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a b s t r a c t

The small-scale yielding fracture of plastic-hardening metals is a well-understood theory, essentially
conceived by Hutchinson, Rice and Rosengren (hence the name HRR theory). However, even though
specimens of rather different sizes have been tested to verify the small-scale yielding theory, an
analytical scaling law for the size effect transition from elastic–plastic behavior through small- and
large-scale yielding to fracture process zone has apparently not been formulated. Such a scaling law
would be useful for the design as well as measurement of mode-I ductile fracture properties of metals,
and is the aim of this study. Unlike the fracture of quasibrittle materials such as concrete or composites,
the modeling of plastic-hardening materials is complicated by a millimeter scale singular yielding
zone that forms between the micrometer-scale fracture process zone (FPZ) and the elastic (unloading)
material on the outside. Essential for the large-scale transitional size effect is the effective yielding zone
size, which is here calculated from the equivalence of the virtual works within the plastic-hardening
zone and elastic singular stress fields within the transition zone, and is shown to depend on the crack-
parallel T -stress. The size effect analysis requires taking into account not only the dissipation in the
FPZ delivered by the J-integral flux of energy through the yielding zone, but also the energies released
from the structure and from the unloaded band of plasticized material trailing the advancing yielding
zone. Equating the rates of energy releases and energy dissipation leads to an approximate energetic
size effect (scaling) law that matches the calculated small- and large-size asymptotic behaviors, when
the crack ligament contains the yielding zone.. The law is similar to that for quasibrittle fracture but
its coefficients depend on the fracture energy and the yielding zone size in a different way. This law,
reducible to linear regression, can be exploited for size effect testing of fracture energy (or critical
J-integral) and effective size rp of the yielding zone. An effect of high crack-parallel stress T on rp is
likely but is relegated to future study, as it would not affect the scaling law derived. For testing of the
transition from the small-size range (large-scale yielding) to the large-size range (small-scale yielding),
a modified size effect method, requiring nonlinear optimization, is developed. The size effect law is
verified by scaled tests of notched specimens of aluminum.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of small-scale yielding in fracture of plastic-
ardening metals is by now a well-developed classical subject.
evertheless, the analytical laws governing its scaling properties
ave apparently not been formulated, although they may be
seful for fracture testing and for predicting structure strength.
heir formulation is the main goal of this study.
The foundation of the small-scale yielding fracture mechanics

as laid down by Hutchinson [1] and Rice and Rosengren [2].
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They calculated the near-tip singular field, generally called the
HRR field, in which the strain energy density exhibits a 1/r
singularity (r = radial distance from crack tip). Essential for this
advance was Rice’s J-integral [3], which allowed calculating the
energy flux into the crack tip under the hypothesis of negligible
elastic strains and no unloading in the near-tip yielding zone. A
critical value of the J-integral, Jcr , thus became the criterion of
crack propagation, and an effective method of measuring Jcr was
developed [3–5].

What distinguishes metals most from quasibrittle materials,
such as concrete, rocks, tough ceramics and fiber composites, is
that the fracture process zone (FPZ), which is of micrometer-
scale width and length, is surrounded by a plastically hardening
zone. In this respect, though not in others, the fracture of plastic-
hardening materials is more complicated than it is for quasibrittle
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aterials, in which the FPZ borders directly on an elastically
nloading material.
In fracture of quasibrittle materials, the scaling, particularly

he energetic size effect on the strength of specimens or struc-
ures, proved to be an essential property, not only for structural
esign but also for the testing of material fracture properties,
ncluding both the material fracture energy, Gf , and the character-
stic FPZ size, cf . Strangely, though, for ductile fracture of plastic-
hardening metals, the problem of an asymptotically matched
size effect law for the strength of geometrically similar cracked
specimens or structures and for identification of material fracture
properties has apparently not been studied.

Important studies of the size and behavior of the yielding zone
in ductile fracture have nevertheless been contributed, and sup-
ported by extensive finite element analyses. In particular, O’Dowd
and Shih [6,7] proposed the concept of J-Q -annulus surrounding
the crack tip, in which the J-integral characterizes the remote
stress field corresponding to a −1/2-power stress singularity,
while Q corresponds to the second, non-singular, term of the
near-tip asymptotic expansion, which represents a uniform stress
field of crack-parallel T -stress. This stress was shown to act as
a crack tip constraint, suppressing cleavage. The J-Q concept,
however, has not been extended to a simple analytical scaling
law which is the objective here. Similar comments apply to the
studies of Betegón and Hancock [8], Xia, Wang and Shih [9], and
Gao, Shih, Tvergaard and Needleman [10]. Although the T -stress
will not affect the form of the scaling law derived here, it will
affect the prediction of the effective size, rp, of the yielding zone,
which figures as a parameter in this law, identifiable by size effect
tests.

The effect of crack-parallel stresses on rp is relegated to a sub-
sequent study. So is the likely effect of T -stress on the Gf and on
the transverse width of the (micrometer-scale) fracture process
zone in metals. Such effects have recently been demonstrated for
quasibrittle materials [11,12].

Finally, it should be noted that, in the field of metals, the
term ‘‘size effect’’, has been applied to a variety of different
phenomena. E.g., the well-known Hall–Petch effect [13–15] is not
a size effect on structure strength but the effect of grain-size on
the yield strength of metal, explained by dislocation arrest at
grain boundaries. In crystal plasticity, the term is used for the
strength variation of miniaturized single-crystal specimens [16].
The term has also been used for the effect of geometrically neces-
sary dislocations and of strain gradients on the yielding strength
of metals. Further the term has been used for the increase of
specific cutting force with a decreasing depth of a cut [17].

Another point needs to be clarified. In quasibrittle fracture,
two types of size effect on structure strength [18] must nowadays
be distinguished. Here we deal only with Type 2, which occurs
when geometrically similar structures of different sizes contain at
maximum load large similar cracks or notches. Type 1, to which
most of the present analysis does not apply, occurs for failures
at fracture initiation from a smooth surface, and has, for large
structures, a strong statistical component.

The present objective is to find the law governing the size
effect in metallic structures with large cracks propagating in the
opening mode, i.e., mode I.

2. Scaling of near-tip field and of structure strength in absence
of a characteristic length

Assuming homogeneous plasticity, the field of any continuum
variable close enough to a perfectly sharp tip of a crack (or notch)
possesses no characteristic length. Therefore, the field must be
self-similar in the radial polar coordinate r centered at the tip.
In other words, any response f (r, θ ), such as the displacement
2

or stress, must be such that, for any two radii r and ξ r , the
scaling ratio f (ξ r, θ )/f (r, θ ) = ρ would be independent of the
polar angle θ . Hence, function f (r, θ ) must satisfy the functional
equation:

f (ξ r, θ ) = ρ(ξ )f (r, θ ) (1)

To solve it, note that it will be true for all r if and only if it is
true for every interval (r , r + dr). So we differentiate Eq. (1) with
respect to ξ and get

rf,ξ r (ξ r, θ ) = ρ ′(ξ )f (r, θ ) (2)

where f,ξ r and ρ ′ denote the derivatives on ξ r and ξ . Now we may
consider ξ → 1 and denote ρ ′(1) = m = constant. This converts
the functional equation into a differential equation which can be
solved by separation of variables:

r
df (r, θ )

dr
= mf (r, θ ) (3)

Its solution is ln f (r, θ ) = m ln r + lnψ(θ ) where lnψ(θ ) =
ntegration constant independent of r but dependent on θ . So we
onclude that the near-tip field must be a power law in r:

(r, θ ) = rmψ(θ ) (4)

ubstitution into the field equation yields an eigenvalue problem
n θ with an infinite series of eigenvalues m. The eigenfield of the
lowest eigenvalue dominates near the tip.

Based on Eq. (4), we conclude that any field variable near
he tip of a crack (as well as or V-notch) must have a sepa-
ated form in polar coordinates, and that the radial dependence
ust be a power function (this conclusion also applies to various
ingularities in hydrodynamics, electromagnetism, electrostatics,
tc.).
As a particular case, the foregoing argument applies to the

ominal strength, σN , of geometrically similar structures with
similar cracks and loadings but different characteristic sizes D
(see Eq. 1–3 in [19] or Eqs. 1.2–1.4 in [20]); σN is a load parameter
with the dimension of stress, defined as σN = P/bD where P
= load and b = thickness of two-dimensional (2D) structure. The
conclusion is that, in absence of characteristic structure size D0,
which is the case for linear elastic fracture mechanics (LEFM), σN
must scale as a power law of D multiplied by some constant cS
hat depends only on the shape (or geometry) of the structure
ith crack:

N = cS Dm (5)

3. Review of power-law stress–strain relation for plastic-
hardening metals

According to the deformation theory of plasticity, it has gen-
erally been assumed that plastic-hardening metals can be ade-
quately described by the Ramberg–Osgood [21] uniaxial stress–
strain law:
ϵ

ϵy
=
σ

σy
+ αp

(
σ

σy

)n

(6)

where n = plastic hardening exponent; σy = yield strength, ϵy =
yield strain limit; αp = empirical parameter (usually denoted as
α, but α is generally used for dimensionless crack length); and
n = plastic hardening exponent, typically 3 to 20 [1,2]. Note that
the material is considered plastically incompressible by volume,
which means that the material yields only in shear, which allows
us to deal only with deviatoric stress and strain tensors sij and eij.

Beginning with the HRR (Hutchinson–Rice–Rosengren [1,2])
heory, the elastic strain is neglected, which has the advantage
hat stress–strain relation becomes a power law:

ϵ
= αp

(
σ

)n

(7)

ϵy σy
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Fig. 1. (a) Stress–strain behavior of the deformation theory of plasticity (nonlinear elasticity); (b) Elasto-plastic constitutive law with different n; (c) Approximation
of total stress–strain relation by plastic stress–strain relation (elastic strain is neglected); and (d) Partition of strain energy at unloading into released and dissipated.
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The power law is assumed to start at 0, which ignores the initial
elastic response. The benefit stemming from a power law is that
it enables an analytical solution [1,2]. As shown in Fig. 1, for high
exponents n, the initial plastic deformations are negligible, and σy
represents only an equivalent yield limit characterizing the point
where the power law takes off.

The simplest and apparently quite realistic tensorial general-
ization is [1,2,4,5]:

eij =
3αpϵy

2σy

(
σef

σy

)n−1

sij (8)

here σef =

√
3
2 sklskl (9)

σef = scalar effective stress, of von Mises type (conceivable higher-
order terms such as σ 3

ef ∝ skmsmnsnk are omitted). The numerical
subscripts refer to Cartesian coordinates (x1, x2) and the summa-
tion rule applies. Note that the use of the deformation theory of
plasticity in the HRR theory is a simplifying hypothesis. Yet, it is
acceptable if no unloading occurs, and is shown by Hutchinson
and Paris [22] to be quite accurate.

4. Large-scale yielding in small structures

First we consider the case of large-scale yielding, in which
the specimen or structure is so small that all of the fracture
cross section is plastically yielding and full development of the
yielding zone is prevented by the cross section size. We consider
geometrically similar specimens of various sizes D, with similar
cracks or notches. Based on the preceding arguments (Eq. (4)), the
absence of any characteristic length implies the near-tip stress
field to have a separated form:

sij = σy(r/rp)mψij(θ ) (10)

where functions ψij cannot be expressed by an exact explicit form
but can be approximated by several methods, e.g. finite difference
method [23,24], complex solution via conformal mapping [25,26],
and finite element method [27]. It is dimensionless and thus σy
is required for dimensional consistency. Exponent m is a constant
to be determined later, and r represents the effective size (or
p

3

radius) of the yielding zone. Substitution (10) into the constitutive
law, Eq. (8), furnishes:

eij = αpϵy(r/rp)mnϕij(θ ) (11)

where ϕij(θ ) =
3
2ψij(θ )

( 3
2ψkl(θ )ψkl(θ )

) n−1
2 (12)

where ϕij are also dimensionless functions. Since eij is expressed
in terms of the gradient of displacement ui, and since an integra-
tion increases the r-exponent by 1, the displacement field must
have the separated form:

ui = αpϵyrp(r/rp)mn+1Fi(θ ) (13)

here Fi are dimensionless functions. Evaluating the expression
ij = eij =

1
2 (ui,j + uj,i), we can check that it agrees with Eq. (11).

At the same time, we get an expression for function Fi(θ ) in terms
of ϕij(θ ) (the subscripts preceded by a comma denote derivatives).

It is now useful to recall Rice’s J-integral [3] giving the energy
flux through the yielding zone into the fracture process zone:

J =

∫
Γ

(
W̄dy − νj sijui,1ds

)
, W̄ =

∫
sijdϵij (14)

here the flux is meant with respect to crack length a, not
time; Γ is a closed contour around the crack tip, s is the length
coordinate of that contour, νi its unit outward normal, y = x2,
∂1 = ∂/∂x1, 1

2 sijeij is the stored strain energy recoverable upon
nloading and W̄ is the nonlinear strain energy density. The

material is considered as nonlinearly elastic, as if the unload-
ing would follow the same curve as loading. This hypothesis is
acceptable if the J contour avoids the zone of unloading in the
wake of the advancing yielding zone. Elasticity, whether linear or
nonlinear, is essential for the path independence of J-integral.

Consider now the J-integral for a circular path, for which ds =

dθ and dy = rdθ cos θ . From this and from Eqs. (18)–(20)) it
ollows that the radial dependence of the first term of J-integral
s∫ π

W̄dy ∝ rmrmnr = rm(n+1)+1 (15)

−π
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∝ is the proportionality sign). The same must occur for the
econd term of J integral. Indeed,∫ π

−π

νjsijui,1ds ∝ rmrmn+1r−1r = rm(n+1)+1. (16)

(as confirmed by the complete expression in Appendix A). Since
the J-integral is path independent, the exponent of r must be
zero, i.e., m(n + 1) + 1 = 0, or

m = −
1

n + 1
(17)

s noted in 1968 by Hutchinson [1] and Rice and Rosengren [2].
s a check, for the case of a linear elastic behavior, n = 1, and
q. (16) gives m = −1/2. As another check, sijeij is known [1,2] to
e proportional to 1/r when the crack tip is approached, and this
s obviously also satisfied. It should be noted that the power-law
ardening is not realistic when n > 20 [2] and, for non-hardening
lastic materials −1/(n+1) → 0 (or n → ∞), a different solution
s required [28]. In practice, though, n ≤ 20 suffices for most
situations.

According to Eq. (17), Eqs. (10)–(13) for large-scale yielding in
small structures now take the following particular form (same as
Eqs. 5.3.10 in [5]):

sij = σy

(
r
rp

)−
1

n+1

ψij(θ ) (18)

ij = αpϵy

(
r
rp

)−
n

n+1

ϕij(θ ) (19)

i = αpϵyrp

(
r
rp

) 1
n+1

Fi(θ ) (20)

The structure strength is normally characterized in terms of
the nominal strength of structure, defined as σN = P/bD, where P
is the applied load or load resultant, b is the structure width (for
a two dimensional structure or specimen), and D is the charac-
teristic structure size, measured homologously on geometrically
similar structures of different sizes. Thus σN is a load parameter
with the dimension of stress. Obviously σN ∝ sij and r ∝ D,
considering small enough structures with large-scale yielding, in
which the plastic yielding zone occupies the entire fracture cross
section. Eq. (18) thus yields the size effect law (or scaling law):

σN ∝ σy

( rp
D

) 1
n+1

(for large-scale yielding, small D) (21)

here proportionality constants irrelevant to size effect are omit-
ed. Note that, in the limit of n → 1, this scaling law reduces
to σN ∝ D−1/2, which is the case of linear elasticity (or LEFM)
except that the material stiffness approaches zero. Although spec-
imens or structures small enough to undergo large-scale yield-
ing may be too small for current practical interest, Eq. (21) is
nonetheless useful for anchoring the asymptotic matching of the
small-to-large-scale yielding transition, which we pursue later.

5. For comparison—derivation of scaling law for quasibrittle
structures with no plasticity

To derive the scaling law for small-to-large structure transi-
tion, we will need to generalize and reinterpret the approach
used for quasibrittle materials [19,20,29–32], and so we review it
first. We begin by the expression for energy release rate in linear
elastic fracture mechanics (LEFM): G = (σ 2

N/E
′)Dg(α) where α =

a/D, a = crack or notch length, D = characteristic structure size,
and g(α) = K 2

I /(Dσ
2
N ) = dimensionless energy release function of

LEFM reflecting the structure shape (K = mode I stress intensity
I

4

factor, E ′
= E for plane stress or E/(1 − ν2) for plane strain, E =

Young’s modulus, ν = Poisson ratio). Replacing the crack length
a with the effective crack length a = a0 + cf where cf is a
material property characterizing the effective length of the FPZ,
we have G = (σ 2

N/E
′)Dg(α0 + cf /D) where α0 = a0/D and a0

= length of the stress-free crack (or notch). Taking the first two
terms of the Taylor series expansion, and denoting g0 = g(α0)
nd g ′

0 = dg(α0)/dα, we get G = (σ 2
N/E

′)D(g0 + g ′

0(cf /D)), or

G = Gs + Gb (22)

here Gs = (σ 2
N/E

′)Dg0 (23)

Gb = (σ 2
N/E

′)cf g ′

0 (24)

here g0 = g(α0), g ′

0 = [dg(α)/dα]α0 . Setting G = Gf (material
racture energy), and solving for σN , we obtain, after rearrange-
ments, the classical size effect law [29–31] (of Type 2) for geo-
metrically similar quasibrittle structures with similar cracks or
notches:

σN =

√
E ′Gf

g ′

0cf + g0D
=

σ0
√
1 + D/D0

(25)

in which D0 = (g ′

0/g0)cf (transitional size), σ0 = (E ′Gf /cf g ′

0)
1/2

(this law now underlies the ACI standard code provisions for scal-
ing of strength of concrete structures; the material characteristic
length, cf , of concrete has been shown to be about 0.4l0, where
0 = E ′Gf /σ

2
y = Irwin’s characteristic length [33,34]).

For test data fitting, it is useful that Eq. (25) can be rearranged
o linear regression plot

= AX + C where X = D, Y =
1
σ 2
N

(26)

=
1

σ 2
0D0

, C =
1
σ 2
0

(27)

btaining A and C by regression of test data, we can calculate D0
and σ0 and then Gf and cf from the last equation. This method
of measurement of materials fracture characteristics has become
widely used for concrete and geomaterials and has been embod-
ied in the international standard recommendation of RILEM [35]
(recently also endorsed by the ACI-446 Committee). Eqs. (25)–
(27) apply even when the structures or cracks for different sizes
D are not geometrically similar, but function g(α) is then different
for each size.

6. Yielding zone size under crack-parallel stress via energy
matching of singular fields

Before studying the size effect, we also need an estimate of
the effective size of the yielding zone, which we approximate as a
circle of radius rp. Furthermore, we must include the dependence
of rp on the crack-parallel stress σ11 = T (in the case of plane
stress), which represents the second term in the LEFM near-tip
asymptotic series expansion. The first two terms of this expansion
read [36]:

σ11 =
KI
√
r
f11(θ ) + T (28)

here f11(θ ) = cos θ ′(1 − sin θ ′ sin 3θ ′)/2π , θ ′
= θ/2 (e.g. p. 86

in [32]), and KI =
√
E ′Gf = mode I stress intensity factor of the

elastic field. The T -field in the second term is nonsingular and
uniform. In small-scale yielding, the σij field in Eq. (28) prevails
at sufficient distance from the yielding zone (YZ). At closer range
its interference with the plastic-hardening singular near-tip field
given by Eq. (10) is complicated, and requires elasto-plastic finite
element analysis (the typical contour of small-scale yielding zone
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Fig. 2. Schematic radial stress profiles; (a) intersection of yielding and elastic zones; and (b) mismatch areas (cross-hatched) for equilibrium matching of both zones
by virtual work.
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for plane stress, obtained by finite elements [1], is shown in
Fig. 3).

As a simplification, the boundary between these two fields
ould be estimated by the intersection of radial profiles at which
he stresses from both fields are equal (as suggested by Hutchin-
on and Rice, and previously for perfect plasticity by Irwin).
ut this would still be complicated, giving rp as a function of
and T . Such a complication, though, is unnecessary for the

lobal behavior such as the failure load and size effect. Besides, a
ependence or rp on θ would prevent us getting a clear result for

the size effect.
In this light, we try (similar to [5]) to determine one effective

constant value of transition radius rp. To this end, we introduce a
ifferent approach—the use of the variational principle of virtual
ork to enforce global equilibrium, or overall energy equivalence,
f the two interfering fields, Eqs. (18) and (28). With rp defined
s a constant, the stress at the intersection of the fields given by
hese two equations would, of course, not be equal to σy at each
ray θ . The yield stress, σy, would be matched only in the average
sense for all θ , and based on equilibrium in the crack direction
(see Fig. 2).

Since T works on crack-parallel strain ϵxx = ϵ11 in the case of
plane stress, we match the two singular fields by imposing, for a
circle of a certain larger radius r ′

p (> rp, to be estimated later),
the virtual work condition of overall equivalence of the stress
resultants in crack direction x1:∫ π

−π

∫ r ′p

0
(σ11 − T ) r dθ dr δϵ11 =

∫ π

−π

∫ r ′p

0
ŝ11 r dθ dr δϵ11

(29)

where ŝ11 = KI r−
1
2 f11(θ ) (30)

In the yielding zone, σ11 can be represented by s11 and expressed
according to Eq. (18). Integrating, and noting that the resulting
equation must be valid for any variation, we set the multiplier of
δϵ11 to zero. This gives:

r ′
p

ζ
= rp =

C2
e l0

ζ (CnCp − πT/σy)2
(31)

here Cn = ζ
−

1
n+1

n + 1
, l0 =

E ′Gf
2 (32)
2n + 1 σy

5

Ce =
2
3

∫ π

−π

f11(θ ) dθ, Cp =

∫ π

−π

ψ11(θ ) dθ (33)

ote that, for T = 0, the proportionality to l0 is the same as in Eq.
5.4–10) of [5] but dimensionless factors Cn, Ce, Cp are different.

To estimate factor ζ , we must give equal weights to the
ismatches in the yielding and elastic zones. So we require that
half of the matching zone would lie within the yielding zone
nd the other half in the elastic zone, i.e., πr ′2

p = 2πr2p . This
ields r ′

p ≈ rp
√
2. However, because of the approximate nature

of energy matching, the factors Ce, Cp may best be determined by
FEM or experiment. See Appendix II for generalized methods to
estimate rp and r ′

p (note that, for the special case of T = 0, another
estimate of rp was obtained in a different way in 1976 by Shih
nd Hutchinson [37]; they used the J-integral and superposed the

displacements for the plastic-hardening and linear elasticity).
In addition to rp, the effect of T will probably also change

the energy dissipation in the FPZ, represented by Jcr (or Gf ), as
onfirmed for quasibrittle materials by the gap test [11,12]. This
s a separate question, which will be addressed theoretically and
xperimentally in a subsequent study.
Alternatively, Eq. (31) for r ′

p can be obtained by least-square
optimization of the matching of both singular fields, i.e., by min-
imizing the square of the difference between the two integrands
in Eq. (29), integrated over the area of circle of radius r ′

p. The
minimizing condition based on the squares of the differences of
stress resultant differences in the x1 direction then is:

d
dr ′

p

∫ π

−π

∫ r ′p

0

[
σ11 − T − ŝ11

]2 r dθ dr = 0 (34)

. Energy dissipation rates of small-scale yielding in large
tructures

Having reviewed the theory of fracture of plastic-hardening
etals, we can now embark on a study of scaling. We will need

he strain energy density W̄ of the nonlinearly elastic material
pproximating the plastic-hardening metal. It is defined as

¯ =

∫
sijdeij (35)

o calculate it, we multiply the right-hand side of Eq. (18) for sij
y loading parameter µ and readily find that the right-hand side
f Eq. (11) must then be multiplied by µn, and the expression for
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deij by nµn−1. Integrating from µ = 0 to µ = 1, we obtain the
nergy density

¯ (r, θ ) =
n

n + 1
αpσyϵy

rp
r
ϕij(θ )ψij(θ ) (36)

ote that here and further we must use the effective radius rp
f the yielding zone instead of the radius r ′

p of the larger energy
atching zone. Evaluating

∫∫
[Eq. (36)] r dθ dr , one finds that the

otal strain energy in the circle of radius rp (per unit width in the
ransverse direction x3) is:

=
n

n + 1
αpσyϵyr2p

∫ π

−π

ϕij(θ )ψij(θ )dθ (37)

After the entire yielding zone advances beyond a given point,
he material gets unloaded. Although the unloaded elastic strain
nergy W̄e may be small and negligible, it is easy to include it

in our calculations. Considering only the deviatoric stresses and
strains, the elastic energy density is sijsij/2G. Since the elastic
hear modulus G = σy/ϵy, substitution of Eq. (10) shows that the
train energy density at point (r, θ ) of the yielding zone is:

¯ e(r, θ ) =
1
2σyϵy(rp/r)

2/(n+1)ψij(θ )ψij(θ ) (38)

To obtain the strain energy release rate, Gb, due to unloading
of the entire yielding zone, the strain energy contained in this
zone must be divided by the distance of travel to the next non-
overlapping position of the zone (Fig. 3), which is the distance
2rp, equal to the diameter of the yielding zone approximated as
circular. So,

Ge =
1
2rp

∫ π

−π

∫ rp

0
W̄e(r, θ )r dθ dr = rp σyϵy Qe (39)

Qe =
n + 1
8n

∫ π

−π

ψij(θ )ψij(θ ) dθ (40)

After the passage of the yielding zone through a fixed station,
he irreversible work of plastic yielding does not flow into the
rack tip but is dissipated by unloading of the plasticized material.
ver the effective width, 2r , of the yielding zone, the energy
p

6

dissipation rate is

Gp =
1
2rp

∫ π

−π

∫ rp

0
[W̄ (r, θ ) − W̄e(r, θ )]r dθ dr

= σyϵy rp
(
Qp − Qe

)
(41)

here Qp =
nαp

2(n + 1)

∫ π

−π

ϕij(θ )ψij(θ )dθ (42)

. Size effect on fracture strength of plastic-hardening struc-
ures

To exploit an analogy with the size effect mechanism in qua-
ibrittle structures, we need to interpret Eqs. (22)–(24) physically.
The energy release rates Gs and Gb correspond to two different
zones in the structure: (i) Gs is the energy release from the un-
damaged, elastic, zone of the structure, which is proportional to D
(approximately, though for D → ∞ exactly), and (ii) Gb is the rate
of energy release from the damage band, which is independent
of D (the rates are considered with respect to crack length a, not
time). This band is the zone trailed by the advancing FPZ of finite
width 2rp if the yielding zone is approximated as circular. Before
fracture, the material in this band is under transverse tension
proportional to σN .

Compared to quasibrittle materials, which are incapable of
plastic yielding, the situation in metals is complicated by the
presence of a plastic-hardening yielding zone, inserted between
the damage zone and the elastic zone. The yielding zone (typically
of millimeter dimensions) plays a triple role—first, it conveys
energy flux J through the yielding zone to the FPZ (typically of
micrometer dimensions) and, second, it also dissipates energy,
at the rate Gp, as the plastically deformed material unloads in
the wake of the yielding zone. However, aside from these two
dissipation roles, there is a third role: as the yielding zone travels
forward, it unloads, at the rate Gb, the strain energy (γcσN )2/2E ′

initially stored in the band of width 2rp trailed by the yielding
zone (here γc is a certain stress concentration factor, which is
independent of structure size D and which we absorb into the

definition of σN ).
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Fig. 4. Comparison of accuracy of Eq. (63) in approximating the exact solution,
q. (62).

The rates of energy release from the elastic part of the struc-
ure and from the band swept by the yielding zone must be equal
o the rates of energy dissipation at the crack tip and in the trail
f the advancing yielding zone, Therefore,

Gs + Gb = Gf + Gp (43)

or Gb we can take the same expression as in Eq. (24) but with
he damage band width, cf , replaced by 2rp, i.e.,

b = (σ 2
N/E

′) 2rp (44)

or Gs we can co-opt Eq. (23) (this is a simplification which
ay be supported by the thermodynamic theory of material (or
onfigurational) forces used by Herrmann et al. [38,39] who ob-
erved, on that basis, that the crack widening gives approximately
he same LEFM energy release rate as the crack extension; see
ig. 12.8 in [40] and [34] where this concept was refined and
alibrated). Substitutions of Eqs. (23), (41), and (44) into (43) then
ield the energy balance equation:

σ 2
N

E ′
Dg0 +

σ 2
N

E ′
2rp = Gf + Gp (45)

olving for σN finally furnishes the size effect law:

σN =
σ0

√
1 + D/D0

(46)

his law has the same form as the size effect law, SEL, for
uasibrittle materials (Eq. (25)) but its coefficients are expressed

differently and depend on the hardening exponent n:

0 =
2rp
g0
, σ 2

0 =
E ′Gf

2rp
+ σ 2

p , (47)

2
p =

E ′σyϵy

2

(
Qp − Qe

)
(48)

he asymptotes of size effect are also of the same type:

N ⇒
D→0

σ0 = constant, σN ⇒
D→∞

D−1/2 (49)

9. Size effect method for testing material fracture properties
in large enough structures in small-scale yielding range

Like Eq. (25), Eq. (46) can again be transformed to linear
regression

Y = AX + C where X = D, Y = 1/σ 2
N (50)

A = 1/σ 2D , C = 1/σ 2 (51)
0 0 0

7

If σN -values are measured for various D, and σy, ϵy, αp, E ′, n, and
if functions ϕij(θ ), ψij(θ ) are all known, at least numerically, and
if their integrals in Qp and Qe are evaluated (which could be
done once for all), then the fracture energy Gf (equal to Jcr ) and
the effective width 2rp of the yielding zone can be identified by
testing the size effect. To this end, one must first determine the
value of g0 (and E ′). Then one conducts linear regression of the
measured data pairs (X, Y ) according to Eq. (50), to get A and C ,
and calculates: σ0 = 1/

√
C and D0 = C/A. Finally, if the smallest

tested specimen is large enough to be in the small-scale yielding
range, we have

rp =
g0

2σ 2
0 A
, Gf =

2rp
E ′

(
1

√
C

− σp

)
(52)

10. Simple asymptotic matching of small-to-large-scale yield-
ing

The small-size asymptote of Eq. (46), i.e. σN = constant, does
not match the small-size large-scale yielding σN ∝ D−1/(n+1)

in Eq. (17) or (21). This is caused by considering, in our anal-
ysis, a different physical mechanism which is inappropriate for
the range of transition from large-scale yielding to small-scale
yielding. As the simplest, phenomenological, way to make the
small-size asymptote match the power law D−1/(n+1) instead of
D0 without spoiling the large-size asymptote D−1/2, Eq. (46) may
be modified as follows:

σN = σ0

(
D
D0

)−
1

n+1
(
1 +

D
D0

)−
n−1
2n+2

(53)

r σN = σ0

(
D0

D

) 1
2
(
1 +

D0

D

)−
n−1
2n+2

(54)

This asymptotic matching formula cannot be derived by the
previous asymptotic argument, and so it cannot be used for small
specimens for which D is not much larger than rp. This is not sur-
prising because the derivation was purely phenomenological as
it was not anchored in the rate of energy release from unloading
of the material swept by the advancing yielding zone. We try to
remedy it next.

11. Small-to-large-scale asymptotic matching anchored in
yielding zone

When the specimen or structure cross section, of size D, is
smaller than the width, i.e, D < 2rp, of the fully developed
yielding zone, Eq. (31), we have large-scale yielding, for which
we must consider the restricted yielding zone width, which we
denote as 2r = h0D where h0 is a dimensionless constant. Similar
to the argument for Eq. (21), we recognize proportionality to σN
by replacing again sij in Eq. (18) with σN , but replace now 2r with
the restricted width h0D. This yields σN = σ0(2rp/h0D)

1
n+1 , from

which

2rp = (σN/σ0)n+1h0D (55)

he linear elastic strain energy that was initially stored in the ma-
erial and was subsequently released by the passage of the yield-
ng zone is, per unit length in the x direction, Gb = (σ 2

N/E
′)(2rp).

Replacing 2rp in Eq. (55), we obtain

Gb =
σ 2
0
′

(
σN

)n+1

h0D (56)

E σ0
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f we substitute this equation, instead of Eq. (44), into the energy
alance equation (43), we obtain, instead of Eq. (45), the following
quation

σ 2
0

E ′

(
σN

σ0

)2

g0D +
σ 2
0

E ′

(
σN

σ0

)n+1

h0D = Gf + Gp (57)

n which only the second term differs from Eq. (45). The above
quation may be rewritten as

Xn+1
+ BX2

= C in which (58)

= (σ 2
0 /E

′)h0D, B = (σ 2
0 /E

′)g0D,

= Gf + Gp, X = σN/σ0 (59)

It is necessary to acknowledge that Eq. (55) was previously
btained in a different way by Kanninen and Popelar [5, pp.c314–
17]. They replaced the fixed limiting width of the yielding zone
here denoted as 2rp) by a reduced width restricted by the spec-
men size (Eqs. 5.4–9 and 5.4–11 in [5]). With their empirical
8

function φ they achieved a smooth transition. For notched three-
point bend specimens, they calculated by finite elements and
tabulated a function, h1(α, n), that describes this transition for
various relative crack lengths α. The present constant h0 may be
taken as equal to αp(1 − α)h1(α0, n).

To obtain the size effect of D on σN , one needs to solve X
as a function of A, B, C from Eq. (58). Since an exact solution
is not possible for n > 4 (according to Abel–Galois theorem),
a numerical solution is necessary but it may be easily obtained
by Newton iterations or, more effectively, by minimizing the
quadratic expression

Φ = (AXn+1
+ BX2

− C)2 (60)

ith an optimization algorithm such as Levenberg–Marquardt.
evertheless, a very accurate closed-form analytical approxima-
ion is possible, as shown in the next section.

A tentative iterative procedure to identify the Gf and h0 values
from size effect tests may begin, in the first iteration, with a guess
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Fig. 7. Micron-scale asymptote for specimens with sizes comparable to pro-
ess zone size (volume confined within slip planes or grain boundaries), and
ransition to intermediate asymptote and terminal asymptote.

f the values of Gf + Gp, σ0 based on a preliminary estimate by
inear regression according to Eq. (50). Minimization of Φ then
yields the optimum values.

12. Closed-form approximation of small-to-large-scale yield-
ing and evaluation of size effect tests

We denote:

XA = (C/A)
1

n+1 , XB = (C/B)
1
2 , Y = X/XA, m = XA/XB (61)

by which Eq. (58) becomes

Y n+1
+ m2Y 2

= 1 where m =
(
1 − Y n+1) 1

2 /Y (62)

he real solution of this equation can be closely approximated
y:

=
(
Y−d

− 1
) 1

d with d =

√
2(n + 1) (63)

and Y then follows from Eq. (61). Fig. 4 shows how close this
approximation is. Note that this approximation does not depend
on A, B and C . The maximum error occurs when X → XA or D → 0
but these are not realistic cases.

The ratio σN/σ0 obtained from this solution converges to LEFM
(though not SEL) as n → 1. It may further be checked that
σN/σ0 → (kD/D0)−

1
n+1 for D → 0, and σN/σ0 → (D/D0)−

1
2 for

D → ∞.
Identification of fracture properties from size effect tests is

done by directly optimizing σ0 and Gf + Gp based on Eq. (60).
he standard algorithm for nonlinear optimization in commercial
oftware, such as Matlab, can be used.
The optimum fits of the results of the present tests of geomet-

ically scaled aluminum specimens are presented in Fig. Fig. 5a,b,c
9

(for the details of the experiments, see section 14). They were
obtained with Eqs. (46), (53) and (60). The transverse thickness
f all specimens was not scaled and was kept as 10 mm. For
omparison, the results of the tests performed on the same type
f aluminum by Bažant, Lee and Pfeiffer [30] (in 1987, before
he size effect theory was sufficiently developed) are also shown
nd analyzed; see Fig. 5d,e,f. The specimen dimensions in those
ests were in the same range as here, except for the transverse
hickness which was 25.4 mm (1 in.).

The plastic dissipation Gp can be calculated directly if one
as the data from the standard uniaxial tensile test and if one
etermines the angular variations ψij and ϕij of stress and strain
which can be done, once for all, for any given specimen geome-
ry, e.g., the 3PB test). If this is unavailable, one can obtain only
he sum Gf + Gp as a whole, which is what is done here.

Even though the values of Gf + Gp of the tested material (Al
061-T651) obtained from Eqs. (46), (53) and (60) were in a
easonable range, some discrepancies need to be noted. Eq. (53)
ends to give a higher Gf + Gp than the other two. Due to the
ssumption of a fixed rp in Eq. (46), choosing the data points in
hich yielding zone is fully developed matters. This was reflected

n Fig. 5a, in which the fitting of three larger sizes captured
he data trend better and its resulting fracture energy was in
greement with Fig. 5c. So we consider this to be the true value of
f +Gp. The same conclusion can be drawn from Fig. 5d,f. In this
ase, however, including or excluding the anomalous test result
rom the smallest specimen did not make a big difference.

According to [41], the transverse thickness has an appreciable
ffect. In large-scale yielding, the material at mid-thickness will
egin yielding first. Because the material on the sides has not
et yielded, a plane-strain constraint develops at the middle part
f the crack front edge, which creates a triaxial stress state.
he larger the transverse thickness, the stronger the plane strain
ffect. This tends to increase Gf + Gp. Further tests are necessary
o assess the magnitude of this effect as an envelope of fracture
quilibrium curves.
The standard ASTM-E1820 [42] provides a guideline to mea-

ure the fracture energy of plastic-hardening materials. This in-
ludes the procedures for (a) the basic test of JIc and (b) the
esistance curve (R-curve). The former requires a number of iden-
ical specimens to be loaded to different load levels, with several
oad–displacement curves to be recorded. This results in a J–∆a
urve, based on which the JIc is obtained by interpolation. The lat-
er method, on the other hand, demands only one specimen, but
he loading procedure include multiple loading–unloading cycles
o keep track of the structure compliance. The proposed method
hich requires testing only the maximum loads of geometrically-
caled specimens of at least three different sizes seems relatively
impler. It is also related to the R-curve method, as documented



H.T. Nguyen, A.A. Dönmez and Z.P. Bažant Extreme Mechanics Letters 43 (2021) 101141

i
s

m
u
i
t
d
c

c
i
n
t
(
H
a
b
v

w
D
z

Fig. 8. (a) Schematic and (b) actual setup of notched three-point-bend tests; (c) Geometrically-scaled specimens with the same transverse thickness and various
depths, D = 6, 12, 24 mm (specimens with D = 48 mm were tested but not shown here).
T
a
a

n 1967 in [30] where the way to calculate the R-curve from the
ize-effect was shown.
To confirm the validity of the present method, finite ele-

ent simulations of the tested material have been performed
sing a well established material model for the metals presented
n [43,44]. Calibrating the material model with uniaxial tensile
est data and the load–displacement curve of a specimens of one
epth (D = 24 mm), J-integral calculations were run for various
ontours.
After calibration, J-integral calculations were run for various

ontours. It is important to choose contours for which the J-
ntegral is path-independent. They are those on which there is
o unloading. For the contours in Fig. 6, if the contour crosses
he plastically unloaded region or the damage region of the FPZ
e.g. 1 and 2), the calculated J-integral will be path-dependent.
owever, if the contour passes entirely through the HRR field,
nd not the FPZ, its J-integral will be path-independent and will
e the same as for a contour lying outside both zones. It is this
alue that is selected as the correct JIc of the material. This JIc

(128.4 kN/m) differs by 16% from the JIc value obtained using size
effect method (112.2 kN/m).

13. Scaling for the FPZ-to-yielding transition and intermediate
asymptote

When the specimen becomes smaller than the FPZ, which has
a size in the micrometer range, the scaling is that of damage
mechanics and is the same as for quasibrittle materials. Based on
what is known for these materials [20,45], the approach of the
size effect curve to zero size must be linear. This translates, in
the log–log scale, to an exponential, with a horizontal asymptote
in that scale.

When the specimen becomes much larger than the FPZ but
still significantly smaller than the yielding zone which (being of
millimeter dimensions) is three order of magnitude larger, the
large-size asymptote must be of the type D−

1
n+1 . The simplest

asymptotic matching formula then is

σN = σ1

(
1 +

D
D1

)−
1

n+1

(64)

here σ1 and D1 are constants. This equation is valid only when
is smaller by at least one order of magnitude than the yielding

one size.
10
Considering the full size range from the FPZ to the speci-
men much larger than the yielding zone, we thus have three
asymptotic regimes:

σN ∝ D0, D−
1

n+1 , D−
1
2 (65)

he second is what Barenblatt named, and rigorously defined,
s the intermediate asymptote [46] (Fig. 7). The intermediate
symptote D−

1
n+1 serves both as the large-size asymptote for the

FPZ-to-yielding transition and as the small-size asymptote for the
yielding-to-elasticity transition.

14. Tests of notched specimens of aluminum and comparisons

A total of 12 notched three-point-bend (3PB) fracture speci-
mens of aluminum (of type Al 6061-T651) have been manufac-
tured (Fig. 8). The experiments involved 4 different sizes with
the size range of 1 : 2 : 4 : 8. Three identical specimens
were tested for each size. The span-to-depth ratio was 6.0 and
the relative notch depth was a/D = 0.5. The specimens of all sizes
and their notches were geometrically similar in two dimensions
but the transverse thickness, b = 10 mm, was kept constant (in
order to avoid having to separate the size effects of plastic shear
lip and of 3D singularity of stress field at the intersections of the
crack front edge with the side faces).

The tests have been conducted in a MTS servo-controlled test-
ing machine with load capacity of 10 kN and digital closed-loop
controls. The built-in three-point-bend fixture of the system has
been used as the test setup. Steel rollers have been placed at the
load point and at end supports. The built-in load-cell and linear
variable differential transformer (LVDT) have been employed and
calibrated before testing. Displacement controlled loading was
used. The loading rate was 0.002 mm/s for the smallest-size
specimens. For larger sizes, the loading rate has been scaled so as
to keep the strain rate approximately the same for all the sizes.
The loading continued into the postpeak until the load dropped
to 80% of the peak load.

Similar tests of aluminum have been conducted already in
1987 by Bažant, Lee and Pfeiffer [30], before the size effect theory
was fully developed. Fig. 8 demonstrates that the size effect
derived here matches these tests quite well.
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5. Conclusions

1. In contrast to quasibrittle fracture, the analysis of ductile
fracture of plastic-hardening materials is complicated by
the existence of a millimeter-scale yielding zone sepa-
rating the unloading elastic zone of structure from the
micrometer-scale damage zone of fracture process.

2. The effective size of the yielding zone is properly deter-
mined by using the principal of virtual work to enforce
equilibrium in the zone of transition between the plastic
hardening zone and elastic zone. Alternatively, the same
effective size is obtained by minimizing the squared differ-
ence of these fields integrated over this zone. This furnishes
the yielding zone size as a function of the crack-parallel
T -stress.

3. In addition to the energy released from the structure, fur-
ther energy is released from the unloaded band of material
trailing the advancing yielding zone. In addition to the
energy dissipated at fracture front, further energy is dissi-
pated by irreversible unloading of the material behind the
advancing yielding zone. The energy flux described by the
J-integral delivers energy through the yielding zone to the
fracture process zone at crack front, but neither releases
nor dissipates any energy within the yielding zone.

4. Balance of energy release and energy dissipation leads to an
approximate size effect law for plastic-hardening fracture
matching the asymptotic behaviors on both sides of the
size scale. The law is of the same form as the classical
size effect law (of Type 2) for quasibrittle materials such a
concrete. However, the coefficients in this law are related
to the material properties in a different way.

5. Based on the size effect law derived, the identification of
fracture energy and effective size of the yielding zone for
specimens significantly larger than the yielding zone is
reducible to linear regression.

6. When the test data range reaches into specimens so small
that the development of the crack tip yielding zone is
restricted by the boundaries, a modification of the size
effect law is required. Linear regression is then impossible
but identification of fracture properties is still possible.

7. The derived size effect law is verified by two series of
tests of scaled notched three-point bend specimens of alu-
minum.

8. The size effect method is a relatively simple method to es-
timate the fracture energy of plastic-hardening materials. It
is simpler than the elaborate procedure specified in ASTM-
E1820 [42]. However, broader experimental verification is
appropriate and some details might still need to be worked
out.
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Appendix A. J-Integral evaluation

Substituting Eqs. (18), (19), (20) and (36) in Eq. (14) and
integrating on the circular contour of radius rp, one finds that

J = 1/2αpϵyσy cJ , where: (66)

cJ =

∫ π

−π

[
nϕij(θ )
n + 1

−
νjFi(θ )
n + 1

+ νjF ′

i (θ ) tan
2 θ

]
ψij(θ ) cos θ

(
σN

σ0

)n+1

h0D dθ (67)

ppendix B. Generalized estimates of energy matching zone
adius r ′

p

Eq. (31) for estimating rp and r ′
p depends on calculating the

virtual work only for strain component δϵxx (or δϵ11), which is in
the crack direction. But one could, of course, calculate the virtual
work for other components, and in each case one would get a
different result for r ′

p. But they would all have the same form as
Eq. (31) except that factor Ce and Cp would have different values
(while Cn not).

Still another way is to impose the virtual work equivalence
required for overall equilibrium (or alternatively least-square
match) for any direction θ characterized by unit vector νi in
direction θ , replace δϵ11 by δϵij [23–27], and use resultants νjsij
and νjeij to replace s11 and e11 in Eq. (29). The result will have the
same form as (31) but with different coefficients depending on θ .
Averaging over θ would give a single prefactor value. This again
shows that Ce, Cp, as well as parameter ζ = r ′

p/rp, is only a crude
estimate, and FE analysis would be needed for more accurate
results.

It is, however, important to mention that the prefactor values
delivered by various ways of calculating Ce and Cp do not differ
much. Therefore, such a degree of uncertainly is not important
for a scaling law spanning 8 orders of magnitude, from 10−7 m
(a grain within the micrometer size FPZ) to 10 m (large structure
size).

More generally, to represent the case of plane strain, the crack-
parallel stress σ11 = T is accompanied by out-of-plane σ33 = νT .
Then, instead of Eq. (28), the full first two terms in the LEFM
near-tip asymptotic series expansion read [36]:

σij =
KI
√
r
fij(θ ) + Tδ1iδj1 + kϵνTδ3iδj3 (68)

where kϵ = 0 for plane stress and kϵ = 1 for plane strain.
In general three-dimensional situations, one may have to gen-

eralize Eq. (68) by considering in the crack-parallel plane (x, z) a
general stress state, i.e. Txx, Tzz, Txz . By experience with concrete,
Tzz may be as important as T = Txx.
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