time and location of the intersected areas
(i.e. PPAintersect) are stored in the iST PO array as properties of a ST PO
object, the approach is flexible enough to retrieve all possible intersections
among a group of moving entities. This is also useful for the detection of
different types of movement patterns such as leader and follower, avoidance,
or divergence.

To detect concurrent interaction, the intersected PPAs for which [t;,¢;] N
[tr, t;] # ¢ are selected. These can be further analyzed to calculate the length
of contact, the number of MovingObjects that the individual came into close
contact, and the frequency of contacts. Delayed interaction can be extracted
from the intersected PPAs stored in ¢STPO using a time window. For
example, we can retrieve all MovingObjects that visited the same location

within a certain time of each other.

4. Case Study I: Analysis of Dyadic Interactions in Animal Move-

ment

We evaluate the proposed performance of the methodology on mining dyadic
interaction patterns between tigers and leopards in the Western Forest Com-
plex in Thailand. The purpose of this case study is twofold: (1) to evaluate
ORTEGA in analyzing dyadic movement interaction in a Euclidean space,
(2) to conduct a comparative evaluation of ORTEGA and the proximity-
based approach on GPS tracking data that are collected at relatively coarse

frequencies and different sampling rates (15 min to 1 hour).
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4.1. Animal GPS tracking data set

Four tigers and one leopard were captured and fitted with VECTRONIC
Aerospace GmbH collars (Simcharoen et al., 2014). Location data were ac-
quired at 1 hour or 15 minute intervals over a period of four months as
summarized in Table 1.

Table 1: The duration and temporal intervals of tiger tracking data.

animal ID No. temporal start date end date home

points resolution range
area

(km?)
tiger 20080 1798 1 hour 2016-04-30  2016-09-16  57.12
tiger 20083 2751 1 hour 2016-04-30  2016-09-17  56.35
tiger 22901 4529 variable 2018-09-27  2019-02-02  49.68
tiger 22904 1998 1 hour 2018-09-27  2019-02-02  60.67
leopard 31898 7170 15 min 2018-09-27  2019-02-02  40.57

4.2. Tiger-tiger interaction

A delayed interaction occurs when a tiger scent marks a tree and that mark
is subsequently inspected hours or days later by another tiger. Tigers have
large home ranges and scent marks serve as message boards to alert other
tigers of territorial boundaries, and in the case of a female, her reproductive
status. A female tiger scent marks intensively starting a week before she
comes into estrous (Smith et al., 1989). A male patrolling a large territory
encompassing several females is alerted that the female will soon be receptive.
When the female becomes receptive, she reduces scent marking and begins
repeated calling. The male response then brings them together (Ahearn
et al., 2001). Scent marks that are detected and often over-sprayed up to

three weeks later serve to demarcate territorial boundaries while reducing
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the likelihood of direct encounters that can result in serious injuries to both
animals and sometimes mortal injuries to the loser.

Here, we demonstrate the applicability of the method to study the interac-
tion between two female tigers (IDs: 20080 and 20083) sharing a boundary
along one side of their home ranges. Figure 4a illustrates the GPS data and
home ranges of the two tigers during the tracking period between April and
September 2016. The home ranges are calculated as the convex hulls of 95%
of GPS points (Worton, 1987). As seen in the 3D space-time cube repre-
sentation of the tracking data in Figures 4a-b, the two tigers patrol their
shared boundary often asynchronously, and rarely have direct encounters.
These asynchronous messages reduced the likelihood of costly aggressive en-
counters (Smith et al., 1989). We applied our method to extract concurrent
and delayed interactions between the two tigers. The yellow PPAs in Figure
4c illustrate the interactions between the two tigers allowing three hours.
Figure 4d visualizes the frequency of detected interactions over a range of
time lags from 30 minutes up to five weeks. To be specific, each bar repre-
sents the frequency of the first visit of one tiger to the same location visited
by the other tiger (i.e. first ellipse intersection) with a certain time delay.
There are 53 close encounters within 3 hours out of a total of 6756 detected
spatially intersected PPA pairs (Table 2). As the histogram shows, most of
the interactions between the two tigers occur within one or two days of each
other when the tiger scent appear to be the strongest. Few yellow marks
in Figure 4c and low frequencies in Figure 4d within three hours indicate
the small likelihood of tigers directly encountering each other. The visits to

the same locations increase after one week and last until week three. Our
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findings here support field observations in Thailand using camera traps and
by human observers which indicate that tigers appear to detect scent marks
only at a close spatial range (several meters at the most). In our field ob-
servations, we can detect a mark for up to 21 days. However, the olfactory
acuity of tigers is clearly much higher than humans; therefore, we see visits

to the same locations up to even five weeks.
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r .\ﬁ 2016-10-03 00:00:00
17 PRE C
i _.\ $.l. 2016-09-13 00:00:00
1 ¥ :. T * c > = .T 2016-p8-24 00:00:00
LR S - - .
{._- .‘: ¥ S, v v 2016-D8-04 00:00:00
! SR ;- X ‘(: 2016-h7-15 00:00:00
- ':‘!:“‘:“ %-:- e o time.
I: W o 4 . t e o 2016-D6-25 00:00:00
' / ‘ \4 - ‘. P & ';;. 2016-D6-05 00:00:00
R - s e 1 2016-)5-16 00:00:00
1 S, “?ggg 2016-54-06 00:00:00
LR A
NG ‘ %, il
" :
- %y UTMy (m)
(c) Interaction between the two tigers (d) Frequency of interactions

w
3
3

1565

Frequency

1560

1555

Latitude

1550

155

15.40

1535

05h
1
3h
6h
1day
2days
4days
1week
2weeks
3weeks
aweeks

9885 9890 9895 9900 9905 9910 995 9920
Longitude

® Sweeks

im

=

lag

Figure 4: Interaction analysis of two female tigers (IDs: 20080 shown in blue and 20083
shown in red) sharing a boundary: (a) 2D representation of GPS tracking data and home
ranges; (c) 3D space-time cube representation of the tigers’ tracking data; (c) Intersected
PPAs highlighted in yellow indicates interaction allowing three hours of delay; and (d)
the frequency of interactions (first visits to the same locations) detected between the two
tigers over a range of time lags.
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Table 2: The total number of detected PPA intersections (spatial) among tigers and
leopards and the number of close encounters (interaction allowing three hours).

animal 1 animal 2 total PPA intersec- close encounters
tions

tiger 20080 tiger 20083 6756 53 (0.784%)

tiger 22901 tiger 22904 40260 31 (0.077%)

leopard 31898  tiger 22901 41410 2 (0.005%)

leopard 31898  tiger 22904 41255 107 (0.259%)

4.8. Tiger-leopard interaction

This experiment uses GPS tracking data of two tigers 22901 (young male)
and 22904 (female) and a leopard 31898 (male) over the period between
September 2018 and February 2019. Figure 5a (in the middle) illustrates
the tracking data and home ranges of the three carnivores. The two tigers,
a resident, breeding female and a subadult, non-reproductive male, share a
portion of their home ranges. The leopard’s home range overlaps with both
tigers, but is completely within the home range of tiger 22904. The two tigers
were originally tracked with a sampling interval of one hour; however, the
tracking frequency of tiger 22901 was increased later to 15 minutes. These
data help to analyze the impact of temporal granularity (i.e. sampling rates)
of tracking on the analysis of animal interaction. With this experiment, we
demonstrate that in contrast to a simple proximity-based approach, in which
tracking data must be of the same sampling rate and collected synchronously,
our method is capable of handling tracking data of variable sampling rates.
The results of interaction analysis using a three hour window between tigers
22901 and 22904 indicate that these two animals only came into close contact
31 out of 40260 times when their spatial path crossed (Figure 5b). This

limited direct interaction over a period of four months may be explained by
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the fact that there is no territorial competition between tigers of the opposite
sex. Also, the male is not yet of breeding age and the female is raising young
so she is not receptive. In contrast, females 20080 and 20083 are territorial,
breeding females each defending a territorial boundary. They show a much
higher rate of potential concurrent interactions, as they patrolled and likely
marked their common boundary (see Section 4.2 and Table 2).

The interaction analysis applied on this data set suggests that the leopard
tends to avoid the two tigers in the area. The number of delayed interac-
tions is much higher between the leopard and the two tigers with very few
close encounters detected (Figure 5c-d). Out of the total of 41410 spatially
intersecting PP A pairs, only two incidences of close contacts (i.e. encounter
in space and time allowing three hours) were detected between tiger 22901
and the leopard (Figure 5¢). Figure 5d highlights 107 close contacts within
a three hour window which occurred in the shared home range areas of tiger
22904 and the leopard, out of the total of 41255 spatially intersecting PP A
pairs. It is interesting to note that the number of near-concurrent inter-
actions of the leopard with tiger 22904 is relatively higher than with tiger
22901, as the leopard’s home range is contained within the home range of
tiger 22904. Therefore, the larger shared space increases the probability of
having close encounters between the two animals. The histograms in Figure
5b-c represent the frequency of intersecting PP As over a range of time lags
from 30 minutes to 24 hours. The histogram suggests that the animals hap-
pen to visit the locations visited by the other animal with a delay of 24 hours,
while they keep distance for at least a few hours of each other. Based on

biological observations delayed interaction between tigers and leopards after
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Figure 5: Results of tiger-leopard interaction analysis using (a) GPS tracking data of two
tigers 22901 (in red) and 22904 (in green) and one leopard 31898 (in blue). Map and the
frequency of interactions over a range of time lag (b) between tigers 22901 and 22904; (c)
between tiger 22901 and leopard 31898; and (d) between tiger 22904 and leopard 31898.
The PPA intersections allowing three hours of delay are highlighted in yellow.

more than several hours does not have a significant meaning. In contrast,
avoidance, quantified as little to no concurrent interaction or close contact
within few hours, which is also confirmed in our interaction analysis, is key
to the survival of the leopards when sharing the same geographic space with

tigers.
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As a simple experiment to compare ORTEGA to the proximity-based ap-
proach and their sensitivity to data granularity, we applied both techniques
on the 15-min data set of tiger 22901 and leopard 31898 and re-sampled
the data to reduce its granularity (see Table 3). As the results suggest, the
proximity-based approach is more sensitive to the sampling rate, while both

approaches result in more false negatives as the sampling rate decreases.

Table 3: Delayed interaction between tiger 22901 and leopard 31898 within 4 hours over
different sampling rates. A buffer size of 428 meters is used for the proximity-based
approach to detect the same number of interactions as in the ORTEGA approach using
the original data.

Data completeness ORTEGA proximity
(data granularity)

100% (15-min) 54 54

50% (30-min) 32 8

25% (1 hour) 4 0

5. Case study II: Tracing Contacts Among Multiple Individuals

In this case study, we evaluate the performance of the methodology on trac-
ing contacts between a group of people from the same or different households
using fine resolution GPS tracking data in a network space. We further in-
vestigate the impact of varying temporal scales on the outcomes and evaluate
the results in comparison to the proximity-based approach. As compared to
the previous case study in which dyadic interactions of only two individuals
were analyzed at the time, here we evaluate the method in identifying con-
current and delayed interactions in a larger network of people. This can be
useful in contact tracing applications when detection of possible encounters

between individuals is critical to monitor and estimate infection exposure.
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5.1. Human GPS tracking data set

This study uses the GPS component of the 2012-13 California Household
Travel Survey (CHTS) (NuStats, 2013), which includes human movement
tracking data over a three-day period at a temporal resolution of three sec-
onds. The data were collected using GlobalSat GPS Data Loggers that can
be worn on the waist, clipped to a purse or backpack, or dropped in a pocket.
From the CHTS data set, which covers most of California, we only used the
data of respondents from San Jose as a test case. This subset contains GPS
traces of 402 persons from 176 households and spans from February 3, 2012
to January 31, 2013 (total of 75,770 GPS tracking points). Each GPS record
contains information including: a person’s anonymous 1D, location in longi-
tude and latitude format, and local time. We only considered the GPS data
from 5 am to 23:59 pm because humans mainly stay at home during the
night and we were interested in day-time interactions. The original data are
in much finer resolution than what is needed for the purposes of interaction
analysis (i.e. human movement over three seconds might not be significant).
Therefore, we down-sampled the data into 1-minute intervals. The original
3-second sampling rate data result in very narrow PPAs which are basi-
cally equivalent of using a beeline between the consecutive GPS points. Such
fine resolution GPS tracking data can perhaps improve the performance of
the proximity-based interaction analysis methods, but it is very expensive
(computationally and financially) to collect tracking data at this very fine
sampling rate. Our method does not require such fine sampling rate as the
potential path area inherently incorporates the uncertainty of positioning

and the accessible locations at times that the GPS data are not recorded.
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Table 4, summarizes the results of applying interaction analysis on this data
set. The results are described in the following sections. The first three exper-
iments present the outcomes of ORTEGA on tracing concurrent interaction
(defined as contacts within 5 minutes) as compared to a proximity-based ap-
proach (see Section 5.2). The last four experiments summarize the outcomes
of delayed interaction analysis using ORTEGA for a range of time lags from

30 minutes to 3 hours (see Section 5.3).

Table 4: Number of concurrent and delayed interactions detected among individuals of the
same and different households. As a reference for comparison to ORTEGA, the outcomes
of the proximity-based approach for concurrent interaction analysis using two buffer sizes
are provided.

Exp. method type parameters within outside total
house- house-
hold hold
1 proximity concurrent 5 min, 100 m 187 12 190
2 proximity concurrent 5 min, 500 m 198 59 257
3 ORTEGA concurrent 5 min 202 149 351
4 ORTEGA delayed 30 min 250 376 626
5 ORTEGA delayed 1 hour 279 542 821
6 ORTEGA delayed 2 hours 299 708 1007
7 ORTEGA delayed 3 hours 306 820 1126

5.2. Tracing concurrent interactions and comparison to the proximity-based
approach

The goal of this experiment is to compare ORTEGA to the proximity-based

approach in detecting concurrent interactions between the 402 participants

in the data set, and investigate the influence of temporal scale (i.e. sampling

rate) on both methods. The proximity-based approach is implemented by

intersecting spatial buffers of a certain distance threshold around synchronous

GPS tracking points. In practice, often a user-defined time threshold is
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considered to relax the restriction of requiring synchronous fixes which can
be hard to achieve in real tracking data. Here, a five-minute time lag is
considered to extract concurrent interactions using both approaches. In these
experiments, two buffer sizes (i.e. 100 meters in Exp. 1 and 500 meters in
Exp. 2) are considered (see Table 4). These buffer sizes are considered to
account for average distance traveled by intermittent or continuous walking
over a five-minute interval. The average distance traveled by walking is 100
meters over one minute. Our proposed ORTEGA approach is not reliant
on a buffer threshold or a set time window. Although in this experiment
we considered the same 5-min time window to make it comparable to the
proximity-based approach.

Figure 6 represents two networks generated using Gephi (Bastian et al., 2009)
based on the detected concurrent interaction (close contacts allowing 5 min-
utes delay) among all individuals using (a) the proximity-based approach
(with a buffer size of 100 m), and (b) the ORTEGA approach. The networks
include 402 nodes (i.e. each node represents one person). The edges repre-
sent the interactions between every pair of two persons. The lighter pink to
beige represent less to no interactions, while more saturated pink to purple
colors represent higher number of interactions. A comparison between the
two networks (Figure 6 and Table 4) suggests that our approach is capable
of finding more potential direct contacts between individuals, while a higher
degree of concurrent interaction is detected among individuals of the same
household. The network generated using ORTEGA unveils some clusters
grouping people who interacted more with their own household members,

while they had less close contacts with people outside their households. This
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may indicate households with children who mainly traveled together and had
fewer encounters with other individuals in the data set. A closer look into
the generated network using ORTEGA reveals more details on the frequency
of interactions between individuals within the same households and their
connections to individuals of other households. For example, the zoomed-
in network of person HO1P01 (from household HO1) in Figure 6 illustrates
that she/he interacted closely with three of her/his household members and
came into close contacts with four other persons from different households
over the course of the three days tracking period (see also Table 5). The
histograms in Figure 6 indicate that the proximity-based approach in this
case missed most of the close contacts among people outside households as
compared to our approach. Therefore, it resulted in a less structured and
more homogeneous network with more isolated nodes. It is worth mentioning
that the proximity-based approach resulted in a higher number of individ-
uals with no direct contact as compared to our approach (isolated nodes in
the middle of the networks). However, based on the CHTS survey data we
know that most of these individuals lived and interacted with at least one
other person. The data include 154 (out of 176) households with at least two
persons. According to the histograms in Figure 6, ORTEGA also identified
a higher number of possible close contacts between individuals of different
households. This result indicates a higher chance of encountering more peo-
ple from other households in a shared location at the same time (e.g. a
grocery shop). However, the proximity-based approach could only identify
close contacts between a handful of outside household individuals.

The results indicate that in general the proximity-based approach detects
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Figure 6: Illustration of the networks of individuals who came into close contacts (allow-
ing five minutes time lag) extracted applying (a) the proximity-based approach (using a
buffer size of 100 m) (b) the ORTEGA approach. The histograms show the frequency
of the concurrent interaction incidences detected between people of different households.
ORTEGA detects more concurrent interactions between people of different households as
compared to the proximity-based approach. The zoomed-in network shows that person
HO1PO01 interacted concurrently the most with person HO1P04 from their own household.
They also came into close contact with four other people from three different households.

a smaller number of interactions as compared to our approach. The de-
tected number of interactions increases when a larger buffer size is used. For
example, with a buffer size of 500 meters (which is quite large for a meaning-
ful human interaction), the proximity-based approach can detect almost the

same number of interactions as ORTEGA did in terms of concurrent contacts
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among individuals of the same households. However, household members
tend to stay in close proximity to each other over a period of time when they
travel together. These outcomes show that the proximity-based approach
can significantly under-estimate the number of contacts given the buffer size.
However, ORTEGA detects more potential concurrent interactions as it con-
siders possible accessible locations to the moving entities. This comparison
indicates that ORTEGA may be better suited to detect potential concurrent
interactions (or close encounters) between individuals of different households
as it extracts all possible cases for potential interactions. This observation is
especially important in the context of contact tracing for infectious diseases
and risk exposure in which an over-estimation might be more desired than
the under-estimation of potential risky contacts. ORTEGA enables detection
of possible contacts between individuals who may not travel together over
an extended period of time and only come into contact for a short period of
time. For example, when two individuals from different households happen
to be in the same location (e.g. a grocery store or a gas station) at the same
time for a few minutes. This is a key advantage of using a time-geographic
approach over the proximity-based approach, which can under-estimate con-
tacts given the selected buffer size and time threshold. The proximity-based
approach might miss contacts when the locations of individuals have not been
recorded at exact time when they happened to be close to each other or when
a small buffer distance is used to represent the proximity (see Section 6 for
more information). Using a larger temporal threshold and bigger buffer size
may alleviate this problem but increases the uncertainty in contact tracing.

The difference between the two approaches becomes even more pronounced
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when the GPS sampling rate decreases (i.e. coarser temporal granularity).
Figure 7 demonstrates the influence of temporal scales on concurrent in-
teraction analysis (allowing 5 minutes) using both approaches for sampling
rates of 1 min, 5 min, 10 min, 20 min, and 30 min. The proximity-based
approach seems to be more prone to data granularity for outside household
interaction when individuals are not tracked synchronously. The number of
direct contacts identified by the proximity-based approach slightly decreases
within households (Pearson’s R = —0.77, P —value = 0.1) and drops to zero
outside households (Pearson’s R = —0.58, P — value = 0.3) as the sampling
rate decreases. In contrast, the potential path area used in ORTEGA takes
into account the potential locations accessible to the individuals between
known GPS recordings. And therefore, while the number of identified con-
tacts stays the same for people within households using ORTEGA (Pearson’s
R = 0.05, P — value = 0.9), the chance of identifying potential interactions
between individuals of different households becomes higher, although not
significantly, as the sampling rate decreases due to larger PPAs (Pearson’s

R =0.79, P — value = 0.1).

5.3. Tracing delayed interaction through indirect contacts

Using ORTEGA and a range of time lags, the delayed interactions were
computed in Table 4. The networks representing delayed interactions are
provided in Figure 8. As the time lag increases, more distinct clusters are
detected and the networks become more fragmented. These clusters represent
individuals of both inside and outside households who share the same spatial
patterns (i.e. spatial interaction) but may not necessarily encounter at the

same time. The longer tails in the histograms resulting from longer time lags
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Figure 7: The influence of temporal scale on identifying concurrent interactions (allowing
5 min) using ORTEGA and the proximity-based approach (of 100 m buffer) between
individuals of the same household and outside households.

represent the higher number of interactions detected among individuals of
different households. This result indicates individuals of different households
might visit similar locations over longer delays. That is, the chance of using
the same space by more individuals becomes higher over a longer time period.
The clusters in the fragmented network may indicate the households from the
same neighborhoods who tend to use the same geographic space for their daily
activities. With these clusters, we can detect a set of individuals that have
similar spatial patterns but not necessarily following the same schedule. For
example, people who go to the same gym or the same grocery shop but at
different times of the day. This is the powerful aspect of our method which
is capable of tracing delayed spatial interactions.

A closer look into the network of person HO1P01 (as shown in Figure 6) can
inform us about how many individuals this person came into contact syn-

chronously or visited the same location as other individuals asynchronously
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Figure 8: Ilustration of the networks of individuals who had delayed interaction (i.e.
visited the same location) over a range of time lags (30 min, 1 hour, 2 hours, 3 hours). The
histogram shows the frequency of different number of delayed contacts between individuals

outside households.
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(Table 5). The outcomes indicate that this person interacted mostly with
person HO1P04 from the same household and person HO2P02 from household
HO02. Overall, person HO1P01 was in close contact (met with or visited the
same locations at the same time) with four individuals outside the household
(from households H02, H04, and HO6) over the course of a three day tracking
period. She/he visited the same locations as 10 other individuals from six
other households after a temporal lag of 30 minutes to three hours. This is
significant for finding possibility of exposure to viruses or other hazardous
conditions that may last in the air for a period of time. In total, this per-
son had concurrent or delayed contacts with 13 members of seven different

households including their own household.

Table 5: Cumulative number of concurrent and delayed interactions detected between
person HO1PO1 and other individuals within a range of time lags. The three individuals
above the horizontal line are from the same household as person HO1PO01, while the others
are from six different households (H02-HO7).

interacted within within within within within
with 5min 30min lhour 2hours 3hours
HO1P02 29 142 190 280 327
HO1PO03 9 40 69 173 303
HO1P04 408 755 1059 1372 1476
HO2P01 0 22 40 44 56
HO02P02 15 19 63 104 137
HO03P02 0 15 21 34 41
HO04P01 0 0 25 46 48
H04P03 6 12 15 28 28
H04P04 0 0 11 11 15
HO5P01 0 4 4 7 12
HO6P01 5 8 27 34 49
HO6P02 3 6 56 61 64
HO7P01 0 9 9 17 17
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6. Discussion

In this section, we discuss the performance and efficacy of the developed
methods in light of the results described above. The strengths and weaknesses
of the approach are presented in comparison with the classic proximity-based
interaction analysis approach which is commonly used in the contexts of

animal interaction and human contact tracing.

6.1. Method parametrization

Computation of the potential path area requires two parameters which can
be derived from data: the time budget At (which is typically calculated
from the timestamps of known GPS points) and the maximum speed capac-
ity Vinae. Our proposed approach calculates the maximum speed parameter
based on the data itself by applying a floating average over an exponential
kernel instead of using a predefined fixed value for maximum speed. There-
fore, the PPAs are computed with the actual (data-driven) speed capacity
of the individual for different behavioral modes and at each given time. The
maximum variation from the average speed can also be calculated from the
data itself. We allowed 25% variation from the computed average speed.
This avoids having unreasonably large PPAs by setting a fixed large V4
for the entire data set, which may result in more false positives in tracing
potential contacts.

The proximity-based approach requires setting a predefined distance thresh-
old as the buffer size, as well as a user-defined time threshold for the search
window to relax the requirement of having synchronous fixes. Setting larger

distance and time thresholds result in a higher number of contacts. This is
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a major limitation of the proximity-based approach. In contrast, ORTEGA
is not reliant on a distance threshold or a set time window. Although in
the experiments we considered the same five minutes time window for con-
current interactions to make ORTEGA comparable to the proximity-based
approach. Figure 9 schematically demonstrates the difference between buffer
intersection in the proximity-based approach versus the PPA intersection
used in ORTEGA in terms of sensitivity to buffer size and data granularity.
Figure 9a shows a smaller buffer size might lead to more false negatives and

under-estimation of contacts in the proximity-based approach.

(a) Sensitivity to__b_uffer size (b) Sensitivity to data granularity

T4

T4
3 T3 B ™
ip)
ﬂ T T T
Tt ™<= 1 1

resampling

Figure 9: Illustration of method sensitivity to (a) buffer size and (b) data granularity. The
proximity-based approach is highly sensitive to the buffer size and temporal resolution of
the data. The ORTEGA approach does not rely on a buffer size and it outperforms the
proximity-based approach when the data is collected at lower frequencies.

In comparison to previous time-geographic approaches (Hoover et al., 2020;
Long et al., 2015), ORTEGA is flexible to retrieve delayed interactions using
any time window in the history of the data and does not depend on several
time slicing and time window thresholds to compute concurrent and delayed

Interactions.
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6.2. Data granularity and temporal scale considerations

The original proximity-based approach is only able to detect proximate points
collected at synchronous intervals unless this restriction is relaxed through
a search window or kernel. Depending on the search window size, it might
miss interactions that happened between known GPS points. For example,
it might miss the cases where the individuals were close to each other but
moved away from each other between two GPS fixes or when individuals
move at different rates. In contrast, ORTEGA does not require synchronous
sampling. The overlap of potential path areas of two individuals indicates
their potential interaction between consecutive GPS recordings.

Overall, both approaches are sensitive to the temporal resolution used in
data collection (Figure 7). However, the proximity-based approach results in
more underestimation or false negatives when data of coarser sampling rate
is used. In Figure 9b notice the missed proximate points at time 75 after
re-sampling using the proximity-based approach.

A weakness of ORTEGA is that for data of coarser sampling rates (e.g. 1
hour) it generates larger PPAs as compared to higher-resolution tracking
data (e.g. 15 min) (Figure 5d). Although it is possible to intersect PPA
pairs of different resolutions—which itself is a strength when compared to
the proximity-based approach, their intersections results in a higher level of
uncertainty in the detection of interaction. This situation may lead to more
overestimation or false positive cases for interaction as explained in Section
5.2. For example, the larger PP A of one hour duration for tiger 22904 might
contain or intersect with several smaller 15-min PP As of the leopard and it

might not be possible to determine actual interaction time over the one hour
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period.

6.3. Computation consideration

The efficiency of ORTEGA lies in lowering the computation cost that is as-
sociated with the retrieval of potential concurrent and delayed interactions
among multiple individuals. This is incorporated via two key elements of
the methodology: (1) ORTEGA applies an object-oriented model to create
MovingObjects as ‘smart agents’ which can retain information about the
PPAs and their intersections along the trajectories of individuals. This way,
the PPA polygons of MovingObjects only need to be computed and inter-
sected between different tracks once. The PP A;piersects and their associated
time intervals are also stored as properties of PPAs for efficient retrieval of
delayed intersections. (2) Using a CKD-tree indexing technique, ORTEGA
applies space-time indexing to limit the search area for potential interactions
to smaller regions and restricted time windows when needed, so the search
does not incorporate the entire trajectories of all MovingObjects. This of-
fers a more efficient approach as compared to the method proposed in Hoover
et al. (2020), by reducing the need for on-the-fly and redundant computation
of pairwise PPA intersections over long trajectories at finer time increments
and for different time windows to identify potential delayed interactions. OR-
TEGA retains all possible spatial intersections between PPAs, and therefore,
potential delayed interactions can be retrieved on demand using an optimized
search through the CKD-tree indexing.

In comparison with the proximity-based approach which relies on a distance
threshold comparison, the time-geographic interaction analysis approaches

(as in ORTEGA) are overall more computationally intensive as they rely
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on PPA ellipse computation and polygon intersection. To give a sense of
the computation speed of both approaches, the interaction analysis between
two GPS tracks (total of 265 points: track #1 with 183 GPS points and
track #2 with 82 points) takes 3.88 seconds using ORTEGA (allowing 5 min
delay) and 423 milliseconds using the proximity-based approach (allowing 5
min delay, 100 m buffer) to run using a Macbook Pro laptop with 2.3 GHz
8-Core Intel Core 19 processor, 16 GB RAM. In practice, the computation
speed of the proximity-based versus PPA approaches can greatly vary based
on the indexing methods used and the distribution of GPS points in the data.
Though spatial and temporal indexing on larger data sets are necessary for
both proximity-based approaches and PPA approaches to avoid exponential
runtime growth, the indexing of simple radius proximity-based approaches
is much simpler than index creation and index querying of multi-sized PPA
polygons.

For both ORTEGA and proximity-based approaches, first the GPS tracking
data sets need to be preprocessed to remove erroneous points and outliers.
The proximity-based approach involves a search through the list of points to
pick the proximate points with a time difference of less than the minimum
search window threshold. The search can be improved using an indexing ap-
proach, especially for larger data sets. The ORTEGA approach involves cre-
ating PPA ellipses for consecutive GPS points in the path of each trajectory.
These collections of PPAs are then intersected while the computation is opti-
mized by taking advantage of the characteristics of object-oriented program-
ming and the CKD-tree indexing as described in the methodology. In our
experiments both the proximity-based and ORTEGA approaches were con-
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ducted in an object-oriented fashion to retain information about the points
that interacted in the history of the data. This approach provides advan-
tages and flexibility over a non-object-oriented approach, when dealing with

delayed interactions.

6.4. Application considerations and the context of interaction

As shown, ORTEGA is a powerful tool to trace not only concurrent interac-
tions, but also delayed interactions via indirect contacts in movement data
of both animals and humans. However, it is important to note that the out-
comes require a careful interpretation and perhaps consultation with domain
experts. For example, it is important in any case study to contemplate a
meaningful set of the conditions or criteria for concurrent and delayed in-
teractions prior to the analysis. Here, we used domain expertise of a tiger
biologist and an expert in travel behavior and transportation to set meaning-
ful parameters and interpret the results. Moreover, we used field observations
to back up the selected parameters. For example, we knew how long a tiger
scent might last in nature for a meaningful delayed interaction.

It is important to note that depending on the setting of the case study
and data granularity, the detected concurrent interactions or close contacts
might not actually mean that the individuals met or socially interacted. For
example, if there is a busy coffee shop and two individuals arrive at the coffee
shop within 5 minutes of each other, stay for an hour or so, then leave at the
same time, it can reasonably be assumed that they interacted because they
planned a meeting with each other for a set time. This is in contrast to two
individuals who may have been in a coffee shop together for an hour or so

of overlapping time, but arrived and left at totally different times, indicating
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they were strangers who coincidentally were in the same coffee shop and
did not interact. Other points to consider when analyzing interaction or
tracing contacts are the impact of mode of transportation, physical or natural
barriers, and 3D spaces in detecting meaningful contacts. For example, the
interaction might not be meaningful when movement happens in separate
cars on the same road or when moving individuals are separated by walls or
different floors in multistory buildings or when animals are separated by a

natural barrier such as a river.

7. Conclusion and Future work

This study presented a new object-oriented time-geographic analytical ap-
proach (ORTEGA) to trace space-time contact patterns in movement data.
The method is capable of detecting direct and indirect contacts to identify
concurrent and delayed interactions between humans or animals in space and
time. In contrast to existing approaches which are limited to the interaction
analysis of two individuals, ORTEGA enables tracing interaction patterns
among a group of moving individuals. Our approach uses the potential path
area between GPS fixes to measure potential exposures that might have been
missed due to small data gaps or irregular sampling rates. These are ma-
jor problems in the proximity-based approaches which are employed in most
existing contact tracking technologies using Bluetooth or GPS in cellphones.
We applied and tested the proposed method on two different case studies
using real GPS tracking data of animals (tigers and leopards) and humans
(people of the same and different households) of different resolutions. The

results showed that the proposed ORTEGA method performs better than
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the classic proximity-based approach in tracing concurrent and delayed con-
tact patterns in movement data, although at a higher computation cost. The
outcomes suggest that the proximity-based approach underestimates contacts
when individuals do not move together or are not tracked synchronously. As
compared to the proximity-based approach, ORTEGA requires less param-
eterization and is less sensitive to data granularity. By incorporating the
time-geography framework, ORTEGA incorporates movement data uncer-
tainty and potential accessible areas between known locations, and hence it
is a more powerful approach. The proximity-based approach is more sensitive
to the selected distance buffer size, tracking frequency, and the search time
window. For future extensions, ORTEGA can be strengthened by embedding
information on the context of movement and incorporating a probabilistic
method to better represent movement across the potential path areas. Cur-
rently, following the traditional time-geography model, ORTEGA assumes
that the entire potential path area is accessible to the moving entity. To
further extend the methodology it will be important to identify the duration
of contacts which is a critical factor in the analysis of social interactions for
both humans and animals. ORTEGA also opens the possibility of adding
context-awareness (Ahearn et al., 2017) to interaction analysis by incorpo-
rating behavioral, environmental, and geographic parameters that influence
movement interaction patterns. Using ORTEGA and sample weights expan-
sion it is possible to estimate the total number of persons that interact in a
specific place. This approach can be used not only for disease transmission

but also congestion and crowding management.
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