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ABSTRACT: The stabilization method is widely used to theoretically characterize temporary 

anions and other systems displaying resonances.  In this approach information about a metastable 

state is encoded in the interaction of a diabatic discrete state and discretized continuum solutions, 

the energy of which are varied by scaling the extent of the basis set.  In this work, we identify the 

aspects of the coupling between the discrete state and the discretized continuum states that encode 

information about the existence of complex stationary points, and, hence, complex resonance 

energies in stabilization graphs. This allows us to design a simple two-level model for extracting 

complex resonance energies from stabilization graphs.  The resulting model is applied to the 2Πg 

anion state of N2. 
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Anion states that lie energetically above the electronic ground state of the neutral atom or 

molecule are metastable as they are subject to electron detachment. Temporary anion (TA) states 

are important in several fundamental and applied areas and  appear as resonances in various 

electron scattering cross sections.1-3 TAs often have lifetimes on the order of 10-100 

femtoseconds, similar to the timescale for molecular vibration.  In the Siegert picture,4 a 

temporary anion is characterized by a complex energy, 𝐸௥௘௦ ൌ  𝐸௥ െ 𝑖 𝛤 2ൗ  , where 𝐸௥ and 𝛤 give 

the resonance position and width, respectively (here atomic units are employed). Γ-1 thus 

corresponds to the anion lifetime. Modelling cross sections from electron-molecule scattering 

experiments requires accurate determination of both the energy of the anion state relative to the 

neutral and the anion lifetime as a function of molecular geometry.   

Straightforward application of standard quantum chemistry methods to TAs is not 

possible when using flexible basis sets needed for accurate results due to the presence of 

discretized continuum (DC) solutions that fall energetically below and in the same energy range 

as the temporary anion of interest. The DC solutions correspond to a free electron as described 

by the finite basis set. Several methods have been introduced for the calculation of complex 

energies associated with resonances.5-11 One of the simplest, in the sense that it can be used with 

electronic structure codes without modification, is the stabilization method5 in which one 

calculates the energies of multiple eigenvalues of the appropriate symmetry of the excess 

electron system as a function of a scale parameter, z, that controls the spatial extent of the basis 

set.  A plot of the eigenvalues vs z displays avoided crossings that can be interpreted as resulting 

from the mixing of a relatively compact diabatic discrete state, the energy of which is 

independent or only weakly dependent on the scale parameter, and DC solutions whose energies 



 

 

depend strongly on the scale parameter. A 

stabilization graph for the widely studied 2Πg 

anion state of N2
1,11-14 at the equilibrium 

geometry of the neutral molecule is displayed in 

Figure 1.  The results reported in Figure 1 were 

generated using the electron affinity equation of 

motion Møller-Plesset (EA-EOM-MP2)19,20 

method, scaling by a factor of z the exponents 

of four diffuse p functions in a modified aug-cc-

pVTZ Gaussian-type orbital (GTO) basis set21,22 

described in Reference 14. The energies are reported relative to that of the neutral molecule. The 

calculations were carried out using the CFOUR code.23 

  Figure 1 also reports as a function of z the energies of the three lowest DC levels 

obtained from the one-electron Hamiltonian neglecting interactions with the nuclei and 

employing the same basis set as used in the EOM calculations.  It is seen that the EOM 

calculations give one more energy level in the energy range displayed than there are DC levels. 

This extra level is due to the presence of the temporary anion state.  The avoided crossing 

between the second and third eigenvalues near z = 1 can be viewed as occurring between the 

discrete state and the second DC level. 

 

  Figure 1. Stabilization graph for the 2Πg 

anion of N2. The dashed lines give the 
energies of the DC levels and the dots the 
energies of the excess electron levels from 
the EOM calculations. 



 

 

A variety of methods have been introduced to extract resonance parameters from 

stabilization graphs.15-18  In the case of relatively sparse stabilization graphs, determination of the 

complex resonance energy can be 

accomplished by analytically continuing 

the energies as a function of z into the 

complex plane and locating complex 

stationary points at which 
ௗா

ௗ௭
ൌ 0. 

Substitution of the appropriate stationary 

point into the expression for E gives the 

complex resonance energy.17  While the 

intuitive appeal and ease of 

implementation of the stabilization 

method have long been appreciated, the fundamental physical requirements for the presence of 

complex stationary points from stabilization graphs are not fully understood. That this is a subtle 

issue is illustrated in Figure 2 which reports the eigenvalues of two model 2x2 Hamiltonians that 

approximately reproduce the avoided crossing near z = 1.0 in the stabilization graph for N2
- 

reported in Figure 1. Even though the curves from the two models are similar, a complex 

stationary point that gives realistic resonance parameters is found for only one of the two models. 

This leads naturally to the question of what aspects of the Hamiltonian matrix elements are 

responsible for the existence of complex stationary points associated with the analytically 

continued eigenvalues of a stabilization calculation, and this is the primary focus of this study. 

In order to analytically continue the energies from stabilization calculations into the 

complex plane, one assumes a functional form for E in terms of z and fits the data points on the 

   

 Figure 2. Eigenvalues (in eV) vs z of two model 
Hamiltonians derived from the stabilization graph 

shown in Figure 1.  Results obtained with 𝐻෩ଵଶ
ଶ
 

including a term quadratic in z are shown as blue 
lines and those with a constant 𝐻෩ଵଶ are shown as 
orange lines. The ab initio input data are shown as 
red dots. 



 

 

stabilization graph to determine the parameters in this function. While one can employ data 

remote from the avoided crossing using Padé approximants24 for the analytic continuation, in our 

applications we have focused on data points near an avoided crossing and have used generalized 

Padé approximants (GPAs),25 which build in the branch point structure.  In the present study we 

find it useful to view a region of a stabilization graph displaying a reasonably well isolated 

avoided crossing as arising from a 2x2 eigenvalue problem involving a diabatic discrete state 

with energy H11 and a single diabatic DC level with energy H22 and their coupling, H12. The 

diabatic states are not orthogonal, and it is important to explicitly consider the effects of 

orthogonalization.  We designate the wave functions corresponding to the discrete state and the 

DC level by 𝜓ଵ and 𝜓ଶ, respectively. We then orthogonalize 𝜓ଶ to 𝜓ଵ giving 𝜓෨ଶ.  Allowing for 

the orthogonalization, the relevant matrix elements are   

𝐻෩ଶଶ ൌ
ுమమିଶௌுభమାௌమுభభ

ଵିௌమ
        (1) 

𝐻෩ଵଶ ൌ
ுభమିௌுభభ
√ଵିௌమ

         (2) 

where 𝑆 ൌ 〈𝜓ଵ|𝜓ଶ〉 is the overlap of the two diabatic states, and the tilde indicates that overlap 

has been included in evaluating the matrix elements.  

The resulting adiabatic levels, E+ and E-, are given by  

𝐸േ ൌ
ுభభାு෩మమ

ଶ
േ  ଵ

ଶ
ට൫𝐻ଵଵെ𝐻෩ଶଶ ൯

ଶ
൅ 4𝐻෩ଵଶ

ଶ
      (3)  

The sum of the two eigenvalues is 

𝐸ା ൅ 𝐸ି ൌ 𝐻ଵଵ൅𝐻෩ଶଶ        (4) 

and their difference squared is  



 

 

ሺ𝐸ା െ 𝐸ିሻଶ ൌ ൫𝐻ଵଵ൅𝐻෩ଶଶ൯
ଶ
൅ 4ሺ𝐻෩ଵଶ

ଶ
െ 𝐻ଵଵ𝐻෩ଶଶሻ    (5) 

Thus, one can directly extract 𝐻ଵଵ൅𝐻෩ଶଶ and ሺ𝐻෩ଵଶ
ଶ
െ 𝐻ଵଵ𝐻෩ଶଶሻ from the adiabatic curves of a 

stabilization graph provided it has a region with an isolated, well-defined avoided crossing. 

Both H11 +𝐻෩ଶଶ and  𝐻෩ଵଶ2 –H11 𝐻෩ଶଶ are found to display a near linear dependence on z, however as 

seen from Figure 2, small deviations from 

linearity of the latter quantity can prove 

essential to the existence of complex 

stationary points. It is important to note that 

this nonlinearity can result from  𝐻෩ଵଶ2 or H11 

𝐻෩ଶଶ or from both terms. With the assumption 

that H11 is independent of z, one can extract 

𝐻෩ଶଶ from the stabilization graph by use of Eq. (4).  A constant H11 can be accomplished by 

designing the basis set so that in the absence of the functions that are scaled its energy is close to 

the experimental electron attachment energy.  More formally this can be accomplished by use of 

Feshbach projection operators.26 With the assumption that H11 is constant and using the 𝐻෩ଶଶ 

curve deduced from the stabilization graph, one can obtain  𝐻෩ଵଶ
ଶ
 from Equations 4 and 5. Figure 

3 displays the 𝐻෩ଵଶ
ଶ
 curve derived in this manner from the stabilization graph of N2

-, using a H11 

value of 2.44 eV, obtained by fitting to the model described below.  The resulting curve has a 

maximum near z = 1.00, which is close to the crossing point of the orthogonal diabatic curves. 

Calculations using model potentials indicate that H12 varies monotonically with z and is 

dominated by the kinetic energy contribution and that the existence of a maximum in 𝐻෩ଵଶ
ଶ
 is a 

consequence of the presence of the overlap contribution in Eq. 2.27 We demonstrate below that 

 

  Figure 3. 𝐻෩ଵଶ
ଶ
 vs. z extracted from the 

EOM-MP2 stabilization graph for N2
-. 

Results obtained with H11 = 2.44 eV.   



 

 

the negative curvature in 𝐻෩ଵଶ
ଶ
 is essential for the existence of the complex stationary point 

corresponding to the resonance when H11 is taken to be constant. 

The 𝐻෩ଵଶ
ଶ
 curve shown in Figure 3 is negative for z values less than about 0.6 and greater 

than about 1.5.  The explanation for this seemingly unphysical behavior is straightforward:  the 

stabilization graph shown in Figure 1 displays evidence that E- is destabilized at larger z values 

considered by the lower lying DC level and that E+ is stabilized at smaller z values by interaction 

with a higher lying DC level. The interaction with these other levels causes the 𝐻෩ଵଶ
ଶ
 curve 

extracted as described above to become negative and reflects a breakdown of the two-level 

model.  However, it should be noted that the resonance parameters obtained using data for which 

negative values of 𝐻෩ଵଶ
ଶ
are excluded from the fitting are essentially the same as when such data 

points are included. We have also considered a two-level treatment - one basis function for the 

discrete state and one for the DC level - for a square well plus rectangular barrier model potential 

and found for that case that the extracted 𝐻෩ଵଶ
ଶ
 is positive for all values of the scale parameter.  

Based on the results presented above we introduce a simple, physically motivated model 

for extracting resonance parameters from a stabilization graph. The matrix elements in this 

model are:  

𝐻ଵଵ ൌ 𝑎଴         (6) 

𝐻෩ଶଶ ൌ  𝑎଴ ൅ 𝑎ଵሺ𝑧 െ 𝑧ଵ ሻ,        (7) 

and 

𝐻෩ଵଶ
ଶ
 = A + B(z-z1)2        (8) 

where a0, a1, A, B, and z1 are free parameters.   



 

 

Note that with H11 taken as constant, extending the definition of 𝐻෩ଶଶ to include non-linear terms 

leads to cubic and higher order terms in z-z1 in the square root in Equation 3. For characterizing 

the stationary points, these are less important than the quadratic term introduced via Equation 8. 

Hence, for this model curvature in 𝐻෩ଵଶ
ଶ
is more important than that in 𝐻෩ଶଶ.  

The curves depicted in Figure 2 for which there are complex stationary points were 

derived by fitting the model Hamiltonian described above to the data indicated in red in the 

stabilization graph for N2
- shown in Figure 1.  The orange curves in Figure 2 that do not lead to 

complex stationary points were derived from the same model but retaining only the constant term 

in the coupling.   

The complex resonance energy resulting from the quadratic model given by Equations 6 

through 8 is 2.44 - 0.29i eV, in good agreement with 2.53 – 0.24i eV result from a high-order 

GPA and with other values from the literature.1,11-14  We also extended the representation of 𝐻෩ଵଶ
ଶ
 

to include a cubic term, but this extension had negligible impact on the resonance parameters 

determined from the stabilization graph in Figure 1.   

The quadratic model yields simple analytical expressions for the stationary points and 

resonance parameters. The relevant stationary point is  

 
( )

a A
z* z i

| B | a B
 


1

1 2
1 4

       (9) 

where B is negative and a1
2 is greater than 4B in magnitude.  Note that since A and a1 are 

necessarily positive, the existence of the complex stationary point is due to B being negative. The 

corresponding resonance energy is 



 

 

res

A B
E a i

B a

  
   
    

0 2
1

2
4

      (10) 

With the assumption that a1
2 is much greater than 4B in magnitude, the half width reduces to 

A| B | / a12 . For the stabilization graph of N2
- shown in Figure 1, a1 =2.54 eV, and A and B = 

0.16 and -0.55 eV2, respectively.   The half width obtained from 2 A| B | / a1 is 0.25 eV, 

compared to 0.29 eV from Equation 10. Interestingly, the expression for the resonance energy 

given by Equation 10, is independent of z1.  At least in the case of the stabilization graph 

considered for N2
-, nearly the same resonance parameters are obtained if z1 is constrained to 

equal 𝑧଴ ൌ
 𝑎଴ 𝑎ଵൗ  which corresponds to the point at which the diabatic curves cross.   Indeed, the 

optimized z1 is found to be close to z0, and the reason that the resonance parameters change 

slightly when this constraint is imposed is that it introduces small changes in the other 

parameters, i.e., a1, A, and B. 

Simons has also introduced a simple model for extracting resonance parameters from 

stabilization graphs.15 In the Simons model 𝐻11 and 𝐻ଶଶ are defined as c0 + c1z and  d0 + d1z, 

respectively, and with the coupling between the discrete state and the DC level being taken to be 

constant (V0). Although the Simons model appears to be fundamentally different from that 

presented here, in both it and our model the complex stationary points derive from the presence 

of the quadratic z dependence in the 𝐻෩ଵଶ
ଶ
െ 𝐻ଵଵ𝐻෩ଶଶ term in the square root of a two-level model: 

in the Simons model this dependence enters via the 𝐻ଵଵ𝐻෩ଶଶ term and in our model it enters 

via 𝐻෩ଵଶ.   Moreover, the two models can be related by a rotation of the basis functions 

representing the discrete and DC levels involved in the avoided crossing.  We have confirmed 

that our model based on Equations 6-8 and Simons’ model give identical resonance parameters 



 

 

when fit to the data in the stabilization graph. (A fit of the Simons model to our stabilization data 

for N2 gives c0 = 2.102, c1 = 0.241, d0 =0.159, d1 = 2.302, and V0  = 0.304 with energies in eV. )  

Nonetheless, we believe that our model has the advantages of being consistent with a Feshbach 

operator approach (where H11 is constant) and making explicit the role that overlap between the 

discrete state and the DC level involved in an avoided crossing of the stabilization graph. 

In summary, we have presented a two-level analysis of stabilization graphs for 

characterizing metastable states in which the negative curvature in the off-diagonal coupling 

between a diabatic discrete state and a diabatic discretized continuum state is shown to be 

essential for the encoding of information about the resonance in the stabilization graph. This 

curvature is a consequence of the overlap between the two diabatic states.  In addition, based on 

this analysis we introduced a simple model for extracting the resonance parameters from the 

region of an avoided crossing.  
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