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Abstract

In this paper, we demonstrate an application of the Transformer self-
attention mechanism in the context of materials science. Our network,
the Compositionally-Restricted Attention-Based network (CrabNet), ex-
plores the area of structure-agnostic materials property predictions when
only a chemical formula is provided. Our results show that CrabNet’s
performance matches or exceeds current best practice methods on nearly
all of 28 total benchmark datasets. We also demonstrate how CrabNet’s
architecture lends itself towards model interpretability by showing differ-
ent visualization approaches that are made possible by its design. We feel
confident that CrabNet and its attention-based framework will be of keen
interest to future materials informatics researchers.
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Introduction

Materials scientists constantly strive to achieve better understanding, and

therefore better predictions, of materials properties. This began with the

collection of empirical evidence through repeated experimentation, resulting in

mathematical generalizations, theories, and laws. More recently, computational

methods have arisen to solve a large variety of problems that were intractable to

analytical approaches alone [1, 2].

As experimental and computational methods have become more efficient,

high-quality data has opened up a new avenue to materials understanding.

Materials informatics (MI) is the resulting field of research which utilizes

statistical and machine learning (ML) approaches in combination with

high-throughput computation to analyze the wealth of existing materials

information and gain unique insights [2–4]. As this wealth has increased,

practitioners of MI have increasingly turned to deep learning techniques to

model and represent inorganic chemistry, resulting in approaches such as

ElemNet, IRNet, CGCNN, SchNet and Roost [5–9]. In specific cases including
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CGCNN and SchNet, the compounds are represented using their chemical and

structural information [7, 8, 10–15].

Modeling approaches based on crystal structure are an excellent tool for MI.

Unfortunately, there are many material property datasets that lack suitable

structural information. An example of this is the experimental band gap data

gathered by Zhou et al. [16]. Conversely, many databases such as the Inorganic

Crystal Structure Database (ICSD) and Pearson’s Crystal Data (PCD) contain

an abundance of structural information, but lack the associated material

properties of the recorded structures. In both cases, the applicability of

structure-based learning approaches are limited. This limitation is particularly

evident in the discovery of novel materials, since it is not possible to know the

structural information of (currently undiscovered) chemical compounds a priori.

Therefore, the development of structure-agnostic techniques is well-suited to the

discovery of novel materials.

A typical approach to structure-agnostic learning is done by representing

chemistry as a composition-based feature vector (CBFV) [17]. This allows for

data-driven learning in the absence of structural information. The CBFV is a

common way to transform chemical compositions into usable features for ML

and is generated from the descriptive statistics of a compound’s constituent

element properties. Researchers have effectively used CBFV-based ML techniques

to generate materials property predictions [17–25].
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One potential issue with the CBFV approach lies in the way the element vectors

are combined to form the vector describing the chemical compound. Typically,

the individual element vectors of the compound are scaled by the element’s

prevalence (fractional abundance) in the composition, before being used to form

the CBFV. This step assumes that the stoichiometric prevalence of constituent

elements in a compound dictate their chemical signal, or contribution, to the

material’s property. However, this is not true in all cases; an extreme example

of this is element doping. Dopants can be present in very small amounts in a

compound, but can have a significant impact on its electrical [23, 26, 27],

mechanical [20, 28–30], and thermal properties [31–34]. In the case of a typical

CBFV approach which uses the weighted average of element properties as a

feature, the signal from dopant elements would not significantly change the

vector representation of a compound. As a result, the trained ML model would

fail to capture a portion of the relevant chemical information available in the

full composition.

It is apparent that there is no generally-accepted best way to model materials

property behaviors. Different ML approaches lend themselves towards different

modeling tasks. CGCNN requires access to structural information, ElemNet

operates within the realm of large data, and classical models excel when domain

knowledge can be exploited to overcome data scarcity [35]. To address the

diversity of learning challenges, in Dunn et al., the Automatminer framework
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uses computationally-expensive searches to optimize classical modeling

techniques. They demonstrate effective learning on some data, but show

shortcomings when deep-learning is appropriate [36].

In a similar spirit, we seek to overcome general challenges in the area of

structure-agnostic learning using an approach we refer to as the

Compositionally-Restricted Attention-Based network (CrabNet). CrabNet

introduces the self-attention mechanism to the task of materials property

predictions, and dynamically learns and updates individual element

representations based on their chemical environment. To enable this, we

introduce a featurization scheme that represents and preserves individual

element identity while sharing information between elements. Self-attention is a

procedure by which a neural network learns representations for each item in a

system based on the other items that are present. In this context, we treat the

chemical composition as the system and the elements as the items within that

system. This representation enables CrabNet to learn inter-element interactions

within a compound and use these interactions to generate property predictions.

To perform self-attention, we use the Transformer architecture, which emerged

from natural language processing (NLP) and is based on stacked self-attention

layers [37–42]. A typical use of the Transformer architecture in NLP is to

encode the meaning of a word given the surrounding words, sentences, and

paragraphs. Beyond NLP, other example uses of the Transformer architecture
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are found in music generation [43], image generation [44], image and video

restoration [45–49], game playing agents [50, 51], and drug discovery [52, 53]. In

this work, we explore how our attention-based architecture, CrabNet, performs

in predicting materials properties relative to the common modeling techniques

Roost, ElemNet, and random forest (RF) for regression-type problems.

Results

The results of this study are described in three subsections. First, we describe

the collection of materials property data used for benchmarking CrabNet.

Second, we highlight the performance of CrabNet when compared to other

current learning approaches which rely solely on composition. Third, we briefly

outline how the self-attention mechanism in CrabNet enables visualizations and

inspectability unique to attention-based modeling.

Data and Materials Properties Procurement

For this work, we obtained both computational and experimental materials data

for benchmarking. Our benchmark data includes materials properties from the

Matbench dataset as provided by Dunn et al. [36]. In addition, materials

properties data from a number of works [6, 54–57] are collected, which are

referred to as the Extended dataset. We included 28 benchmark datasets in
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total: 10 from the Matbench and 18 from the Extended datasets ranging from

312 to 341,788 instances of data.

The Matbench datasets were split using five-fold cross-validation following

instructions provided in the original publication [36]. Materials properties in

the Extended dataset were split into train, validation, and test datasets using a

fixed random seed. For both datasets, several steps were taken to process the

original datasets to be compatible with structure-agnostic learning using

CrabNet. Care was taken to ensure that (1) no duplicate compositions were

present in each of the train, validation, and test datasets, and that (2) if a

composition exists in the train or validation dataset, all compounds with the

same composition are removed from the validation and test datasets. To remain

comparable with the Automatminer publication [36], we applied the data

processing steps as mentioned above after splitting the data. Please note that

since some datasets have more duplicate compositions than others, these

processing steps may affect the train/val/test ratios. For duplicate compositions

in the OQMD and MP datasets, the target value associated with the lowest

formation enthalpy was selected. For other datasets, the mean of the target

values was used. Please see the Supplementary Methods for more details.

The full processed benchmark dataset, comprising the Matbench and Extended

datasets, were then used with Roost, CrabNet, ElemNet, and RF models. The

training and validation data were used for training and hyperparameter tuning.
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The test data were held-out to provide a fair evaluation of performance metrics

across all models. Model performance was only evaluated after all training and

hyperparameter tuning was completed. A summary of the datasets is shown in

Table 1. All datasets are provided as pre-split csv files to facilitate future

comparisons to the metrics reported in this paper. Additional data processing

and cleaning details can also be seen in the code on the dataset repository

mse_datasets [58]. To maintain consistent and simple benchmark comparisons,

we selected data suitable for regression tasks and ignored structural information

when present.
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Benchmark Comparisons

With the benchmark data described above, we generated materials predictions

using the publicly-available code repositories for Roost [9], CrabNet [59], and

ElemNet [5]. The performance of these benchmarked models is compared using

the mean absolute error (MAE) between true values (y) and predicted values

(ŷ) as defined by Equation 1:

MAE =
1

n

n∑
i=1

|yi − ŷi| . (1)

This allows for consistent comparison to past works [5–7, 9].

Figure 1 shows the performance metrics from training and testing the models

on all the benchmark materials properties outlined above. Here we note that

the models for Roost, CrabNet, and ElemNet were all trained using the default

model parameters provided with their respective repositories. In contrast to

Roost and ElemNet, the default parameters for CrabNet were optimized using

validation data from some of the same datasets on which we benchmarked.

Although it is possible this offers a small advantage to CrabNet’s performance,

we do not expect this to be significant due to CrabNet’s consistently strong

performance on all benchmark tasks.

We tested two versions of CrabNet. The default CrabNet uses a mat2vec

embedding when representing elements, similar to Roost. The second version of
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CrabNet (HotCrab) uses one-hot encodings (in the form of atomic numbers)

and fractional amounts to represent each element in a composition. This is

similar to ElemNet, as both models start without any chemical information.

The random forest (RF) model utilizes a Magpie-featurized CBFV to represent

chemistry. This is included as a performance baseline to match similar works [5,

9, 36].

Overall, we see similar performance between Roost and the two versions of

CrabNet tested. Given the different architectures and modelling philosophies of

Roost and CrabNet, it is promising that both approaches converge towards the

same performance metrics. We also see that Roost and both CrabNet versions

achieve consistent and significant improvements to MAE compared to ElemNet

and RF approaches. Interestingly, Figure 1 shows that the use of mat2vec

instead of one-hot with CrabNet improves prediction performance on all

materials properties except for AFLOW thermal conductivity, MP elastic

anisotropy, and those present in the largest datasets (OQMD).

The Matbench data provided by Dunn et al. [36] was benchmarked using the

Automatminer tool. These metrics are not included in Figure 1, since all but

two (expt_gap, and steels_yield) of Automatminer’s models use structural

information. Consequently, we focus on these two materials properties when

comparing CrabNet’s results to those from Automatminer. For these two

metrics, CrabNet’s structure-agnostic approach outperforms the reported MAE

10



values from Automatminer on the same tasks (expt_gap: 0.416 eV vs. 0.338 eV

for CrabNet; steels_yield: 95.2GPa vs. 91.7GPa for CrabNet).

The performance of CrabNet on the steels_yield task is particularly interesting.

The steels_yield dataset contains compounds with small dopant amounts in

large chemical systems (up to 13 elements per composition) and only 312 total

data. CrabNet’s ability to learn on this data-poor property and outperform all

other tested models including the baseline RF model (which is traditionally

better in the data-poor regime) is encouraging. We expected the steels_yield

task to be difficult for all deep learning approaches. Nevertheless, repeated

training and validation of CrabNet consistently produced error metrics better

than the best result obtained by Automatminer (95.2GPa).

Visualizing Self-Attention

CrabNet’s modeling and visualization capabilities are enabled by its

attention-based learning framework. In statistical machine learning and many

deep learning approaches akin to ElemNet, the chemical composition of a

compound is represented as a single CBFV. In contrast, Roost and CrabNet

represent a composition as a set of element vectors. Distinct to CrabNet,

however, is the Transformer-based self-attention mechanism that learns to

update these element vectors using learned attention matrices. In Figure 2, we
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show example attention matrices for each attention head of a CrabNet model

trained on the property mp_bulk_modulus, using Al2O3 as the example

composition. These matrices contain the information regarding how each

element (rows) is influenced by all other elements in the system as well as itself

(columns). The values in these attention matrices are used in the Transformer

encoder to update the element vectors. A value of zero means that the element

in the column is completely ignored when updating the element in that row. A

value of one means that the entire vector update is based solely on that

column’s element. Our implementation of CrabNet has three layers, each with

four attention heads, with each head using the same data to generate its own

independent attention matrix (see Methods for more details).

Shifting our focus to another CrabNet model trained on aflow__Egap data, we

show that in addition to visualization of the individual attention heads, we can

also generate a global view of attention from the perspective of individual

elements. In Figure 3, we use four periodic tables to visualize, for each attention

head, the average attention that silicon dedicates to other elements when they

are in the same composition. The darker colored elements can be understood as

highly influential when updating silicon’s vector representation.

Interestingly, each attention head has its own behavior, with some focusing on

familiar groups and columns in the periodic table. This behavior lends

credibility to CrabNet since there is no inherent reason that data-driven
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learning should converge to chemical rules that are familiar to materials

scientists. Furthermore, the identification of unfamiliar element groupings

enabled by the attention-based visualizations may allow us to formulate further

research questions to study these inter-elemental interactions.

The preservation of elemental identity within a compound—as a result of the

self-attention mechanism—also enables CrabNet to generate property

predictions in a way that is different to other approaches shown in the

literature. Typically, element information of a given compound is collapsed into

a single vector first and then used to generate the property prediction. In

contrast, CrabNet uses each element’s vector representation to directly predict

the element’s contribution to the property prediction. Figure 4a shows the

average contributions from each element for a CrabNet model trained on

AFLOW_bulk_modulus data. The darker colored elements contribute more

towards a compound’s bulk modulus value. Alternatively, elements can be

visualized individually using their specific per-element contributions. In

Figure 4b we show distribution plots for lithium and tungsten’s contributions to

bulk modulus. From these plots, we can see that CrabNet expects lithium to

contribute little to overall bulk modulus, whereas it expects tungsten to

contribute largely. See Supplementary Figure 3 for additional examples of these

element contribution plots. The visualizations from Figure 4 match

closely—and reinforce—expectations regarding which elements most influence
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bulk modulus behavior in a compound. Exploration of data in this manner

hints at first steps towards model interpretability of CrabNet. We expect these

types of property visualizations to be useful for exploring and verifying model

and element behavior in detail.

Finally, with per-element contributions in mind, we can demonstrate changes to

CrabNet’s expected material property behavior as a function of chemical

composition. To do this, we consider a normalized chemical system consisting of

atoms A and B, in the form of AxB1–x . We then generate property predictions

for all x ∈ {0.0, 0.02, ..., 1.0}. In Figure 5, we visualize CrabNet’s behavior when

predicting band gap of the SixO1–x system using a model trained on the

aflow__Egap data.

We first observe that the expected elemental contributions for both oxygen and

silicon to band gap are similar throughout the varied stoichiometry range, with

the exception of the peak in oxygen contribution at around x = 0.7. We also

observe that the model indicates a transition of the SixO1–x system between

conducting and semi-conducting between x = 0.5 and x = 0.7. We note that the

only available training data sample from the SixO1–x system in the dataset was

from the composition SiO2. Therefore, we can see that the band gap trend

predicted here by CrabNet is based on the learned chemical representations and

inter-elemental interactions from other elements and systems. The visualization

of CrabNet model predictions within a given chemical space is an alternative
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way to explore model learning and prediction behavior, and may lead to an

improved understanding of inter-elemental interactions within a chemical

system.

Furthermore, we note that the ability of CrabNet in predicting material

property trends for specific chemical systems without requiring a large amount

of training data for that system is of great benefit. For future studies, this

ability may be investigated for its application in predicting the behavior of new

chemical systems while only requiring a sparse sampling or learning of their

chemical information. Furthermore, we believe that transfer learning of trained

CrabNet models to other material properties is possible, due to the ability of

the self-attention mechanism to accurately capture inter-elemental interactions.

We are confident that these ideas of probing and visualizing of CrabNet’s

modelling process and model predictions will open up further interesting

research directions and ultimately lead to more insights in the pursuit of

inspectable models.

Discussion

Unique challenges exists when applying machine learning to materials science.

In this paper, we address the limitations of machine learning on chemical

composition by introducing CrabNet. The CrabNet architecture uses the
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self-attention mechanism and the EDM representation scheme to perform

context-aware learning on materials properties. Using 28 benchmark datasets,

we demonstrate CrabNet’s performance compared to Roost, ElemNet, and RF

baselines. CrabNet exhibits consistent predictive accuracy across the full range

of materials properties tested. Furthermore, we show that the

self-attention-based learning technique also provides alternative methods for

visualizing model behavior. We demonstrate the use of attention and

per-element contribution prediction capabilities for visualizing common trends

in our trained models that match chemical expectations.

Given this application of self-attention in the context of materials science, we

expect that there can be many informative and impactful follow-up works.

Specifically, we believe these will largely fall into three thematic categories:

1. CrabNet directly contributing to the community’s focus towards

improved property predictions.

CrabNet consistently generates good MAE scores. The performance

achieved with the use of self-attention, combined with the innovative use

of element and composition featurization techniques, will allow researchers

to delve deeper into analyzing and predicting materials properties. As a

result, we believe that CrabNet will be relevant in areas where other ML

methods fall short (e.g., dopants, small data, and materials extrapolation
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tasks). We also note that with minimal changes to CrabNet, it can also

perform classification tasks; we expect CrabNet to similarly excel at this.

2. Attention-based models allow for new ways of thinking about

materials-specific problems.

In this work, we briefly examined the attention mechanism. Attention

highlights important interactions and may be used to understand which

element-interactions mediate materials properties. Model explainability

has thus far been elusive to the traditional materials informatics

paradigms. The inclusion of self-attention in this work has introduced

additional methods of model inspectability that may be a step towards

this goal.

3. Augmentation of CrabNet using structural and domain-specific

knowledge.

This work intentionally used a compositionally-restricted EDM

representation with no structural information. Structure-agnostic learning

is an important task in materials informatics and CrabNet demonstrates

that accurate learning is achievable using the self-attention mechanism.

However, the prediction of materials properties using structural

information is also an important task. Integration of structural

information could be achieved by describing elements in their structural
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and chemical environments. We expect that the self-attention mechanism

of CrabNet will be able to utilize this additional information to make

more accurate predictions. This application of attention-based learning to

crystal systems is an exciting and promising direction. We also expect

that materials prediction tasks involving processing steps or other

non-compositional features could be used in this approach. Both of these

changes could easily be implement as extensions to the EDM.

While further research is necessary to fully discern the utility of self-attention in

materials problems, we believe that this paper highlights a major new direction

in its application in materials informatics and suggests exciting directions for

future research.

Methods

Self-attention and the CrabNet Architecture

Chemical compositions are input using the atomic numbers and fractional

amounts of their constituent elements. The atomic numbers are used to retrieve

element representations (either mat2vec or one-hot). The fractional amounts

are used to obtain fractional embeddings (described below). An element

embedding matrix is generated by applying a fully connected network to the
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element representations. A fractional embedding matrix is created from the

fractional embeddings. These matrices are then added together (element-wise)

to generate the element derived matrix (EDM, see Figure 6). Each row of the EDM

(i-index) represents an element and the columns (k-index) contain the element

embeddings. We batch each unique chemical composition onto a third

dimension (the i-index). The resulting three-dimensional tensor contains the

input data for the CrabNet architecture.

We use the mat2vec element embeddings [60] as the default source of chemical

information for each element, even though there are other choices for element

properties available, such as Jarvis [22], Magpie [61], Oliynyk [18] or a simple

one-hot encoding. The mat2vec embedding has the advantage of being

pre-scaled and normalized, and having no missing elements nor element features.

Regardless of the choice of element representation, the representation must be

reshaped to fit the the attention input dimensions of (dmodel). This is done using

a learned embedding network; the result is a matrix of size (nelements, dmodel). In

addition to the default training of CrabNet using the mat2vec embedding, a

one-hot embedding of the elements was used to train an additional CrabNet

model (HotCrab) to better facilitate comparison with ElemNet.

The stoichiometric information for each element in the EDM is represented by

two fractional embeddings. The fractional embeddings are inspired by the

positional encoder as described in the seminal work by Vaswani et al. [37]. We
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use sine and cosine functions of various periods to project the fractional

amounts into a high-dimensional space (dimension d = dmodel/2) where smooth

interpolation between fractional values is preserved. The first part of the

fractional embedding represents the stoichiometry, using the normalized

fractional amounts, on a linear scale with a fractional resolution of 0.01. The

second part of the embedding maps stoichiometry using a log scale and spans

from 1× 10−6 to 1× 10−1. This logarithmic transformation of the fractional

embedding preserves small fractional amounts such as those present in doping.

The two parts of the fractional embedding for all elements are concatenated

across the embedding dimension to obtain a matrix of size (nelements, dmodel). See

Supplementary Figure 1 and Supplementary Figure 2 for example visualizations

of the EDM embedding.

Once the element and fractional embeddings are calculated and added together,

we then batch the finished EDMs across the first dimension. This gives the final

input data of shape (ncompounds, nelements, dmodel), where ncompounds is the total

number of compounds in a given batch, nelements is the number of rows in the

EDM (inferred from the number of elements in the largest composition in a given

dataset), and dmodel is the size of the embeddings. Here, we also note that the

exact ordering of the element rows (j) in a compound in the EDM does not

influence CrabNet due to the permutation-invariant nature of the self-attention

mechanism.
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CrabNet contains two primary modules with the default hyperparameters as

shown in Table 2. The first module is a Transformer encoder with 3 layers and

4 attention heads in each layer. The second module is a residual network that

converts element vectors into element contributions.

To understand the Transformer encoder, we first describe the self-attention

mechanism. During self attention (Figure 7a), the EDM is operated on by three

fully-connected linear networks (FCQ, FCK, and FCV). These networks generate

the query Q, key K, and value V tensors. These tensors can be conceptualized

as a learned high-dimensional space where the model stores chemical behavior

from the training data.

The K and Q tensors contain information regarding the magnitude to which

elements interact. The V tensor stores the information that is used to map

from element to property contribution. The dot product of each Q and KT

tensor pair (where KT denotes the transpose of K) generates the relative

element importances in the system (Figure 7b). The importances are scaled

using a constant
√
dk and then normalized using a softmax function. This

results in the self-attention tensor, commonly referred to as the attention map.

We denote this tensor as A. The matrix multiplication of A with V updates

the element-representations in the compound based on the importance of each

element.

Each of the four attention heads independently performs self-attention with
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their own Qh, Kh, Vh, and Zh tensors, where h denotes the head index for

h = 1, . . . , H. As a result, the network generates four different element

representations at each layer. The individual Zh tensors are concatenated across

the last dimension to make the Z tensor (as seen in Figure 8a). The Z tensor is

then passed into a linear FC network which combines the element

representations from each head. The output of this FC network is an updated

EDM′ (for each composition in the batch). This process of converting an EDM into

an updated EDM′ is referred to as a self-attention block. CrabNet repeats the

process of updating the EDM via the self-attention block three times (hence,

three layers) resulting in the final updated representations, denoted EDM′′. This

concludes the Transformer encoder module.

Once the Transformer encoder has updated the element representations, each

EDM′′ passes through a fully-connected residual network hidden with layer

dimensions of noderes. The residual network then transforms the EDMs into the

shape (nelements, nelements, 3). We define these final three vectors as the

element-proto-contributions p′, element-uncertainties u′, and element-logits (see

Figure 8a). The element scaling factor s is obtained by taking the sigmoid (σ)

of the element-logits. The element-contributions are then obtained by

multiplying the element-proto-contributions p′ by their respective scaling factor

s. This results in element-contributions y′. Finally, the mean of the

element-contributions is taken and output as the predicted property value for
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each compound (see Figure 8b). Similarly, the mean of the element-uncertainties

is used in the aleatoric uncertainty prediction as described by Roost [9].

Training CrabNet

After the featurization of compositions into EDMs, the dataset loading and

batching is performed with the built-in Datasets and DataLoaders classes from

PyTorch. All target values are scaled to zero-centered mean and unit variance

for training and inference. The target scaling is then undone for performance

evaluation. Batch size during training is dynamically calculated using the

training set size for faster training, and limited to be within the range 27 to 212.

For inference, the batch size was fixed at 27.

Model weights are updated using the look-ahead [62] and Lamb optimizer [63]

with a learning rate that is cycled between 1× 10−4 and 6× 10−3 every 4

epochs to achieve consistent model convergence. A robust mean absolute error

(MAE) is used as the loss criterion for model performance [9]. The default

parameters generalize well when predicting most of the benchmark materials

properties. Although we expect that optimization of hyperparameters may

improve CrabNet’s results for individual materials properties, we believe it is

more important that materials scientists be able to use CrabNet with little or

no adjustments to the underlying code.
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It is a known phenomenon that random weight initialization can impact the

performance of the Transformer encoder architecture. Thus, to mitigate

variance in the performance metrics between different model runs, we trained

CrabNet using a fixed random seed of 42 for all training runs across all materials

properties. We do note that in the case of random model initialization, the

run-to-run variation between different trained models is a feature that could be

taken advantage of for determining the epistemic uncertainty. Unfortunately,

due to the sheer volume of materials properties investigated in this work and

the limited compute resources available, we have not investigated this thus far.

Finally, we note that all model training, evaluation and benchmarking (for

CrabNet, Roost, ElemNet, and RF) was conducted on a single workstation PC

equipped with an Intel i9-9900K CPU, 32 GB of DDR4 RAM, and two NVIDIA

RTX 2080 Ti GPUs with 11 GB VRAM per GPU. The deep learning models

were trained on the GPU, while the RF models were trained on the CPU.

Reference Models

Predictions for all materials properties were generated using code from the

Roost repository [9]. Minor adaptations were made to the code to allow for

automated training and benchmarking. Overall, Roost generates consistently

impressive results. Roost relies on a soft-attention mechanism used over a
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graph representation of the compound. This is in the same spirit of CrabNet,

and both seek to generate vector representations for the elements in the system

without using structure information. The residual network and robust loss

function from Roost were helpfully adopted into our architecture [9].

Predictions from ElemNet were generated using default parameters using code

from the repository [5]. Custom scripts were written to train and evaluate

ElemNet over all materials properties data. ElemNet consistently

under-performed compared to Roost and CrabNet. ElemNet failed to converge

for multiple properties resulting in NaN (not a number) values in the model

outputs. Examples of this occurring can be seen in the phonon peak and steels

yield datasets. Here, we would like to note that IRNet [6] could also be

benchmarked and compared in this study. However, due to the prohibitively

large computational requirements, we chose not to train and evaluate IRNet.

We do however note that the OQMD performance reported in the IRNet

manuscript [6] is consistently lower than both Roost and CrabNet for the same

properties. These following values show the reported performance of IRNet vs.

HotCrab, respectively, for formation enthalpy (0.048 eV vs. 0.031 eV), band gap

(0.047 eV vs. 0.048 eV), energy per atom (0.070 eV vs. 0.033 eV), and volume

per atom (0.394Å3 vs. 0.277Å3).

We generate baseline RF metrics using a random forest regression with the

Magpie CBFV as defined by Matminer [36]. This is done using the scikit-learn
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Python package. The RF models were trained with nestimators = 500 and default

parameters.

Data Availability

Data is provided in its cleaned and pre-split form to ensure reproducible results,

and with the hope that other researchers find it useful when benchmarking their

own approaches. The processed data that is used in this study can be found on

the GitHub repository [59] at the address

https://github.com/anthony-wang/CrabNet. All raw data as well as scripts

to process and split the datasets can be found in the GitHub repository [58] at

the address https://github.com/kaaiian/mse_datasets.

Code Availability

We provide detailed instructions for the installation, training, and general usage

of the open-source CrabNet on GitHub [59]. In addition, pre-trained network

weights for the CrabNet models reported in this work are available for

download [64].

The following files are available with this publication: (1) GitHub repository

with the CrabNet source code, figures, and example property predictions:
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https://github.com/anthony-wang/CrabNet, (2) pre-trained weights for the

CrabNet models reported in this work:

https://doi.org/10.5281/zenodo.4633866, and (3) Supplementary

Information.

Finally, we recommend that interested readers consult the paper “Machine

Learning for Materials Scientists: An introductory guide towards best

practices” [4] for a detailed treatment of best practices in machine learning and

justification for many of the unmentioned experimental design decisions used in

this work.
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Figure Legends

Figure 1: Benchmark results. MAE scores of Roost, CrabNet, one-hot en-
coded CrabNet (HotCrab), and ElemNet on the held-out test datasets, compared
with the random forest (RF) baseline for (a) the Matbench dataset and (b) the
Extended dataset. Cells are colored according to relative MAE performance
within each row (blue is better, and red is worse). A NaN (not a number) value
is reported for instances where the models failed to converge on a given mate-
rial property. Here we present model results trained using chemical information
(Roost, CrabNet), no chemical information (HotCrab, ElemNet), and a standard
CBFV (RF).

Figure 2: Visualization of self-attention in one compound. Displayed are
the four attention heads (a, b, c, and d) from the first layer of a CrabNet model
trained on mp_bulk_modulus and evaluated on the composition Al2O3. Each
row represents an element in the system. Each column represents an element
being attended to. Each element’s fractional amount is shown on the x-axis. The
values in the attention matrix are scores representing element-element interac-
tions for the compound. As an example, in head (a), Al0.4 and O0.6 are attending
strongly to each other, with attention scores of 1.00 between these two elements.

Figure 3: Visualization of average attention for one dataset. The average
attention from each of the four attention heads (a, b, c, d) from the first layer of a
CrabNet model trained on the aflow__Egap data is shown for systems containing
Si. The heatmap shows the average amount of attention that Si dedicates to the
other elements in Si-containing compounds. The darker the coloring, the more
strongly Si attends to that element. We can see that each attention head exhibits
its own behavior, and attends to different groups of elements. Interestingly, head
(a) attends to common n-type dopants and head (c) attends to many transition
metals, whereas heads (b) and (d) have unfamiliar element groupings.

35



Figure 4: Overall element contribution to property predictions. Average
contribution of all elements to bulk modulus predictions, computed from the
AFLOW_bulk_modulus dataset, (a) plotted on a periodic table and (b) plotted
as a distribution showing the per-element contribution amounts of Li and W,
respectively, in all the compounds. The darker colored elements in the periodic
table contribute more towards a compound’s bulk modulus value.

Figure 5: Element contribution to property prediction as a function
of composition. Model predictions over the SixO1–x system using a model
trained on the aflow__Egap data. The x-axis is the fractional amount of Si.
The y-axis shows the predicted band gap value at a given composition. The
blue and red lines are the individual element contributions to the prediction, as
predicted by CrabNet. The gray shading represents the aleatoric uncertainty for
each prediction.

Figure 6: EDM featurization scheme. Schematic illustration of the element-
derived matrix (EDM) representation for Al2O3, where B represents the batch,
dmodel is the element features, and nelements represents the number of elements.
Composition slices, when concatenated across batch dimension i, form an EDM
tensor which is then used as the model input to CrabNet. When a chemical
formula has fewer elements than rows in the EDM, the extra data rows are filled
with zeros.

Figure 7: Schematic of an attention block in the CrabNet architecture.
(a) The initial projection of the input EDM into the Q, K and V tensors. (b) The
scaled dot-product attention operation obtaining the self-attention matrix and
the updated Z element representation. The batch dimension is not shown in (b)
to improve legibility.
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Figure 8: Overall CrabNet architecture and prediction of material prop-
erty and uncertainty. (a) Schematic of the CrabNet architecture including
the input EDM, the self-attention layers (repeated N times), the updated and fi-
nal element representations (EDM′ and EDM′′), the residual network, and the final
model output. (b) The calculation steps for element-contributions and prediction
of the target and uncertainties. The p′ and u′ vectors represent the element-
proto-contributions and the element uncertainties, respectively. y′ represent the
element-contributions. The material property is obtained by taking the mean
of element-contributions (y′) for each compound. Similarly, the mean of the
element-uncertainties (u′) gives us the estimated aleatoric uncertainty.
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Table 1: Benchmark datasets. List of all 28 material properties used to bench-
mark the ML models in this work, together with the dataset size and the original
training, validation, and test set proportions. The materials properties listed in
the top and bottom halves are Matbench and Extended datasets, respectively.

Table 2: List of default model parameters of CrabNet.
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