A Fresh Look at the Role of the Coupling of a Discrete state with a Pseudo-continuum State
in the Stabilization Method for Characterizing Metastable States
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ABSTRACT: The stabilization method is widely used to theoretically characterize temporary
anions and other systems displaying resonances. In this approach information about a metastable
state is encoded in the interaction of a diabatic discrete state and discretized continuum solutions,
the energy of which are varied by scaling the extent of the basis set. In this work, we identify the
aspects of the coupling between the discrete state and the discretized continuum states that encode
information about the existence of complex stationary points, and, hence, complex resonance
energies in stabilization graphs. This allows us to design a simple two-level model for extracting
complex resonance energies from stabilization graphs. The resulting model is applied to the 2Ig

anion state of Na.
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Anion states that lie energetically above the electronic ground state of the neutral atom or
molecule are metastable as they are subject to electron detachment. Temporary anion (TA) states
are important in several fundamental and applied areas and appear as resonances in various
electron scattering cross sections.! TAs often have lifetimes on the order of 10-100

femtoseconds, similar to the timescale for molecular vibration. In the Siegert picture,* a
temporary anion is characterized by a complex energy, E,..c = E, — il / o, where E and I' give

the resonance position and width, respectively (here atomic units are employed). ™! thus
corresponds to the anion lifetime. Modelling cross sections from electron-molecule scattering
experiments requires accurate determination of both the energy of the anion state relative to the

neutral and the anion lifetime as a function of molecular geometry.

Straightforward application of standard quantum chemistry methods to TAs is not
possible when using flexible basis sets needed for accurate results due to the presence of
discretized continuum (DC) solutions that fall energetically below and in the same energy range
as the temporary anion of interest. The DC solutions correspond to a free electron as described
by the finite basis set. Several methods have been introduced for the calculation of complex
energies associated with resonances.’!! One of the simplest, in the sense that it can be used with
electronic structure codes without modification, is the stabilization method® in which one
calculates the energies of multiple eigenvalues of the appropriate symmetry of the excess
electron system as a function of a scale parameter, z, that controls the spatial extent of the basis
set. A plot of the eigenvalues vs z displays avoided crossings that can be interpreted as resulting
from the mixing of a relatively compact diabatic discrete state, the energy of which is

independent or only weakly dependent on the scale parameter, and DC solutions whose energies



depend strongly on the scale parameter. A
stabilization graph for the widely studied g

anion state of Npb!1-14

at the equilibrium
geometry of the neutral molecule is displayed in
Figure 1. The results reported in Figure 1 were
generated using the electron affinity equation of
motion Moller-Plesset (EA-EOM-MP2)!9-2°
method, scaling by a factor of z the exponents

of four diffuse p functions in a modified aug-cc-

pVTZ Gaussian-type orbital (GTO) basis set*!-??
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Figure 1. Stabilization graph for the 1,
anion of N,. The dashed lines give the
energies of the DC levels and the dots the
energies of the excess electron levels from
the EOM calculations.

described in Reference 14. The energies are reported relative to that of the neutral molecule. The

calculations were carried out using the CFOUR code.?

Figure 1 also reports as a function of z the energies of the three lowest DC levels

obtained from the one-electron Hamiltonian neglecting interactions with the nuclei and

employing the same basis set as used in the EOM calculations. It is seen that the EOM

calculations give one more energy level in the energy range displayed than there are DC levels.

This extra level is due to the presence of the temporary anion state. The avoided crossing

between the second and third eigenvalues near z = 1 can be viewed as occurring between the

discrete state and the second DC level.



A variety of methods have been introduced to extract resonance parameters from

stabilization graphs.!>!® In the case of relatively sparse stabilization graphs, determination of the
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intuitive appeal and ease of

method have long been appreciated, the fundamental physical requirements for the presence of
complex stationary points from stabilization graphs are not fully understood. That this is a subtle
issue is illustrated in Figure 2 which reports the eigenvalues of two model 2x2 Hamiltonians that
approximately reproduce the avoided crossing near z = 1.0 in the stabilization graph for N2
reported in Figure 1. Even though the curves from the two models are similar, a complex
stationary point that gives realistic resonance parameters is found for only one of the two models.
This leads naturally to the question of what aspects of the Hamiltonian matrix elements are
responsible for the existence of complex stationary points associated with the analytically

continued eigenvalues of a stabilization calculation, and this is the primary focus of this study.

In order to analytically continue the energies from stabilization calculations into the

complex plane, one assumes a functional form for £ in terms of z and fits the data points on the



stabilization graph to determine the parameters in this function. While one can employ data
remote from the avoided crossing using Padé approximants®* for the analytic continuation, in our
applications we have focused on data points near an avoided crossing and have used generalized
Padé approximants (GPAs),” which build in the branch point structure. In the present study we
find it useful to view a region of a stabilization graph displaying a reasonably well isolated
avoided crossing as arising from a 2x2 eigenvalue problem involving a diabatic discrete state
with energy H11 and a single diabatic DC level with energy H22 and their coupling, H12. The
diabatic states are not orthogonal, and it is important to explicitly consider the effects of
orthogonalization. We designate the wave functions corresponding to the discrete state and the
DC level by 1, and 1,, respectively. We then orthogonalize 1, to ¥, giving 1,. Allowing for

the orthogonalization, the relevant matrix elements are

_ Hpp—2SHq1,+S%Hi,

T, = M2t M
1-S

~ Hy,—SH

Hy, = —12/—1_5211 (2)

where S = (Y |,) is the overlap of the two diabatic states, and the tilde indicates that overlap

has been included in evaluating the matrix elements.

The resulting adiabatic levels, E+ and E., are given by

Hy1+H 1 ~ 2 ~ 2
Ey =002y E\/(Hll—sz) + 4H,, 3)

The sum of the two eigenvalues is
E+ + E_ = H11+H22 (4)

and their difference squared is



~ 2 ~ 2 =~
(E+ —_ E_)Z = (H11+H22) + 4(H12 - H11H22) (5)

Thus, one can directly extract H;; +H,, and (ﬁlzz — H,,H,,) from the adiabatic curves of a

stabilization graph provided it has a region with an isolated, well-defined avoided crossing.

Both Hi1+H,, and H,,%> —H\1 H,, are found to display a near linear dependence on z, however as

seen from Figure 2, small deviations from 01
0.10
linearity of the latter quantity can prove o
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this nonlinearity can result from H;,~ or Hi1 Figure 3. H,,° vs. z extracted from the

~ . ) EOM-MP2 stabilization graph for Ny".
H,, or from both terms. With the assumption Results obtained with Hy; = 2.44 eV.

that H11 is independent of z, one can extract

H,, from the stabilization graph by use of Eq. (4). A constant Hi1 can be accomplished by
designing the basis set so that in the absence of the functions that are scaled its energy is close to
the experimental electron attachment energy. More formally this can be accomplished by use of

Feshbach projection operators.?® With the assumption that /11 is constant and using the H,,
— .2 . .
curve deduced from the stabilization graph, one can obtain H;, from Equations 4 and 5. Figure

3 displays the 17122 curve derived in this manner from the stabilization graph of N2°, using a H11
value of 2.44 eV, obtained by fitting to the model described below. The resulting curve has a
maximum near z = 1.00, which is close to the crossing point of the orthogonal diabatic curves.

Calculations using model potentials indicate that Hi2 varies monotonically with z and is

. . o : . L~ 2.
dominated by the kinetic energy contribution and that the existence of a maximum in H;, isa

consequence of the presence of the overlap contribution in Eq. 2.2’ We demonstrate below that



. L= 2. . : . .
the negative curvature in H, 1is essential for the existence of the complex stationary point

corresponding to the resonance when H11 is taken to be constant.

The lez curve shown in Figure 3 is negative for z values less than about 0.6 and greater
than about 1.5. The explanation for this seemingly unphysical behavior is straightforward: the
stabilization graph shown in Figure 1 displays evidence that E-is destabilized at larger z values

considered by the lower lying DC level and that E is stabilized at smaller z values by interaction

. . . . . . ~ 2
with a higher lying DC level. The interaction with these other levels causes the H;, curve
extracted as described above to become negative and reflects a breakdown of the two-level

model. However, it should be noted that the resonance parameters obtained using data for which

. ~ 2 . .
negative values of H;, are excluded from the fitting are essentially the same as when such data
points are included. We have also considered a two-level treatment - one basis function for the

discrete state and one for the DC level - for a square well plus rectangular barrier model potential

~ 2. ..
and found for that case that the extracted H,, is positive for all values of the scale parameter.

Based on the results presented above we introduce a simple, physically motivated model

for extracting resonance parameters from a stabilization graph. The matrix elements in this

model are:

Hi1 = aq (6)
Hy, = ag+a,(z - 2,), (7)
and

A,"=4+B@En) (8)

where o, a1, A, B, and z1 are free parameters.



Note that with H11 taken as constant, extending the definition of H,, to include non-linear terms
leads to cubic and higher order terms in z-z1 in the square root in Equation 3. For characterizing

the stationary points, these are less important than the quadratic term introduced via Equation 8.

. .o 2. . I
Hence, for this model curvature in H;, is more important than that in H,,.

The curves depicted in Figure 2 for which there are complex stationary points were
derived by fitting the model Hamiltonian described above to the data indicated in red in the
stabilization graph for N2"shown in Figure 1. The orange curves in Figure 2 that do not lead to
complex stationary points were derived from the same model but retaining only the constant term

in the coupling.

The complex resonance energy resulting from the quadratic model given by Equations 6

through 8 is 2.44 - 0.29i eV, in good agreement with 2.53 — 0.24i eV result from a high-order

. . : ~ 2
GPA and with other values from the literature."!!''* We also extended the representation of H,,
to include a cubic term, but this extension had negligible impact on the resonance parameters

determined from the stabilization graph in Figure 1.

The quadratic model yields simple analytical expressions for the stationary points and

resonance parameters. The relevant stationary point is

o _ a, A } 9
ST B 4B | ©)

where B is negative and a1 is greater than 4B in magnitude. Note that since 4 and a1 are
necessarily positive, the existence of the complex stationary point is due to B being negative. The

corresponding resonance energy is



A|B
£ —a o AL (10)
JiB+a’

With the assumption that a1 is much greater than 4B in magnitude, the half width reduces to

24| B|/ a,. For the stabilization graph of N2" shown in Figure 1, a1 =2.54 ¢V, and 4 and B =

0.16 and -0.55 eV?, respectively. The half width obtained from 2/4|B|/ a,is 0.25 €V,

compared to 0.29 eV from Equation 10. Interestingly, the expression for the resonance energy
given by Equation 10, is independent of zi. At least in the case of the stabilization graph

considered for N2", nearly the same resonance parameters are obtained if z1 is constrained to
equal z, = %o /a , Which corresponds to the point at which the diabatic curves cross. Indeed, the

optimized z1 is found to be close to zo, and the reason that the resonance parameters change
slightly when this constraint is imposed is that it introduces small changes in the other

parameters, i.e., a1, 4, and B.

Simons has also introduced a simple model for extracting resonance parameters from
stabilization graphs.'® In the Simons model H11 and H,, are defined as co + ciz and do + diz,
respectively, and with the coupling between the discrete state and the DC level being taken to be
constant (Vo). Although the Simons model appears to be fundamentally different from that

presented here, in both it and our model the complex stationary points derive from the presence
of the quadratic z dependence in the H122 — H,,H,, term in the square root of a two-level model:
in the Simons model this dependence enters via the H,; H,, term and in our model it enters

via H,,. Moreover, the two models can be related by a rotation of the basis functions

representing the discrete and DC levels involved in the avoided crossing. We have confirmed

that our model based on Equations 6-8 and Simons’ model give identical resonance parameters



when fit to the data in the stabilization graph. (A fit of the Simons model to our stabilization data
for N2 gives co =2.102, c1 = 0.241, do =0.159, di1 = 2.302, and Vo = 0.304 with energies in eV.)
Nonetheless, we believe that our model has the advantages of being consistent with a Feshbach
operator approach (where H11 is constant) and making explicit the role that overlap between the

discrete state and the DC level involved in an avoided crossing of the stabilization graph.

In summary, we have presented a two-level analysis of stabilization graphs for
characterizing metastable states in which the negative curvature in the off-diagonal coupling
between a diabatic discrete state and a diabatic discretized continuum state is shown to be
essential for the encoding of information about the resonance in the stabilization graph. This
curvature is a consequence of the overlap between the two diabatic states. In addition, based on
this analysis we introduced a simple model for extracting the resonance parameters from the

region of an avoided crossing.
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