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Abstract— While FPGAs have been traditionally considered
hard to program, recently there have been efforts aimed to allow
the use of high-level programming models and libraries
intended for multi-core CPUs and GPUs to program FPGAs.
For example, both Intel and Xilinx are now providing toolchains
to deploy OpenCL code onto FPGA. However, because the
nature of the parallelism offered by GPU and FPGA devices is
fundamentally different, OpenCL code optimized for GPU can
prove very inefficient on FPGA, in terms of both performance
and hardware resource utilization.

This paper explores this problem on finite automata
traversal. In particular, we consider an OpenCL NFA traversal
kernel optimized for GPU but exhibiting FPGA-friendly
characteristics, namely: limited memory requirements, lack of
synchronization, and SIMD execution. We explore a set of
structural code changes, custom and best-practice optimizations
to retarget this code to FPGA. We showcase the effect of these
optimizations on an Intel Stratix V FPGA board using various
NFA topologies from different application domains. Our
evaluation shows that, while the resource requirements of the
original code exceed the capacity of the FPGA in use, our
optimizations lead to significant resource savings and allow the
transformed code to fit the FPGA for all considered NFA
topologies. In addition, our optimizations lead to speedups up to
4x over an already optimized code-variant aimed to fit the NFA
traversal kernel on FPGA. Some of the proposed optimizations
can be generalized for other applications and introduced in
OpenCL-to-FPGA compiler.

Keywords—OpenCL, FPGA, high-level synthesis, automata
processing, NFA, performance optimization

1. INTRODUCTION

In order to achieve better performance and power efficiency,
computing systems are increasingly becoming heterogeneous
and leveraging many-core processors and reconfigurable
accelerators along with general-purpose CPUs. This shift
from homogeneous to heterogeneous computing has
progressively occurred not only in single-machine systems,
but also in large-scale computing clusters. GPUs have been
part of high-performance computing clusters and cloud
computing platforms for several years now, and today, many
supercomputers in the Top500 and Green500 [1, 2] lists are
equipped with GPU and Intel Phi boards. More recently, there
has been an increased interest in adding FPGAs to data centers
and high-performance computing clusters. A popular example
is Microsoft’s Configurable Cloud [3], a cloud-scale FPGA-
accelerated system originated from Microsoft’s Project
Catapult. Meanwhile, Amazon has started offering high-
performance computing instances equipped with FPGAs [4].

The issue that has traditionally hampered the widespread
adoption of FPGAs is that they require digital design expertise
and specialized programming skills. As a consequence, along
with the increase in popularity of FPGAs as part of data

centers and high-performance computing clusters, there has

been a push towards increasing the programmability of these

devices through the use of programming models — like

OpenCL — intended for multi- and many-core architectures.

For example, both Xilinx and Intel are providing their own

OpenCL-to-FPGA development toolchain and runtime

system [5, 6]. However, it has been shown that the direct

porting of OpenCL code designed for GPU often leads to poor
results both in terms of performance and resource utilization

[7-9].

In the past few years there has been an increasing interest
in accelerating finite state automata. Almost all finite
automata processing engines for GPU, implemented using
OpenCL or CUDA, have a memory-intensive design. Since
the off-chip memory bandwidth of OpenCL-enabled FPGA
boards is significantly lower than that of similarly priced high-
end GPUs, those designs are not a good fit for FPGA. Our
recently proposed SIMD NFA engine [20] has characteristics
that make it a better candidate for FPGA deployment.
Specifically, it limits the use of off-chip memory by encoding
the NFA topology within the parallel kernel rather than in
memory, has a SIMD-friendly design, and is synchronization
free. Here, we investigate the deployment of the OpenCL
version of SIMD NFA, previously evaluated on GPU and
Intel platforms, on FPGA. After having verified that, despite
its more FPGA-friendly design, the naive porting of
SIMD_NFA to FPGA does not even fit the hardware
resources of a reasonably equipped Intel Stratix V board, we
propose optimization techniques to retarget SIMD NFA to
FPGA.

In this work, we make the following contribution.

e We study the deployment of SIMD NFA, an existing
automata processing engine designed for SIMD
platforms, on FPGA.

e  We propose a set of optimization techniques aimed to
improve the resource utilization and the throughput of
SIMD_NFA on OpenCL-enabled FPGA devices. These
include: structural code changes, alternative memory
layouts, adjustments to the degree of parallelism of the
code, and best-practice optimizations. The SIMD NFA
code is automatically generated by a compiler toolchain
given an input NFA topology, and the proposed
optimizations are easily incorporated in the code
generator.

e We study the applicability of some of our proposed
optimizations to  generic  applications beyond
SIMD NFA.

e  We perform an extensive experimental evaluation using
various NFA topologies from an open-source benchmark
suite [21]. From the resource utilization perspective, our
evaluation shows that our optimizations not only allow
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Pattern 0: (alb) | (3 "c) Pattern 1: (c|d) | (3 a)

Figure 1. Fixed-topology NFAs accepting two regular expressions
(pattern 0 and pattern 1) with the same structure but different symbols.

the code to fit the reference FPGA, but also enable to
deploy up to 3 execution pipelines on it. From the
performance perspective, our optimizations lead to
speedups up to 4x over the first optimized code-variant
that fits the NFA design on the considered FPGA.

II.  BACKGROUND ON OPENCL FOR FPGA

OpenCL is an open standard that allows writing programs for
a variety of parallel computing platforms, including multi-
core CPUs and graphics processing units (GPUs) [22].
OpenCL allows programmers to write their applications in an
architecture-independent fashion, and seamlessly deploy
them on multiple OpenCL-enabled devices. OpenCL
application code consists of two parts: host and kernel code.
The host code handles data allocations, communication
between host and device, device configuration, and kernel
launch. The kernel code contains the core of the computation
parallelized and executed on the device. OpenCL adopts a
hierarchical multithreading model, whereby threads, called
work-items, are grouped into work-groups. This
multithreading model matches the hierarchical hardware
organization of GPUs.

Recently, there has been interest in extending the use of
OpenCL to FPGAs, thus freeing programmers from the need
to write HDL code. Both Intel and Xilinx have developed
their OpenCL-to-FPGA toolchains [5, 6]. These toolchains
include a compiler that allows converting OpenCL kernels
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Figure 2. State vector layout for the NFA topology in Figure 1. For each state,
each work-item has an associated 32-bit word storing the activation bits
corresponding to that particular state in 32 distinct NFAs. Section (a) shows
the original work-group coalesced layout. In this layout, current, (in white)
and futures (in grey) are placed in memory one after the other. For each state
vector, 32-bit words processed by subsequent work-items are placed
contiguously in memory. Section (b) shows our alternative work-item
coalesced layout, with alternating placement of currents, and future. For each
work-item, the two 32-bit words corresponding to currents, and futures, are
stored contiguously in memory.
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into FPGA bitstreams, and they support two execution
models: single work-item and NDRange kernels. Single
work-item kernels are essentially single-threaded functions,
while NDRange kernels are executed in parallel by multiple
work-items. In both cases, FPGAs provide parallelism
through pipelining. In the NDRange case, pipeline replication
provides an additional level of parallelism that can enable the
parallel execution of multiple work-groups.

Similarly to GPUs, OpenCL-enabled FPGA boards have a
three-level memory hierarchy. First, each work-item has a
private memory that offers low latency but has limited size.
Private memory is implemented on FPGA either through
registers or Block RAM (BRAM). Second, work-items
belonging to the same work-group share a local memory,
which offers low latency and high bandwidth and resides in
the BRAM. Third, all work-groups share a high-latency
global memory that resides on the external DDRs of the FPGA
board.

By potentially lowering the barrier to the adoption of
FPGAs by a broader audience, OpenCL-to-FPGA toolchains
can have significant impacts. Previous work (e.g., Podobas et
al. [23]) has shown that the Intel’s OpenCL-to-FPGA
toolchain can lead to more efficient FPGA codes that other
existing high-level design strategies for FPGA. Yet, the
automatic generation of efficient FPGA implementations
from OpenCL code is not a trivial problem. First, OpenCL
code tailored to a device might perform poorly on another
device with different architectural features and offering
different forms of parallelism. For example, while GPUs
provide massive thread-level parallelism, FPGAs offer more
limited pipeline parallelism. Second, the HDL code generated
by these toolchains has often little readability, making it
extremely challenging to add optimizations on top of it. To
this end, there have been efforts aiming to understand the
limitations of OpenCL codes on FPGA and exploring the

effect of best-practice and custom optimizations on
performance.
II. SIMD NFA PROCESSING SCHEME

The application of reference (SIMD NFA [20]) implements
non-deterministic finite automata traversal and has been
deployed on GPU, Intel Phi and Intel Skylake processors.
Finite automata (FA) are a computational model that can be
used to implement regular expression matching, whereby an
input text (or stream) is searched for the occurrence of a given
set of textual patterns. When using FA, patterns are
represented as a set of states and state transitions (e.g., Figure
1). Pattern matching is performed by traversing the
precomputed FA guided by the symbols in the input text.
During traversal, a transition outgoing from an active state is
followed if the input character matches a symbol on that
transition; the activation of a final state triggers the match of
the corresponding pattern [24]. FA can be in deterministic or
non-deterministic form (DFA and NFA, respectively). Due to
their compactness and intrinsic parallelism (they allow
multiple concurrent state activations), NFA are at the core of
many parallel pattern matching implementations.

Most NFA traversal engines for GPU [10-12] store the
NFA states and transitions in global memory and parallelize
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a) SIMD-NFA kernel

1: currenty, < initialy

2: while (linput_stream.empty) do

3: ¢ < input-streams[stream_id][counter++]

: futurew — currenty & persistents,
topology-specific-traversal (¢, currents, futures)
currentsy < futuresy
futuresy = 0
b) function topology-specific-traversal (¢, currents, futures)
8: // source: state 0

4
5:
6:
7

9: /I destination: state 1

10: mask < match_check(c, tx_symbol_arr,0* pattern_count,2)
11: sv_update(mask,0,1,1,0,0,0) //positive tx handling

12: sv_update (null,null,null,0,0,0,1) //epsilon txs handling
13: // destination: state 2

14: sv_update(null,0,2,0,0,1,0) //wildcard tx handling

15: // source: state 1 (no non-epsilon tx)

16: // source: state 2

17: /I destination: state 3

18: mask < match_check(c,tx_symbol_arr,2*pattern_count,l)
19: sv_update(mask,2,3,0,1,0,0) //negative tx handling

¢) function match_check (¢, tx_symbol_arr,offset, #symbols_per_tx)

20: mask <0

21: for symbol-id in [1, #symbols_per_tx] do
22:  partial mask <0

23: for batch_id in [1, batch_size] do

24: symbol < tx_symbol_arr [offset++]
25: if (symbol==c)

26: set batch_id bit of partial_mask
27: mask|< mask | partial_mask

28: return mask;

d) function sv_update (mask, src, dst is-pos,is-neg,is-wildcard,is-epsilon)

29: if (is-pos) /Itransition with positive symbol
30: futures(dst) |~ mask & currenty(src)

31: else if (is-neg) /[transition with negative symbol
32: futures(dst) |~ ~mask & currents(src)

33: else if (is-wildcard) //wildcard transition

34: futures(dst) |~ current(src)

35: else if (is-epsilon) //epsilon transition

36:  futures(dst) | < futures(src)

Figure 3. NFA traversal pseudocode. The topology-specific-traversal function

refers to the NFA topology shown in Figure 1.

the traversal by distributing the set of active states and their
transitions across the work-items (i.e., they leverage state-
level parallelism). These implementations are typically
irregular, and suffer from high memory bandwidth
requirements, irregular memory accesses, control flow
divergence, and synchronization overhead (they use atomic
operations to update the active states information).
SIMD_NFA addresses these issues for applications that rely
on fixed-topology NFAs. Differently from existing GPU
implementations, SIMD NFA encodes the NFA topology in
the traversal code, and stores in memory only the characters
associated to the state transitions (in addition to the input
streams). SIMD-NFA uses NFA- and stream-level
parallelism: it assigns to each work-item a distinct set of NFAs
(i.e., patterns) and distributes the input streams across the
work-groups. The work distribution and the memory layout
are designed so as to minimize the control flow and memory
divergence and avoid the need for invoking synchronization
primitives. Due to its SIMD-like operation, its limited
memory and control flow divergence, and its lack of
synchronization, SIMD NFA is a good candidate for FPGA.

520

Thus, in this work we evaluate the deployment of an OpenCL
version of this code developed for GPU on FPGA.

Here, we illustrate the operation of SIMD NFA with an
example. Figure 1 shows two NFAs with the same topology
but different transition symbols corresponding to two regular
expressions (e.g., patterns 0 and 1) with the same structure. As
mentioned above, the SIMD NFA engine embeds the
topology of the NFA within the traversal code, and stores the
transitions’ characters and the input streams in global
memory. Like other GPU implementations of NFA traversal,
SIMD NFA uses two bitmap arrays to record the states’
activations before and after processing each input character,
and stores them in local memory for fast access. These arrays
are called current and future state vectors (currents and
futuresy), respectively, and their layout is shown in Figure 2
(a). As can be seen, states that have the same identifier (i.e.,
the same location in the NFA topology) from different NFAs
are placed in contiguous regions of memory. By assigning to
each work-item a distinct batch of 32 NFAs, SIMD NFA
avoids the need for barrier synchronization and atomic
operations when updating the state vectors. To allow for
coalesced memory accesses, work-items of each work-group
access subsequent memory words. We call this memory
layout work-group coalesced state vector layout.

Figure 3 shows the pseudocode of the NFA traversal
kernel. The topology-specific-traversal function invoked by
the main kernel is the only topology specific section of the
code; the remaining code (including the match check and
sv_update functions) is common across NFA topologies. The
topology-specific-traversal function shown in Figure 3(b)
corresponds to the example in Figure 1. The underlined
bitmap operations on state vectors are performed by all work-
items in parallel; the iterations of all for and while loops in the
code are performed sequentially by all concurrent work-items.
First, the input characters are sequentially fetched from global
memory based on the input stream identifier (lines 2 and 3).
Line 4 supports the activation of persistent states (i.e., states
that, once activated, will remain active) efficiently. The
topology-specific-traversal function contains the operations
necessary for updating fitures, based on each transition of the
topology. There are four transition types, each handled by a
distinct bitmap operation, namely: positive, negative,
wildcard and epsilon transitions. The topology in Figure 1
contains one transition of each kind: (0,1), (2,3), (0,2) and
(1,3) are a positive, a negative, a wildcard and an epsilon
transition, respectively. The sv_update function updates
futuresy through simple bitmap operations based on the
transition type, the current value of the state vectors and a
mask generated by the match_check function. Positive and
negative transitions are triggered based on match and
mismatch between the transition symbol(s) and the input
character, respectively. The 32-bit mask (32 being the batch
size) is used to indicate whether the input character matches
the symbol(s) of the transition being processed for each NFA
in the batch. For positive and negative transitions, the futures,
is updated based on the value of the current,, and the mask
(lines 29-32). Since wildcard and epsilon transitions are input
independent, they do not require the mask for updating the
futuresy (lines 33-36).
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Figure 4. System viewer report of a simple microbenchmark application with
4 store (ST) and a number of arithmetic instructions (a) before and (b) after inserting a control-flow instruction. The
system viewer report presents memory and control flow of each block in the design.
Note that all bitmap operations are performed in local
memory, and the only global memory accesses are the ones at

lines 3 (input streams reads) and 24 (transition symbols reads).

IV. DEPLOYING SIMD NFA 10 FPGA

Our goal is to explore and evaluate the deployment of
SIMD NFA on FPGA. The first step is to simply port the
original OpenCL code to FPGA using the NDRange and
single work-item execution models. The original code is in
NDRange form and consists of fully independent work-items.
We recall that, in SIMD NFA, different work-items process
distinct sets of NFAs and access disjoint portions of the state
vectors and of the array containing the transition characters.
We construct the single work-item kernel by embedding the
body of the NDRange kernel within a nested loop, with the
outer and inner loops iterating over work-groups and work-
items, respectively. Since the work-items of the NDRange
kernel are independent, there won’t be any loop-carried
dependencies between the iterations of the single work-item
kernel. Thus, both kernels are good candidates for pipelining
on FPGA.

As discussed in Section II, simply porting OpenCL codes
optimized for GPU to FPGA can result in low performance
and high resource utilization [7-9, 25]. This is mainly due to
differences in the underlying hardware and execution model.
First, GPUs have a SIMD-like architecture that provides
massive multithreading and allows the parallel execution of
tens of work-groups and thousands of work-items. FPGAs
provide a different type of parallelism. They leverage
pipelining to allow parallel execution of work-items and
require pipeline replication to allow parallel execution of
work-groups. Second, GPU codes often rely on local memory
for sharing data and allowing efficient communication among
work-items. Barrier synchronization is often required to
guarantee the correctness of local memory updates and
memory consistency. However, on FPGA such barriers result
in pipeline flushes, negatively affecting performance.
Therefore, designs with no synchronization requirements are
preferred on FPGA. Third, since the memory bandwidth on
FPGA is significantly lower than on GPU, FPGA
performance is sensitive to the nature of the memory access
patterns.

Recall that the SIMD NFA design does not require
synchronization primitives, uses local memory for all state
vectors updates, and has a memory layout designed to provide
efficient local and global memory accesses. Although based
on these characteristics we expect SIMD NFA to be a good
fit for FPGA, naively porting its OpenCL implementation to
FPGA results in two sources of inefficiency: excessive logic

(b) Modified code
for (int i =0; i<2

- }
a flat code comprising a total of 8 load (LD),
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resource utilization and
global memory access stalls.
This motivates us to explore
a set of custom and best
practice optimizations to
retarget the code optimized
for GPU to FPGA, and to
improve resource utilization
and traversal throughput.
Specifically, we explore four
kinds of optimizations: (1)
structural changes to the code, (2) alternative memory layouts,
(3) adjustment to the NFA-level degree of parallelism, and (4)
best practice guide optimizations. In addition, we evaluate the
general applicability of the first two optimizations to generic
OpenCL code.

A. Structural code changes

First, we observe that the resource utilization of the original
OpenCL code is so high that it prevents the deployment of the
code on a reasonably sized FPGA board, and this holds for all
considered NFA topologies. Table I (columns 9 and 10)
reports the estimated logic utilization of the original
SIMD NFA code on a Stratix V FPGA and seven NFA
topologies with various sizes (see Section V for more details).
These estimates are provided by Intel’s OpenCL-to-FPGA
toolchain (area analysis reports) before place-and-route. Some
of these estimates (e.g., Fermi and LD k8 dl in NDRange
form) are less than 100%. However, even in these cases the
final design could not be placed and routed on the considered
FPGA. In addition, due to the size of the ER kernel code, the
toolchain failed to generate the corresponding Verilog files,
not even allowing resource utilization estimates for this NFA
topology. This led us to investigate possible structural code
changes aimed to reduce resource utilization.

To get some insight into the compilation and mapping of
OpenCL code onto FPGA, we study the intermediate reports
generated by Intel’s OpenCL-to-FPGA toolchain. From our
observations of the system viewer reports, it appears that the
compiler breaks the code into blocks and generates a hardware

function topology-specific-traversal (¢, eurrente, fuitres)
1: for sre_state m [0, 1. 2] do

sv_update(mask,0,1,1,0,0,0) //positive tx handling

2: if (sre_stare=0)
g 30 lor dsr_staremn [1, 23] do
£ 4: W (st siare
a . e
4 El a:
= f-l 2
2| 6: I
al=
=|g Tz mask0 == match_check(c, x_symbol arr,0* partern _count,l)
=15
§ g 8: mask < mask0
£ 8
sle 9:
= K1 = ach xdiknowihas i SEREETRSIES - -
BlE 10: maskl — match_check(e, &_symbol_arr,1¥* pattern_count.1)
] 1
2l 11: mask ~ maskl
Els 1
= =
]|E

inzertion

sv_update (null,null,null,0,0,0,1) /lepsilon txs handling
i {or srmte=2)

sv_update(muil,0,2,0,0,1,0) //wildeard tx handling
. if (sre_srare=1) // no non-epsilon ix

if (sic_state=2)

/I destination: state 3

mask == match_check{e,tx_symbol_arr,3*paitern_coumnt.1)
sv_update(mask, 2,3,0,1,0,0) //negative ix handling
Figure 5. NFA traversal pseudocode after control-flow insertion. The topology-
specific-traversal function refers to the NFA topology shown in Figure 1.
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TABLE L.

LOGIC UTILIZATION AND LINES OF CODE (LOC) OF THE ORIGINAL OPENCL CODE AND THE SRC-CFI CODE VARIANT FOR VARIOUS NFA TOPOLOGIES

(DATASETS IN SECTION V). THE DATA ARE COLLECTED ON AN INTEL STRATIX V FPGA. GREY CELLS INDICATE DESIGNS THAT DO NOT FIT THE CONSIDERED FPGA.
IN THESE CASES, SINCE PLACE&ROUTE WAS NOT POSSIBLE, THE REPORTED LOGIC UTILIZATION IS AN ESTIMATE BY THE OPENCL-TO-FPGA TOOLCHAIN.

Dataset Topology Characteristics Original-flat-code sre-cfi code-variant
NDRange Single NDRange Single Work-item
Work-
item
tates|tx #| tx |positivelnegativewildcardepsilon| Logic util. | Logic util. LoC Logic util. LocC Logic util.

# chart | x# tx # x# | o# (%) (%) OpenCL | Verilog (%) OpenCL Verilog (%)
HD k8 di]| 17 |24 | 23 15 8 0 0 112 328 217 ~118k 31 227 ~648k 70
Fermi 18 |26 | 24 11 0 13 0 69 245 210 ~195k 43 220 ~155k 36
LD k8 dl| 18 |42 | 16 16 0 17 8 88 264 231 ~166k 28 241 ~1,425k 58
SPM 21 |47 | 69 51 17 1 0 195 1256 267 ~448k 124 277 ~432k 246
\HD k20 _dI| 41 | 59 | 59 39 20 0 0 266 829 314 ~224k 37 324 ~1,751k 172
LD k20 dI| 42 |101]| 40 40 0 41 20 198 698 340 ~401k 33 350 ~4,998k 132
ER 72 1196| 195 148 47 0 0 - - 618 ~1,244k 146 628 ~17,383k 488

module for each of these code blocks. Each module contains
the logic necessary to implement the functionality of the
corresponding code block, as well as the load units required
by its memory operations. Although modules are not
generated at the granularity of basic blocks (i.e., we observe
instances where code blocks including branch instructions are
mapped to a single module), control flow instructions are used
to break the code into code blocks for module generation. In
addition, we observe that the compiler tends to unroll small
loops with known loop trip counts, effectively limiting the
number of control flow operations that can lead to separate
code blocks. In summary, long straight-line code can result in
large modules, decreasing the opportunities for hardware
reuse.

The original OpenCL code is automatically generated
given an input NFA topology. In particular, the code generator
processes the specified NFA topology transition-by-
transition. For each positive and negative transition, it inserts
a call to match_check and sv_update; for each wildcard and
epsilon transition, it inserts a call to sv_update (Figure 3(b)).
The resulting fopology-specific-traversal code has a “flat”
structure. Our observation on module generation suggests that
the large resource utilization of the “flat” code is likely due to
the lack of branching instructions in the code, which results in
a large module implementing all the state transitions, and in
limited hardware reuse. Based on these observations, we
introduce structural changes in the code without modifying its
functionality. Specifically, we incrementally add control-flow
statements to facilitate the generation of smaller modules.

As an example, Figure 4 (a) presents the system viewer
report for a simple microbenchmark that includes 8 load, 4
store and a number of arithmetic instructions. As can be seen,
this code leads to a single module that includes 8 load and 4
store units. However, dividing this flat code into two sections
by adding control flow statements (as shown in Figure 4 (b))
results in a smaller block with only 4 load and 2 store units.
The corresponding module is instantiated once. However, due
to the presence of the loop, the module is now reused by the
two code blocks corresponding to the two if-statements.
Consequently, adding redundant control flow statements
(while preserving the original code functionality) can
significantly reduce the resource utilization of the OpenCL
code. For the SIMD NFA code, we add control flow
statements in three stages: source-based, transition-based, and

character-based insertion. The resulting code variants could
be automatically generated by modifying the SIMD NFA
code generator.

Source-based control flow insertion (src-cfi) — We first
insert a loop that iterates over the states of the NFA (line 1 of
Figure 5). Then, for each NFA state, we introduce an if-block
that encapsulates the logic related to the transitions outgoing
from that state (i.e., the required calls to the match_check and
sv_update functions). These added control flow statements
(line 2, 17 and 18 of Figure 5) allow the compiler to split the
code into code blocks and, consequently, to generate smaller
modules. Recall that, when a code block is executed in
multiple iterations of a loop, its logic is instantiated only once.
This allows logic reuse, not possible in the flat code. In
addition, this motivates the insertion of the loop at line 1 of
Figure 5, which is not required from a functional perspective.
Table I (columns 13 and 16) reports the resource utilization of
this code variant. We note that the implementation of the
module corresponding to each source state depends on several
factors. First, the outgoing transition types, leading to the
instantiation of the appropriate bitmap logic from the
sv_update function within the module. Second, the number of
characters per transition, which defines the logic and the
number of load units required by the match _check function.
Third, the number of outgoing transitions, which indicates the
number of instantiations of the logic associated to
match_check and sv_update within the same module. If two
source states have the same attributes, they can lead to the
instantiation of the same module. To allow for module reuse,
we aim to generate modules with similar logic. To this end,
we gradually increase the number of control flow statements
so as to allow breaking the topology-specific-traversal
function into finer-grain code blocks.

Transition-based control flow insertion (x-cfi) — We
further increase the amount of branching by adding to the code
an if-block for each outgoing transition from a given state, and
a for-loop encapsulating these if-blocks (line 3, 4, 13 and 15
of Figure 5). Here, the design of the module corresponding to
a transition depends only on the transition type and the
number of characters per transition. Therefore, this code
change increases module granularity and the likelihood of
having code blocks with similar logic requirements. This, in
turn, facilitates code reuse (note that, as in the previous code
change, the modules are instantiated within a loop).
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Character-based control flow insertion (char-cfi) —The
match_check function iterates over all the characters
triggering a transition (Figure 3, line 21). We aim to simplify
the logic of the match_check function. For this purpose, we let
this function check only one character by removing the loop
at line 21 from match_check and let this function check only
one character. The topology-specific-traversal function will
then invoke match check multiple times, once for each
character of the transition. We then insert a loop in fopology-
specific-traversal to iterate over these function calls, and if-
statements to split the iterations into different modules (line
5,6 and 9 of Figure 5).

It is important to note that nested loops can increase the
complexity and the logic utilization of the kernel (this holds
especially for single work-item kernels) [26]. To address this
problem, we manually coalesce the loops of these three
structural changes into one (placed at line 1 in Figure 5).

General applicability of control-flow insertion
technique — In order to study the general applicability of this
method to other applications, we used synthetic
microbenchmarks similar to the one of Figure 4. Specifically,
we first generated flat codes with different instruction mixes,
and then we inserted (functionally unnecessary) control flow
statements so as to allow the compiler to identify similar code
blocks and enable module reuse. As in Figure 4(b), control
flow insertion was done automatically by breaking the code
into CFS equally sized code blocks, and inserting an external
for-loop with CF iterations and an if-statement around each
of the CFS code blocks. We first constructed
microbenchmarks with the same number of load and store
operations but different arithmetic intensities (namely, 1, 2
and 4), and we inserted 5, 10 and 20 control flow statements
into the flat code. As shown in Figure 6(a), control flow
insertion results in up to 3.7x logic utilization reduction (with
arithmetic intensity 4). We then studied the effect on resource
utilization of the similarity between the code blocks generated
by control flow insertion. The results of these experiments are
shown in Figure 6(b), where the arithmetic intensity is set to
1. The percentage of similarity refers to the number of
arithmetic operations that are shared by the different code
blocks. As expected, the best results are achieved when all the
code blocks have the same structure. However, even if the
arithmetic operations differ significantly across code blocks,
the compiler leverages the number of load and store
operations per block to generate smaller, reusable modules.
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We also verified that this decrease in logic utilization does not
come at a performance cost even when the flat design fits the
FPGA used. These results suggest the general applicability of
our proposed control-flow-insertion technique beyond SIMD-
NFA.

B. Changes to the memory layout

Figure 2 (a) shows the layout of the state vectors for the
original OpenCL code. This layout, called work-group
coalesced, allows subsequent work-items within the same
work-group to access contiguous memory chunks. As a
consequence, it is suitable for GPU, where work-items
belonging to the same work-group are executed in parallel and
contiguous memory accesses avoid bank conflicts for local
memory. The work-group coalesced layout, however, might
not be optimal for FPGA, where the work-items within a
work-group are executed in a pipelined fashion, rather than a
SIMD-like fashion. Specifically, we note that single work-
item kernels are executed sequentially and potentially present
more locality per each loop iteration. This considered, on
FPGA we also test the layouts of Figure 2(b). This layout,
called work-item coalesced, stores the state vectors work-item
by work-item. In other words, it groups together all the data
processed by the same work-item.

General applicability of work-item coalesced layout —
In order to evaluate the generality of the work-item coalesced
memory layout and its effectiveness, we created a
microbenchmark that uses this layout for local memory.
Specifically, the kernel code consists of three loops: (1)
transfer of input array from global to local memory, (2)
computation in local memory, (3) transfer of output array
from local to global memory. Each iteration of loop (2)
processes a variable number of adjacent elements (AdjAcc),
affecting data locality. Figure 6(c) shows the speedup
achieved using work-item coalesced over work-group
coalesced layout. We observe slight speedups up to 1.23x,
1.14x and 1.08x for arithmetic intensities 0.5, 1 and 2,
respectively, and 32 adjacent accesses per iteration. The
speedup plateaus beyond AdjAcc of 32. However, we did not
observe performance benefits when the workitem-coalesced
layout is used for global memory or with NDRange kernels.

C. Changing the degree of NFA-level parallelism

As mentioned in Section III, in SIMD_NFA each work-item
traverses a batch of NFAs concurrently. In the original GPU
code the batch size is set to 32, corresponding to the size of a
warp (i.e., a SIMD unit on
GPU). On FPGA, there is
flexibility in the selection of the
batch size. The batch size (Biize)
affects several aspects of the
implementation.  First, the
chunks of the state vectors
updated by each work-item are
of Biize bits. Second, the
transition characters’ array in
global memory is accessed in
chunks of Bsize bytes. Third, the
mask generated by
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the match_check function consists of Biize bits. As a
consequence, the loop that fills that mask (line 23 in Figure 3)
has Bi:ze iterations. Because it has a loop-carried dependency,
that loop cannot be pipelined, and is automatically unrolled by
the compiler. Thus, the number of instructions of the
match_check function depends on the batch size. Reducing
the number of instructions can simplify the resulting logic
and enhance the clock rate. Lastly, decreasing the batch size
increases the number of work-items required to support the
same number of NFAs (and vice versa). In our experiments,
we test a batch size of 8 (in addition to 32).

D. Best practice guide optimizations

We used several techniques from Intel’s SDK for FPGA Best
Practice Guide [26] to reduce the logic utilization and improve
the performance of the code. These include: explicitly
indicating the number of work-items and the size of the local
memory required (to prevent the compiler from using the 256
work-item and 16KB local memory default settings), using
constant memory to allow faster accesses to transition
characters, using the vector data type to increase the memory
bandwidth efficiency, enabling automatic SIMD vectorization
of loops, and using pipeline replication when the resource
utilization of a single execution pipeline permits it.

V. HARDWARE CONSIDERATIONS

In this section, we discuss hardware characteristics of our
design derived from the analysis of the report.html file
generated by Intel’s OpenCL-to-FPGA SDK. This file
provides memory and area utilization data and information
on loop structure and pipelining. After having identified
hardware-specific bottlenecks of our design, we discuss the
effect of various optimizations on those bottlenecks.

The match_check function (section ¢ of Figure 3) is the
bottleneck of the SIMD NFA design in terms of both
resource utilization and throughput. We note that this is the
portion of the code that accesses the transition symbol array
(tx_symbol_arr) located in global memory, thus making the
most use of global load units. According to the compiler
report, even after applying the src-cfi structural changes, this
block of code uses from 30% to 89% of the ALUT and FF
resources allocated to the kernel (HDK8D1 single work-item
and ER NDRange version). Moreover, profiling data
collected during our experiments show that the load units
allocated to this section of code stall the pipeline from 45%
to 95% of the time across NFA topologies.

The other function used by the traversal code is sv_update
(section d of Figure 3). This function performs solely bitwise
logic operations on vectors stored on chip, and thus it uses
mainly ALM and BRAM blocks. Similarly, the bitwise
operations on persistent and future state vectors (lines 6 and
7 of Figure 3) require only ALM and BRAM blocks. Since
they do not access off-chip memory, the hardware modules
corresponding to these portions of code do not cause major
pipeline stalls. The only additional use of global memory is
by the code at line 3 of Figure 3, which loads input characters
from the input stream sequentially, requiring only one load
unit. Since the resulting memory accesses are contiguous
(and infrequent), they do not lead to pipeline stalls.
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Memory and area utilization — The hardware design
generated from the flat code for the considered NFA
topologies includes up to 185 burst-coalesced global load
units and one burst-coalesced global store unit. Burst-
coalesced load/store units provide efficient contiguous global
memory accesses by buffering requests until the largest
possible burst of data can be transferred from/to global
memory. This, however, comes at the cost of hardware
complexity and additional FPGA resources [26]. Applying
all the structural code changes, namely src-cfi, tx-cfi and
char-cfi, reduces the number of load units to 9 on all
considered NFA topologies for both single work-item and
NDRange kernels. Using the vector data type further reduces
the number of load units to 2. Finally, when using constant
memory to store the transition characters, the OpenCL-to-
FPGA offline compiler instantiates pipelined load units for
the fopology-specific-traversal function. Since pipelined load
units are less expensive than burst-coalesced ones in terms of
area, the use of constant memory allows an additional (even
if slight) improvement on resource utilization.

Loop structure and pipelining characteristics — The
report.html file includes critical information on the hardware
generated for each loop in the body of single work-item
kernels. This information includes pipelining status,
initiation interval, and scheduled maximum frequency. For
each pipelined loop, the initiation interval indicates the
number of clock cycles between the launch of one loop
iteration and the next, and is one of the main factors affecting
performance. In the optimal case the initiation interval is
equal to one, implying that one loop iteration is processed
every clock cycle. We observe that, after applying the first
structural code change, namely src-cfi, there are three loops
inside the kernel that are performance bottlenecks: (i) the
loop at line 1 of the pseudo-code of Figure 5, (ii and iii) the
loops required to implement the statements at lines 6 and 7 of
the pseudo-code of Figure 3. For different NFA topologies,
loop (i) results to be either unpipelined, or pipelined with a
large initiation interval (between 104 to 177). Applying the
remaining structural code changes (lines 3 and 5 of Figure 5)
allows a reduction in the initiation interval. Recall that we
coalesce the loops of all structural changes into one.
Implementing src-cfi, tx-cfi and char-cfi enables the
pipelined implementation of the final coalesced loop and
reduces the initiation interval to 65 and 66 across NFA
topologies. It is worth noting that our experimental results
show no changes in the value of the initiation intervals
resulting from optimizations other than our proposed
structural code changes. Loops (i) and (iii) are used to update
the state vectors stored in local memory after processing each
input character, and they have initiation intervals equal to 98
and 95, respectively. Applying the wiCL optimization reduces
the initiation intervals of these loops to 1 and 64 for all
considered NFA topologies. These initiation interval
reductions lead to considerable performance improvements.

VI. EVALUATION

A. Experimental Setup

Hardware — We use an Intel DE5-Net board, which
includes a Stratix V FPGA (5SGXA7 family). The off-chip
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memory consists of 4 GB of DDR3 SDRAM, structured in
two banks, with peak bandwidth of 25.6 GB/s. The on-chip
memory consists of 2,560 M20K memory blocks, each 20
Kbits in size. The FPGA includes 234,720 Adaptive Logic
Modules (ALMs), each containing a LUT and 4 registers, and
256 DSP blocks. The host side program runs on an Intel
processor with a 64-bit Red Hat OS. We use Intel FPGA SDK
for OpenCL Standard Edition v. 18.1.0 to compile and
synthesize our OpenCL code.

Datasets — We use five fixed-topology NFA datasets from
ANMLZoo benchmark suite [21], namely: Fermi, Sequential
Pattern Mining (SPM), Entity Resolution (ER), Hamming
Distance (HD) and Levenshtein Distance (LD) NFAs. HD and
LD NFAs aim to identify substrings of length £ in an input
text within Hamming and Levenshtein distance d from a given
pattern, respectively. For HD and LD, we use a small dataset
(k=8, d=1) and a large dataset (k=20, d=1I). The considered
NFAs topologies differ in terms of numbers of states, number
and types of transitions (Table I, columns 2-8). The NFA
topology affects both performance and resource utilization of
the resulting FPGA design. Each dataset has 2048 NFAs
(patterns) and we use two 15KB input streams, either
generated using an open-source trace generator [27] (with
probability of match set to 50%) or taken from real gene
sequences (for HD and LD only).

Performance metrics — Our evaluation covers traversal
throughput and resource utilization. The traversal throughput

. Input_sizexstream_count . .
is defined ag TERSZeXSITeam. _ where the execution time
execution_time

is the running time of the kernel and does not include data
transfers between host and device. As measure of resource
utilization, we report logic and BRAM utilization data. Logic
utilization data indicate the percentage utilization of the
ALMs available on the device. Quartus provides these reports
after place&route.

B. Experimental results

Figure 7 illustrates throughput, logic and BRAM
utilization resulting from applying the Section IV
optimizations to the original OpenCL kernel. Missing data in
the charts correspond to designs that do not fit the FPGA (due
to high logic and BRAM requirements). From left to right, we
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sort NFA datasets based on their sizes (i.e., the number of
states) and we show results from incrementally performing the
following optimizations to the flat code: source-based control
flow insertion (src-cfi), transition- and char-based control
flow insertion (tx-cfi + char-cfi), work-item coalesced local
memory layout (wiCL) for single work-item kernels, vector
data type usage, constant memory usage to store frequently
accessed transitions, batch size of 8 (batch-8) usage. Since
batch-8 significantly reduces throughput, we implement the
remaining optimizations to the constant version of the code
(which encapsulates all previous code changes — from sre-cfi
to vector). These remaining optimizations are: 2 levels of
automatic SIMD parallelization (SIMD), and pipeline
replication (PR). Note that, except for the batch-8
optimization, the batch size is set to 32.

Throughput — High-level observations include: First,
single work-item kernels in most cases yield lower throughput
than NDRange ones. We recall that, on FPGA, the presence
of synchronization in the code can lead to inefficiencies due
to pipeline flushes. Thus, by avoiding the need for
synchronization, the single work-item model is a good fit for
codes that would require synchronization if executed in a
thread-parallel fashion. Since SIMD NFA is
synchronization-free by design, an NDRange implementation
can provide higher parallelism and lead to better performance.
Second, for almost all NDRange kernels, the best throughput
is achieved when applying all optimization up to SIMD, while
PR does not improve the results. For single work-item kernels,
the use of constant memory leads to the best throughputs.
During compilation we set the target clock frequency to
240MHz, and the reports show a resulting effective clock
frequency varying between 150MHz and 250MHz across
datasets and code variants. Below, we discuss in more details
how the considered optimizations affect performance.

vector — Execution profiling results show that the use of
vector variables allows full memory bandwidth efficiency and
removes global memory stalls (i.e. one of our main
inefficiency causes) completely, allowing for significant
speedups (up to 2.4x for NDRange and 4.3x for single work-
item kernels).

constant — Constant memory operates as an on-chip cache
and offers higher load/store bandwidth than global memory at
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Figure 7: Throughput speedup, logic utilization and RAM Block utlhzatlons of NDRange kernels (top) and single work-item kernels (bottom.)
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a significant miss latency cost. Single work-item kernels
benefit from constant memory (leading to an average 121%
speedup over the vector code variant), except for LDK8DI.
Due to the limited number of loads required by LDK8D1, the
cost of cold cache misses is not amortized by the cache hit
speedup. In case of NDRange kernels, we observe an increase
in miss rate, likely due to changes in load order due to
pipelining. We note that changing the size of constant cache
does not significantly change the performance.

We also tested placing the transition characters array in
local memory. This is possible only for small datasets that fit
the limited local memory capacity. For these datasets, the
local memory results are similar to the constant memory ones.
Therefore, in Figure 7 we only show the results reported using
constant memory.

SIMD and PR — We recall that SIMD and PR are best
practice optimizations specific to NDRange kernels, and they
allow work-item and work-group level parallelism,
respectively. PR results in a consistent throughput decrease.
The profiling information suggests that the higher degree of
parallelism comes at the cost of an increased constant memory
miss rate, leading to the observed performance degradation.
Yet, SIMD parallelization increases memory coalescing and
offers the best throughput.

Resource utilization — High-level observations include:
First, single work-item kernels require more resources than
NDRange ones. Second, using vector variables for single
work-item kernels is the most effective optimization on
resource utilization. For NDRange kernels, after structural
code changes allowing the code to fit FPGA, batch-8 is the
most impactful in reducing resource utilization. More details
are discussed below.

Structural code changes — We recall that the original flat
code does not fit the considered FPGA for any of the datasets.
While applying the src-cfi optimization allows us to fit most
of the datasets on FPGA, applying #x-cfi and char-cfi on top
of it does not lead to a significant reduction in logic and
BRAM utilization. For NDRange kernels, Fermi benefits the
most from #x-cfi+char-cfi with a 34% and a 51% logic and
BRAM usage reduction. Among our datasets, Fermi has the
most irregular topology with the number of transitions’
characters per state varying between one to four. Using finer-
grained structural changes, therefore, increases the
opportunities of code reuse, leading to lower resource
utilization.

vector — Vector variables improve resource utilization by
reducing the number of load units by a factor of 8.
Subsequently, according to the compiler report, a
considerable amount of logic is dedicated to the board
interface and the global interconnect.

batch-8 — Using a reduced batch size has a clear benefit on
the resource utilization of NDRange kernels. However, this
comes at the cost of reduced throughput. This is because the
reduction of the batch size by a factor of four calls for an
increase in the number of work-items by the same factor.

Finally, as expected, logic utilization grows in the same
direction as the number of LOC (compare LOC in Table [ with
the logic utilization in Figure 7). Single work-item kernels
tend to be larger than NDRange ones, and they show a slightly
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looser relationship between LOC and logic utilization. We
attribute this to the more complex control logic required by
single work-item kernels to implement loop-level pipelining.

Power consumption — We used the quartus _pow utility
to gather an estimate of the power consumption on the FPGA
board. Since this command provides only the estimated power
consumption of the FPGA, we add 2.34W to account for the
two memory modules on the board [31]. The resulting
estimated power consumption of the of src-cfi code variant
averaged over the considered NFA topologies is 17.9W and
20.7W for NDRange and single work-item kernels,
respectively. The power consumption of the other code
variants differs from that of src-cfi by up to SW.

Comparison with GPU — In [20] we show that, on a
Nvidia Titan Xp GPU, SIMD NFA achieves single-stream
throughputs between 1.3 KB/sec (ER) and 26.4 KB/sec
(Fermi). However, GPUs support inter-stream parallelism,
and running enough input streams to fully utilize the device
results in throughputs from 459.9 KB/sec (ER) to 8744.4
KB/sec (Fermi). While GPUs can achieve high processing
throughputs, they have higher power consumption compared
to FPGA solutions. For example, the power consumption of
the src-cfi code variant of SIMD NFA on an Nvidia TitanXp
GPU is on average 142.1W. We measured the GPU power by
executing nvidia-smi with 1ms intervals, which accounts for
the power of the whole board.

Comparison with custom FPGA designs — Several of
the most efficient NFA traversal designs for FPGA rely on the
one-hot encoding scheme [14][30] and encode the NFA
structure uniquely in sequential and combinational logic.
While these custom implementations typically yield high
processing throughputs, they are constrained by resource
utilization, they suffer from long configuration time, and they
are not scalable to multiple input streams due to the need for
logic replication. In our previous work [30], we have
evaluated state-of-the-art FPGA implementations on some of
the datasets considered here using a Xilinx Virtex-VI device.
Our results show that these custom implementations can
achieve peak throughputs up to 0.3 and 0.2 GB/sec on HD
datasets with (k=8, d=2) and (k=20, d=2), respectively, and an
estimated power consumption of 2.07W on average. These
datasets consist of 4030 NFAs and require 1 and 2 FPGA
devices, respectively. The main drawback of these logic-
based designs is that any changes in the NFA, either in the
topology or transition characters, require a full synthesis and
FPGA reconfiguration, which takes about 37 minutes. While
its throughput is lower than that of custom FPGA designs, for
fixed-topology NFA SIMD NFA offers better configurability
and preprocessing cost since it stores transition characters in
memory instead of logic. We recall, however, that our goal
here is not to propose an optimized NFA engine, but rather to
evaluate the limitations of a SIMD-friendly OpenCL code on
FPGA and explore compiler optimizations that can be
generalized to other applications.

VIL

Zohouri et al. [7] evaluated the performance and power
consumption of six applications from Rodinia benchmark
suite [28] on two Altera FPGA devices. They studied several
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best practice optimization techniques including: pipeline
replication, loop unrolling, etc. Their analysis shows that
direct ports of GPU-optimized code do not perform well on
FPGA. However, FPGA-specific best practice optimizations
can significantly improve the performance of the OpenCL
code and, while not necessarily allowing the same
performance as on modern GPUs, they can lead to more
power-efficient implementations. Additionally, they tested
CFD application that similar to SIMD NFA has no
synchronization overhead and they report similar results
between NDRange and single work-item kernels

Krommydas et al. [8] performed a similar analysis on
several OpenCL kernels from the OpenDwarfs benchmark
suite [29]. Their study investigates the following aspects:
pipeline parallelism on single work-item kernels, manual and
compiler vectorization, static coalescing, pipeline replication,
and inter-kernel channels. Some of their findings that relate to
our observations are as follows. First, single work-item
kernels often result in better performance than NDRange ones
(this is coherent with the findings in [7]). Second, manual
optimizations result in more substantial performance gains
compared to automatic ones. while on many memory-bound
kernels compiler vectorization and pipeline replication are not
effective, manual vectorization can allow for efficient
memory coalescing and improve performance. In general,
automatic OpenCL compiler optimizations often bring little
benefit on FPGA, and manual optimizations are required to
achieve more substantial performance gains. Luo et al. [25]
investigated the effect of three manual code optimizations on
another OpenCL application with irregular memory access
patterns. Their analysis shows that these optimizations
provide better energy efficiency on FPGA while not affecting
the behavior of the code on CPU.

Hassan et al. [9] explored FPGA-specific optimizations
for irregular OpenCL applications suffering from
unpredictable control flows, irregular memory accesses and
work imbalance among work-items. Their analysis covers
three directions: exploiting parallelism at different levels,
optimizing floating-point operations and minimizing data
movement across the memory hierarchy. SIMD NFA,
however, does not present their target code patterns. Thus,
their optimizations are orthogonal to the ones considered here.

VIII. CONCLUSION

In this work we have explored the FPGA deployment of a
finite automata. After having verified that the naive porting of
its OpenCL code using the Intel OpenCL-to-FPGA toolchain
leads to implementations that do not even fit a reasonably
equipped FPGA board, we have proposed optimizations at the
level of the OpenCL code to effectively retarget the code to
FPGA. Our results show that our proposed techniques, along
with best-practice optimization mechanisms, lead to
significant improvements in terms of throughput and resource
utilization. Some of the proposed techniques (i.e., control-
flow insertion and changes to the memory layout) can be
generalized to other applications.
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