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Gap Test of Crack-Parallel Stress
Effect on Quasibrittle Fracture
and Its Consequences
In the standard fracture test specimens, the crack-parallel normal stress is negligible.
However, its effect can be strong, as revealed by a new type of experiment, briefly named
the gap test. It consists of a simple modification of the standard three-point-bend test
whose main idea is to use plastic pads with a near-perfect yield plateau to generate a cons-
tant crack-parallel compression and install the end supports with a gap that closes only
when the pads yield. This way, the test beam transits from one statically determinate
loading configuration to another, making evaluation unambiguous. For concrete, the gap
test showed that moderate crack-parallel compressive stress can increase up to 1.8 times
the Mode I (opening) fracture energy of concrete, and reduce it to almost zero on approach
to the compressive stress limit. To model it, the fracture process zone must be characterized
tensorially. We use computer simulations with crack-band microplane model, considering
both in-plane and out-of-plane crack-parallel stresses for plain and fiber-reinforced con-
cretes, and anisotropic shale. The results have broad implications for all quasibrittle mate-
rials, including shale, fiber composites, coarse ceramics, sea ice, foams, and fone. Except
for negligible crack-parallel stress, the line crack models are shown to be inapplicable.
Nevertheless, as an approximation ignoring stress tensor history, the crack-parallel
stress effect may be introduced parametrically, by a formula. Finally we show that the stan-
dard tensorial strength models such as Drucker–Prager cannot reproduce these effects
realistically. [DOI: 10.1115/1.4047215]

Keywords: fracture testing, fracture mechanics, fracture properties, finite element analysis,
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1 Introduction
A simple novel experiment, named for brevity the gap test, was

presented in Ref. [1], which showed that a moderate crack-parallel
compressive stress can greatly increase the Mode-I fracture energy,
Gf, of concrete, and a high stress can reduce it almost to zero. This
surprising result, with its mesomechanical explanation in Ref. [1],
suggests major consequences for the numerical simulations of frac-
ture—not only for concrete but also for all quasibrittle materials.
Why hasn’t this phenomenon been identified before? Three
reasons can be seen:

(1) All the standard notched fracture specimens (three-point-
bend, compact tension, single edge-notched tension, eccen-
tric compression, etc.) have a negligible normal stress
parallel to the crack. This is nearly so even for the standard
wedge-splitting specimen.

(2) Fracture analysis has generally been focused on line cracks,
as in the linear elastic fracture mechanics (LEFM), originated
in 1921 Griffith [2], or in the cohesive crack model (CCM),
pioneered in 1959 by Barenblatt [3,4].

(3) Visually, cracks appear as lines (albeit rough), and it is
obvious that a line cut in direction x in a specimen under
homogeneous uniaxial stress σxx causes no stress change,
which suggests that σxx should not matter for continuum
models.

It is thus clear that the crack-parallel stress can matter only if the
fracture process zone (FPZ) at crack front has a finite width wc.
This is known to be a property of all quasibrittle materials, which
are heterogeneous materials consisting of brittle constituents and

inhomogeneities not negligible compared the structure dimensions.
These materials include concrete, as the archetypical case, fiber-
reinforced concrete, shale and various rocks, fiber-polymer com-
posites, coarse-grained or toughened ceramics, refractories, bone,
cartilage, dentine, dental cements, biological shells, many
biomaterials, stiff soils, silt, grouted soils, sea ice, consolidated
snow, cold asphalt concrete, coal, various printed materials, rigid
foams, wood, paper, carton, etc., and all brittle materials on the
micrometer scale.
When short concrete specimens under homogeneous uniaxial

compression are about to fail by axial splitting cracks [5], the frac-
ture energy for a superposed loading in the opening mode I would
clearly be zero [6–13].
This suggests that, in concrete and similar quasibrittle materials,

the Gf should depend on crack-parallel stress σxx and should termi-
nate with 0 when σxx tends to uniaxial compressive stress limit σc.
This represents the value of crack-parallel stress that causes com-
pressive failure in the three-point-bend specimen. Its value is
slightly different from fc (uniaxial compressive stress of 8 × 4 in.
cylinders) due to the differences in specimen geometry and bound-
ary conditions.
The cohesive crack model (CCM) (e.g., [14]) cannot capture the

effect of crack-parallel stress σxx because it is a line crack model, in
which the crack-parallel stress or strain is not the basic thermody-
namic variable. It can be introduced only as a parameter, but then
the dependence of Gf on the stress tensor history is missed, as doc-
umented here by an example (this is similar to the inadequacy of
describing plasticity in terms of total, rather than incremental,
stress-strain relations).
On the other hand, the crack-band model [14–16] (CBM), with a

tensorial softening damage constitutive law, can serve this purpose,
provided that the damage law used is sufficiently realistic, i.e., the
constitutive damage law must capture not only tensile microcrack-
ing in the FPZ, but also the frictional slip on inclined planes (see
Fig. 2 in Ref. [1]) accompanied by splitting microcracks, which dis-
sipate more energy than the tensile microcracking and are what
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causes the lateral expansion and longitudinal shortening of the FPZ
under crack-parallel compression [17]. On the constitutive macro-
level, these mechanisms cause a strong vertex effect [18–20] repre-
senting, e.g., a drastically reduced incremental stiffness for shear
superposed on inelastic compression.
The microplane model for concrete used in the CBM, particularly

its latest versionM7 [21], has been shown to reproducewell the com-
pression fracture as well as the measured crack-parallel stress effect
on concrete [1]. M7 is adopted here to explore various interesting
consequences of the new gap test. One feature of the microplane
model that is important for the present problem is that it can repro-
duce the vertex effect and capture separately the frictional slip of
microcracks on planes with various distinct orientations (note that
the tensorially defined constitutive laws which model internal fric-
tion by interaction between the first and second invariants can
make no distinction among various orientations of frictional slip).
Importantly, bymeans of its deviatoric stress boundary,M7 automat-
ically captures the effect of the spreading and splitting microcracks.
In discussing the fracture energy, we must first clarify what kind.

The typical softening stress-separation curve of CCM of concrete
begins with a steep initial tangent, followed by a very long tail,
as shown in Fig. 1. This originally used curve was later found to
lead to size-dependent GF. Accordingly, two fracture energies are
distinguished: (a) the initial fracture energy, Gf, given by the area
under the initial tangent, and the total fracture energy,GF, represent-
ing the area under the complete softening curve, including its tail
[14,22–24]. Typically, GF/Gf≈ 2 to 6 for concretes. The GF

suffers from high uncertainty unless the work-of-fracture tests are
conducted at various specimen sizes [25]. The Gf alone governs
the load capacity of most structures, while the GF governs the
energy absorption in dynamic failures such as impact. Here, we
consider the Gf only, from which the GF can be inferred approxi-
mately (Fig. 1 shows also on the right softening curves without
tail, which were introduced around 1980 by Hillerborg and others).
Unambiguous determination ofGf (and characteristic FPZ size cf)

from the present experiments and numerical simulations ismade pos-
sible by the size effect method (see Appendix E). This method
[14,26], embodied in the international standard recommendation of
RILEM [27], endorsed recently by ACI-446 committee, and
improved in Refs. [23,24,28], was devised in 1990 (and without cf
in 1987 [22]). It is an effective way to circumvent the impossibility
of determining, optically or acoustically, the precise location of the
tip of a macroscopically equivalent LEFM crack within the large
FPZ of quasibrittle materials. In this method, based on asymptotic
matching, it suffices to measure the maximum loads, P, of notched
specimens of several sufficiently different sizes, preferably, but not
necessarily, geometrically similar. The geometrically similar
notched concrete beams of three sizes shown in Fig. 2 have been
used here.
The preceding computer simulations [1] of the gap test dealt with

only a few cases, with only a few levels of the crack-parallel stress,
and only with concrete. These simulations demonstrated that the
concrete fracture energy values measured by the gap test at
several different crack-parallel stress levels are closely matched
by the predictions of the finite element (FE) CBM with the micro-
plane model M7 as the constitutive damage law [21,29]. Here, we

continue to use the CBM with M7 to demonstrate and clarify the
effect of crack-parallel stresses in many more situations. Further-
more, using the microplane model M7f [30] and the anisotropic
spherocylindrical microplane model [31], we explore the crack-
parallel stress effects in two other quasibrittle materials—fiber-
reinforced concrete and shale.
From the practical viewpoint, this study has been motivated by

the impossibility to match with the CCM the test results for shear
failure of reinforced concrete beams and slabs; ditto for the splitting
fracture of a sea ice plate moving against the legs of an oil platform,
a vertical pavement crack under wheel load, a hydraulic crack in
shale, etc.

2 Overview of Basic Aspects of the Novel Experiment—
Gap Test
The novel, yet surprisingly simple, gap test [1], depicted in

Fig. 3(a), has four key advantageous features:

(1) A pair of compressible pads (Figs. 3(a) and 3(b)) capable of
nearly perfect plastic yielding (Fig. 3(c)) is installed next to
the notch mouth to produce notch-parallel compression of
desired magnitude (Fig. 3(c)), with no bending moment
(Figs. 4(a)–4(i)).

(2) Rigid supports at beam ends are installed with a gap (of about
2–4mm) so as to engage in contact and apply the crack-
producing bending moment (Figs. 3(a) and 3(b)) only after
the pads start plastic yielding (Fig. 4(a)-ii,iii).

(3) This way the test beam passes from one statically determinate
system to another, which makes evaluation simple and
unambiguous.

(4) The static determinacy of loading and the constancy of crack-
parallel compression make it possible to use the size effect
method, which is an easy and robust way to measure Gf,
with its dependence on σxx.

The deflection relative to the end supports causes the load-
deflection curve to rise above the yield plateau, peak, and then
descend back to the plateau, as seen in Fig. 4(b). The area below
this up-and-down curve is the energy dissipated by fracture,
which is exploited in the work-of-fracture method of measuring
fracture energy. However, only the peak loads, for several different

Fig. 1 Traction-separation curve without crack-parallel stress

Fig. 2 Concrete test specimens scaled geometrically in two
dimensions
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specimen sizes, are needed to determine Gf (Fig. 4(c)). The typical
measured curves of load P versus load-point displacement u and of
P versus the crack tip opening displacement, δCTOD, are shown for
D= 101.6 mm in Figs. 4(b) and 4(c).
The statical determinacy of the beam when the pads are yielding

is gained from the constancy of the reactions of the pads. It makes
the pad reactions equivalent to applied dead loads. Hence, after the
pads begin to yield, there is again three-point bending, in which the
deformation of the beam cannot break symmetry of the left and right
halves of the beam, even in postpeak softening. Therefore, any
small initial imperfection (such as a small Mode II component)
must remain small, i.e., there is no equilibrium path bifurcation.
The magnitude of the yield force is controlled by the area of the

pad. Smaller yield forces are obtained by drilling holes in the
pads (see Appendix D).

3 Further Aspects and Details of the Novel Experiment
The size effect method, a robust and simple method developed in

1990 [26], is what allows identifying Gf from the maximum load of
fracture specimens of different sizes. Based on the Type 2 (ener-
getic, non-statistical) size effect law of quasibrittle fracture
[14,26,32–35], it has been adopted as an international standard rec-
ommendation [27] and endorsed by ACI-446 [36]. It has become
the most widely used method for testing Gf of concrete and geoma-
terials. One advantage is that it necessitates measuring only the
maximum loads, Pmax, postpeak being superfluous, but Pmax must
be measured for at least three sufficiently different specimen sizes
[26] (preferably, but not necessarily [14] scaled geometrically).
As another advantage, the identification of Gf, along with the mate-
rial characteristic length cf, is reducible to linear regression. Impor-
tantly, the derivation of this method [14,26] is not affected by the
crack-parallel stress, neither in-plane σxx nor anti-plane σzz.
The test specimens are analyzed as four-point-bend beams,

although the two center-span loads are spaced so closely that the
beams are almost equivalent to the standard three-point bend
beams. To keep the evaluation simple, the separation of center-span
loads was scaled with the beam size D.
Beams of three depths D= 101.6 mm (4 in.), 203.2mm (8 in.),

and 406.4mm (16 in.), measured from top face to the bottom
face, were tested. The span-to-depth ratio was 2L/D= 3.75, and
the notch depth ratio was a/D= 0.3. The beam thickness was
101.6mm for all sizes. The beams were scaled geometrically in
two dimensions (2D). Normal concrete with mean cylindrical com-
pression strength fc= 40.5 MPa was used. The maximum aggregate
size was da= 18 mm. The notch width was 3mm, which is known
to be well within the admissible range compared to da.
The negative bending moment caused by self-weight before the

pads engage is negligible (for the heaviest beam, <3% of the
maximum bending moment). A small restraint against rotation
ensures stability before the end supports engage [37–39].
The pads consist of a layer of polypropylene. Once plasticized, its

tangential hardening shear modulus μ is very small, about 20MPa
(see Fig. 3(c)) (it must be nonzero, or else the plastic would
escape from the pads like a fluid). During plastic compression,
the polymer behaves as incompressible. The compression causes
the polypropylene to be laterally squeezed out, though impercepti-
bly so. The lateral squeezing governs the tangential hardening stiff-
ness H of the yielding pads, which is also very small but nonzero
(see Appendix E for optimization of pad shape). The pair of elasto-
plastic pads is placed next to the notch mouth (Fig. 3(a)), and a pair
of symmetric steel loading pads on the opposite beam face.
Figure 3(c) documents that the measured load-deflection diagram
of the pads exhibits a long near-horizontal yield plateau. To lower
the value of the tangential pad stiffness, H (with limited shortening
of the yield plateau), regularly spaced holes are drilled through the
pads (this also reduces the elastic stiffness; Fig. 3(c)).
To prevent shear failure of concrete under the elasto-plastic pads,

a 2-mm laminate layer has been glued to the concrete surface, and it
has been calculated that its effect on the stress-intensity factor is
negligible. The loading rate is scaled so as to reach the maximum
load within approximately the same time. An extensometer crossing
the crack tip is used to measure the crack tip opening displacement
δCTOD (Fig. 3(a) or 4(a)). The complete setup is seen in Fig. 4(b).
Each of the three data points for different σxx has been obtained by

linear regression of three experiments for each of three sizes (see
Fig. 5) and shown as the empty circles in Fig. 6(a). The coefficients
of variation of the regressions (i.e., the root-mean-square of the devi-
ations from the regression line divided by the data mean) were only
0.117, 0.135, and 0.151. These data points represent the effective
values of fracture energyGf as a function of three levels of compres-
sion stress σpad applied at the yielding pads. These experimental

Fig. 3 (a) Schematic experimental setup (with coordinates x, y,
z), (b) real setup, and (c) stress–strain behavior of plastic pad
corresponding to two values of tested σxx (note that only a
short segment of the quasi-plateau intervened during the rise
of bending moment, as marked in Fig. 4(b)

Fig. 4 (a) Experimental procedure, (b) a load-machine displace-
ment behavior (note that within the segment F, which is what
matters for Gf, the change in pad reaction (dashed line), is negli-
gible, and (c) extracted load-CTOD
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results [1] reveal an important fact—Gf is not constant but depends on
σpad, in fact, strongly. This raises doubts about the applicability of
both theLEFMand theCCM, eachofwhich requires constancyofGf.
To get the effective Gf as a material property, σpad must be trans-

formed to the crack-parallel normal stress σxx at the notch tip. FE
analysis was used to get the ratio rc= σxx/σpad. Elastic analysis
gave rc= 0.962, while crack-band finite element analysis with M7
gave rc= 0.942 for medium size specimens. The elastic value is
seen to be a good enough approximation, with an error less than
3%. That, σxx must be less than σpad is intuitively obvious from
the field of principal stress vectors obtained by FE. The data
points of σxx obtained after transformation with rc are shown as
the solid circles in Fig. 6(a).
Alternatively, according to the classical work-of-fracture method

[40–42], one could estimate the total fracture energy,GF, via the area
between the entire up-and-down curve and the horizontal yield line in
Fig. 4(c). However, this method requires stabilizing the postpeak
softening and is rather ambiguous if the correct shape of the cohesive
law (Fig. 1(a)), is not known a priori [25]. To avoid ambiguity ofGF,
the work-of-fracture test would have to be also conducted for several
sufficiently different specimen sizes [25].

4 Physical Mechanism of Crack-Parallel Stress Effect
on Gf

The mechanism was briefly discussed in Ref. [1] and here we are
more specific. Depending on the magnitude of crack parallel com-
pressive stress σxx (negative for compression), we can distinguish
two different regimes of FPZ behavior, explained by two different
mesoscale mechanisms:

Regime 1: Friction: Moderate σxx increases static friction which
prevents slip and provides confinement without damage. This tends
to increase strength and may be explained by the increase of inter-
locking and increase of static friction on rough inclined surfaces.
For σxx = 0, the deviatoric (or shear) stress intensity τ= τa, shown
in the figure, corresponds to hydrostatic pressure p= pa=−σyy/3,
where σyy is the tensile normal stress caused by beam bending in
the FPZ at crack or notch front (see Fig. 7(a); τ =

���
J2

√
where J2=

second invariant of the stress deviator). By applying a not too high
compressive stress σxx, the hydrostatic pressure increases from pa
to p= pb= (σxx− σyy)/3, and the stress state corresponds to an
expanded Mohr circle. Thus, pb provides confinement, which
increases the resistance τ from τa to τb, as shown in Fig. 7(b). More-
over, the numerical simulations show the active FPZ to become
longer and narrower, which may be explained by a reduction of the
average inclination of the microcracks from the macrocrack direction.
Regime 2: Expansive Slipping and Splitting: When, however,

compression σxx is raised to approach the compressive stress limit,
one must consider the Mohr circle shifted to the left in Fig. 7(c).
The minimum principal stress indicates the uniaxial splitting
strength of concrete, at which the FPZ is failing in compression
due to σxx. The static friction on inclined microcracks in the FPZ is
overcome and the cracks slip, which tends to widen the active FPZ
and reduce the resistance to tensile stress σyy caused by bending, as
intuitively explained by sliding over the entire FPZ portrayed in
Fig. 7(c). This kind of failure mechanism has been observed in sim-
ulations with the crack-band microplane model, by inspecting the
stresses and deformations in FPZ onmicroplanes of inclined orienta-
tions. Another possible mechanism is the growth and collapse
of micropillars between splitting microcracks, between micropillar
of width s [17], which also leads to lateral widening (Fig. 7(b)) and
shortening of FPZ.
Thewidening and shorteningof the FPZ in this regime ismanifested

in a decrease of cf obtained from the size effect method. The widening
of the FPZ is accompanied bywidening of the crack or notch behind it,
which further allows the compressed material at crack faces to expand
into the crack space and thus reduces the resistance to compression.
For zero crack-parallel compression, the gap test gave Gf=86.7N/m,
which is within the range of values reported by many authors [14].
The characteristic length in this case is approximately 18mm. This
is about 1.5 times the average coarse aggregate size.
For a moderate crack-parallel compression, σxx≈ 0.4σc, the size

effect analysis of the present test data yields Gf= 154.2 N/m,
which roughly doubles the value at zero compression (Fig. 9(a)).

Fig. 5 (a) Linear regression of size effect method and (b) the
size effect curve plotted in log-log scale

Fig. 6 (a) Gf (with Gf0=86.7N/m) as a function of σpad (dashed
curve) and of σxx (solid curve) and (b) cf (with cf0=8.8mm) as a
function of σpad (dashed curve) and of σxx (solid curve)

Fig. 7 (a) Suggestedmechanismsforenhancementanddiminish-
ingofGf; (b)Mohrcirclescorrespondingto theM7-CBMpredictions
in Fig. 6(a)), withσyy=nominal strength at peak load for specimens
of medium size; and (c) a closer look to the region of small σxx

071012-4 / Vol. 87, JULY 2020 Transactions of the ASME



The material characteristic length is also nearly doubled, to
37.1 mm, and the FPZ gets more elongated. Another consequence
is that the postpeak softening slope gets less steep or that the snap-
back is suppressed.
For high crack-parallel compression at σxx= 0.9σc, the fracture

energy is, by contrast, drastically reduced to Gf= 51.2 N/m
(Fig. 7(a)). So is the value of characteristic length, 11.2 mm,
which indicates a shorter and wider FPZ. As D →∞, the final
asymptotic slope of LEFM, −1/2, is approached more quickly.
Hence, the brittleness number D/D0 [14,26] for a given D increases.
After the experiments, the fractography showed small, crumbly
pieces of nearly detached concrete, demonstrating the formation
of small splitting microcracks and slip expansion. Another conse-
quence is that the postpeak softening slope gets steeper or that snap-
back gets promoted.

5 Further Simulations of Crack-Parallel Stress Effect
on Gf

5.1 Plane Strain and Anti-Plane Normal Strain Effects.
Another interesting aspect is the effect of the anti-plane stress σzz.
For σzz applied on the entire side faces of the present specimens

of three sizes, several simulated curves of Gf(σxx) are plotted in
Figs. 8(a) and 8(b) for various ratios σzz/σc. Obviously, in this
case (apparently never studied before), σzz, too, has a significant
effect.

5.2 Fiber-Reinforced Concrete. Short random fibers change
significantly the postpeak softening damage in concrete. Micro-
plane model M7f was calibrated to capture it [30] and has been
used to simulate Gf for the present specimen geometry (see
Figs. 8(c) and 8(d )). Due to the lack of material for calibration,
we extrapolated the currently used model, using default material
parameters, to account for the presence of fibers. First, the parame-
ters for plain concrete were determined from calibration as
described in Appendix C. Later, the parameters related to fibers
were obtained from Ref. [30] as if 3% Dramix fiber were mixed
in the same batch of concrete. Later, the same set of different speci-
men sizes was numerically tested, and the results were provided in
Figs. 8(c) and 8(d ). Note that, this procedure complies with the cal-
ibration of M7f for FRC.
The presence of fibers enhances the cohesive strength and the

crack bridging effect, which gives a higherGf at zero σxx. Therefore,
a mild increase of σxx also shows a relative increase in Gf, but with a

Fig. 8 (a) and (b) Gf and cf as functions of σxx subject to different values of anti-plane stress σzz
(with results approximated by Eq. (1)), (c)–(d) the variation of Gf and cf of 3%
Dramix-fiber-reinforced concrete as functions of σxx, and (e)–(f) the variation of Gf and cf of
shale with bedding plane normal and parallel to the crack as functions of σxx
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lower magnitude. This probably stems from the fact that the effect
of fibers on the friction boundary is weaker than on the normal
boundary of M7, i.e., the fibers are more effective in bridging the
opening microcracks than in preventing their sliding. Furthermore,
the decline in Gf toward zero is more gradual than in plain concrete.
This phenomenon originates from the inhibition of splitting micro-
cracks, so that a higher σxx is needed to cause slip expansion and the
energy dissipation becomes more gradual (see Fig. 7).

5.3 Shale. The recently developed spherocylindrical micro-
plane model for shale [31], intended for the simulation of hydraulic
fracturing, can capture the effect of anisotropy due to bedding layers
on the damage development in shale. The orientation of the crack
plane relative to bedding layers matters. Because the overburden
pressure is approximately the double of the horizontal tectonic
stresses and the bedding layers are nearly horizontal, we simulated
a shale specimen of the present geometry with a crack normal to the
bedding layers. For comparison, we added the case of a crack par-
allel to the bedding layers. The parameters were obtained from a
previous calibration on Longmaxi shale [31], and the resulting
curves of Gf versus σxx is shown in Figs. 8(e) and 8( f ). In the
case of the crack normal to the bedding plane, the crack must cut
through these layers which are stronger than the interlayer material.
Thus, a higher energy release is required, which explains why com-
pressive σxx leads to much higher relative Gf values than those for
cracks parallel to bedding layers, as seen in Fig. 8(e).

5.4 History Dependence of the Crack-Parallel Stress. To
demonstrate the path dependence, which is ignored by any
formula for Gf (such as Eq. (1)), Fig. 9 presents, for the mid-size
concrete specimen, the M7 simulations for four different paths (or
histories) of 2R/bD versus σxx, where R is the beam end reaction
that produces the bending moment, M, to which the stress-intensity
factor KI is proportional. (1) The first path is a simple increase of R
at σxx = 0 up to failure, which defines the nominal strength σN. (2) In
the gap test path, as already described, a high crack-parallel com-
pression σxx= 0.9σc is applied first, and the subsequent path
segment with increasing R ends up with the failure value of
2R/bD= 0.62σN, as seen in Fig. 6. (3) When, however, the end reac-
tion, R= 0.62σN is applied first (which would require a more
complex test setup and controls), and the crack-parallel compres-
sion σxx is subsequently increased up to failure, the failure occurs

at significantly higher compression σxx (because FPZ was less
damaged during the first segment of the path). (4) When only a
moderate crack-parallel compression σxx≈ 0.4σc is applied first,
the reaction R can be increased to a much higher value, with 2R/
bD= 1.81σN. (5) For proportional loading whose straight path
passes through the terminal point of gap test, case (2), the Gf is
11% larger than in the gap test.

5.5 Comparisons With Tensorial Plastic-Failure Models.
Model CDPM2—constitutive damage plastic model for concrete
of the classical type, defined in terms of stress and strain tensors
and their invariants. This is an excellent model that has recently
been developed by Grassl et al. [43], within the framework of ten-
sorial plasticity with damage. The Gf variation obtained with this
model is shown in Fig. 9(b). The qualitative trend obtained reflects
both the strengthening and weakening phases of Gf evolution, but
the differences from M7 are significant, and the deviations from
the gap test in the last weakening phase is large.
Drucker–Prager and Mohr–Coulomb model from ABAQUS: The Gf

evolution calculated with the classical Drucker–Prager’s (D–P)
model [44] is presented in Fig. 9(c). The strengthening phase is rep-
resented, but there is no weakening phase. For this model, the uni-
axial compression stress test produces bulging at mid-length of the
specimen rather than formations of splitting cracks and inclined
shear bands. The strengthening phase gets captured because the
D–P describes well the frictional resistance to slip and interlock
under under triaxial confinement. It should also be mentioned
that, at high compression σxx, the size effect method is inapplicable
because there exists a premature compression failure at the crack
front. This gets manifested as a macro-crack in front of the notch,
which significantly lowers the peak load, especially in the largest
specimens (Fig. 9(d )). This stems from the fact that the largest spec-
imens are less confined by the boundary. Therefore, at higher com-
pression, the size effect Gf had to be computed from linear
regression of the results for only the small-size and mid-size spec-
imens, as represented by the dashed curve segment in Fig. 9(c).
Mohr–Coulomb concrete model with a cap, from ABAQUS: Unlike

the D–P, the Mohr–Coulomb’s model [45] produces an artificial
stiffening effect at the crack tip, even at zero σxx. Therefore, it
appears inapplicable for fracture analysis.
Does Mohr failure envelope exist? This question was briefly

addressed in Ref. [1], in which it was shown that the Mohr circles
for the states at Pmax of concrete have no envelope. In Figs. 7(c)
and 7(d ), the same is now demonstrated for shale, using the results
corresponding to the curve of Gf in Figs. 7(c) and 7(d ).

5.6 Microplane Model Features Essential for Predicting
Gf. The microplane model used in the present simulations is
described in detail in Ref. [21]. Let us list here briefly the features
of microplane model that are advantageous for the modeling of
crack-parallel compression effects and distinguish it from the
models based on tensors and their invariants.

(1) Whereas the microplane model calculates the strain tensor
from the stress tensor, the constitutive equation is vectorial,
calculating the stress vector from the strain vector on a
generic plane of any orientation, called the microplane. The
vectors, unlike tensors, can be semi-intuitively related to
tensile crack opening, compression splitting or frictional slip.

(2) A big advantage is that one can capture the vertex effect, e.g.,
the fact that a shear stress increment applied after compres-
sive stress in the inelastic range has incremental stiffness
much smaller than elastic (even three-times lower, for con-
crete), while in all the classical tensorial models (Mohr–
Coulomb, Drucker–Prager, von Mises, etc.), a stress incre-
ment parallel to the loading surface gives incorrectly,
except at a vertex, an elastic incremental stiffness, even in
damage states.

Fig. 9 (a) History dependence of the stress path, (b) Gf as a
function of σxx predicted by tensorial models with invariants by
Grassl et al. [43] σxx, (c) Gf as a function of σxx predicted by ten-
sorial Drucker–Pragermodel [44], and (d) a premature failure pre-
dicted by D–P ahead of the main crack tip before moment M is
applied
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(3) Another advantage is that, in M7, the hydrostatic or uniaxial
strain compression is always hardening, while the unaxial
compressive stress gives a peak and postpeak softening.

(4) M7 also delivers correct hysteretic loops under cyclic loading
and reproduces subcritical fatigue crack propagation up to
several thousand cycles (in agreement with Paris law).

Early on it was thought that the microplane model was computa-
tionally too demanding. For one material point, it may run ten-times
longer than a tensorial constitutive law. But for a system of millions
of finite elements, tractable today, the difference in running time is
imperceptible because the computational work increases, with the
number of displacements, quadratically, but on the constitutive
law only linearly.

6 Limitations of Cohesive Crack Model and LEFM and
Contrast With Crack Band Model
The present results highlight the limitations of the cohesive crack

model (CCM) for quasibrittle materials. In the case of Mode I frac-
ture, this model is defined by a scalar relation between the crack-
bridging, or cohesive, normal stress and the relative normal displa-
cement across the crack. In the case of mixed mode fracture, the
model is defined by a relation of crack-bridging normal and shear
stresses to the relative normal and shear displacement. But the
crack-parallel normal stresses (and strains) cannot be included as
the basic force and displacement variables. They can be considered
only as parameters affecting the material fracture properties. For the
effect of σxx, Ref. [1] gives the formula

Gf

G f 0
= 1 +

a

1 + b/ξ
−
1 + a + b

1 + b
ξs (1)

where ξ= σxx/σxx,c and σxx,c at σpad= σc. The curve in Figs. 3(a) and
3(b) is well approximated by a= 1.038, b= 0.245, s= 7.441 (as
shown by dashed curves). These values will, of course, be different
for different materials, structure sizes, load histories, σzz/σxx ratios,
etc.
A fully realistic model for quasibrittle fracture must, therefore,

describe well the microscale mechanisms mentioned earlier. This
can be a tensorial law, with the FPZ described by a tensorial
damage constitutive model with strain softening, coupled with
some form of a localization limiter or mesoscale discrete model.
The simplest and most widely used model is the crack-band
model coupled with a physically realistic form of the continuum
damage model, here the microplane model, underlying the present
simulations.
It should be noted in Fig. 6(b) that there exists a threshold at

which the crack-parallel compressive stress σxx turns from strength-
ening to weakening of the fracture resistance. For the present con-
crete, it is σxx≈−0.75σc. No doubt this threshold varies among
different materials, and for some, the strengthening phase might
not exist. This might be the case for some uniaxial laminate fiber
composites, notoriously weak in compression.
From the microplane simulations, it is clear that the microcrack-

ing in the FPZ produced by high crack-parallel compressive stress
σxx must increase permeability in the FPZ and in its wake, as the
crack propagates. This is important for various geomechanics prob-
lems and particularly for hydraulic fracturing (or fracking) of gas or
oil shale. In Ref. [46], it was shown that the permeability and
reduced transverse Biot coefficient due to preexisting microcracks
with its Biot coefficient are what causes the hydraulic cracks to
branch sideways from the wall of a primary hydraulic crack. The
present analysis shows that the propagations of the primary crack
and secondary branched cracks must be strongly affected by the
crack-parallel overburden and tectonic stresses, which are about
80MPa and 40MPa at the typical depth of fracking, about 3 km.
Because of their simplicity, scalar models for softening damage

have become popular for crack band representation of fracture.
Some examples are Mazars’ isotropic damage model for concrete

[47], the nonlocal damage model [48], and all other models using
the Kachanov–Hult–Lemaitre type scalar damage measure ω.
These damage laws may be unrealistic for two reasons—first,
they have not been calibrated by various types of triaxial material
tests on specimens of sizes nearly equal to the FPZ (or RVE) size
(see 21 types of such tests used to calibrate M7 in Ref. [29]).
Second, their use of a single scalar damage parameter, ω, varying
between 0 and 1, appears too restrictive (the microplane model
and fracture characteristics has several independent damage param-
eters). All these models are usable only if the crack-parallel normal
stress is a priori known to be negligible (or below about 10% of
compressive strength) in all the finite elements within the damage
zone. As for peridynamics, no comments are necessary [49].
The fracture models characterized only by Gf can be used if

reprogrammed to varyGf as a function of the crack-parallel stresses,
σxx and σzz. This, of course, ignores history effects, whose severity
has not yet been clarified. As for the cohesive crack model, its soft-
ening stress-displacement law would have to be varied depending
on σxx and σzz. But this brings up the questions of whether the cohe-
sive softening curve should be scaled vertically or radially as a
whole (which would scale both GF and Gf), or only in its initial
part (controlled by Gf only), what should be the proportion of
such scalings, and whether a horizontal scaling is also necessary.
Again, this would miss history effects.

7 Gap Test for Crack-Parallel Tension
Finally, it may be pointed out that the gap test may be easily

adapted to measure the effect of crack-parallel tension on Gf. The
setup shown in Fig. 10 is self-explanatory.

8 Conclusions

(1) Moderate crack-parallel compressive stress, in-plane or
out-of-plane, drastically increases, even doubles, the Mode
I fracture energy Gf (or fracture toughness KIc) of concrete,
and probably also of shale and various rocks, coarse-grained
ceramics and sea ice. This can be explained by an increase of
hydrostatic pressure raising friction on inclined planes.

Fig. 10 Gap test for crack-parallel tension
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(2) High crack-parallel compressive stress, close to the compres-
sion strength limit, drastically decreases Gf and eventually
reduces it to zero. This can be explained by frictional slip on
inclined planes and splitting microcracks, causing lateral
dilation.

(3) The cohesive crack model (CCM), as a line crack model with
a scalar relation between crack-bridging stress and relative
displacement of crack faces, cannot capture these phenom-
ena, since the crack-parallel strains are not the thermody-
namic variables in this model. Hence, σxx and σzz must be
used as parameters which, however, appear to be only a
crude approximation that cannot capture the effect of the tri-
axial stress and strain history. The same objection also
applies to the recent cohesive crack model that is enriched
with crack-parallel strain by shrinking a crack band into a
line [50].

(4) To capture the experimentally evidenced effect of crack-
parallel compression in general, either a microscale descrip-
tive model or a tensorial constitutive model for softening
damage must be used. This is effectively done with the crack-
band model coupled with the microplane damage constitu-
tive law. This law can mimic the effects of inelastic frictional
slips and microcrack formation on planes of different orien-
tations. The damage laws in the phase-field models restricted
to only a single damage parameter do not appear to be real-
istic and require improvement.

(5) Linear elastic fracture mechanics cannot capture the effect of
crack-parallel compression. CCM, as a line crack model, can
neither. Nor can the computational models based on LEFM
or CCM.

(6) An effective method for fracture testing with crack-parallel
compression is the gap test, in which the compression is gen-
erated by plastic pads capable of perfectly plastic yielding,
and the supports are installed with a gap that closes only
after the pads begin yielding. The gap test is possible for
both compressive and tensile crack-parallel stress.

(7) The results are of particular interest for (a) the shear failure of
reinforced concrete beams and punching failure of slabs; (b)
fracture of prestressed concrete, (c) hydraulic fracturing of
shale, at which the overburden and tectonic stress introduce
significant crack-parallel compression; (c) fiber composites,
where buckling of embedded fibers reduces compression
strength; (d) propagation of the front of slip on earthquake
fault, subjected to enormous crack-parallel tectonic and over-
burden stresses; (e) splitting fracture of sea ice plates pushing
against fixed objects, or in front of icebreaker; (f) burst of
very deep boreholes and mine stopes; (g) high biaxial
tensile stresses in composite aircraft fuselage; and (h)
cyclic and static fatigue crack growth under crack-parallel
in-plane and out-of-plane stresses, etc. Ofen the crack-paral-
lel compression is so high that the effective Mode I fracture
energy (or stress-intensity factor) is nearly zero.

(8) The Mohr circles for various levels of crack parallel stress in
shale do not have an envelope. Therefore, the general use of
Mohr–Coulomb failure criterion for shale or other quasibrit-
tle materials is unwarranted.

Note: A powerful alternative to the present analysis of concrete is
the lattice discrete particle model (LDPM) [51,52] mimicking the
heterogeneous microstructure and mesoscale interactions. It will
be pursued in a forthcoming paper (also it may be remarked that per-
forming more than 27 experiments was prevented by the current
virus pandemic).
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Appendix A: Alternative Test Methods and Related
Previous Studies
As an alternative to the present test, a system of two balance

beams shown in Fig. 11 was fabricated and tried to provide reac-
tions at both beam ends and notch corners. The ratio of these reac-
tions was controlled by moving the locations of the supports at base.
But it proved tricky to keep the system stable and properly aligned
before applying the load. Another bigger problem was seen in the
evaluation. This test would have to be conducted for several differ-
ent specimen sizesD and, with heavy I-sections which must provide
a large enough stiffness even for the largest specimen size. The self-
weight of these I-sections would add up to σxx or bending moment
non-proportionately, which will create complication for the fracture
analysis. The biggest problem is that the compressive force would
not be constant but (in theory) raised proportionally, which would
make it difficult to deduce the effect of σxx on Gf. Since σxx does
not matter for the size effect method, this method could still be
used, but it would deliver a fracture energy corresponding to a
certain history of σxx rather than to any specific value of Gf.
Complex optimization of tests with many different histories,
using an assumed constitutive damage law, would be required, to
obtain the effect of σxx on Gf, inevitably quite ambiguous. The con-
stancy of σxx is what makes the gap test simple and unambiguous.
Additional hydraulic jacks were used in 1995 in a pioneering

study by Tschegg et al. [53], to introduce crack-parallel compres-
sion in an elaborate modification of the wedge-splitting test. The
results confirmed the hint from the 1987 microplane model that
crack-parallel compression should have some effect but no clear
conclusion was could be drawn. However, the evaluation was
aimed at GF rather than Gf, and thus was compromised by the
shape, unknown at that time, of the complete softening law with
its long tail (as in Fig. 1). The evaluation also suffered from the
complexity of stress field in which the maximum compression
occured away from the notch tip, and also from the effects of
bending moment due to the weight of clamping frames and hydrau-
lic jacks, as well as from the friction under the jacks. The main

Fig. 11 An alternative test method considered to generate σxx
with proportional loading
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problem, unknown in the 1990s, was that the GF evaluation by the
work-of-fracture method gives rather ambiguous results unless
scaled tests are performed for several sufficiently different sizes
[25]. Another serious problem was that the energy dissipation rate
(or the J-integral) is markedly reduced during the initial formation
of the FPZ near the notch tip and during the terminal phase on
approach to the opposite phase (Fig. 12).
If the FPZ is not small compared to the ligament cross section,

which is always the case for concrete, the work-of-fracture per
unit crack length severely underestimates the steady-state energy
dissipation and causes a major error.
As another alternative, one might also think of imposing a com-

pressive displacement with pair of stiff clamping frames mounted
on the beam. But the stress induced would relax (by about 30%),
due to concrete creep and shrinkage during the test. To get Gf as
a function of strain ϵxx instead of σxx, the clamping frames would
have to be very stiff and heavy, to maintain constant ϵxx, and
would have different relative weights for different specimen sizes.
Another possibility would be hydraulic flat jacks within these
frames, similar to those of Tschegg but equipped with computer
control. Interpretation would anyway be fraught with ambiguity.
For metals assumed to follow the Ramberg–Osgood J2 power-

law hardening plasticity, Refs. [54–57] showed analytically, in
the early 1990s, that the in-plane crack-parallel stress (called the
T-stress) and generally the stress triaxiality affect the J-integral
and the singular plastic-hardening HRR field surrounding a sharp
crack tip. But, as commented on in more detail in Ref. [1], these
are different problems. The present analysis does not apply to
metals (with the probable exception of the micrometer scale). Fur-
thermore, Cotterell and Rice [58] showed analytically that a high
T-stress may cause the LEFM crack path to deflect sideways, but
this, too, is a different problem.

Appendix B: Concrete Characterization and Further
Gap-Test Details
To minimize the scatter of mechanical properties, all the speci-

mens were cast within a few hours from the same batch of concrete
delivered by a ready-mix supplier (Ozinga Co.). Normal concrete of
specific compression strength f′c= 27.58 MPa (4000 psi) at 28 days

of age was used. The slump range was 7.62–12.70 cm (3.00–5.00
in.), and the specific air content was within 0–3%. In the mix,
one cubic yard contained 470 lb. of cement (ASTM C150, 100 lb.
of blast-furnace slag (labeled C989), 1750 lb. of coarse aggregate
(ASTMC33#67), 1500 lb. of fine aggregate (ASTM C33#2); water-
cement ratio w/c= 0.45.
The specimens for material characterization and model calibra-

tion (Fig. 1) included cylinders for compression tests of diameter
101.6mm and length 203.2mm; square prisms for compression
tests of side 76.2mm and length 152.4mm; cylinders for splitting
tests of diameter 101.6mm and length 203.2mm; and prisms for
splitting tests of side 76.2 and length 152.4mm. The beams for frac-
ture tests, geometrically scaled, were of three sizes: small: 101.6 ×
101.6 × 406.4mm, medium: 101.6 × 203.2 × 812.8mm, and large:
101.6 × 203.2 × 812.8mm. The notch/depth and span/depth ratios
were a/D= 0.3 and 2L/D= 3.75, respectively. The elasto-plastic
loading pads had sides S of ratio S/D= 1/4 (Fig. 1(e)). All the spec-
imens were tested within 3 weeks, but the effect of this age differ-
ence on the degree of hydration and strength was negligible since
the specimens were 1-year old. The specimens were all cured in a
fog room until the time of test.

Appendix C: Material Calibration Experiments
Aside from the results of the gap tests for different specimen sizes

at zero σxx, the properties of concrete were calibrated by tests of uni-
axial compression of cylinders and prisms (Fig. 13(a)). These cali-
brations are sufficient for M7 to characterize the behavior of normal
concrete, which was validated by Brazilian splitting tests on both
cylinders and prisms (see Fig. 13(b), where the error bars indicate
one standard deviation based on four tests for each case. The
same model was utilized to predict the results of the gap test at
non-zero σxx. For uniaxial compression, the specimens were
capped with sulfur to make sure the loaded surface would be flat
and almost frictionless. Linear variable differential transformers
(or LVDT) were used to record two crack-parallel displacements,
as well as one lateral displacements used to control the loading
(see Figs. 1(a) and 1(b) (ASTM C39)). In the Brazilian tests
(Figs. 1(c) and 1(d )), the loading strip was 12.7mm wide and the
samples were held in place at the beginning by a mild pressure
(ASTM C496). The uniaxial tests of specimens of both types
were conducted in the Tinus Alson frame with maximum load of
1000 kips, and the Brazilian splitting tests were done in the MTS
loading frame of capacity 50 kips, both at the loading rate of
0.00635mm/s. Every test took approximately 0.5 h.
Figure 13 shows the results for the uniaxial compression strength

of cylindrical and prismatic specimens (Figs. 3(a) and 3(b)) and
their corresponding Brazilian splitting tensile strengths (Fig. 3(c)).
In Figs. 3(a) and 3(b), the dashed curve shows the upper and
lower envelope of the data from three tests, whose average is repre-
sented by the dotted curve. This result is consistent with the average
strength f ′c = 42.74MPa reported by concrete supplier. Optimum
fits of these results were obtained with the microplane constitutive

Fig. 12 Load deflection curve in work-of-fracture test: (a) with a
long tail hard to capture completely and (b) growth of FPZ at the
start of crack propagation from the notch, and decrease at the
end

Fig. 13 Calibrations and validations to obtain parameters for M7-CBM: (a) uniaxial compression of cyl-
inders and square prisms and (b) Brazilian splitting tests
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model M7 [21,29] shown by solid curves. The M7 was imple-
mented in ABAQUS using the crack-band model with element size
12mm. The dotted and solid curves are consistent and serve to indi-
cate the level of compression on notched beams.

Appendix D: Compression Stiffness of Plastic Pads
and Their Optimization
For simplicity, consider a circular pad with radius r and polymer

layer thickness h (Fig. 13). In the plastic regime, we assume the
polymer is incompressible and has a very small but non-zero
shear modulus μ (if μ were zero, the plasticized polymer would
flow out). The boundaries of the layer are confined and behave as
rigid. Volume conservation in the disc of radius x≤ r requires that
πx2w= 2πxhu , where w is the relative displacement of decrease of
thickness and u is the average increase of radius x. Hence, u =wx/
2h. Given that the polymer does not slide on the layer surfaces,
we may assume the radial displacement profile across layer thick-
ness to be parabolic (Fig. 12). In that case, the maximum displace-
ment is 1.5× higher than u , the mean, and thus, the profile of shear
angle is γ= ∂u/∂y= 6wxy/h3, where y is the transverse coordinate.
The strain energy density with respect to radial coordinate x then

is �W(x) = 2
�h/2
0 μγ2/2dy = 3μw2x2/2h3. Conservation of energy

requires the work of compression of the layer by w to equal the
strain energy increment of the whole layer, i.e., W = Hw2/2 =�r
0
�W · 2πx dx where H is the compression stiffness of the layer. Inte-

gration yields

H = kpμA
2/h3, kp = 3/2π (D1)

where A= πr2 is the area of the pad. This equation may also be used
as an approximation for a square pad of the same area (an accurate
solution is more complicated). The pads should be shaped so as to
minimize H (subject to Haringx’s critical load formula [59] for
shear buckling governing the elastomeric bearings of bridges), or
minimizing A, which means replacing one pad with several small
ones (or drilling big holes). Harigngx’s formula gives the critical
ratio λcr =

��
A

√
/h for buckling.

Second, let us analyze an elongated l ×L rectangle (the pad
in Fig. 14), with L≫ l, approximately in 1D, coordinate x.
Due to incompressibility, the axial strains are distributed as u =
(w/h)x and the strains are γ= (12u /h3)y. The work per unit

length in x is �W = 2
�h/2
0 μγ2/2dy = 6μw2x2/h3. By integration,

W = 2b
�l/2
0

�Wdx = bμw2l3/2h3. Setting W = 1
2Hw

2, we get

H/b = μ(l/h)3 (D2)

The same formula approximately applies to an annular pad with
internal and external radii r1 and r2 provided that l= r2− r1 < r1/4.
It also roughly applies to a pad with many sufficiently big regularly
spaced holes (Fig. 14) of radius r provided that approximately����������
A/As − 1

√
< 1/4 where A is the total area and As is the area of

the holes. If >1/4, one can interpolate. Other polymers, e.g., high-

density polyethylene, HDPE, can be also used to get a different μ.
A possible alternative to the plastic pads are blocks of perfectly
plastic metal, e.g., tin (Sn).

Appendix E: Size Effect Method to Identify Gf and cf
To determine Gf, one needs the LEFM stress-intensity factor, KI

[14,26]. Although the load configuration is close to three-point
bending, four-point-bending with a small but finite distance
between the loads gives better accuracy (Fig. 3(c)). According to
Ref. [60],

KI = σN
��
D

√
k(α), where σN = P/bD(α = a/D) (E1)

k(α) =
1.1682(2l − s)

���
πα

√

8β3/2
(5 − 10α/3 + α2 + 40α2(1 − α)6

+ 3e−6.134α/(1−α))
(E2)

where P is the total load (sum of two loads) applied at center span,
σN is the nominal strength of beam, 2L is the span between the sup-
ports, S is the distance between the two center-span loads; l= L/D,
s = S/D; b, D is the thickness and depth of beam; a is the crack (or
notch) length, α= a/D is the relative crack length; σN is the nominal
bending strength for each size; and f (α) is the dimensionless
stress-intensity factor. The size effect law (SEL) reads:

σN = Bft(1 + D/D0)
−1/2 (E3)

1/σ2N = (1/B2f 2t + D/B2f 2t D0) ⇒ Y = C + AD (E4)

For data fitting, the SEL may be converted to a linear regression plot
of 1/σ2N versusD as in Eq. (E4) [14,61]. To determine the size effect
parameters, we need not only k(α) but also its derivative [14,26]:

k′(α) =
dk(α)
dα

=
0.8411(2l − s)

��
π

√
8(1 − α)3/2

��
α

√ 5 − 10α/3 + α2 + 40α2(1 − α)6 + 3 e−6.134α/(1−α)
( )

+
2.523(2l − s)

���
πα

√

8(1 − α)5/2
5 − 10α/3 + α2 + 40α2β6 + 3 e−6.1342α/(1−α)
( )

+
1.6823(2l − s)

���
πα

√
12(1 − α)3/2

(−5 + 3α + 120α((1 − α)6 − 360α2(1 − α)5

− 27.6(1/(1 − α) + α/(1 − α)2) e−6.134α/β)

(E5)

Fig. 14 (a) A circular plastic pad under compressive force and
(b) the shape of the pad should be designed to minimize H
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Upon rearranging Eq. (E3) as linear regression and fitting maximum
load data, Eq. (E4), the fracture energy and the characteristic mate-
rial length (roughly 40% of actual FPZ length) can then be com-
puted from Refs. [14,26]:

Gf = K2
f /E, Kf = Bft

���
D0

√
k(α0) (E6)

cf =
D0k(α0)
2k′(α0)

(E7)

Note that the crack-parallel compression is not a parameter in
LEFM, and so, in LEFM, it cannot affect function k(α) and the
equations relating Gf and cf to k(α).
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