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Abstract

In a network of spin % particles, controlled through an external electro-magnetic field, the gyromagnetic
ratio of each spin is a parameter that characterizes the interaction of the spin with the external control field.
Multipartite networks are such that the spins are divided into subsets according to their gyromagnetic ratio and
spins in one set interact in the same way with all spins in another set. Due to the presence of symmetries in this
type of systems, the underlying Hilbert state space splits into invariant subspaces for the dynamics. Subspace
controllability is verified if every unitary evolution can be generated by the dynamics on these subspaces.

We give an exact characterization, in term of graph theoretic conditions, of subspace controllability for

multipartite quantum spin networks. This extends and unifies previous results.

Keywords: Controllability of quantum mechanical systems; Subspace controllability; Networks of spins.

1 Introduction and statement of main result

The dynamics of quantum mechanical systems, subject to a control electromagnetic field, can often be described
by the Schrédinger equation in the form

V=AY + Y Bjui, S

Jj=1

where wj, j = 1,...,m, are the control variables and {4, By, ..., B,,} are given operators, with ¢ denoting the
state of the quantum system, varying in the underlying Hilbert space H. In finite dimensions, the controllability
properties of system (1) are usually assessed using the Lie algebra rank condition (see, e.g., [8], [9]). One calculates
the Lie algebra , G, generated by the matrices {A, By, ..., By, }, which is called the dynamical Lie algebra. Given
9, the connected Lie group associated with it, assumed compact, the condition says that the reachable set R
for (1) starting from g is given by

Ryo = {Xtho| X € 9.

In the case of large systems, it is important to find ways to assess controllability which avoid the repeated calculation
of commutators of very large matrices in (1). Such controllability criteria should be easily related to the physical
structure of the system under consideration. One example of large system is given by networks of n interacting
spin % particles, where the dimension of the Hilbert space H grows exponentially with n, as 2. In some cases,
graph theoretic conditions have been given to assess the controllability of quantum systems (see, e.g., [2], [14]), and
this paper has this objective as well.

In the presence of a group of symmetries G, i.e., a (discrete) group of matrices commuting with the matrices
{A, By, ..., Bp,} in (1), the underlying Hilbert space H for the system splits in the direct sum of invariant subspaces
for the dynamics (1) and, in an appropriate basis, the matrices {A, By, ..., By, } in (1) take a block diagonal form
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[10]. Transitions from one subspace to the other are forbidden and therefore controllability is lost. For a network
of n spins, the topology of the network itself often suggests the symmetries to be considered which typically are
subgroups of the permutation groups leaving the network unchanged. For example, for the network of Figure 1
the group of permutations on the three spin in the set Cl3 is a symmetry group for the system. In these cases, it
is of interest to investigate whether one has controllability within the invariant subspaces. This property is called
subspace controllability and it has been investigated in several recent papers (see, e.g., [1], [4], [15], [16] ). We
shall see that, in general, this property is subspace-dependent, that is, for the same decomposition, there might
be some subspaces of dimension D where the restriction of the dynamical Lie algebra is the full su(D) (special
unitary) Lie algebra of D x D skew-Hermitian traceless matrices and some others where it is not. In the first case
subspace controllability is verified, in the second case it is not.

Identifying the invariant subspaces of a quantum control system is also important when control laws are designed.
For these lower dimensional spaces typically more powerful design techniques are available (see, e.g., [5]) and states
in such subspaces might have special quantum information theoretical properties [4]. Furthermore, control on
invariant subspaces can be a way to shield the dynamics from the deteriorating effect of de-coherence (see, e.g.,
18)).

In this paper, we shall explore subspace controllability for networks of spin % particles in the multipartite
configuration. This means that spin particles are collected in sets, which we shall call clusters according to the
value of their gyromagnetic ratio, that is the parameter which models the interaction with an external control field.
Spins in the same cluster interact in the same way with spins in another cluster. These systems presents a group of
symmetries given by permutations of the spins within the same cluster. We shall give in Theorem 1 a necessary and
sufficient condition of subspace controllability for such systems in graph theoretic terms. This result will extend
the result of [1] which only dealt with the bipartite case and with bounds on the number of spin in one cluster.
We remove such bounds. The technique we shall use is different from the one in [1] which was based on a direct
computation of the dynamical Lie algebra. Here we shall use techniques of representation theory and, in particular,
the Clebsch-Gordan decomposition (see, e.g.,[7], [12], [17]) of the tensor product representation of su(2). Our result
also generalizes the result of [2] which is found as a special case when all the spins have different gyromagnetic
ratios.

1.1 Basic notations

We recall the definition of the Pauli matrices (multiplied by 3)

_1(01 _L(0 _1(1 0 2)
Oy i — 2 1 O ; O'y = 2 72 0 , O, i — 2 0 71 3

which satisfy the basic commutation relations

[i05, 10, = 102, lioy,io.] = iog, [io,,i0:] = (04, (3)
and L
U§=U§=Uz=il’ {ow, 04} ={oy,0.} ={0:,0.} =0, (4)

where {A, B} is the anticommutator of A and B, that is, {A, B} := AB + BA. Here and in the following 1
always denotes the identity matrix or operator, the dimension being understood from the context. The matrices
{iog,i0y,i0.} along with the commutation relations (3) form an irreducible 2-dimensional representation of su(2),
the standard representation. Given a certain positive integer 7, which is usually determined by the context, the
matrices S; .. are defined as the sums of 7 terms where each term is the tensor product of 7 factors, each being
the 2 x 2 identity except the I-th one which is 0, 4 ., for [ =1,2,...,72. So, for example, for 7 = 3,

S, =0, 1014180, 14+101Q 0.

We denote by Iy, the sum of matrices where each term of the sum is the tensor product of 7 identities except for
one position occupied by o, and one occupied by o; and viceversa. The sum extends over all possible pairs of
locations and therefore contains n(n — 1) terms. For example for 7 = 3, I, is equal to

Iy =0, @0y®@14+0,00,91+0,01Q0,+0,®1R0,+1RQ0, R0y +1R0y R 0y.



We consider a network of spin % particles grouped in N clusters of indistinguishable spins. Clusters are defined
as sets of spin particles which have the same gyromagnetic ratios. Moreover, we assume that each spin in a cluster
interacts in the same way with spins in a different cluster and do not interact with each other. Any permutation
of the spins belonging to the same cluster will leave the dynamics unchanged.

If a network has N clusters, with the k-cluster having ny, spin particles, we denote by A7 a matrix which is the
tensor product of N identity matrices, where in the k-cluster the identity has dimension 2™ except in the position
j which is occupied by the matrix A, a 2™ x 2™ matrix. Examples of these types of matrices we shall often use
are S%%Z, j=1,...,N. So, for example:

S2=198, 212 ---01,

where S, has dimension 22 and the identity matrix in the first position has dimension 2™, the one in the third
position has dimension 23, and so on.

Extending this notation, the matrices of the form A7B* with j # k, j.k € {1,2,..., N}, can be seen as the
product of A7 and B* but also as tensor products of identities, with various dimensions, except in the positions j
and k occupied by A and B, respectively, of dimensions 2" and 2. This notation is naturally extended to any
number of factors in the product besides two.

1.2 The model

The quantum control system model we shall study in this paper is a network of n spin % particles interacting with
each other. We have grouped the n spins in N clusters of indistinguishable spins, each interacting with the same
coupling constant with spins in other clusters. The interaction is assumed to be of the Ising Z — Z form (S75%)
(although the results will be extended to every other type of two body interaction (coupling) in section 3). The
network is represented by a connectivity graph where each node represents a cluster of equivalent spins and
there is an edge connecting two nodes if there is a non zero interaction between spins in the corresponding clusters.
We assume the interactions between spin in two different clusters all equal. For example, the network of Figure 1
consists of a total of eight spin % particles, two of them in the first cluster (Cl;), two of them in the second one
(Cly), three of them in the third one (Cl3) and one in the fourth one (Cly). The lines represent nonzero interactions
which are assumed to be the same for spins belonging to the same couple of clusters. The connectivity graph for
such a network is given in Figure 2.

Figure 1: Example of a multipartite spin network

The Schrodinger equation which models the dynamics takes the form (1) with

iA:= Y A;SISE, (5)

1<j<k<N



Cly

Figure 2: Connectivity graph for the network of Figure 1

with A; i the coupling constants and
N
Z‘BL%Z = Z’yj‘sé,y,z’ (6)
j=1

where «y; are the gyromagnetic ratios of the spins in the cluster j, assuming an isotropic type of interaction with
the three components of the electro-magnetic field uy 4 .. Notice that our model assumes that all the components
of the electro-magnetic field are available for control. If only one component is available, the dynamical Lie algebra
would be a subalgebra of the Lie algebra that we will describe in this paper. The decomposition in invariant
subspaces for the dynamics will still hold but within each invariant subspace further decomposition is possible (cf.
also subsection 3.4).

We assume that some of the coupling constants A;j are different from zero so that the connectivity graph
associated with the network is connected. This is done without loss of generality since if the graph has several
connected components we can repeated the analysis we shall perform on each one of them.

The dynamical Lie algebra G, for this type of systems, is generated by {A, B, By, B.}, in (5) and (6).

A crucial observation for our development is that, with n spin particles, {iS;, 45y, and ¢S, } span a 2"-dimensional
representation of su(2) since they satisfy (cf. (3))

[iS,,iS,] = iS.,  [iS,,iS.] = iSs,  [iS.,iS:] = iS,. (7)

This representation coincides with the tensor product of n copies of the standard representations (see, e.g., [17])
as it will be further elaborated upon in the following.
By using (7), we have that

N N N
J=1 J=1 J=1

belong to G, and by iterating the Lie brackets, we have that all

N N N

l 1 l ] l ]
DosL Y owMSh DS
j=1 j=1 j=1

for I > 1, belong to G. Using a Vandermonde determinant type of argument and assuming, as we will, that the
v;’s are all different from zero (besides being different from each other), it follows that zSchyz for j =1,...,N, also
belong to G. Therefore, the dynamical Lie algebra G is generated by S and A,

8 :={is},iS],i51|j =1,..., N}, A=—i Y AjSISE

1<j<k<N



We also have

Lemma 1.1. The dynamical Lie algebra G is the same as the one generated by S and by all the i57S* such that
Ajr # 0.

Proof. Set j =1 and k = 2, without loss of generality and assume A; o # 0. We want to show that iS1S? belongs
to G. Start with [A,iS}] to obtain Hy := —i )., ; A;SySL. Then take [Hy,iS;] to obtain Hy =iy, AySLSL.
Then take [Hy, iS2] to obtain Hs = —iA;5S1S2. Then take [Hs, iS7] to obtain i4155152. Since Ay # 0, we obtain
the result. O

1.3 Decomposition in invariant subspaces and subspace controllability

Let n; denote the number of spins in the j-th cluster. According to the postulates of quantum mechanics the
subsystem corresponding to the j-th cluster lives in a Hilbert space (V1)®" where V! denotes the two dimensional
(spin 3) carrier of the standard representation of su(2). The full Hilbert state space is therefore

H=(VHE" o VHo2g. ..oV, (8)

Extending the above notation, let us denote by V! the spin % irreducible representation of su(2). Here V! has
(complex) dimension ! + 1.

Using (iteratively) the Clebsch-Gordan decomposition (see, e.g., [17]) we have that (V1)®" decomposes
in the direct sum of a number of (possibly repeated) subspaces V", V"% ~2 . where the last term is V° or V!
according to whether n; is even or odd, respectively. It is not important for our purposes how many copies of
the same V! are present. This will be determined on a case by case basis according to the iteration for the given
cluster. For a fixed cluster j, the matrices S7_ _ act on each space V! as the ¢ irreducible representation of su(2).

T,z 2
In particular when [ = 0 they have value equal to zero. This will be used in the following.

Example 1.2. Consider the network of spins of Figure 1 and the first cluster for which the Clebsch-Gordan
decomposition gives V1@V = VIt gV1+1-2 = V2 VO, For the third cluster the Clebsch-Gordan decomposition
gives

VieVieVi=V2eV) eV =(1V2eVhYe(VeV)=13aVieVv.

For the second cluster, we have V! @ V! = V2 @ V° and for the fourth cluster, we have V.

We consider as invariant subspaces of the full system of N clusters of spins the spaces
S=FQF®- - QFy, (9)

where Fj, j = 1,.., N, is one of the spaces V", V" =2 ... The spaces (9) are indeed invariant under the dynamical
Lie algebra G since they are invariant under the generators. We shall see later (see Remark 1.7) that they are
minimal invariant, that is, they contain no proper nontrivial invariant subspaces. In the language of representation
theory, they carry irreducible representations of the dynamical Lie algebra G.

As a result of the Clebsch-Gordan decomposition applied to each factor corresponding to a cluster, the full
Hilbert space H in (8) decomposes into the direct sum of invariant spaces of the form (9). We can then take a
basis of the full Hilbert space H by putting together the (orthogonal) bases of the subspaces of the type (9). In
this basis the dynamical Lie algebra G takes a block diagonal form.

The dimension of each subspace S in (9) is

D% := dim(F}) dim(Fy) - - - dim(Fy). (10)
Subspace controllability is a feature of each invariant subspace in (9).

Definition 1.3. An invariant subspace (9) is said to be subspace controllable if and only if, for every M in
su(D%), there exists a matrix in G such that its restriction to S = F; ® F, ® --- ® Fy in (9) is equal to M. The
full system is called subspace controllable if every invariant subspace is subspace controllable. More generally we
define a subspace dynamical Lie algebra Ggs for the subspace (9) as the largest Lie subalgebra of su(D) such
that for every matrix M € Gg there exists an element in G whose restriction to S = F} ® Fo ® - -+ ® Fi is equal to
M. Subspace controllability is verified when Gg = su(D%).



1.4 Statement of the main result

The subspace dynamical Lie algebra, and therefore subspace controllability, can be assessed using a graph associated
with the invariant subspace (9) which we shall call the associated graph. Such a graph is obtained from the
connectivity graph of the spin network by removing the nodes corresponding to values of j such that I} = VO in
(9) and all the edges having such nodes as endpoint. Even if the original connectivity graph was connected (as
we have assumed) the resulting associated graph for a subspace (9) might not be be connected, and, in general,
it will have a number m, of connected components Cy, Ca,...,Cp,,. We define the dimension associated with h-th
connected component, as (cf., (10))

Dy == [] dim(F;). (11)

JECH

In the special case where m,. = 1, we have only D7 which coincides with D? in (10).

Example 1.4. Reconsider the network of Example 1.2 and Figures 1, 2, for which we have calculated the de-
compositions for any cluster as V2o VO V2 VO V3@ V! @ V1 VI The possible invariant subspaces (9) are
T2?273’1 = V2®V2®V3®Vl, T272’1,1 = V2®V2®V1®V1, TQ’()_’371 = V2®V0®V3®V1, TQ’[)71’1 = V2®V0®V1®Vl,
To231 = VoV2RV3QV!, Tyas1 = VoV2@V3aVE Tha11 = VOVIQVIQVL Thos1 = VoaVieV3aV!,
T0,0,11 = Vo2 VY@ V! ® V! In Figure 3 we report the associated graphs for T5 23,1 (which coincides with the
connectivity graph), 11270,3717 and TO 2.1.1-

1454y

(a)
i AP (b)
1;.0.3.1 (¢)

2 3
CZ:)’_ 2.1.1 \\\\\‘\ I (d)
4

Figure 3: Associated graphs for invariant subaspaces Tb 231 (b), T2,0,3,1 (¢), To.21,1 (d), as compared with the
connectivity graph of the network in part (a).

The following result is the main theorem of this paper. It allows to characterize the subspace dynamical Lie
algebra and therefore subspace controllability in every case.

Theorem 1. Consider an invariant subspace of the form (9) and its associated graph with m. connected compo-
nents. Then, the subspace dynamical Lie algebra Gs has the form of a direct sum

Gs=G101® 0141060101+ +1Q Q1R Gy, (12)

where Gy, is a Lie algebra acting on the space given by ®jec, Fj. This space has dimension D,‘f in (11) and it
corresponds to the h-th connected component in the associated graph to (9). In (12) Gn, h = 1,...,m. is (modulo
multiples of the identity)



1. Equal to the dim(Fj)-irreducible representation of su(2) if C, only contains one node, the node j.

2. Equal to su(Dy) if Cj, contains more than one node.

From the above theorem the following exact characterization of subspace controllability follows.

Corollary 1.5. A subspace (9) is subspace controllable if and only if the associated graph is connected and contains
at least two nodes.

Example 1.6. Consider the subspaces of Example 1.4 with the associated graphs reported in Figure 3. According
to Corollary 1.5 subspace controllability is verified in the cases 15231 and Tp2,1,1. It is not verified in the case of
T5,0,3,1- In this case, on the given subspace, the subspace dynamical Lie algebra is the direct sum of two subalgebras,
one subalgebra given by the irreducible representation of su(2) on V2 i.e., a representation of dimension 3, and
a subalgebra given by su(D). Here D = dim(V?)dim(V?!) = 4 x 2 = 8 acting on invariant spaces associated with
the clusters 3 and 4.

Remark 1.7. In Theorem 1, every invariant subspace S = F; ® Fo ® --- ® Fy in (9), is written in the form
Ei® FEy®---® Ep,, where each subspace Ej, = ®jec, Fj refers to one connected component of the associated
graph. On F1 ® F2®- - -® E,,,_ the dynamical Lie algebra (and of the associated group of possible evolutions which is
a subgroup of the unitary group) acts as a tensor product (that is, in the case of the group, as X1 @ Xa® - ® X,
for unitary matrices Xji,...,X,,.). Moreover, such a decomposition into invariant subspaces is minimal in the
following sense: Given Fy ® F3® - - - ® E,,, there is no other invariant subspace E; ®E; & - - ~®E;nr, with E;Z C Ey,
h =1,...,m., where the strict inclusion holds for at least one h. This is due to the fact that every Lie algebra G, in
(12) is an irreducible representation, either of su(2) or of su(Dj) being the standard representation for the given
dimension Dy, which is also irreducible.

Remark 1.8. Sometimes (cf. the on line version of [15] and also [11]) a distinction is made between external
and internal symmetries. External symmetries are operators commuting with all the Hamiltonians of a quantum
system (the matrices A and B; in (1)). In our model they can be taken in an appropriate basis to be matrices
with identity submatrices on the diagonal (and zero every where else) so as to commute with the dynamical Lie
algebra which (in the given basis) takes a block diagonal form. Internal symmetries are, by definition, present
when the dynamical Lie algebra acts on a vector space that cannot be decomposed (irreducible representation) but
the corresponding Lie group preserves a symmetric or anti-symmetric inner product. In our case, each invariant
subspace (9) corresponds to an irreducible representation (cf. the previous remark), but then, each tensor product
(9) has to be decomposed according to the connected components of the associated graph. On each such factor
the dynamical Lie algebra acts either as su(D) (for appropriate D) or as an irreducible representation of su(2) on
a subspace V/ (of dimension f + 1). Such representations are (modulo a change of coordinates) subalgebras of

so(f +1), for f+1 odd or sp (%) (for f + 1 even) (cf. Theorem 1.5. in [6]) and therefore preserve asymmetric

or anti-symmetric inner product, giving in this case, internal symmetries.

2 Proof of Theorem 1

2.1 Casimir operators

An important operator for what will follow will be the Casimir operator C7 (on the j-th space (V1)®" in (8))
defined as

O 1= (S + (5% + (53, (13)
which is scalar on each irreducible representation V/ with value on V/ given by %(% + 1) [17]. In particular, it
is zero on (and only on) V°. In the following, operators will appear which are products of certain powers of the
Casimir operator at certain locations in {1,..., N} and other operators at other locations. For example C7S¥ is
the product of the Casimir operator at location j with S, at location k, with j # k. Another example would
be (C7)2C!S* with all different j, k, [, which is a square of C7 together with C! and S¥. Another example is A7
itself for an operator A where all the powers of the Casimir operators are zero. Linear combinations of powers of
Casimir operators form a (unital) commutative algebra. Therefore, their behavior in Lie brackets calculations when



generating a given Lie algebra is easy to control. We shall denote by YT a general operator which is the product
of Casimir operators. If we write Y A1 BJ2 ... L we mean an operator which is A in location j;, B in location
j2,..,L in location j, and unspecified powers of Casimir operators in the remaining locations. If we want to point
out the fact that these latest factors might be different from one operator to the other we use Y1 A7t B2 ... Li* and
YyAiBI2 ... [ir for example.

2.2 Reduction of the problem

We first prove that we can reduce ourselves to the following special case.

Proposition 2.1. Assume that no subspace Fj in (9) is equal to V0 and that the connectivity graph of the network
is connected. Then, if N = 1, G5 is the representation of su(2) associated with Fy. If N > 2 then Gg = su(D?),
with D in (10).

Notice that if F; # VO for all j = 1,..., N, then the connectivity graph of the network coincides with the
associated graph relative to the invariant subspace.

To see that the general case can be reduced to the special case of Proposition 2.1, write the tensor product S
in (9) by placing the V' spaces in the first N positions, i.e., like

S=V'eV'®---@V°® Fy,; ® Fy @ - ® Fy, (14)

where Fj = V" with r; > 1, for j = N + 1,..., N. The dynamical Lie algebra G is generated by all the SJ

4 z,y,z
and by all the SJS* for which the coupling constant A;, are different from zero (Lemma 1.1). However, on the

subspace (14) Sty d =1 N are all zero, since, as we have mentioned when we introduced the Clebsch-Gordan

decomposition, S%yz is zero on the V? representation of su(2). For the same reason, S7S*, with j < k, and with
j=1,...,N are also zero. Moreover zeros are also all their (repeated) Lie brackets. As a consequence, on these
spaces, the dynamical Lie algebra is the one generated by zSi,yz and iS7S%, j < k, for all pairs j and k such that
Ajp#0and j=N+1,..,N.

The connectivity graph of the network of N — N clusters of spins is not necessarily connected and coincides with
the graph associated with the subspace (14), i.e., the one obtained by removing the first N nodes and corresponding
edges. Now by collecting in Fig ® Fg o ®---® Fy elements corresponding to the same connected components in
order, we notice that the element SJS* and Si,y,z corresponding to pairs (7, k) in the same connected component
generate a subalgebra which commutes with the ones correspoonding to the other connected components. Therefore
the whole subspace dynamical Lie algebra Gg takes the form in (12).

Each term corresponds to one connected component of the associated graph and if we reduce ourselves to only
one connected component the proof is reduced to the case of Proposition 2.1.

The case N =1 of Proposition 2.1 follows immediately because if N = 1 there is no interaction matrix of the
form S7S* but only the matrices iS;%Z form the Lie algebra, which form indeed a representation of su(2). The
type of representation depends on the nature of the space F.

The next subsections are devoted to prove the case N > 2 of Proposition 2.1.

2.3 Generation of terms S/ S*

Lemma 1.1 shows that the matrices i57S* belong to the dynamical Lie algebra G for every pair of clusters j, k
with nonzero coupling. The following Lemma shows that for a connected connectivity graph, G contains matrices
of the form iYSJS¥ for any pair of clusters j, k (recall that T indicates a general operator which is the product of
Casimir operators)

Lemma 2.2. Assume the connectivity graph of the network is connected. Then, for every pair j < k € {1,2,..., N},
there exists in the dynamical Lie algebra G a matrix

iYSISk (15)

Proof. Fix two nodes 1 < j < k < N. Given the connectedness assumption for the graph, we know that there
exists a path of length r > 1 of nodes n;, 4 = 0,...,r, with ng = j and 7, = k such that Ay, # 0. The claim
will be proved by induction on the length r of the path joining the two nodes.

iq1



If r = 1, the claim follows from Lemma 1.1. Assume r > 1. Since the nodes 7o = j and n,._1 are connected by

a path of length » — 1, by the inductive assumption, we know that the dynamical Lie algebra G contains a matrix
of the type:

iYSISn—1 (16)

Moreover since A;, , x 7 0, we know from Lemma 1.1 that the matrix
st o)

is in the dynamical Lie algebra G as well. Since all the matrices of the type iS’i,%z arein G, for any [ = 1,..., N, by
taking Lie brackets of the matrices in (16) and (17), with these matrices we get that G contains all matrices of the
type:

iYSd St (18)

T,Y,27%,Y,20

and A
Spn1Sk (19)

T,Y,Z2 T T,Y,20

respectively. Notice that all T operators appearing in (18) are the same. Now, we calculate (using (7))
[iTSISn=1,iSi=18%] = iTSISi—1 Sk, (20)

which belongs to G as well. Again, since all the matrices of the type iwa,z are in G, by taking Lie brackets of
these matrices with the one in (20) we get that:

irss  _Str-1gk o g, (21)

T,Y,27T,Y,2 T T,Y,2

for all possible choices of z, y and z. Now, we use matrices of type (18) and (21), and we get:
[iYSI80= i1 SIS SF] = i1 8I(S2)* 1 Sh e g
By using S;L];l instead of S77" in the previous computation, we get that the three matrices

iTng(Szz,y,z)ﬁrilsf
are all in G, with the sames value for T for z,y, and z. By summing these matrices, using the definition of the
Casimir operator (13), we get _
iT9578% € g,

which is the claim of the Lemma.

2.4 Generation of terms I, — I and I], — I,

Lemma 2.3. For every cluster j =1,..., N, there exists a matrix iY(I7, — IJ,) and a matrix iY (I}, — I7,) in the
dynamical Lie algebra G.
J

(2,9,2) (2,y,7) BT€ taken equal to zero. So the statement

In the case where the j-th cluster contains only one spin [
is trivially true.

Proof. Let us set j = 1 (without loss of generality) and k = 2. We have that taking the Lie brackets between
iYS1S? (from Lemma 2.2) and S, , and S, we obtain all possible iYS} ,S? . and in fact, taking, possibly one

: : @,y ey
extra Lie bracket with S , or S? . we obtain all possible matrices

irSy, .S, €G. (22)

T,Y,z

Also observe from the calculation that the unspecified powers of Casimir operators in (22), which are collected in
the term T, are the same for all the matrices in (22). Now consider

[iTS1S2,4TSLS2] = iy (S1)2S?% = m(%f + 21182, (23)



since, as it is easily seen by induction, on a space of ny spin % of dimension 2™,

1
(S,)* = %1 + 21, for 9=,z (24)

Now, by using S, instead of S] in (23) we obtain the matrix iY1(S,)?S2 = Y (%1" + 21}, )S?. Taking the
difference between this matrix and the one in (23) we obtain that iYo (I}, —I,,)(S7)? belongs to . With analogous
calculations, replacing S? with S2 or S2 we obtain also iy (I}, — I} )(S2)?* and iYo (1}, —I},)(S7)?. It is important
to notice at this point that since the omitted Casimir operators in (22) are all equal and the sequence of calculation
is the same in all three cases (with x,y, or z on the right hand side), the omitted Casimir operators (in the operator
Ts) are the same in all three cases. We can therefore sum these three matrices and obtain using the definition
of the Casimir operator (13) that iY3(IL, — Iz}y) belongs to G, for some Y3 operator. A completely analogous

calculation gives that iY(I',, — Il,) also belongs to G, for some T operator. O

2.5 Lie subalgebra of 4(2") commuting with the symmetric group

We now need to recall some general facts on the Lie subalgebra of u(2™) of matrices commuting with the permutation
group P,. Denote this subalgebra as u»(2"). Its dimension is given by (cf. [3])

dim (u(2m)) = (" N 3). (25)

n

One of the main results of [3] is the following
Theorem 2. {il,,,iS;, .,il} generate ut(2"), and {il.,,iS; .} generate uf™(2") N su(2").

As we already recalled, the space (V1)®" decomposes according to (iterated) Clebsch-Gordan decomposition of
a tensor product representation in the direct sum of (possibly repeated) V", V=2 .. irreducible representations of
su(2). Since S, . and I, leave such subspaces invariant,! these spaces are invariant for u/(2") as well, because
of Theorem 2. Therefore, in coordinates given by the bases of these spaces, the matrices of u™(2") take a block
diagonal form.? Consider two subspaces in the decomposition of the form V7 for some f, i.e., two subspaces of
the same dimension, say Vlf and V2f . A basis for these spaces can be obtained starting with the highest weight
vector and then successively applying the lowering operator as described for example in [17]. The operators S -
and therefore I.. = £(S? — 21) as well as the identity i1 act in the same way on these bases, and therefore (by
induction), each repeated Lie bracket of them. Therefore we can take a basis so that the blocks of uf"(2") of
the same dimension are equal to each other. Furthermore, each block of dimension f + 1 can take any value in
u(f + 1) independently of the other blocks of different dimensions, that is, for each block of dimension f + 1 there
are (f 4+ 1)? degrees of freedom. If this was not the case for one block, we would have a total number of degrees of
freedom, which is the dimension of uf(2"), strictly less than T},, where T}, is defined, for n odd, as

T, =2 444+ (n+1)2 (26)

and, for n even, as
T,=12 434+ +(n+1)>2 (27)

However in both cases, n odd in (26) and n even in (27), an induction argument shows that

3
e ()
n
which is from (25) the dimension of u™(2"). So we obtain a contradiction. Therefore, we have the following
consequence of Theorem 2, which will be useful for us

Corollary 2.4. The restrictions of {il.,,iS,,. .,il} to every irreducible representation V/ of su(2) generate
u(f+1).

ITo see this for I, recall that S2 = Z1+2I.. (from (24)) so that ., = %(Sg - 71).
2In [10] such a block diagonal form was described using a different approach based on Young symmetrizers.
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2.6 Controllability on a single factor in (9)

We now show a notion of controllability on each factor F; in (9). Recall that each of these factors is assumed of
the form V/, with f > 1 in Proposition 2.1, although the next lemma can be stated without restrictions on f.

Lemma 2.5. Fix any j € {1,..., N} with F}; in (9) equal to F; = V/ so that f + 1 = dim(F}). Then for every
M € su(f + 1) the dynamical Lie algebra G contains a matrix iY A7 such that the restriction of i47 to Fj is equal
to M.

Proof. As we have done above, to simplify notations, we set, without loss of generality 7 = 1. The statement is
trivially true (and not useful for us because we are assuming in Proposition 2.1 that all F; have dimensions strictly
larger than 1) if dim(Fy) = 1 and it is also true in the case dim(F;) = 2 since iS5} , . belong to G.

It is useful to adopt the notation (By, ..., Bs) for the Lie algebra generated by certain matrices {By, ..., Bs} so
that, for instance, the first statement of Theorem 2 reads as (il.., 1S5,y .,i1) = uf(2"). Denote by n; the number
of spin % particles in the first cluster. Consider the matrix Q' := I, + L, + 1, = $(C* — 3%111), with the
Casimir operator (13) on the first set, which commutes with every matrix in {i(I}, — I, ), (I}, —I},),iS; , .} (and
therefore with each repeated Lie bracket of them). Then we have by Theorem 2

(su(@") NP (@) 91 1@+ © 1 = (1L, ) © (L — L)1}, — 11).iSk, Q") = (28)

zz? xr,y,z z,Y,z7

(i1, = Iyy),i(Ly, — Ip,),iS;,.) +span(iQ') Cu™ (") ®1©1®--- @ 1.

T,Y,z
In the first equality, we used Theorem 2 and in the second equality we used the commutativity of Q'. Now,
consider relation (28) in the basis where matrices are block diagonal and in particular on the block corresponding
to 1@ F,®---® Fy in (9). Restricting to this block we notice that span(Q?) is included in the span of the identity
on it (it commutes with an irreducible representation of su(2) given by the restriction of span{iSy., iS;, iS1)} and
therefore it must be a multiple of the identity according to Schur’s lemma (see, e.g., [17])). Consider now the
block diagonal form of the relation (28), and its form on the block corresponding to F; ® Fr ® -+ ® Fn. The
first Lie algebra on the left is su(f +1) ® 1 ® 1 ® --- ® 1, the second to last Lie algebra is the restriction of
(i1}, — 1)), (1, — I},),i(S4 , .)) to Fi plus the span of the identity, everything tensored by the identity N — 1
times. The last Lie algebra is u(f +1) ® 1® 1 ® --- ® 1. Now, using the fact from Lemma 2.3 that G contains
{ix(1}, - 1,,),iY (I}, — I,,),iS} , .} and that Casimir operators are all non zero on the subspaces Fy, Fy, ..., Fiy
because of our assumption on the dimension, it follows that we can generate every element of the restriction of

(i(IY, = I},),i(I;, —1},),iS},iS,,i51) = su(2™) N w1 (2") to Fy. This concludes the proof.
O

2.7 Maximal subalgebras in su(rs)

Now that we know that G acts as any desired element of su(f+ 1) on any factor in (9) we need to show that from
these elements we can generate all of su(D®) with D in (10). Recall that G also contains iY.S7S* for every pair
J, k according to Lemma 2.2. Denote by f;+1, j =1,..., N the dimension of F};. According to Lemma 2.5 we have
omFi R - Fy,su(fi+1)®1210---931,10su(fo+1)®11---®1,...,101® -1 su(fy + 1),
besides the restriction of iY.S7S*. We will apply iteratively the following result

Theorem 3. For each pair r,s > 2, the Lie algebra which is a direct sum of su(r) ® 1 and 1 ® su(s) is a mazimal
Lie algebra of su(rs).

A maximal Lie algebra £ C su(rs) is by definition such that for every element A € su(rs) with A ¢ L,
(A, L) = su(rs). Theorem 3 was proved by E.B. Dynkin in [6] (Theorem 1.3 in that paper). We only need a simpler
version of it, which says that for each iA® B, ¢ su(r)®1 and ¢ 1® su(s), (iA® B, su(r)®1,1®su(s))) = su(rs).
In order to see this, consider

+7o;:0adT®su(s)iA Y B=1iA ® (+$‘r?:0ad?;(s)B) .

Since +3_oady, ;) B is a nonzero ideal in su(s) and su(s) is simple, it must be equal to su(s). Therefore for every
matrix C € su(s) we have that A ® C belongs to the generated Lie algebra. Fixing C, and doing the same thing
on the left, we have that for every E € su(r), iE ® C also belongs to the generated Lie algebra. Therefore, in
conclusion, such a Lie algebra contains all the matrices of the form £ @ C with E € su(r) and C € su(s) beside
su(r) ® 1 and 1 ® su(s). Putting these together, they span all of su(rs).
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2.8 Conclusion of the proof

The proof of the Proposition 2.1 and therefore of the theorem is completed as follows. On the space F} ® Fb,
we have su(f; + 1) ® 1 and 1 ® su(f2 + 1) along with the restriction of iYS1S? which is nonzero because all
the restriction of all the Casimir operators are nonzero multiples of the identity, and it is not in su(f; +1)® 1
nor in 1 ® su(fy + 1). Therefore, using Theorem 3, we have that G contains matrices that are equal to M for
any M € su((fi + 1)(f2+ 1)) on F; ® F» and equal to the identity on the other factors in (9). Then we iterate
this argument by using iY.S2S52 to show this fact for M € su((f1 + 1)(f2 + 1)(f3 + 1)), iYS2S? and so on up to
iYSN=LSN for M € su(D%).

3 Discussion and Extensions

We now discuss several possible extensions of the result of Theorem 1 to networks different from the multipartite
case with Ising coupling above treated.

3.1 Networks with different type of coupling between spins

The Ising coupling between spins in two different clusters, A;;S2S%, can be replaced by a more general two body
coupling so that A in (5) is replaced by A with

id= 3" A;SISE+ B;SLSE + 0y SISk, (29)
1<j<k<N

The result of Theorem 1 is still valid as long as we consider as a non-zero interaction between the j-th and the
k-th cluster if (A;k, Bk, Cj k) 7 (0,0,0). In order to see this, notice that the subspaces (9) are still invariant for
the dynamics if the interaction takes the more general form (29) and that the reduction to the case of Proposition
2.1 still holds. If there is only one cluster in the network, there is no term of the two-body form (29) and so
the result of the proposition holds. If there is more than one cluster in a connected network we have proven in
Proposition 2.1 subspace controllability in the Ising Z — Z case. Let us see why this is true in the general case of
interaction (29). By taking repeated Lie brackets of the interaction (29) with matrices of the form iSJ , . we can
obtain (as long as the coupling is nonzero) the Ising terms i57S%. Therefore, the dynamical Lie algebra generated
by replacing the Ising interaction (5) with the more general (29) two body interaction is larger than or equal to
the one obtained with Ising interaction. Since in the latter case we have subspace controllability, the same is true
for the more general interaction (29).

3.2 Coupling between spins in the same cluster

If we add to the interaction A in (5) a term modeling interaction between spins in the same cluster, the coupling

takes the more general form
N

iAgen =iA+ Y H}, (30)

Jj=1

where A is the same as in (5) (or (29)) and HJ models these ‘internal’ interactions. By using the form of the
interaction A in (5) and taking repeated Lie brackets of (30) with S7 , ., j =1,..., N, alternating S7 , . with S];yy,z
(j # k) similarly with what was done in Lemma 1.1, we can detach iA from A, in (30). Therefore the dynamical
Lie algebra in this case is generated by the same dynamical Lie algebra calculated above for the case without
internal interactions, and Age,. Therefore the dynamical Lie algebra will be in general larger and the spaces (9)

will in general not be invariant anymore.

3.3 Different coupling strength for spins in the same cluster

As it is intuitive, if we allow spins of the same cluster to interact differently with the same spin in another cluster
we increase the controllability of the system in that some of the subspaces (9) will not be invariant anymore and
larger invariant subspaces have to be considered. We illustrate this fact with a simple example.
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Example 3.1. Consider first two spin % particles with the same gyromagnetic ratio interacting in the same
1

way with one spin 5 particle with a different gyromagnetic ratio. We have two clusters with two and one spin
respectively. On the first cluster, the Hilbert space V! ® V! splits according to Clebsch-Gordan decomposition as
VIVl =V23 V0 so that the full space (V! ® V1) @ V1 splits as (V2@ V1) @ (VY ® V). Therefore the spaces
V2@ V!and VO ® V! ~ V! are the ones to be considered in (9). In the first case the associated graph coincides
with the connectivity graph of the network, the dimension D in (10) is equal to D¥ = 6, and the dynamical
Lie algebra acting on this invariant space coincides with su(6). In the second case the associated graph only has
the node corresponding to the second cluster. The dynamical Lie algebra on the given subspace coincides with
su(2) (its irreducible standard representation). Therefore in the appropriate basis, the dynamical full Lie algebra
G can be written in block diagonal form, with blocks of dimension 6 and 2. However, if the coupling constants
are different in absolute value, a direct calculation of the dynamical Lie algebra shows that it is equal to su(8).
Therefore, there is no nontrivial invariant subspace and the system is controllable as a whole. The two subspaces

above are included in a single invariant subspace equal to the whole space.

We now want to obtain some insight into the mechanism of increase in controllability and enlargement of the
invariant subspaces when the coupling constants differ which we have seen in the previous example. We start with
the basic situation of the type of networks considered in the previous sections and then perturb some coupling
constants. Consider, in particular, a network with NV clusters as in the previous sections, each cluster with uniform
coupling with any other cluster. Consider then an associate invariant subspace as in (9). Assume now that the
coupling constants of one of the cluster, say the cluster NV — 1, with another cluster, say the N-th cluster, split.
A subcluster of the (N — 1)-th cluster has coupling constant with the N-th cluster equal to W and another
subcluster has coupling constant Y (we assume for simplicity that there are only two values of coupling constants
and furthermore we assume the stronger condition |Y| # |[W]). The matrix A in (5) can then be written as

iA = > Aj SISk | + WSNISY 4y SNy tsh, (31)

1<j<k<N, (4,k)#(N—-1,N)

where we have split S¥~! in two parts, Si\ff ! and Sﬁ{{ 1 according to their interaction with the N-th cluster.
Now, if Fy = V% in (9) , the last two terms in (31) as well as all the coupling S7S2 and also SY, . give zero,
the associated graph to the subspace (9) only contains the first N — 1 nodes. The splitting of the coupling
constants in the cluster N — 1 plays no role and the situation is equivalent to the one we considered in the previous
sections but with the first N — 1 clusters only. If however, Fiy # V°, by taking (repeated) Lie brackets of A

: “h iGN gN—1 : : 7 oN—-1 oN N oN=1 oN
in (31) with iS,, , and S, ", we obtain all matrices of the form iWS,’ S, . +iY S, ~,S;, . where we

have split Sivzj Las Sivy’ 1= Sﬁ v, ;1 + Si\{ v, ;)2, generalizing what we have done above. Taking the Lie brackets of

iWSi\{flSév —i—z'YSi\f;lSiV with iWSé\jflSiv +iYS;Y{15;V, we obtain (iWQSZfl + z'YQSZ{l) (SM)2. Analogously
we obtain (iW25N " +iY25N) (5))% and (iW2SN! +iY2S0; 1) (SNV)2, and summing all we obtain

(W2t +iy2sih en, (32)

where C is the Casimir operator. Analogously, we can obtain (32) with z replaced by x and y, respectively. Since
C" is a multiple of the identity on Fy, we effectively obtain W?2S, , .1 + Y2S,,,..2 and since we already had
Sey.z = Sey,z1 + Sz,y,22 we obtain the two matrices S,y .1 and Sg 4 . 2. We have effectively split the cluster
N — 1 into two subclusters. The subspace Fy_1 is not invariant anymore. If we reconsider the separation of
the (N — 1)—th cluster into the two subclusters as above we can apply the Clebsch-Gordan decomposition to
each subcluster. Assuming that the first subcluster has m; spins and the second ms (thus ny_1 = my + ms),
we will have a decomposition of (V1)®™ for the first subcluster and a decomposition of (V1)®™2 for the second
subcluster. Pick a space in the first decomposition, say V1 and a space in the second decomposition, say V72,
which carry respectively an irreducible representation corresponding to fi and f, of su(2). To V' @ V/2 we
can apply the Clebsch-Gordan decomposition into the direct sum of invariant subspaces. The original invariant
subspace Fy_1 was selected among such spaces. However, with the division into two subclusters above, the tensor
product V1 @ V2 has to be considered as a whole, giving therefore a larger invariant space.
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3.4 Controls acting on certain spins only

A topic of current interest (see, e.g., [15], [16]) is subspace controllability of a network when the control is only
localized on certain spins. In the context of this paper, this corresponds to setting some of the gyromagnetic ratios
~ equal to zero for the spins which are not directly coupled to the controls. In this case, the result given in Theorem
1 is no longer valid because we have assumed (cf. the discussion preceding Lemma 1.1) that all the gyromagnetic
ratios are different from zero. However, some of the techniques used in this paper can be applied to analyze these
cases as well. If the gyromagnetic ratio of one cluster (say cluster number 1) is zero, then the argument preceding
Lemma 1.1 shows that the dynamical Lie algebra is generated by iS£’y7z, for j =2,3,...,N and A in (5). One can
perform again the Clebsch-Gordan decomposition for each cluster so that the combined subspaces of the type (9)
are still invariant under the dynamics. However, they are not in general minimal invariant. We illustrate this point
with a simple example.

Assume to have a chain of n = 3 spins, ol «+— 03 +— o2, where the interaction between spin o! and o3 and the
interaction between spin o? and o? are equal. Assume that the gyromagnetic ratio is nonzero only for spin o3. This
chain can be seen as a bipartite network with N = 2 clusters: the first cluster containing spin o' and o? and the
second cluster with the middle spin o3 only. The dynamical Lie algebra is generated by A :=i (0, ® 1 + 1 ® 0,)®0,
and By, . =11 ®1® 04,4,2, and it is computed to be spanned by {(0:®14+1®0,)®0,101® 0}, for general
o € su(2). The overall space with spaces V! grouped according to clusters is (V! ®@ V1)@ V1. Now, the first factor
(V1 ® V1) can be decomposed according to the Clebsch-Gordan decomposition as (V! @ V1) = V2 @ VO giving
for the possible subaspaces (9) V2@ V! and V0 ® V! ~ V1. These are invariant under the dynamical Lie algebra.
However it is also possible to decompose the factor (VI@V1) as (VI®@V?!) = S @ S2® S3® Sy where Sj, j = 1,...,4,
are one dimensional subspaces spanned by the common eigenvectors of 1® 1 and 0, ® 1 + 1 ® o, = S.. This
decomposition is finer than the Clebsch-Gordan one and results in smaller invariant subspaces for the dynamics,
S;® VY j=1,..,4. This example deals with chains of spin. Chains rarely fall in the type of multipartite models
considered in this paper. If two spins have the same gyromagnetic ratio they have to belong to the same cluster
and not been connected to each other. In order to keep the same interaction with a second cluster and to keep
the chain structure such a second cluster must contain one spin. This gives the case of three spins considered in
the example. Another possibility is a chain with n spin each of them giving a cluster. In this case (under our
assumption that all the component of the electro-magnetic field are available for control) the system is controllable
and no invariant subspace exists. More possibilities exist in the case of more general branched networks.
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