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For Larry Zalcman, who showed the converse is also true.

Abstract. Forany 6 > 0 we construct an entire function f with three singular
values whose Julia set has Hausdorff dimension at most 1+ . Stallard proved that
the dimension must be strictly larger than 1 whenever f has a bounded singular
set, but no examples with finite singular set and dimension strictly less than 2 were
previously known.

1 Introduction

Suppose f is an entire function. The Fatou set F(f) is the union of all open disks
on which the iterates f, f2, £, ... form a normal family and the Julia set J(f) is
the complement of this set. In 1975 Baker [2] proved that if f is transcendental
(i.e., not a polynomial), then the Fatou set has no unbounded, multiply connected
components. This implies the Julia set contains a non-trivial continuum and hence
has Hausdorff dimension at least 1, but it is difficult to build examples that come
close to attaining this minimum; constructing such examples is the transcendental
counterpart of finding polynomial Julia sets with dimension near 2 (e.g., [16],
[36], [43]). For transcendental entire functions, finding “large” Julia sets is easier:
Misiurewicz [29] proved that the Julia set of f(z) = exp(z) is the whole plane, and
McMullen [27] gave explicit families where the Julia set is not the whole plane,
but still has dimension 2 (even positive area). Stallard [37], [39] proved that the
Hausdorff dimension of a transcendental Julia set can attain every value in the
interval (1, 2], and the second author [12] recently constructed a transcendental
Julia set with dimension 1, Baker’s lower bound.

The singular set of an entire function f is the closure of its critical values and
finite asymptotic values (limits of f along a curve to co) and will be denoted S(f).
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The Eremenko—Lyubich class B consists of functions such that S(f) is a bounded set
(such functions are also called bounded-type). The Speiser class & C B consists
of those functions for which S(f) is a finite set. These are important classes
in transcendental dynamics and it is an interesting problem to understand their
differences and similarities. For example, functions in 8§ cannot have wandering
domains, whereas those in B can ([9], [18], [22]). Stallard’s examples with
1 < dim(J) < 2 are in the Eremenko—Lyubich class, and in this paper we show
that such examples also exist in the Speiser class.

Theorem 1.1. inf{dim(J(f)) : f € 8} = 1.

Note that we do not claim that every dimension between 1 and 2 occurs; this
remains an open problem. Theorem 1.1 is sharp in the sense that Stallard [38]
proved that dim(J(f)) > 1 for any f € B (her result has been extended beyond
class B in several papers, e.g., [5], [8], [41]). Moreover, Rippon and Stallard [33]
have shown that the packing dimension is always 2 for f € B, so this holds for our
examples as well. See [15] for the definitions of Hausdorff and packing dimension
and their basic properties. Our examples all have exactly three singular values:
+1 each occur as critical values for infinitely many critical points, and O occurs as
a critical value once, and as an asymptotic value finitely often.

Theorem 1.1 will be proven using the quasiconformal folding construction of
the second author, which is a method of associating entire functions to certain
infinite planar graphs. It was introduced in [9], and applied there to construct
various new examples, such as the Eremenko—Lyubich functions with wandering
domains mentioned above. More recently, quasiconformal folding has been used
by Fagella, Godillon and Jarque [19], Lazebnik [25], Osborne and Sixsmith [30],
and Rempe-Gillen [32] to construct other examples in the Speiser and Eremenko—
Lyubich classes. [14] gives an application to meromorphic dynamics. The proof
of Theorem 1.1 uses a variation of the folding theorem that requires more precise
estimates than in earlier applications, but that gives even greater control over the
resulting function. This should be useful for future problems. Details of the folding
construction will be reviewed in Section 3.

The main idea is simple to explain: we will build an entire functionf € § so that
f(0) =0 is an attracting fixed point and so that there is a large disk D(0, R) C F(f)
that maps into itself. Therefore, J(f) C X = (o Xk Where

Xi={zeC:|f"(x)| >Rforalln=1,2,...,k}.
Given 6 > 0, we construct f € § so that X; can be covered by disks { D;} so that

(1.1) > diam(D)"*’ = M < oo.
J
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Moreover, any disk D = D(x, r) with D N D(0, R) = () will satisfy
(1.2) > diam(F~H (D))" < e - diam(D)'*,

for some € < 1, where the sum is over all connected components of f~!(D). By
induction, X; can be covered by a union of sets S; so that

> diam($)'* < €M — 0.

By definition, this implies dim(X) < 1 + 6.

Since the tracts of our examples (the connected components of {z : |f(z)| > R}
for R large) are all contained in half-strips (see Lemma 16.2), it is easy to verify
directly that our functions have infinite order of growth:

. loglog [f(2)]
PO =limsup == -
This is necessary: Baranski [3] and Schubert [35] independently proved that the
Julia set of any finite-order Eremenko—Lyubich function has Hausdorff dimen-
sion 2.

Our examples have Julia sets that are Cantor bouquets. See Section 18 for
the precise definition and a quick sketch of the proof. Although such sets are
“exotic” in some ways (they are not locally connected), they are fairly common
among transcendental Julia sets, e.g., every finite-order, disjoint-type entire func-
tion has such a Julia set. Thus, although our examples have novel metric properties
(small dimension), they are topologically “ordinary” among transcendental entire
functions.

We frequently use the “big-O” notation: if f and g are non-negative real
quantities depending on common parameters, then f = O(g) means that there is
a constant C > 0 so that f < Cg, independent of the parameters. In particular,
f = O(1) means that f is bounded, independent of the choice of parameters. The
notation f < g means the same thing as f = O(g) and f =~ g means that both
f =0(g) and g = O(f) hold.

Acknowledgments. The first author would like to thank the Stony Brook
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originally thought that Theorem 1.1 would be a straightforward application of the
QC folding method to approximating Stallard’s examples, and he thanks the first
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Lasse Rempe-Gillen for a number of helpful insights and suggestions regarding
the results in this paper. They are also extremely grateful to the anonymous referee
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2 The Eremenko—Lyubich class versus the Speiser class

In this section, we sketch a construction of Stallard’s examples in B; this serves as
a guide to our construction in 8, and helps explain why the Speiser case is more
difficult. Our proof is not Stallard’s original proof but has some similarities to it.

Theorem 2.1. inf{dim(J(f)) : f € B} = 1.

Proof. By Baker’s theorem mentioned earlier, the infimum is > 1, so we need
only prove itis < 1. Suppose K > 1, let F(z) = exp(exp(z — K)) and let Q be the
connected component of F~!({z € C : |z| > 2}) that lies inside the horizontal strip
S={x+iy e C: |y| < z/2}. Note that z — exp(z — K) maps € conformally to
the right half-plane {x +iy € C: x > log2}. Let

U={zeQ:log2 < Re(exp(z — K)) <2};

see the darker regions in Figure 1. Note that U lies along the boundary of Q, and
grows exponentially thin as we move to the right, so its total area is finite. Also
note that Q lies to the right of the line {x+iy € C : x = K+log2}, so if K is large, Q
is disjoint from the closed unit disk around the origin; see Figure 1.

° D(w,r)
y=m/2 o O
""" o
0 00 ©00¢e exp(z — K) o exp(2)
: o Q [ ° - .
: © 00 60000
! o
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
y=-n/2 o
x=K o

Figure 1. Preimages of a single disk under F(z) = exp(exp(z — K)).

The pair (€2, F) is a model in the sense of [10], so by Theorem 1.1 of that paper,
there is an f € B and a quasiconformal homeomorphism ¢ of the plane so that
(1) |f] < 1 on the complement of Q,
2) fop=FonQ\U,
(3) ¢ is conformal except on U,
4) S(f) c D.
By condition (1), f(Q°) c D ¢ Q°, which implies Q¢ c F(f). Thus, the Julia set
of f consists of points whose iterates stay in € forever.
Suppose D = D(w, r) with Re(w) > K and r < 4 is a disk that hits J(f). Then
the f-preimages of D (i.e., the connected components of f~!(D)) correspond one
to one to F-preimages via the map ¢; more precisely, f~1(D) = p(F~(D)). Set

V={zeQ:4 <Re(exp(z—K))}.
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It is easy to check that

vlz—wl?

for all w € V with a constant C which is independent of w and r. Because ¢ is
conformal off U, Lemma 15.1 of the current paper (applied to A = U and B = V)
implies that ¢ is L-bi-Lipschitz on V (where L depends only on C and the dilatation
bound for ¢) and hence also on the preimages of D in question, at least if K is
large enough. Hence, the diameter of a connected component of f~1(D) is at
most M times the diameter of the corresponding component of F~!(D), and M is
independent of the disk D and the choice of the preimage component.

The F-preimages of D that are inside € can be understood in two steps: the
inverses under e¢° consist of an infinite vertical “stack’ of Jordan regions { W;} each
of diameter O(r/|w|) and each containing a point of the form

log |w| +i(2xk + arg(w)), k € Z,

see the center of Figure 1. The preimage of each W} is a region Uy of diameter

O(|w|(10g|:0|+27rk))’

and hence,

146 1 Crltd
d' U 1+0 < L . < _ .
2,; am(U0"" < (7) z,;(loglwuzmklw = 3wl (log |w])’

Using |w| > K, fixing ¢ > 0, and taking K large (depending on M below), we get
1+0

2M1+0°

where the sum is over all preimages lying in Q. Thus,

> diam(Up)'* <

> diam(f T (D) < MM diam(UY)' < r'0)2.
k

This is (1.2) with € = 1/2. We can also cover by disks

{Bu} = {D(n, H},

and summing over all preimages of all these disks gives the sum

A —1 1+0 _ ;
sz:dlam(f (Bn) ™ = 0(; 5|n|1+5(logK)5) =%

n

i.e., (1.1). Thus, the Julia set of f has dimension < 1 + 4, if K is large enough. [J
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Our proof of Theorem 1.1 is significantly longer than the proof of Theorem 2.1
given above. Why? The approximation theorem for the Eremenko—Lyubich class
from [10] has an analog for the Speiser class [11], but this result does not satisfy the
crucial condition (1) above; if we attempt to approximate the function F on the tract
Q by a Speiser class function f, we may be forced to make f large at points outside
Q and this introduces many “extra” f-preimages that are not associated to any
F-preimages, and we have no way to control them. Instead, we have to replace the
tract Q above by a more complicated region, and replace the approximation result
from [10] by an application of the quasiconformal folding construction from [9].

The folding construction starts with a model function F that is holomorphic
on each connected component of the complement of an infinite, connected planar
graph 7, although it may be discontinuous across the edges of 7. (In general,
the graph need not be a tree, but we shall still denote it by “7” instead of “G”;
in this paper the graph is an infinite tree except for a single closed loop.) The
function F' is modified in a certain neighborhood of 7', denoted T(r) (see next
section), to give a quasiregular function g on the plane that equals F outside 7(r),

! with a quasiconformal

and then g is converted to an entire function f = g o ¢~
homeomorphism ¢ given by the measurable Riemann mapping theorem.
Suppose T(2r) C F(f). Then the Julia set has a neighborhood W disjoint from

T(2r) and

1 1

f=gc¢p =Fog

on W. Moreover, we will show that ¢ is bi-Lipschitz outside 7'(2r) (Lemma 15.2).
This means that for a disk D, connected components of f~!(D) can be associated
via ¢ to components of F~!(D) that have comparable size, and we will have good
control of these components by construction. Thus, if we can build a model F
satisfying (1.1) and (1.2) with a small enough constant, then we will get a Speiser
class entire function f that also satisfies these conditions (with different constants)
and this will imply Theorem 1.1.

The difficult part of this plan is the claim that 7(2r) C J(f). In our examples,
the Fatou set will contain a large closed disk around the origin, and hence it will
be enough to show that f maps 7'(2r) into this disk, i.e., that f is bounded on T'(2r).
This will reduce to showing that F' is bounded on 7'(2r). The folding construction
associates two positive weights, called the z-lengths, to each edge of the planar
graph T and it requires that the z-lengths of all edges in T are uniformly bounded
away from zero. Moreover, showing F is bounded on 7(r) reduces to proving
the z-lengths are uniformly bounded above. Essentially all the work in this paper
is devoted to building a pair (F, T') so that the function F satisfies (1.1) and (1.2)
and t-lengths for the graph T are uniformly bounded above and away from zero.
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Once we have done this, the proof will proceed as in the Eremenko—Lyubich case
described earlier.

In Section 3 we review quasiconformal folding; in Sections 4-8 we define the
graph T (and this determines F); in Sections 9-12 we give estimates of hyper-
bolic distances that culminate in the desired upper and lower bounds for z-length;
in Sections 13—15 we estimate the correction map ¢; and in Sections 16—18 we
finish the proof of Theorem 1.1 and discuss the topology of the Julia set.

3 Quasiconformal folding

Quasiconformal folding is a technique for constructing transcendental entire func-
tions with good control on both the singular values and the geometric behavior of
the function. Here we will review some definitions and results from [9]; consult
that paper for further details and proofs.

Let f be a transcendental entire function with no finite asymptotic values and
with only two critical values =1. Then T = f ~1([—1, 1]) is an unbounded, infinite
tree and all components of Q = C \ T are unbounded, simply connected domains.
We can choose a map 7 which is conformal from each component of Q onto the
right half-plane H, = {x + iy : x > 0}, and so that f = cosh o 7 on Q.

The idea of quasiconformal folding is to reverse this procedure. We start with
an unbounded, infinite, locally finite tree 7" which fulfills certain mild geometric
conditions. Furthermore, for each component Q; of Q = C\ T let 7; map €,
conformally onto H, and let 7 : C\ T — C be given by 7 = 7; on ;. The map g
given by g = cosho 7 is then holomorphic off 7. In general, g is not continuous
across T, but it is possible to change g in a neighborhood

T(r) = U {z € C:dist(z, e) < r-diam(e)}
edges eof T

of T so that it becomes continuous on the whole plane (the new function is quasi-
regular on the plane); see Figures 2 and 3.

Figure 2. The r-neighborhood of an arc y is the set given by
y(r)={z:dist(z, y) < r-diam(y)} .
Every edge e of T has two “‘sides” that are each mapped by 7 to an interval on
iR = dH,. The 7-size of e is the minimum of the lengths of the two image intervals.
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Figure 3. The neighborhood of a graph is the union of neighbor-
hoods of the individual edges.

For each component of Q = C \ 7, the sides of T on dQ correspond, via 7, to a
locally finite partition of JH, into intervals. The folding theorem requires that there
is a positive lower bound for the lengths of these intervals, usually taken to be 7 (in
many cases, we can replace 7 by a positive multiple of itself, so the precise lower
bound is not critical). The folding theorem also requires that adjacent intervals in
these partitions have comparable lengths. This follows from bounded geometry,
i.e., a planar graph has bounded geometry if (this is a slight strengthening of the
conditions originally given in [9]):

(1) the edges of T are C? arcs with uniform bounds;

(2) the union of edges meeting at a vertex is a bi-Lipschitz image of a star
{z : 2% € [0,r]}, i.e., a union of n equally spaced, equal length radial
segments meeting at 0, with n uniformly bounded,;

(3) for non-adjacent edges e and f, diam(e)/ dist(e, f) is uniformly bounded.

Note that (2) implies adjacent edges have comparable lengths and that they meet
at an angle bounded uniformly away from zero.

Theorem 3.1. Suppose that T has bounded geometry and every edge has t-
size > w. Thentherearer > 0, K > 1, an entire function f and a K-quasiconformal
map ¢ so that g = f o ¢ = export off T(r). The constants r and K only depend on
the bounded geometry constants of T. The only critical values of f are £1 and f
has no finite asymptotic values.

This is Theorem 1.1 of [9], but we have modified the statement given there
slightly. Here we have used “exp” in place of “cosh”; this is a harmless change, as
explained in Section 7 of [11]. We can deduce a little more if we impose another
geometric restriction on our bounded geometry tree:
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T exp

Figure 4. The quasiregular function g equals the holomorphic function exp ot away
from the tree (light gray) and is defined near the tree (dark gray) to be continuous
and have bounded dilatation. The dilatation of the quasiconformal correction map
is supported in this neighborhood of the tree.

Lemma 3.2. Suppose that T has bounded geometry and that r is as in Theo-
rem 3.1. Assume that for every edge e of T, the neighborhood

T.(4r)={z € C:dist(z, ¢) < 4r - diam(e)}

only intersects edges whose length is comparable to the length of e with constant M.
Then there exists an € > 0, only depending on r, the bounded geometry constants
of T, and on M, so that for every point z € T(2r) there exists some edge €' so that
the harmonic measure of €' with respect to z is at least 2¢.

Proof. Let Q be one of the components of the complement of the tree, let
e be an edge on the boundary of Q, and let z € T.(2r) N Q. Let ¢ be the
edge on the boundary of Q which is closest to z. Then ¢’ intersects T,(4r) and
hence, by assumption, it has diameter comparable to the diameter of e. Let
d = dist(z, ¢) = O(diam(¢’)) and let w € ¢’ be a point closest to z; see the left
side of Figure 5. By bounded geometry, there is a radius r that is comparable to
diam(e’) so that the disk D(w, r) only hits ¢’ or edges adjacent to ¢/, of which there
are only a bounded number. By the Beurling projection theorem (e.g., Theorem
11.9.2 or Exercise 11.10 of [20]) the part of 6Q in D(w, r) has harmonic measure
with respect to z that is uniformly bounded away from zero. Since only a uniformly
bounded number of edges hit this disk, one of them must have harmonic measure
uniformly bounded away from zero, as desired. O

Lemma 3.3. Suppose that T has bounded geometry and that r is as in Theo-
rem 3.1 and Lemma 3.2. Assume T satisfies the assumption in Lemma 3.2. Suppose
also that the t-lengths of all edges are bounded above. Then there exists M < 0o
so that ©(T(2r)) C {x+iy € C:0 < x < M}. In other words, |g| < eM on T(2r).
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Jl o) >c¢

Figure 5. The proofs of Lemmas 3.2 and 3.3. The left side shows why there is an
individual edge with large harmonic measure. The right side shows the region of
large harmonic measure for an interval on the boundary of a half-plane.

Proof. Letz € T(2r) and let ¢’ be the tree edge given by Lemma 3.2. Since ¢/
has harmonic measure at least 2¢ with respect to z in Q (the complementary
component of 7 that contains z), one of the two sides of ¢’ has harmonic measure
at least € with respect to z in Q. Call this side s’. By the conformal invariance
of harmonic measure, w(z(z), 7(s’), H,) > €. In the half-plane, the set of points at
which a boundary interval I has harmonic measure > € is the intersection of a disk
of radius = |I|/e with the half-plane; see the right side of Figure 5. Therefore 7(z)
lies in this region. Since the z-lengths of all sides are bounded above, this implies
7(z) is within a bounded distance of the imaginary axis, i.e., 7(7'(2r)) is contained
in a vertical strip of uniformly bounded width. (]

If one wants a function that has finite asymptotic values, or that has critical
points with high order, then the folding construction described above needs to be
changed a bit. The tree T is replaced by an unbounded, connected, locally finite
graph. Each of the components ; of Q = C\ T is one of three types (D, L or R),
and each is mapped to a corresponding “standard” domain (disk, left half-plane or
right half-plane) by a conformal map 7. Each standard domain is then mapped by
an associated holomorphic map o. More precisely, the cases are:

e D-component: Here, Q; is a bounded domain whose boundary is a Jor-
dan curve which consists of d edges. D-components are quasiconformally
mapped to D so that the d vertices of the component map to d-th roots of
unity. This is followed by the map o(z) = z¢. This gives a critical value at 0.

e L-component: £; is an unbounded Jordan domain which is quasiconformally
mapped to the left half-plane Hj;. This is followed by o(z) = exp(z), which
maps H; to D and gives the asymptotic value O.
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e R-component: These are the components which were used in the first theo-
rem. Here, €; is unbounded but not necessarily a Jordan domain. Each €, is
mapped onto H, as before, and o(z) is exp(z).

Theorem 3.4. Let T be a bounded geometry graph and suppose t is conformal
from each complementary component of T to the corresponding standard domain
(i.e., D, H; or H,). Assume that

e D- and L-components only share edges with R-components;

e on D-components with n edges, T maps the vertices to n™ roots of unity;

e on L-components, T maps sides to intervals of the form [2xki, 2x(k + 1)i];

e on R-components, the t-sizes of all edges are > 2.

Then there exist r > 0, K > 1, an entire function f and a K-quasiconformal map
@ of the plane so that f o ¢ = o o t off T(r). The constants r and K only depend
on the bounded geometry constants of T. Also, S(f) = { x£1}; plus {0} if any D- or
L-components occur.

As before, if the 7-sizes of the edges are bounded above by some constant C,
we get that the image of the part of 7'(2r) that lies in the R-components is mapped
into a vertical strip whose width only depends on the bounded geometry constants
and on C. The construction on the D- and L-components can be modified to give
singular values other than 0, but we will not need this variation here.

4 The ““trunk” of the tree

The graph to which we apply the folding theorem will be built in two steps. In
this section, we present the first step: we construct a graph, called the “trunk”,
that divides the plane into 4N + 1 connected components (1 D-component, 2N
L-components, 2N R-components), where N is a positive integer larger than 2. In
later sections, we will add “branches” (line segments) to the trunk, in order to get
the “bounded r-length” condition.

The first of the 4N + 1 components is the disk D(0, ry) where

1

N —————————— +
2 sin(z /(2N))

N—l:N(1+%)—1+O(%).

This is the D-component and will be denoted Dy. Let € = £ and define
/0
=y —N+1)exp (1(5 +k6))

forO < k < 2N — 1. With So = {x+iy:x > 0,|y| < 1/2} and S} = exp(ikd)Sy,
the point z; is the unique non-zero intersection point between 0S; and 0Sji;
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see Figure 6. The L-components L; are then given by

Li={zeC:lz—z| > N, kO < arg(z — zx) < (k+ 1)6}
={z+re®:r>N, k§ < ¢ < (k+1)6}.

Note that these are truncated sectors that are disjoint, are unit distance apart, and
are unit distance from the D-component; see Figure 6. The vertex of the k-th sector
is zx (not the origin). One L-component is shown in light gray in Figure 6.

Finally, we construct the R-components. The complement Q of the union of
the D-component and L-components can be split into 2N congruent connected
components { R;} by the radial segments

6
{ze(C:rN <lzl <ry+1, arg(z)=§+k6}.

Denote by Ry the component in the right half-plane which is symmetric with respect
to the real axis. The component R; for 1 < k < 2N — 1 is then the component
which is just Ry rotated by exp(ik@). Note that R; has a boundary arc on the circle of
radius ry around the origin, two radial boundary arcs on the segments just defined,
two circular arc boundary edges on the circles of radius N around the points z;_;
and z; (using z—; = zoy—1), and two sides that are infinite, parallel rays distance
one apart; see Figure 6. Figure 7 shows the overall structure of the trunk graph.

Note that the five finite sides of the Ry all have lengths comparable to 1 and all
the angles are approximately 90°, even as N — oo. These facts will help prove
that our graph has bounded geometry with constants independent of N.

S Conformal partition of the L-components

A conformal partition of an unbounded Jordan domain € is a collection of points §
on 0Q2 so that 7(S) C 0H are evenly spaced, where H is a half-planeand 7 : Q —> H
is a conformal map taking oo to co. For the L-components defined in Section 4
such a partition can be explicitly computed, and we record the computation in this
section.

The L-component L is conformally mapped to the upper half-plane by

1
(%@ — 20N’

the composition of a linear rescaling, a power, and the Joukowsky map z — z+1/z,

s (%(z - 20))N +

which conformally maps H \ D to H, see Figure 8. The inverse map is given by

w = zO+N(%+ (%)2— 1)1/N=ZO+N(%(w+M))I/N.



JULIA SETS WITH DIMENSION NEAR ONE 61

e

Figure 6. Consider 2N = 8 unit width half-strips rotated evenly around the circle.
The D-component is a disk of radius ry. The L-components are truncated sectors
with vertices at the points where the half-strips intersect (one is shown in light
gray). The remainder of the plane is divided into the R-components (one is shown
in darker gray).

Let w, for n € Z be the points on 6L that correspond under this map to the points
of 7Z on the boundary of the upper half-plane. For n > 2 we define ¢, by the
equation

w, =20+N+1,.

For n > 2, let A, = t,,1 — t,. For convenience, we set o = 1/N and define
¢n(n) = nVe 42 log n. Note that for fixed n > 1 this decreases as N increases.

Lemma 5.1. Suppose notation is as above. Then

(5.1 t, = N(n* = 1)+ 0(n*?)
(5.2) th < N(n" —1) < Nn* and t, < N(n" —1) < ¢n(n),
a—1 a—1 a—2 a—3
(5.3) A,=n + > n +0n"™),
a—2 a—3 —a )
(54) A, — A =1 —an“2+0m*3) = An( +0(n )).
n

The big-0 estimates hold as n » oo and the constants in these inequalities do not
depend on N.
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Figure 7. The “trunk” consisting of one D-component, 2N L-components that
are truncated sectors, and an equal number of R-components that are essentially
half-strips.

Proof. By definition (recall a = 1/N), if n > 2, then
1 a 1 a
— - 2 _ — af — — An—2
wn—zo+N(2(n+\/n 4)) 20+ Nn (2(1+ 1 —4n ))
—2\\a a 1 _
= 20 + Nn®(1 + O(n™2))* = 20 + Nn (1 +O(Nn 2))
=720+ Nn* + O(n®~>).

The constants in the big-O’s hold as n ~ oo and they do not depend on N since
o=1/N < 1/2 < 1 (in fact, one can easily check that the constant 4 works). The
equality in (5.1) is immediate. It is clear that the “O” term in the last line above is

N
=2
( N ) z+1/z

T -1 1 -3 =2 —1 1 2 3

wy =70+ N

Figure 8. The L-components can be mapped to a half-plane by an explicit map (a
rescaling and a power followed by the Joukowsky map), and thus the conformal
partition is also given by explicit points.
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negative, so t, < N(n* — 1). This gives the first part of (5.2). To prove the second
part of (5.2), we consider two cases depending on whether 7 is less than or greater
than NVV. For 1 <n< NVN we have

t, < N(n” — 1) = N(exp(alogn) — 1) < N(1 +2alogn — 1) =2logn.
Here we have used the facts from calculus that alogn < v/N(logN)/N < 1 for
N>3ande" < 1+2xforO<x<1. Forn > N‘/ﬁ, since o < +/a, we get
t, < Nn® = Nn Von®Ve < N . N—VNVN2Va _ pava
Since we have upper bounds on two disjoint intervals that cover all n > 1, we
know 1, is less than the sum of these two estimates. This is the second part of (5.2).

To compute the gaps A, between the points w,, we can omit the additive
factor zo and consider the function

1
f(w) = N(E(w V=4
A calculus exercise shows (recall aN = 1)

f(w)= (%(w + M))a_l . %(1 +w(w? —4)"17?)

11 ot 1
= w* ! (5 + 5 1-— 410_2) : 5(1 +w(w’ — 47"

= ! (1 + 0(%))"!_1 (1 + 0(%)) = w* !+ O(w*3)

tends to zero as w — oo. A similar computation shows that
f(w) = (a — Dw*? + O(w*™).
Using Taylor series, we see that
Ap=fn+1)—f(n)
/ f(Hdt = / l[n“_l + (o — D)t —n)n® 2 + O(n*~3)1dr

=n*1+= (a—l)n“ 21 0m* ™),

which is (5.3). Flnally, using the mean value theorem gives (5.4):
-1

A, — Ay = [n“—l +2 2 00" )

—[(n+D* '+ (n+1)“ 20

= [t —(n+ 1)“—1] + 5(oz — D" = (n+ )"+ 0(n“™)

=1 —a)n*2+0m*). O
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Since { ¢y} is decreasing in N, {t,} has an upper bound independent of N, and
this bound improves if N is large; e.g., if N > 16, then 1, < ¢16(n) = /n+2logn.

Corollary 5.2. With notation as above, if 0 < < 1 and N > 2(1 + %), then

S at-o).

n=1

where the constant does not depend on N.

Proof. After some arithmetic, we see that the hypothesis N > 2(1 + 1/9) is
equivalentto (e — 1)(1+9J) < —1 — g, and after some calculus, (5.3) implies

gA,i*f’:o(gn—l—%) :0(%). -

6 The ““branches” of the tree

We modify the components R; by adding line segments perpendicular to the
boundary as illustrated in Figure 9. We describe the construction of the R-
components only for the component Ry intersecting the positive real axis; the
other R-components will all be rotations of this one.

Figure 9. An R-component and the conformal partition points coming from the
two adjacent L-components. The spikes get shorter and closer together near oo,
but they do not accumulate at any finite point.

We define the modified R-component Qy C Ry by removing vertical slits that
are attached to the top and bottom edges of R at the partition points of the adjacent
L-components; these points were described in Section 5. The region between two
adjacent slits will be informally referred to as a “tower”; it is the trapezoid defined
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Figure 10. The final shape of the graph with all the slits attached. The vertices on
the slits (defined in Section 8) are too close together to see at this scale.

by the two slits and the connecting segment on the boundary of Ry. The slits will
be chosen so that the domain Qg is symmetric with respect to the real line. Thus,
it suffices to define the length of the slit attached to the point w, = zo + N + ¢, on
the top edge of Q (the top edge is the horizontal ray starting at w, = zg + N).
The segment attached at the partition point w,, is denoted 4,, and has length

.1 1
6.1) yn—mm{z, An(tn+;log A,,)}.
If y, < 1/4, then by Lemma 5.1 we have
_y_n_oc—l a_z_y_n_a—l l
(6.2) =gt = logn+ 0 = 2 — 10gn+0(n)

because o — 2 = % — 2 < —1. We will later interpret this equation as an equality
(up to a bounded additive factor) between two hyperbolic distances in Q; see
Corollary 12.7. This approximate equality will imply that the desired z-length
upper and lower bounds in Theorem 3.4 hold; see Lemma 12.8.

Lemma 6.1. We have y, < 1/4 for n > ny, with ng independent of N.
Proof. From Lemma 5.1 we know that

N(»n* — 1) < ¢n(n) = n>V* +2logn.
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Since { ¢y} is decreasing (and % + \/%—0 —-1< —%), if N > 20, then

Vo = Ayt + % log A,) = O(n“_1(¢N(n) +logn))

= 0™V~ + n“"logn) = O(n™"/?). -

Thus, only finitely many segments will have length 1/4 and this number is
bounded independent of N. Let

cv=min{ 3. C1/Vi ),

for n > 2, where C is chosen so that y, < ¢, for all n > 2. Define €(¢,) = ¢, and

define €(r) for #, < t < t,4+1 by linear extension. This function is continuous and
decreasing, and we have Q; C Qy C Ry where

1
- {(t+RezO+N)+iy 11> 0,1 < 5 —e(t)}.
Recall that 7, = O so that € is in fact defined on [0, c0).

Lemma 6.2. IfN > 20, then fooo e(t)dt < oo with a bound that is independent
of N.

Proof. Choose ng so that €, = C,/+/n for n > ny. By Lemma 5.1,

/oo e8] no—1 CIA
e(ndr < Ze(tn)A Z Z
0 n=2

n=ngy

4

<C2+C3Zn“2<C2+C3Zn? < oQ.

n=ngp n=no

d
This will be used in Corollary 10.3 to approximate hyperbolic distance in €.

7 {y.}is almost convex

Imagine that we connect the endpoints of adjacent vertical slits by segments to
form an infinite polygonal path. We want to verify that this path is “not far” from
being convex. More precisely, define s, = (v, — Vu+1)/ A, this is the slope of
the segment connecting the endpoints of the n™ and (n + 1)* slits. The quantity
(sn — Sn+1)/ A, 1s thus a type of second derivative, and can be thought of as the
curvature of the polygonal path. The path will be convex down if all these numbers
are negative. This is true, but tedious to prove; we will give an easier estimate that
is sufficient for our needs. Recall that ¢y(n) = n>V* + 2logn, a = 1/N.
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Lemma 7.1. Suppose N > 24. There is a ny > 0, independent of N, so that
forn > ny, s, is decreasing to zero, and

|50 = sus1] = O(B16(n)/n*) = OV V172) + O(n™* log n) = O™/,
with constants independent of N. In particular,
[$n — Sn1l = O(na_l) =0(Ap).

Proof. We simply compute using the definitions. Recall that #,,; = t, + A,,.
For notational convenience, let
1—a
2 b
and let ¢ = ¢6. If n is large enough, we get from (6.1)

kKi=(l—a)/m, K=

5 = Yn — Yn+l — An(l‘n + % 10g An) - An+1(l‘n+1 + % 10g An+1)
! Ap Ay

:tn+%logAn—(l—An_AinAn+l)

1
(ty+ A+ —log Ayy)
T

1 A, — A 1
= A+~ (log A, — log A,,+1) + (”7’”‘)(1,1 + Ap+ —log Apyt).
T A, T

Now use Lemma 5.1 to note that

a—1

log A, =log (n“_l (1 + + O(n_z))) = (a —1)logn — % + O(n_z).

n
Using this we get

n

sp=—A, — Kk log P +0(n™>)
An - An —
+ T“[zn + A, —xlog(n+ 1)+ 0(n~M)]

A+ (9 + O(n—2)) [ty + An — k1 log(n+ 1) + O™ D] + O(n™2)

n n
) | 1

= At " 22D oy ),

n n n

where we have used
An/n=0n""?) = O(p(n)/n).
This shows that s, — 0.
We now want to estimate |s, — s,+1|. The big-O term is already the correct size,

and taking differences preserves this. Next, note we have already shown in (5.4)
that

Ay — Appt = O(n*~%) = O(p(n)/n*).



68 S. ALBRECHT AND C. J. BISHOP

Since we assumed N > 24 we have a = 1/N < 1/4, so using (5.2) and (5.3)
and ignoring the multiplicative factor we get

"\n n+1

Iy Tn+l :t<l 1 )+tn_tn+1

n n+l n+1

= O(t,n~ %) + 0( An ) = O(p(n)/n?).

n+1
Similar arguments complete the proof by showing
11 1 5
- — —— = 0(=) = O(p(m)/n*),
log(n+1) log(n+2) logny 5
. T =0(—5) = 0@m)/m). .

Next we derive a geometric consequence:

Corollary 7.2. For n > ng (as in the previous lemma) the endpoints of the
n'™ and (n + 1) slits are on the boundary of an open disk D, in Q centered on
the axis of Q. Furthermore, there is a disk B, whose radius is bounded below
independently of N and n containing the endpoints of the n'™ and (n + 1)* slits so
that no other endpoint lies within B,,. The boundary of B, intersects all slits within
unit distance of the n™ slit in either direction.

Proof. Note that a disk which is centered on the real line and completely
contained in the R-component has radius at most % In particular, the curvature
of such a disk is at least 2. This means that slope of the circle (considered as the
graph of a function) changes by at least =~ A over a horizontal distance A (the
change is smallest when the interval is centered around the center of the disk); see
Figure 11. On the other hand, we can choose n in Lemma 7.1 so that the curvature
of the polygonal path through the endpoints of the slits with indices larger than n
is much less than 2. Thus if we move from the (n + 1)st tip to the right, the path
can never intersect the boundary of this disk again. If it did, then there would be a
segment of the path whose slope is less than or equal to the slope of 6D at the point
of intersection, and this is impossible by observations above. A similar argument
works to the left of the n-th tip. This proves the existence of the disk D,,.

We simply define B, to be the largest disk the boundary of which passes through
the endpoints of the n'™ and (n+ 1) slits and lies above the polygonal path unlike D,
which lies below that path; see Figure 12. Since the curvature of the polygonal
path is bounded above, we get an upper bound for the curvature of the boundary
of B, and thus a lower bound for the radius. We can ensure that the boundary of
this disk intersects all slits within unit distance of the n' slit in either direction by
increasing ng and thus increasing the minimal radius of B,, if needed. g
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Figure 11. Existence of D,,. By definition one segment of our path forms a chord of
the disk D,,. The slope of the circle changes by at least a fixed amount proportional
to the horizontal distance from this chord, and the slopes of the path segments
change at most by a much smaller multiple of this distance. Thus the path cannot
intersect the disk except along the given segment.

N /1

Figure 12. Existence of B,,. The dashed curved connecting the slit tips lies between
two disks with radius bounded uniformly away from zero. Later we will use this
to estimate the hyperbolic distance from the axis to points near the tips of the slits.

A stronger result holds: s, v 0. This implies that the polygonal curve is convex
and hence the disk B, in Lemma 7.2 can be taken to be a half-plane. However,
verifying this seems to require long and tedious computations, so we omit the
proof, since the weaker condition above is sufficient for our purposes.

8 The definition of T

We finally come to the definition of the graph 7. In the previous section we have
built a graph by defining the “trunk” and adding “branches”. As a planar set, this
is T, but to make T a graph we have to specify the vertices. The vertices along
the trunk have already been given; in this section we define the vertices on the
branches. Once this is done, T has been completely specified.
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Divide the slit 4, attached to the trunk at position w,, into disjoint segments of
length A,, except the last segment at the end of the slit closest to the axis, which
has length between A, and 2A,,. By (6.1), 4, is divided into

Yn

my, = {A—”J = |t,+ % log A, |

many pieces. Note,

An+1 50

yn+1_y_n_(

1 1 ]
Apet A, -\t olog A = (1 + 7 log An)= A+ —log

T n

SO |myue1 — my,| < 1 for large n.

Next, we add |exp(zk)] vertices to the k-th segment (the one that is distance
k- A, from w,, the point where the slit is attached to the trunk). Thus, the spacing
between vertices in the k-th segment is >~ A, exp(—mk). We do something slightly
different in the last segment at the end of the slit. Instead of adding vertices
evenly spaced in that last interval, we use a square root to place the points, as in
Figure 13, so that the spacing changes from exp(—zm,)A, (away from the tip) to
exp(—zm,/2)A, (at the tip). This implies that all these edges have comparable
z-length.

7 22

Figure 13. Placing points near the tip of a slit. The even spacing on the left
is mapped to an uneven spacing on the right that gives all the sides comparable
7-length.

Lemma 8.1. T has bounded geometry with constants independent of N.

Proof. The graph was constructed so this would be true, but we briefly review
the different conditions. First, all the edges are either straight line segments
or circular arcs with bounded curvature, independent of N; the angles between
adjacent edges are w/2 or 7 and the valence of the vertices is at most 3; and
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adjacent edges have comparable lengths by construction. From these facts we
easily deduce that (1) and (2) of the bounded geometry conditions hold.

It remains to show that for non-adjacent edges e and f the ratio diam(e)/dist(e,f)
is uniformly bounded. But again, this holds by construction. The edges have either
a distance of at least 1/2 (when they lie on different sides of the symmetry line
of Q) or they lie on the same side of the symmetry line. In this case, they lie either
on opposite sites of one of the “towers” or on sides of different towers even further
apart. But then the diameter of the edges is bounded by the width of the tower,
which is a lower bound for the distance between the edges. If the edges lie on
the same slit, then the boundedness follows since adjacent edges have uniformly
comparable length and there is at least one edge in between the two edges under
consideration. (]

We also need to know that our graph satisfies the condition in Lemma 3.3:

Lemma 8.2. For every edge e of T, and any r > 0, the neighborhood
T.(4r)={z € C:dist(z, ¢) < 4r - diam(e)}
only intersects edges whose length is comparable to the length of e.

We leave the (simple) proof to the reader.

9 [Estimates for the hyperbolic metric

Now that we have defined 7" (and hence the model function F'), our next goal is to
prove that it satisfies the z-length upper and lower bounds discussed earlier. This
reduces to careful estimates of hyperbolic length within the R-components. We
start with a review of some basic facts that can be found, for example, in [20]. The
hyperbolic length of a (Euclidean) rectifiable curve in the unit disk D is given by
integrating
ds
1 —|z]?

along the curve. In the upper half-plane H we integrate ds/2y. Note that this
definition differs by a factor of 2 from that given in some sources, e.g., [6], which
contains estimates similar to the ones we will derive below.

The hyperbolic distance between two points is given by taking the infimum
of all hyperbolic lengths of paths connecting the points. In the disk, minimizers
(hyperbolic geodesics) are either diameters of the disk or subarcs of circles per-
pendicular to the unit circle. In the upper half-plane, the hyperbolic geodesics are



72 S. ALBRECHT AND C. J. BISHOP

either vertical rays or semicircles centered on the real line. The hyperbolic distance
between two points z, w is given by

1 14T w)
p(z, w) = 3 log 17w’
where
Tew=|<"0|  Tew=|""=|,
1 —-wz Z—w

for D and H, respectively. For the disk, takingz=0, w =r=1—¢€ > 0 gives

Il+r 1 1 2—¢€

=—lo .

T—r 2% ¢

Therefore € = 2/(1 + exp(2R)), which gives exp(—2R) < € < 2exp(—2R).
Koebe’s estimate (e.g., Theorem 1.4.3 of [20]) says that if ¢ is conformal from ID

to a simply connected domain €, then

1
9.1 R=p0,r)= 3 log

1
ZW(Z)I(I — lz1?) < dist(p(2), 8Q) < 19/ (DI(1 = |zI*).

The hyperbolic metric p = pgo on a simply connected planar domain € is
defined by transferring the hyperbolic metric on D by a conformal map (the choice
of the map makes no difference). The quasihyperbolic metric on Q is defined by

integrating
ds

~ dist(z, Q)
Koebe’s estimate implies these two metrics are comparable to within a factor of 4,

dp

pa(z, w) < pa(z, w) < 4- pa(z, w).

In particular, if L is aline segment and dist(L, 6Q) ~ diam(L), then L has hyperbolic
length comparable to 1.

Another domain for which we can explicitly compute the hyperbolic metric is
the infinite strip S = {(x,y) : |y| < 1/2}. This is conformally mapped to H, by
exp(zz), so a simple computation shows that the hyperbolic metric on S is given
by dp = 5ds/ cos(my). From this we can deduce that for |y| < 1/2, we have

x (M ds T 1
9.2 y) = = = —log —— + O(1).
02 psterrin=] [ = Toe 0

The geodesics in S are a little difficult to draw, but some of them can be well
approximated by a polygonal arc as follows:

Lemma 9.1. Ifz=x+i0, w=s+1t, |t| < 1/2, and p = s + i0, then

T T
Ps(z, w) = ps(z, p) + ps(p, w) + O(1) = S |x — 5| + 5 log 7— 7 +O(D).
2
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Proof. One direction is obvious by the triangle inequality and (9.2). To prove
the other direction, we can use conformal invariance to replace S by D, set p = 0
and assume z is on the segment from O to i and w is on the segment from O to 1; see
Figure 14. The geodesic y from z to w must hit the Euclidean ball D = D(0, v/2—1).
Note that D N y has hyperbolic length O(1) and the segments of y \ D (if any) are
longer than p(w, D) = p(w, 0) — O(1) and p(z, 0) = p(0, z) — O(1). This proves the
result. (]

Figure 14. Proof of Lemma 9.1. The geodesic is only O(1) shorter than the
polygonal path.

Lemma 9.2. If W, C W, are simply connected domains, z € Wy, and
R:pWZ(Za W2\ Wl) >c > 03

then
pw,(2) < pw, (2) < (1+ 0™ ) pw, (2),

where the constant in the “big-O” only depends on c.

Proof. The left inequality is a well known consequence of the Schwarz
lemma. To prove the right side, we may assume using conformal invariance
that W, =D © W, /(1 — ¢€) where R and € are as in (9.1). Thus

pw,(0) < pw,(0)/(1 =€) < pw, (0)(1 + O(€)) < pw, (0)(1 + O(exp(—2R))),

if € < 1 or R > 0 uniformly. U

For an even more precise version of Lemma 9.2, see Proposition 3.4 of [28].

Lemma 9.3. Suppose 1, J are disjoint intervals on the boundary of H, and
suppose vy, vy are the hyperbolic geodesics that have the same endpoints as I and J
respectively. Suppose vy is the geodesic that connects the center of I to oo (y is
a horizontal ray). Let z be the point on y that is closest to y; with respect to the
hyperbolic metric in the right half-plane. If p(z, y;) = p(z, y1) + C, then |I| = |J|
with a multiplicative factor depending only on C.
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Proof. See Figure 15. Map H, to D by a Mobius transformation 7 that sends
the center of / to —1, zto 0 and oo to 1. Itis easy to check that the images of I and J
have comparable length on the circle, and that the image of J is bounded away
from 1. This implies / and J have comparable length on /R because the derivative
of z=! has comparable absolute values on 7 and J. U

J )Z_’_\\

Vs

/ \Z[ l'. V4 0
],

Vi

[ 2

Figure 15. Proof of Lemma 9.3.

Lemma 9.4. Suppose Q is an open square with center q, and € D Q is a
simply connected region such that 0C2 contains the top and bottom sides of Q and Q
contains the left and right sides of Q. Then Q \ Q has two connected components,
separated by Q. Suppose that a,b are in different components. Let y be the
hyperbolic geodesic in L connecting a and b. Then po(y, q) = O(1).

Proof. Let I and J be the top and bottom sides of Q. Let o7, 0, be the
hyperbolic geodesics for Q joining the endpoints of / and J respectively, and let y,,
y,; be the hyperbolic geodesics for  joining the same pairs of points; see Figure
16.

It is a standard fact that o; are exactly the points z in Q where / has harmonic
measure 1/2 (the solution of the Dirichlet problem with boundary values 1 on /
and zero on 6Q \ ). Since Q C €, the maximum principle for harmonic functions
implies that the harmonic measure of 7 in Q will be > 1/2 at each point of ¢;, and
therefore y; is separated from / in Q by ¢;. Similarly for y, and o;; see Figure 16.

Finally, distinct hyperbolic geodesics in a simply connected domain either inter-
sect once or not at all and any intersection is a crossing (this is obvious in the disk or
half-plane model). Hence, y does not intersect either y; or y; (it could not connect a
to b if it crossed either curve only once). Therefore it crosses Q traveling between a;
and o; and hence comes within O(1) of the center point g (a simple argument leads
to the explicit estimate pa(y, ¢) < po(or, @) = 2 log vV2/(2 — V2) ~ .4407). O
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Figure 16. A geodesic y for 2 crossing Q horizontally passes between the geodesics
oy, oy for Q corresponding to the top and bottom of Q. Thus y comes within a
fixed distance of the center q.

10 The hyperbolic metric in approximate rectangles

Lemma 10.1. Fixt > 0, set R={(x,y): 0 < x < t,|y| < 1/2} and suppose
Q D Ris a simply connected domain whose boundary contains the top and bottom
sides of R. Then
pala,b) = Z(b = a)+ O()

whenever 0 < a < b < t and a, (t — b) are both bounded away from zero.
Proof. First consider Q = R. Note that R C S = {(x,y) : |y| < 1/2}, so

dpr > dps by one direction of Lemma 9.2. On the interval [a, b], the other
direction gives

dpr(x) < (1+0(exp(=2ps(x, S\ R)))) - dps(x)
< (1 + O(exp(—z min(x, 7 — x)))) - gdx.
Integrating from a to b gives pgr(a, b) = 5(b — a) + O(1).
For a general Q, we repeat this argument with S replaced by € to get

dpr(x)/(1 + O(exp(=2pa(x, Q\ R)))) < dpa(x) < dpr(x),

fora < x < b. By Koebe’s theorem pg(x, Q \ R) =~ min(x,  — x), so integrating
gives
T
pala, b) = prla, b)+ 0(1) = E(b—a)+0(1)- O

Recall the definitions of Qg and €, from Section 6 (€, was defined in the
second paragraph and € just before Lemma 6.2).

Lemma 10.2. Suppose €(t) and € are as in Lemma 6.2 and 1 < a < b. Then
pa,(a,b)=%(b—a)+O(1).
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Proof. Thelowerboundisobvioussince QQ; C S. To prove the other direction,
we first claim that for x > 1,

(10.1) ps(x, S\ Q) = gloge(x)+0(1).
For small x this is trivial, and for large x we deduce from Lemma 9.1 that
ps(x, S\ Q1) = O(1) + % inf(|7 — x| — loge(®) : 1 > 1}.

Since J
EEO) =C1/2t <1 fort> Cy/2,

we see the infimum is attained at ¢+ = x, which is equivalent to the claim (10.1).
Thus,

dpa(x) < (1 + O(exp ( — rlog }x))))dps(x)
< %(1 + O(exp ( — mlog %)))ds
Integrating from a to b proves the lemma. (]

Since Q; C Qy C Ry, the following is now immediate

Corollary 10.3. In the R-component y, if Rezo+ N+ 1 < s < t then

Pau(s,1) = 5t = )+ O(1).

11 The hyperbolic metric in approximate half-planes

In this section, we prove that a domain that “looks like” a half-plane has a hyperbolic
metric that approximates the hyperbolic metric on the half-plane.

Lemma 11.1. Suppose n is a positive integer and suppose
—l=z1 << <z=1

are n points in [—1,1]. Let I; = (zj, zjy1) and assume these intervals all have
comparable lengths, say

1/n <|zjy1 —zl <4/n forj=1,...,n—1.

Let Q be the complex plane with these n points removed. The hyperbolic distance
(in Q) between a =i and b = i/n satisfies

pala, b) = %logn +0(1) = pu(a, b) + O(1).
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Proof. By symmetry, the segments R M € are hyperbolic geodesics in Q
and therefore they lift to hyperbolic geodesics in the upper half-plane under the
covering map from the upper half-plane to . We can choose the covering map so
that the points =1, co map to themselves. Let Q' be the preimage of H under the
covering map as shown in Figure 17. The points a, b lift to points ¢, d and

pala, b) = pu(c, d).

The point a gives comparable harmonic measure in H to the three intervals
(—o0, —11, [—1, 1], [1, cc]. Thus, the point ¢ gives comparable harmonic measure
to the two vertical rays in 0Q and to the arc (union of semicircles centered on the
real line) of 6Q’ joining these rays. This implies that the imaginary part of ¢ is
comparable to 1.

o a ;‘ o C ‘
| L
6 b i
-« oy SRy SEN SEE S e e e > c ¥ 3 ! 1
-1 +1 -1 +1

Figure 17. The punctured plane Q is covered by the upper half-plane H. Under
the covering map, H C Q (left) has a preimage bounded by hyperbolic geodesics
(right).

Let I; be a component of Q N R whose closure contains 0. By assumption this
interval has Euclidean length comparable to 1/n and hence it has harmonic measure
comparable to 1/n in H with respect to the point a. Similarly, for the intervals 7;_;
and ;41 on either side of I;. Therefore, the circular arcs in 6Q’ corresponding to
these three intervals have comparable harmonic measure (in the upper half-plane)
with respect to the point c. Thus the Euclidean diameters of these circular arcs are
comparable to 1/n.

The point b gives harmonic measure comparable to 1 to the segment [, and
thus d gives the same harmonic measure to the corresponding circular arc in 6.
Therefore, the imaginary part of d is comparable to the diameter of this arc, i.e.,
=~ 1/n. Thus, the hyperbolic distance between ¢ and d in H is

1
prle.d)= 2 logn +0(1). 0
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12 All r-lengths are comparable to 1

We now come to the central estimate of the construction. Consider an R-com-
ponent Q that is symmetric with respect to the real line and the upper and lower
horizontal sides of Q are distance 1/2 from the real axis, that is Q = Qj. Choose
a basepoint

A =Re(z0) + N+2

in Q) on the real line. By symmetry, the hyperbolic geodesic from A to oo is the
horizontal ray from A to +oco. Let B be a point on this ray to the right of A (later,
we will only need to consider points B sufficiently far to the right); see Figure 18.
The following is immediate from Corollary 10.3:

Lemma 12.1. pq (A, B) = 7(B — A) + O(1).

Assume that B is located so the vertical segment from B connects it to a midpoint
of one of the horizontal edges I of 0Q; see Figures 18 and 19. Recall that |/|
denotes the length of / and let £ be the point below the center of / and distance
|1]/2 from I. Let J be the shorter vertical side of the tower with top /. Let D be
the point distance |J| — |I| below E. Let C be the point distance 3|I| below D, see
Figure 19.

Figure 18. Illustration of the R-component € and the placement of the points A
and B.

Lemma 12.2. pq,(B, C) = 3 log 7 + O(1).

Proof. By Corollary 7.2, there is a disk D,, so that { B, C} C D,, C Qg, with
dist(B,0D,) =1 and dist(C, oD,) = |I|.

Thus,

1.1
Peo(B, C) < pp,(B, C) = 5 log T o(1).
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B

Figure 19. We will estimate pq (B, E) up to an additive factor by breaking it into
three pieces: [BC]is estimated by Lemma 12.2, [DE] is estimated by Lemma 12.4,
and [CD] has bounded hyperbolic length by Lemma 12.3.

To prove the other direction, consider the arc on 6B, given by Corollary 7.2.
Let {z;} be the points where this arc intersects the vertical slits in 0€ and let
U=C\{z}. Then Qy C U, so pq,(B, C) > py(B, C). The points {z;} are about
|7] apart and there are m ~ 1/|I| such points. We can use a Mobius transformation
to map B, to the upper half-plane, and so that B and C map to points at height
=~ 1 and = |I], respectively. The distance between the {z;} is distorted, but only
boundedly, so the gaps are still =~ |/|. By Lemma 11.1 and conformal invariance
of hyperbolic distances, we deduce

1 1
pou(B,C) 2 pu(B, ©) 2 5 log 15+ O(1). -

Lemma 12.3. With notation as above, pq,(C, D) = O(1).

Proof. This is immediate from Koebe’s estimate, since C and D are con-
nected by a segment in €y whose Euclidean length is comparable to its distance

from 0QY. ]
Lemma 12.4. po,(D, E) = 5 + O(1).
Proof. This is immediate from Lemma 10.1. O

Lemma 12.5. Let y denote the hyperbolic geodesic from B to E in the R-
component. Then pq,(y, D) = O(1) and pg,(y, C) = O(1).

Proof. The claim for D follows immediately from Lemma 9.4. For C it
follows from this and Lemma 12.3. (|
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Corollary 12.6. With notation as above,
(12.1) pa,(B, E) = pa,(B, C) + pa,(C, D) + pa,(D, E) + O(1).

Proof. Using the triangle inequality, we immediately get “<”. To obtain the
opposite inequality, let y be the hyperbolic geodesic in €y connecting B and E and
let z¢, zp be the points on y closest to C and D respectively. Then by Lemmas 12.5
and 12.3

Py(B, E) = pa,(B, zc) + pa,(zp, E) + pay(zc, zp)
> pa,(B, C) — pa,(C, zc) + pa,(D, E) — pa,(D, zp)
+ pa,(zc, C) + pa,(C, D) + pa,(D, zp)
> pay,(B, C) + pa,(C, D) + pa,(D, E) + O(1).

Lemma 12.7. With notation as above, pq,(A, B) = pq,(B, E) + O(1).
Proof. By Corollary 12.6 it is enough to prove
Pay(A, B) = po,(B, C) + pa,(C, D) + po,(D, E) + O(1).

Note that B=Rezg+ N + 1, + %An for some n, A = Rezp + N + 2, and by Lemmas
12.1 and 5.1
T T
Pay(A, B) = E(B —A)+001) = Sin+ o(1).

But by Lemmas 12.2, 12.3, 12.4, and 5.1, we have

1
pay(B, C) + pa,(C, D) + pa,(D, E) = m + EH +0(1)

T Yn+l
= logn, + F
2 08 BTN

+ O(1).

Since y,+1 =y, + O(1), we get

paw(B, O+ pay(C, D) + po, (D, E)
7 Aty + Llog A, +0(1))
2 A,

:——logA +0(1)

=—t,+O(1).
2t+() -~

We defined {y,} as we did so that (6.2) would hold, knowing that it would lead
to Corollary 12.7, and thus to:

Lemma 12.8. The t-lengths for T are all comparable to 1.
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Proof. Because of Lemma 12.7 and Lemma 9.3, the edges of the R-component
shared with a neighboring L-component all have z-sizes comparable to 1 (the z-
lengths for the L-component are equal to 1 by definition).

Next, we will show the same is true for the edges on the vertical slits. Consider
a vertical tower R of width A, in the modified R-component between two adjacent
vertical slits; see Figure 20. Divide the tower into squares as shown. Let v, be
the center of the k-th square. By Lemma 10.1 the hyperbolic distance between v
and vy is Tk + O(1). Therefore, the image points in the right half-plane are the
same hyperbolic distance apart. We verified above that the image of the first square
is = 1, so the k-th square has image with diameter ~ exp(kx).

601

® Uk

............

Figure 20. Each tower is divided into squares, whose r-images are approximate
half-annuli whose Euclidean diameters grow exponentially. In particular, the -
lengths of the squares grow exponentially.

Moreover, for each k > 2, the k-th square can be expanded by a factor of 3/2
(dashed box in Figure 20) and the conformal map 7 can be extended to this larger
box by reflection. Thus, by Koebe’s estimate, |z'| =~ exp(zk)/ A, uniformly on the
k-th square. Since the side lengths of T inside the k-th square are =~ A, exp(—xk)
by construction, they all have z-lengths ~ 1.

A slightly different argument is needed for vertices on the last segment of each
vertical slit (the one near the tip), that were defined using a square root map. This
was done precisely so that 7 would map these edges of T to intervals on oH, that
have comparable lengths to each other, and the argument above shows these lengths
are all =~ 1. (]
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We have proven uniform lower and upper bounds for the z-sizes of all edges.
By replacing 7 by ¢ - 7 for some ¢ > 0, if necessary, we may assume every z-length
is at least 7 and at most O(1). The previous lemma, Lemma 3.3 and Lemma 8.2

imply:
Corollary 12.9. With T, © and r as above, there is a M < oo (independent
of N) so that ©(T(2r)) C {x+1iy: 0 <x < M}.

13 T(r) has finite area

The z-length bounds derived above give good control of the model function F. We
now start to control the quasiconformal correction map ¢. Recall that 7(r) is an
open neighborhood of the tree T defined in Section 3. Since ¢ is conformal off
T(r), its dilatation x is supported on 7'(r), and we will prove this set is “small”.
We begin by showing it has finite area.

Lemma 13.1. Let n > 2 and consider the tower attached to the edge of
length A,. Let {J} be the collection of edges on the vertical sides of the tower.
Then there exists a constant C > 0, independent of N and n, so that for any
0 <0 < 1wehave

> (diamJ)"* < % CA
k

Proof. Inthe construction, we subdivided the n-th “branch” intom,, = |y,/A,, ]
many subintervals {J;}. All but one of these (the “tip”) has length A,; consider
these first. The k-th one is divided into =~ exp(zk) smaller edges {J;x} of equal
length =~ A, exp(—=xk). Summing over these gives

m,—1
> (diamJ;0)"*0 < > exp(zk)(A, exp(—mk))'
Jik k=1

< A+ Z exp(—mkd)
k=0

-ai-of}).

The lastinterval (i.e., the “tip”’) has length <2 A,, and is divided into ~exp(zm,,)
intervals Jy, the longest of which has length =~ A, exp(—zm,/2). Thus

> " diam(J)"* < (A, exp(—wm,/2))° > diam(J)
< (Apexp(—mm,/2))’(2A,) < 2- A)F.

Combining both cases we get the lemma. (]
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Lemma 13.2. For each R-component Q, the Lebesgue area of Q N T(r) is
finite with a bound independent of N.

Proof. The part of 7(r) outside the towers is easy to bound. Consider what
happens in each tower with base /i, which has length A;. The points of 7(r) in
the k-th tower that are between distance jA; and (j + 1) A, from the L-component
are within O(r A, exp(—j)) of a vertical side of the tower. Thus, the part of 7'(r)
inside this part of the tower has area bounded by O(r A7 exp(—j)). Summing over j
shows the total area of 7'(r) within each tower is O(rA,%). By Corollary 5.2 we
have >, A? < 00, so the lemma follows; see Figure 21. l

Figure 21. The neighborhood 7'(r) narrows exponentially in each tower as we
move away from the L-component, so the total area of 7(r) in each R-component
is finite (and bounded independent of N).

It follows that the total area of T(r) is O(N).

14 Logarithmic area estimates for 7(r)

The logarithmic area of a planar set £ with respect to a point w is

/ dxdy
Elz—w*

We will show the logarithmic area of 7(r) is uniformly bounded for any basepoint
outside T'(2r). This will give a bi-Lipschitz estimate on ¢ in the next section.

Lemma 14.1. Suppose r > 0 and suppose w € Q\ T(2r). Then

dxd
/ xiyz <C < oo,
7 lw — 2|

where C is independent of w and N.
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Proof. Let ry = dist(w, 6T(2r)) and D = D(w, ry). Let r, = 192" and set
Ay(w) ={z:r—1 < |z— w| < r,} (we will drop the w when the center of the

annulus is clear from context). Note that 7'(r) = |J;2, T(r) N A,. Furthermore, for
z €A, we have |w — z|* > r>_| =~ area(A,). Thus it suffices to show

Z area(T(r)NA,) _

(14.1) area(A,) ’

n=1

with a bound that is independent of w and N. Note that each term in the series
is bounded by 1. First assume that w is located in one of the “towers” along the
horizontal edges of the R-component Q (the remaining case will be dealt with
later). Suppose this tower has top edge / (the edge shared with the adjacent L-
component) and shorter vertical side J. It is convenient to break the sum into four
cases:

(1) ry < I,

@) | <rn < VI,

3 Wl=r <1,

@ 1<r, <oo.
In each case, the series will be dominated by a geometric series, whose sum is
dominated by its largest term, and this will be O(1) in every case.

Case 1 (r, < |I]). See Figure 22. Suppose w is distance y from the top of
the tower. The annulus A, hits at most one of the vertical segments in 6Q2 and this
intersection is contained in a rectangle of height O(r,,) and width O(re=/1'), and
thus has area at most O(r,re™>/M). Also, since D is outside T(2r), if A, intersects

I

T(r) then r, must be at least comparable to re=>/!’I. Thus, the non-zero terms of

the sum satisfy

area(T(r) N An) < O(”n”e—y/m) _ O(re_y/"').

area(A,,) - r2 n

These form a decreasing geometric series whose largest term is O(1). Thus the
sum over Case 1 annuli is bounded by a constant independent of w and N.

Case 2 (|I| < r, < |J]). Consider horizontal strips of width |/| as shown
in Figure 23, and number them k = 1, ..., m = |J|/|I| starting from the top side
of Q and going down (this is assuming we are working near the top edge of Q;
an identical argument works along the bottom edge). Recall that the interval of
length |I| which is k|I| from the top edge was subdivided into exp(zk) pieces.
By Lemma 12.8, the z-lengths of all these pieces are comparable to 1. We thus
obtain that in the k™ strip S; the width of 7(r) around each vertical segment in 6Q
is O(exp(—xk)). The area of T(r) in each annulus is bounded by the area in the
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Figure 22. Case 1. annuli hit at most one vertical segment.

concentric axis-parallel square, whose side lengths equal the outer diameter of the
annulus. In each such square Q, the area of 7(r) N Q N Si decays geometrically
with k£ and hence is bounded by a multiple of the area in the top strip. Thus,

area(T(r)NA,) -

< Me—n'k
area(A,)

where k is the smallest index such that A, hits the strip S;. Since r,, > |/, this
index strictly decreases each time we increment n and hence summing over all 7 in
this case gives a sub-sum of a geometric sum whose largest term (corresponding
to k= 1) is O(1). Thus, the Case 2 terms sum to O(1) with a uniform constant.
Case 3 (|J]| < r, < 1). As in Case 2, we overestimate the area of T(r) N A,
by replacing the annulus by a square Q, and estimating the area of T'(r) N Q by
considering the horizontal strips {S;}; see Figure 24. Note that annuli in this case
have diameters that are at least comparable to |I| (if w € S|, the “top” strip, defined
in Case 2, then this is true since w ¢ T(2r), and otherwise the annulus must be
large enough to touch the neighboring L-component, and hence has diameter at
least |I]). As before, the area is dominated by a multiple of the area of Q N Sy,
which is bounded by a multiple of |/| diam(Q) (there are approximately diam(Q)/|!|
towers hitting the annulus and each contributes area approximately |/|?). Thus

area(T(r)NA,) - M|I| diam(Q) O(E)

area(A,) - r2 '

In this case, r, starts by being at least as large as |J| > || (and possibly much
larger), and doubles at each step, so the terms of this sub-series are geometrically
decaying. Thus, the sum is bounded by its first term, which is at most O(1) with
constants again being independent of w and N.
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| () \
\ N !

Figure 23. Case 2. Annuli hit two vertical segments, but not the neighboring
L-component.

Case 4 (1 < r, <o00). By Lemma 13.2, Q N T(r) has area O(1), independent
of N, for each R-component Q. Because of the way the R-components are arranged
in the plane, a disk of radius ry can hit at most O(ry) of them. Thus the annulus
A,, can intersect at most O(r,,) different R-components, so area(A, N T(r)) = O(r,).
Since area(A,) =~ r,zl, the ratio of these areas is O(1/r,). Since r, increases
geometrically, the Case 4 terms are bounded above by a geometrically decreasing
series with first term of size O(1); see Figure 25. Thus the sum over this case is
also O(1).

The four cases given above describe the proof of the lemma when the point w is
in one of the towers. If w is not in a tower, but is in the region between the towers
and the real axis, then a similar proof by enumerating cases will work. However,
it is probably easier to argue as follows. For a w that is not in a tower, choose k so
that Ay is the smallest annulus of the form A;(w) that hits 7(r). Then it is easy to
check that A;,,,(w) contains a point z in a tower and outside 7 (2r) for some number
m that is independent of w. Let sy = dist(z, 6T(2r)) and s; = s'so. Letn > k+m+2.
Then there exists some [ so that r, < s; < r,41. We then have

Ap(w) C Al2(2) UA;-1(2) UAI(2) U Ay (2).

Thus, the series (14.1) for w is bounded above by O(1) terms, each bounded by 1,
plus four times the corresponding series for z. By our previous argument, the latter
is uniformly bounded and hence so is the series for w. ([l
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Figure 24. Case 3. annuli hit one, but not two, neighboring L-components.

15 A bi-Lipschitz estimate for the correction map

Recall from the statement of Theorem 3.4 that our entire function is of the form

f=cotogp!
logarithm is easy to understand, the map 7z~

. Thus inside the R-components, we have f~! = g o 77! 0 log. The
! is conformal on a half-plane and
the estimates we need for it are all well known. Only the quasiconformal map ¢
holds some mystery, but we will show that it is completely harmless, at least for
estimating dimension, because it is bi-Lipschitz with a uniform constant near the

Julia set (however, it need not be bi-Lipschitz everywhere in C).

Lemma 15.1. Suppose A, B are disjoint, planar sets and

dxd

/ # < C < 00,
alz—wl?

for all w € B. If ¢ is a K-quasiconformal map that is conformal off A, then ¢ is

M-bi-Lipschitz on B with M depending only on C and K, i.e., for all w, z € B,

_ 1 - lp(z) — p(w)|
M(C,K) — |z—w|

0 <M(C,K) < oo.

Proof. This is more-or-less immediate from results of Bojarski, Lehto, Te-
ichmiiller and Wittich [7], [26], [40], [42] although we shall give specific references

to the more recent paper [13] which also gives the higher dimensional versions of
the two dimensional results we will use.
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Figure 25. Case 4. Annuli with diameters r,, > 1 can hit at most max(N, O(r,,))
different R-components, each contributing area at most O(1). Thus the Case 4
terms are bounded by decreasing geometric series with largest term O(1).

First we prove that ¢ is asymptotically conformal at co. Let w € B. Denote
by u(z) the dilatation of ¢. This function is supported on A. Thus we get

/ I,u(z)lczlxdy S/ dxciy S/ 4a’xdy2 <ac
2> wl |z] ANzl ol 1Z] Alz—wl

Hence (see, for example, [26, Chapter V, Theorem 6.1]), there is a ¢ # 0 so that

lim @ =c
>0 7

Now suppose z, w € B and let r = |z — w|. Note that
{Crld—zl=R} C{<:R—|z] = €] = R+zl}.
If R is large enough, ¢ maps the round annulus
Az, h,R)={¢:r<|f—z <R}

to a topological annulus A’ whose outer boundary is contained in the annulus
A(p(2), |c|R/2, 2|c|R) and whose inner boundary is a closed Jordan curve y. By
taking R large enough, we can assume y hits the disk D(¢(z), |c|R/4). Therefore,

mod(A’) = mod(A(e(z), diam(y), R)) + O(1) = log R — log diam(y) + O(1).
On the other hand, Corollary 2.10 of [13] says that

mod(A”) = mod(A(z, r, R)) + 0(/ @dxdy)
relé—zj<r |<]

1

A{r<lé—z <R} I

=mod(A(z, r, R)) + O(/
A

=logR —logr+ O(1).

dxdy)
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Thus, logdiam(y) = logr + O(1), or diam(y) = r. Since ¢ is quasiconformal, the
segment S connecting z and w maps to a quasi-arc and hence satisfies the Ahlfors
three-point condition (e.g., Theorem I1.8.6 of [26]), so |p(z) — ¢p(w)]| = diam(p(S)).
Since quasiconformal maps are quasisymmetric, diam(¢(S)) =~ diam(y) (first due
to Gehring [21]; see also Section 4 of [23]). Thus, |p(z) — ¢(w)| = |z — w|, as
desired. [

Lemma 15.2. The correction map ¢ is bi-Lipschitz on C\ T(2r), that is, there
exists a constant M > 0 (independent of N) such that

1 _le@=pwl _,,

M= lz—w|l
forall z, w e C\ TQ2r).

Proof. Define A =T(r)and B=C\ T(2r). Let w € B. By Lemma 14.1, there
exists some C > 0, independent of N and w, so that

/M<C<oo.
A lz— w|?

Applying Lemma 15.1 proves this lemma. (|

16 Proof of (1.1): the initial covering exists

We have now completed the preliminary estimates. In the next two sections we
finish the proof of Theorem 1.1 by establishing (1.1) and (1.2) from the introduction.
One of the main facts we need is the following result.

Lemma 16.1. Let Q # C be simply connected and let © : Q — H, be
conformal. Let z = x+1iy with x > 1 and let V C H, be a simply connected
neighborhood of z with hyperbolic radius bounded by r. If w = t='(1 + iy) and
U = t=(V), then we have

diam(U) = O(|7'(w)| "' x diam(V))
where the constant depends only on r and the diameter is the Euclidean diameter.

Proof. The distortion theorem for conformal maps (e.g., Theorem 1.4.5 of
[20]) says that if y : D — Q is conformal, then

(16.1) [y (@) < Iw(0>l( ||)3—

WO
VT Sy
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Moreover, the derivative of a conformal map has comparable absolute values at any
two points of a compact set, with a constant that depends only on the hyperbolic
diameter of the set. Thus for any compact K in the disk D,

diam(y(K)) = O(diam(K)| ¥/ (2)|),

where these are Euclidean diameters and where z is any point of K. The constant
depends only on the hyperbolic diameter of K and not on z or .

If ¥ is a conformal map from the right half-plane H, to Q, then we can write
it as a composition of the Mobius transformation o(z) = (z — 1)/(z + 1) from the
half-plane to the disk, followed by a conformal map y from the disk to . Note
that (1) = 0, o(00) = 1, and |¢'(x)| = 2/(x + 1)> < 2/x? for x € [1, 00). Also note
that 1 — o(x) = 2 > 1/x for x > 1. Using (16.1), these observations, and the

x+1
chain rule, we deduce that

/ _ / / 7 . z

'Y =y (e())] - |6’ (x)] < |w(0)|7(1 Tl X2
(D]
()] X

=8| (Dlx,

for x > 1. By considering a vertical translate ¥(z) = ¥(z + iy) of ¥ and applying
the arguments above to ¥ we see that

['V'(x+iy)| = O (1 +iy)] - x),
for x > 1. The lemma follows by applying this discussion to ¥ = 77! (]

Lemma 16.2. If N is large enough, then the Julia set for f is contained in the
union of N bounded width strips passing through the origin. More precisely, there
are a C,M < oo (independent of N) so that

J) c{zeC: |zl > N/Q2C), dist(z, X) < M}

where X = {w : w" € R)}.

Proof. Our entire functions are of the formf = gogp™!

where g is quasiregular
and ¢ is a quasiconformal homeomorphism of the plane. Both g and ¢ were chosen
to fix the origin and g maps the disk D(0, N) into the unit disk. Lemma 15.2 shows
that ¢ is bi-Lipschitz with some constant C < oo in D(0, N/2), since this disk is
contained inside the central D-component but outside 7'(2r), if N is large enough.

Thus ¢~ maps D(0, N/(2C)) into D(0, N/2). Hence f maps D(0, N/(2C)) into the
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unit disk, and hence into itself for NV large enough. Therefore, D = D(0, N/(2C))
is inside the Fatou set of f. In particular,

30 C{z: [fI > N/Q2OWY C o({z: |g(2)] > N/(2O)}).

If N > 2C, then by construction

{z: 18| > N/C2O} C {z:|g@)] > 1}

lies in the union of R-components. In particular, |g(z)| < 1 for all points outside
the R-components. Also by construction, g maps X to itself and the union of
R-components is contained in a unit neighborhood of X \ D(0, N). Moreover, we
claim that ¢ fixes each arm of the set X.

One way to verify this is to construct ¢ as follows. Use the measurable Riemann
mapping theorem to find a quasiconformal map from the sector {w : |arg(w)|<z/2N}
with the same dilatation and fixing O and oco; then extend the map to the whole plane
by reflecting across the arms of X one at a time. We end with a quasiconformal map
of the plane and the correct dilatation, so it must be ¢ (up to a positive dilation).
Moreover, it preserves the arms of X by its definition, proving the claim.

Since ¢ preserves the arms of X and it is C-bi-Lipschitz on the part of the
arms of X that lie outside 7'(2r) (this is all but a bounded segment), and since it is
quasisymmetric on the whole plane, there is a M < oo so that

p({z : dist(z, X) < 1}) C {z : dist(z, X) < M}).
In particular

I Co({z: g > 1}) C p({z: |z] > N/2, dist(z, X) < 1})
C {z:z] > N/(20), dist(z, X) < M}. 0
Proof of (1.1). The Julia set is contained in the union of 2N half-strips of
fixed width M. Due to the symmetries in the construction, it will suffice to consider
coverings of only one of these, say Sy, the half-strip intersecting the positive real
axis. This half-strip can be covered by a collection of squares {(Q,} of side
length M and centered at points n = { [N/(2M)], 1 + |[N/(2M)|, ...}. Obviously,
the diameters of these squares are all about unit size, hence they are not summable.
However, we shall show that given 6 > 0, we can choose N large enough so that

> diam(F~'(Q,)'*? < oo,

where the sum is over all preimages outside D(0, ry) (we need only consider
preimages hitting the Julia set and this disk is in the Fatou set).
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Note that f~! = ¢ o g=!. There are 2N R-components, and preimages under g
can lie in any of these, but for the moment we only consider g-preimages in the
R-component that intersects the positive real axis. Off the set 7(r), g(z) = exp(z(z))
where 7 : Qy — H, is conformal. Therefore, g~!(Q) for O c H, \ ©(T(r)) is given
by first taking inverse images under the exponential map, then under the conformal
map 7. Both are easy to understand.

The inverse image of Q,, under ¢ is a countable union of sets of diameter O(1/n).
The sets are all vertical translates of each other and there is exactly one containing
each point of the form z,; = logn + k2xi. Suppose Y, ; is the preimage of Q,
containing z, x. Let P, ; = r_l(Yn,k), and wy = (1 + 27ki).

Lemma 16.3. diam(P,, 1) = O(|7'(wy)| ™" - 1222,

Proof. This follows immediately from Lemma 16.1, since Y, ; has diameter
O(1/n) and hits the vertical line {x = log n}. ([l
Each of the points z, is associated, by horizontal projection, to one of the
intervals [2zni, 2z(n + 1)i] on JH, and each point w,  is associated to an edge of
the folded graph 7”. Each edge of 7" is associated to a side I; of the R-component
and at most O(1) edges of 7" correspond to any such side of the R-component (this
is because the 7-lengths of all sides are uniformly bounded). In particular, for any
0<o<l,

/ ~
|7 (W )| = m,

diam(/y) log n)

diam(P,.) = O(
n

Z Z diam(Pn,k)Hé = C( Z diam(lk)H&) ( Z (105 n) 1+§> .
n k ’

k

The first term in the product is finite by construction (see Corollary 5.2 and
Lemma 13.1) and the second is finite by a simple calculus exercise. Note that none
of these bounds depend on N. This shows that the g-preimages of the { Q,,} have
diameters whose (1 + d)-powers have a finite sum. Lemma 15.2 shows that the
images of these preimages under the correction map have comparable diameters,
so the same is true for the f-preimages, if the g-preimages lie outside 7'(2r). But
this is fulfilled if NV is large enough so that ry is larger than exp(2A) where A is the
upper bound on the z-sizes of the edges obtained in Lemma 12.8.

In the argument so far we have assumed we started with a covering { Q,,} of one
tract of f and we only counted g-preimages that were in a single tract of g. Since f
and g both have 2N tracts, the sum over all preimages of coverings of all tracts will
be larger by a factor of 4N2, and this is clearly still finite. (|
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17 Proof of (1.2): the iterative step

Next, we will prove the iterative step which finishes the proof of Theorem 1.1.

Lemma 17.1. Supposef = goop~'is as above. Let D = D(w, r) be a disk with
|w| > ry+1andr < 1(so D is disjoint from the closed disk D(0, ry)). Let { D;} be
the connected components of f (D). Given € > 0 and § > 0, if N is sufficiently
large, then

Z diam(Dj)”‘; < ¢ - diam(D)'*?.
J

Proof. We can write the inverse of f by taking a complex logarithm, followed
by the conformal map of the right half-plane to an R-component, followed by the
correction map ¢. The correction map will only be applied to sets where it is
bi-Lipschitz, so it only adds a uniformly bounded multiplicative factor to the sum
in the lemma.

First, the logarithm of the disk D is an infinite collection of disjoint sets of
diameter O(r/|w|) arranged on the vertical line {x = log|w|}. By Corollary 12.9
we have

(17.1) (TRr) C Vy={x+iy:0 <x < M}.

If N is so large that ry > exp(M), where M is the N-independent upper bound for
the 7-sizes of the edges of the graph, we have

(17.2) log|w| > logry > M.
Each component contains one point of the form
log |w] +i(0 + 27k),
where 0 = arg(w). By Equation (17.2), all these sets lie in a sub-half-plane
H,+M=H,\Vy={x+iy:x> M}.

By Lemma 16.1 the preimages have diameters bounded by

rlog|w|

(1™ (1 + i@k +0)) rlog|w|)

) - o(diam(lk)T .

Since |w| > ry > N and x — log(x)/x is decreasing for x > e, this is bounded by

|w]

0( diam(ly) %) .
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Sum over k, use Lemma 13.1 and Corollary 5.2, and recall that there are 2N
R-components to consider:

s (logN)'*N

Les (10g N)l+z5
N1+o ) :

r NO

> (diamDy)'*’ < % : < % r

k
Taking N large enough gives the desired estimate for the quasiregular map g. By
(17.2) and (17.1), the g-preimages of D lie outside 7(2r). By Lemma 15.2, the

correction map expands the diameters by a bounded factor (independent of N).
Taking N even larger, if necessary, proves the lemma. (]

This completes the proof of Theorem 1.1: Speiser class Julia sets may have
dimension as close to 1 as desired.

Our examples have three singular values. Is it possible to build entire functions
with only two singular values whose Julia sets have dimensions as close to 1 as we
wish? Does every dimension in (1, 2] occur for some f € 8?

Two entire functions f, g are said to be quasiconformally equivalent if there
are quasiconformal homeomorphisms y, ¢ of the plane so that fo yw = ¢ o g.
The set of functions QC-equivalent to a given Speiser class function f forms a
finite dimensional complex manifold M, (the complex dimension is g + 2 where g
is the number of singular values; see Section 3 of [18]). Basic properties of
quasiconformal maps imply that dim(J(g)) is a continuous function on My, and
also imply that if this function attains the value 2, then it is constant on M. Can
it ever be non-constant? Probably this is common, but it is not even clear what
happens for the examples constructed in this paper. Can the dimension ever be
constant on My with a value other than 2? If not, is sup{dim(J(g)) : g € My} =2
for every f?

18 The Julia set is a Cantor bouquet

A Cantor bouquet is a closed set in the plane so that there is a homeomorphism of
the plane mapping it to a “straight brush” in the sense of Aarts and Oversteegen;
see [1]. This is a subset B of [0, co) x (R \ Q) that is closed in the plane and such
that

(1) every point of B is contained in a closed horizontal ray, called a hair,

(2) the horizontal projection of B onto the y axis is dense,

(3) any point of B can be approached from above or below by endpoints of hairs.

Any two such sets are homeomorphic, and can even be mapped to each other

by a homeomorphism of the plane (i.e., they are ambiently homeomorphic); see

(11, [17].
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Lemma 18.1. The Julia sets of our examples are Cantor bouquets.

Proof. The construction in this paper shows that our examples have the follow-
ing properties: O is an attracting fixed point and all three singular values (0, —1, 1)
are contained in the basin of attraction of O (which contains a large disk around the
origin). This means our maps are of disjoint type, i.e., the singular set is compact
and contained in the immediate attracting basin of an attracting fixed point.

A tract of an entire function is a connected component of {z : |[f(z)] > R}.
These are unbounded Jordan domains. If a tract Q of f does not contain zero, then
consider a connected component Q' of log(Q2) for some branch of the logarithm
(there are countably many such and any two are related by a vertical translate by
an integer multiple of 27). We say that a curve y C Q' from a point z5 € Q' to 0o
has bounded wiggling if there are real constants A, B so that for any point z € y
we have Re(z) > A - Re(zg) — B. The domain Q' is said to have uniformly bounded
wiggling if all the hyperbolic geodesics from zy € Q' to co have bounded wiggling
(with uniform constants).

Proposition 5.4 of [34] implies that if f is in the Eremenko—Lyubich class and
the tracts of f have uniformly bounded wiggling, then f satisfied a condition called
the “uniform linear head-start condition”. We will not define this condition, but
we note that Corollary 6.3 of [4] says that if an entire function is disjoint-type and
has the uniform head-start condition, then the Julia set is a Cantor bouquet. Thus,
[34] and [4] combined imply that disjoint-type plus bounded wiggling imply the
Julia set is a Cantor bouquet. Hence, it suffices to show that our examples have
bounded wiggling.

The logarithms of the R-components we construct in this paper clearly have
this property. These components are mapped to the tracts of our entire functions
by the correction map ¢. Let R be a tract of the quasiregular map g and S = ¢(R)
the corresponding tract of the entire function f. Let R’ be a component of log(R)
and S” a component of log(S). Choosing the correct branch of the logarithm, the
map h(z) = log(p(exp(z))) maps R’ conformally onto S’. The estimates of this paper
show that ¢ is asymptotically conformal, i.e., there is a constant ¢ % 0 so that

@—c‘=o(l) as |z] = oo

or in other words ¢(z) = cz + 0(|z]) as |z| — oo. Hence,

log(p(z)) = log(z) + log(c) + log(1 + o(1)) = log(z) + O(1)

which yields |h(z) — z| = O(1). This easily implies that hyperbolic geodesics in R’
map to curves of bounded wiggling in §’. This in turn implies that the hyperbolic
geodesics in §” have bounded wiggling by [34, Lemma A.2]. (]
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For disjoint-type, finite-order maps, Baranski [3] proved that the Julia set is a
Cantor bouquet whose endpoints have dimension 2 and the rest of the bouquet has
dimension 1 (this was proven earlier for exponential maps by Karpiriska [24]). In
our example, the non-endpoints are escaping (see Theorem 5.1 in [31]) and this
should imply that they have dimension 1, and so we expect that the dimension of
the whole Julia set is concentrated on the endpoints, but we leave this for future
investigation.
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