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Abstract

Solid polymer electrolytes (SPEs) stand to revolutionize battery technology innovation by making batteries non-
flammable, flexible, and more sustainable. However, SPE breakthroughs are limited by the highly time and resource-
intensive nature of battery research. Even when suitable materials are discovered, optimizing the composition and
experimental conditions presents another critical barrier to SPE realization. In this work, a data-driven approach to
SPE development is presented. First, data is collected and analyzed from published literature, and then supplemented
with independent experimentation to complete the SPE dataset. Then, six different models (linear regression, lasso
regression, ridge regression, decision tree, random forest, and radial basis function SVM) were tested. The random
forest model is identified as the most suitable model with the greatest predictive capability, validated by independent
experimentation and by comparing predicted activation energies to those reported in literature using raw predictions
from the model. The random forest model is calculated to predict conductivity with a root-mean-square-error of 0.332
log(S/cm). By applying machine learning to incorporate important parameters of SPE synthesis, this study provides a
foundation for accelerated SPE innovation.
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1. Introduction

Batteries are a crucial component of all portable elec-
tronics; however, novel breakthroughs are barred by the
highly time and resource-intensive nature of battery re-
search, making it necessary to find a solution for more
efficient battery innovation. Current commercial batter-
ies most commonly use flammable liquid electrolytes;
however, solid polymer electrolytes (SPEs) have the po-
tential to replace liquid electrolytes to develop higher-
performing batteries with higher safety, design flexibil-
ity, and application capabilities [1, 2]. With increased
emphasis on SPEs in recent years [3, 4, 5], it becomes
crucial to develop an effective method for more efficient
SPE innovation.

Ionic conductivity is a critical indicator of SPE per-
formance. The composition and microstructure, which
are functions of a material’s processing history, will
drastically impact the ionic conductivity. Optimiz-
ing these factors requires lengthy research time and is
highly resource intensive. It is possible that machine
learning (ML) can be used to develop actionable rela-
tionships between composition, processing, microstruc-

ture and properties [6]. ML could also quicken the in-
novation process for SPEs, as the current timeline of
commercializing lithium ion batteries is very long [7].

Past research into using ML techniques for battery
innovation has been mixed. For example, Kauwe et
al. [7] showed that even with extensive experimen-
tal data, machine learning models attempting to pre-
dict device level performance, such as energy density
and capacity retention, are very difficult given the enor-
mous number of variables present in the anode, cath-
ode, and electrolyte components of the device. On the
other hand, predicting performance of individual mate-
rials within these device components has shown promis-
ing results. Ahmad et al. [8] screened over 12,000 in-
organic solids and found six solid electrolytes that were
predicted to be stable in the presence of dendrite initi-
ation. Ellis et al. [9] developed a ML model capable
of determining the concentrations of major components
in lithium-ion battery electrolytes with an approximate
accuracy of 3-5 weight percentage (wt.%). Jalem et al.
worked with multiple researchers to develop a method
of predicting the Li-ion migration barrier as a substitute
measurement of ionic conductivity and to find potential
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solid oxide electrolyte materials with low Li-ion hop-
ping energies (Ea) [10, 11, 12, 13]. Sendek et al. used
both computational screening [14] and ML methods
[15] capable of identifying Li-ion conductors more effi-
ciently and accurately than traditional screening meth-
ods to analyze 12,831 materials for promising candi-
dates for solid state electrolytes in lithium-ion batteries.
They found 21 candidates with high ionic conductiv-
ity, robust stability, and low cost. Fujimura et al. com-
bined DFT calculations with ML techniques and used
both theoretical and experimental datasets to predict the
conductivity of various compositions of LISICON-type
materials at 373 K [16]. The transport properties of
garnet-type metal oxides were then evaluated using sup-
port vector regression (SVR), revealing the chemical
composition–structure–ionic conductivity relationships
[17]. Others have investigated ionic transport mecha-
nisms [18, 19], predicted the voltage of electrode mate-
rials [20], and explored potential SPE materials [21, 22]
using ML as well.

While efforts have been made to approximate and
predict properties of electrolytes relating to ionic con-
ductivity, research into predicting the ionic conductiv-
ity itself using ML modelling techniques is scarce. In
contrast, this study provides an analysis of ML tech-
niques to predict the ionic conductivity of an SPE given
its composition and operating temperature by combin-
ing information available in the literature with carefully
designed experiments. Many ML techniques, and par-
ticularly deep learning approaches, require large dataset
sizes (greater than 103) that are difficult to procure for
many materials research projects [23, 24]. Furthermore,
the lengthy battery creation and testing procedures also
limits the amount of data available for ML algorithms to
train from. Thus, an efficient model designed to operate
in the limitation of scarce data could be enormously im-
pactful in accelerating materials science innovations.

Polyethylene oxide (PEO) is among the most popu-
larly researched SPE hosts due to its salt-solvation abil-
ities, stability, and commercial availability. PEO in the
amorphous phase affords segmental mobility for high
ionic conductivity, especially with bulky anion salts
such as Li(CF3SO2)2N [lithium bistrifluoromethane-
sulfonate imide, LiTSFI]. Experimental and analytical
methods have been employed to characterize and opti-
mize the kinetics, dynamics, and ionic transport prop-
erties of PEO-LiTSFI polymer electrolytes, revealing
the critical roles of crystalline domains, solvents, plas-
ticizers, and additives [25]. Enabling PEO-LiTSFI to
sufficiently function as an SPE material in solid-state
batteries requires higher ionic conductivities equal to
those of current commercial batteries containing liq-

uid electrolytes (approximately 10-3 S/cm), especially
around room temperature, motivating developments in
synthesis methods, modifications, and derivatives [26].
With the ever-expanding range of techniques to am-
plify PEO-LiTSFI performance, data-driven character-
ization methods are highly desirable to accelerate in-
novation and optimization for application in batteries.
A number of computational approaches have delved
into characterizing ionic transport mechanisms, report-
ing atomic-scale analysis of structure-dynamics prop-
erties and ion diffusion models [27, 28, 29]. Modular
synthesis, electrochemical characterization, and molec-
ular simulation were used to demonstrate conductiv-
ity as a function of available lithium cation solvation
sites [27, 28]. Quantum-chemistry-based molecular dy-
namics simulations have revealed ion transfer occurs
through simultaneous intersegmental hopping and PEO
chain movement [29].

A Bayesian optimization algorithm integrated with
learned coarse-grained molecular dynamics (CGMD)
has previously been used to gain a comprehensive de-
scription of the relationships between the lithium con-
ductivity and material properties at the molecular level
to improve components on current PEO-LiTFSI SPEs
[30]. Besides this, few have used ML as a tool in fur-
thering PEO-LiTFSI SPE innovation despite the large
amount of research studying the PEO-LiTFSI system,
which suggests opportunities to discover new methods
of SPE innovation via ML. It’s understood that PEO-
LiTFSI is not the highest performing electrolyte system,
however, it has been extensively researched and there-
fore is more favorable to use for ML. This study focuses
only on linear PEO chains for consistency within the
dataset and uses EO/Li ratio, a crucial parameter for
ion transport and SPE performance, as a precursor to
the study of other parameters (such as additives, pro-
cessing conditions, PEO structure, and type of lithium
salt) that determine the chemical and physical proper-
ties of an SPE. It also seeks to investigate relationships
between compositional and electrochemical properties
from a less computationally demanding machine learn-
ing perspective, applying and comparing a number of
different machine learning algorithms to predict PEO-
LiTSFI conductivity from experimentally reported val-
ues. We feed only two parameters into each regression
model: temperature and ethylene oxide (EO)/Li ratio.
We intentionally chose a simple system to demonstrate
the utility of ML for battery research and materials dis-
covery, and to provide a foundation for further research
into this field.
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2. Methods

2.1. Data Collection and Aggregation

Machine learning requires data that is representative
of the problem domain at hand. When extracting data
from literature, there may be a lack of parity in the pro-
vided information, which means it may be necessary to
supplement existing data in literature with those from
independent experimentation. This result was witnessed
first hand during data collection: the original intention
was to use only one dataset with information collected
purely from literature, but as more data was added, it
was shown that the accuracy of several regression mod-
els (namely the linear, lasso, and ridge regression mod-
els) began to decrease. To that end, we investigated
the influence of using different sets of data for differ-
ent informational models, and thus proposed three data
schemes:

Dataset Description

1

The first chronologically compiled
dataset; consisting of 76 data points
collected purely through literature
review [31, 32, 33, 34, 35, 36]

2

The second chronologically com-
piled dataset; a superset of all 76
data points from Dataset 1, with
an additional 70 data points col-
lected purely through literature re-
view [31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41]

3

The third chronologically compiled
dataset; a superset of all 146 data
points from Dataset 2, combined
with an additional 47 data points
collected from targeted experimen-
tation where attention was paid
to class balance and representation
[31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41]

Table 1: We make a distinction between Datasets 1 and 2 because
it was observed that the addition of more literature data in Dataset 2
resulted in less accurate predictions. This is further explained in the
paragraph preceding this table.

Almost 200 literature samples were analyzed by ex-
trapolating data from conductivity vs. temperature plots
for different EO/Li ratios. Collected data was stan-
dardized to the extent possible across all literature to

minimize inconsistencies between articles in measure-
ment and assembly methods. For example, for a fair
comparison and to eliminate other potentially contribut-
ing factors, it was ensured that all reported electrolytes
found in literature contained no additives. Addition-
ally, reported values were converted into standardized
units: LiTSFI wt% for EO/Li ratio using PEO molec-
ular weight, Celsius for temperature, and logarithmi-
cally scaled conductivity (S/cm). Other variables that
are likely present in different reports in literature, in-
cluding synthesis methods, testing equipment, and test-
ing methods, are not covered in this study but are ripe
for future work.

To collect data from independently conducted ex-
periments, SPEs were synthesized and measured.
LiTSFI (Lithium bis(trifluoromethanesulfonyl)imide
(LiN(SO2CF3)2, 99.5% ), supplied by MilliporeSigma,
was dissolved in acetonitrile (CH3CN), added to PEO
(MilliporeSigma, Mw ≈ 4 × 106 g/mol) according to the
specified LiTFSI wt.%, and stirred for 4 h at room tem-
perature. 1 mL of solution was dripped into a 1.6 cm
diameter circular mold for overnight evaporation in an
argon-filled glove box. Three SPEs of each LiTFSI
wt.% (15, 25, 35, 45, 55, and 65%) were created and
tested at 25, 30, 35, 45, 65◦C. To test conductivity,
SPEs were sandwiched between two stainless steel discs
and placed in a cell holder with metal contacts that ap-
plied constant pressure. AC impedance spectroscopy
was then tested with a Gamry Instruments Potentiostat
to measure the resistance of the electrolytes using an
AC amplitude of 10 mW between sweep frequencies of
100 kHz to 10 mHz. The ionic conductivity was calcu-
lated from the electrolyte resistance (Rb) obtained from
the intercept of the AC impedance spectra with the real
axis [42], using:

σ =
l

S Rb

where l is the electrolyte thickness, S is the surface area,
Rb is the bulk resistance (obtained from the x-axis inter-
cept of the corresponding impedance spectra), and σ is
the ionic conductivity.

2.2. Model Creation

Six different regression models were created using
Python (version 3.7): linear regression, lasso regression,
ridge regression, decision tree, random forest [43], and
a support vector machine (SVM) [44]. The SVM uses
a radial basis function kernel in which the distance be-
tween two feature vectors x1 and x2, each representing
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(a) Mean Absolute Error (b) Root Mean Square Error

Figure 1: Calculated error rates for each ML model, shown along the y-axis. The datasets are both color-coded and labeled along the x-axis. Both
the MAE and RMSE values are equal for linear regression, lasso regression, and ridge regression models due to rounding, and are not because of
plotting error.

particular data points, is given by

K(x1, x2) = exp
(
−
||x1 − x2||

2

2

)
A standard scaler was used on each dataset before be-

ing fitted to each model. Hyperparameter optimization
was performed on all models using a grid search with
fivefold cross-validation. Finally, each model was eval-
uated exactly once on the designated test dataset.

Packages such as numpy [45], pandas [46], and
sklearn (version 0.21.3) [47] were all imported and used
in the program. Each input dataset was split into train-
ing and testing sets through the train test split function
in sklearn with a test size of 20% and random state of
5. Because the random state remained unchanged, the
same training and test sets were also used on all of the
models. The LiTFSI wt.% predicted to have the high-
est conductivity was recorded as the ”peak conductivity
value” for each model.

2.3. Experimental Model Validation
The best performing ML model’s predictions were

validated by independently conducted experiments.
Three SPE compositions near the wt.% resulting in peak
conductivity were created in the lab according to ex-
perimental procedures. SPE’s of 28, 31, and 40 wt%
LiTFSI were created and tested at temperatures of 25,
35, 45, 55, and 65◦C. These results were then compared
with the predicted values of conductivity from the best
performing ML model.

2.4. Theoretical Model Validation

Further validation to the models previously devel-
oped was conducted using the Arrhenius equation to
calculate and compare predicted activation energies to
those in literature. The ML models allow predictions
that bypass lengthy temperature testing. Furthermore,
comparing activation energies allows comparisons of
predictions across multiple temperatures, whereas the
experimental validation only compares composition.
The Arrhenius equation was used to predict activation
energy, Ea (eV), using ML-predicted conductivities ac-
cording to:

Ea = −R
[

d(logσ)
d(1000/T )

]
where R is the universal gas constant (8.314 kJ/mol), σ
is the conductivity (S/cm), and T is the temperature in
Kelvin. Calculated Ea were compared with values re-
ported in literature.

3. Results and Discussion

Predictions from each model were compared using
mean absolute error (MAE) and root mean square error
(RMSE), as shown in Figure 1a and 1b, respectively.
Parity plots were created to visually represent the dif-
ferences between predicted and actual conductivity val-
ues for each model, in which both values were plotted
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against each other (Figure 2). A model with 100% accu-
racy would display a perfectly diagonal trendline, rep-
resented as a solid blue line in each graph. Predicted vs.
actual conductivities are shown in black dots for each
graph and the fitted linear trendline for these data points
are shown as dotted green lines. Parity plots offer a clear
depiction of model accuracy and are commonly used in
ML literature.

3.1. Dataset Comparison
By looking at Figure 1a and 1b, we see that the deci-

sion tree, random forest, and radial basis function SVM
all increase in accuracy with the addition of 70 more
data points in Dataset 2 compared with Dataset 1, which
was expected. The exact opposite was observed with the
linear, lasso, and ridge regression models, in that they
consistently predicted more accurately with Dataset 1
than Dataset 2. For example, the RMSE for the linear re-
gression is 0.623 log(S/cm) for Dataset 1 and increases
to 1.079 log(S/cm) when more literature data is added
with Dataset 2. This result was surprising at first: it is
expected that more data will increase model accuracy
by providing additional samples to train from.

Further investigation of these 70 literature points that
decreased the accuracy of those models revealed that
a particularly low conductivity was reported by M.
Marzantowicz [33], despite higher conductivities being
reported for similar LiTFSI wt% by other authors. This
outlier data can be seen by the extremely low ionic con-
ductivity value from 50 to 55 LiTFSI wt% in Figure 4,
as well as the scattering of activation energy in Figure 6.
The effects of this outlier on the models are further exac-
erbated because few researchers have synthesized elec-
trolytes containing such high amounts of LiTFSI. This
result demonstrates the necessity for researchers to re-
port detailed procedures for accurate literature compar-
ison. For example, literature seldom reports key factors
such as: stirring methods, oxygen and humidity levels
in the stirring environment, and drying environment.

The comparison of Datasets 1 and 2 also illuminates
the value of learning from data that has been carefully
curated, which can often only be done through indepen-
dent experiments. To this end, we now attempt to show
ML performance with Dataset 3, which additionally in-
cludes experimental data specific to this study. It was
hypothesized that the addition of independently con-
ducted experiments would decrease the existing noise
in Dataset 2. And, as seen in Figure 1a and 1b, Dataset
3 produced mixed results.

On one hand, the linear, lasso, and ridge regression
models all decreased in accuracy once again, which
makes it clear that these models are not properly suited

Figure 2: Parity plot of the random forest model fitted to Dataset 3.

for this type of problem. On the other hand, the addi-
tion of experimental data in Dataset 3 resulted in more
accurate predictions from the decision tree and random
forest models once again. For example, the random
forest model had an RMSE of 0.403 log(S/cm) using
Dataset 2, which decreases to 0.289 log(S/cm) using
Dataset 3. This tells us that these two models are cap-
turing important information in the feature space and
are more appropriate in this situation. The radial ba-
sis function SVM performed strangely using Dataset 3.
With Datasets 1 and 2, it performed the most accurate
out of all the models, however with Dataset 3, its errors
dramatically increase. From this, we conclude that the
SVM is not a robust model for this situation because it
failed to generalize well to additional data.

3.2. Model Comparison

Linear, lasso, and ridge regression all perform equally
with the worst accuracy out of all six models cre-
ated previously (MAE: 0.820 log(S/cm), RMSE: 1.180
log(S/cm)) when using Dataset 3, as shown in Figure
1a and 1b. The low predictive accuracy is not surpris-
ing because they are all simple models; however, sim-
ple models can be useful for extrapolation, as demon-
strated by Kauwe et al. [48]. In addition, linear re-
gression cannot capture the power dependency of con-
ductivity on the non-linearly related parameters of tem-
perature and composition. The decision tree model
has higher accuracy than the linear regression model
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Figure 3: A residual histogram depicting the random forest model’s
error. The magnitude of error is displayed along the x-axis and the
proportion of occurrences of error on the y-axis.

(MAE: 0.255 log(S/cm), RMSE: 0.332 log(S/cm)) us-
ing Dataset 3. The random forest model performs with
the highest accuracy (MAE: 0.229 log(S/cm), RMSE:
0.289 log(S/cm)), which translates to a percent er-
ror of 4.808%. For hyperparameter optimization, we
used the following hyperparameters in a grid search
for the random forest: max depth, min samples leaf,
min samples split, and n estimators. From looking at
Figure 2, the random forest model also shows the most
similar trendline to the optimal trendline, with a slope of
0.9737. This makes sense because a random forest re-
duces any outlier decision tree predictions that may ex-
ist. In comparison to literature accuracy, Fujimura [16]
reports an optimized predicted average error of 0.373,
which is within an order of magnitude of the MAE
(0.248) reported herein. To our knowledge, there are
not many other existing studies for direct comparison of
model accuracy in predicting the ionic conductivity of
SPEs.

Figure 3 shows a residual plot of the error from the
random forest model’s predictions. The normalized er-
ror has upper and lower bounds of 1 and -1, meaning
most of the data has an error near 0, with the greatest
error 1 order of magnitude of conductivity away. The
trained random forest model performs better than other
types of machine learning models created to predict the
characteristics of batteries currently reported.

When comparing the RF’s predictive performance
with that of the radial basis function SVM, figures 1a
and 1b show that the SVM performs with a MAE of
0.474 log(S/cm) and RMSE of 0.905 log(S/cm). As
mentioned before, even though the SVM performed the

best out of all the models using Datasets 1 and 2, it
dramatically increased in error using Dataset 3 which
tells us it is not a robust model capable of handling new
data well. Moreover, because the SVM had poor predic-
tion accuracy, we do not see evidence of a relationship
between salt composition, temperature, and conductiv-
ity captured by transforming the dimensionality of the
model space. Therefore, it is shown that the random
forest model is the best predictor of ionic conductivity.

3.3. Model Validation

Figure 4: Random forest model’s predictions of conductivity for
LiTFSI composition from 10% to 60% at room temperature (25◦C)
in black while the experimental conductivities are shown in blue. The
sudden decrease of conductivity seen at around 50 LiTFSI wt% is due
to an outlier in the dataset that dramatically skewed the model. This
is further discussed in section 3.1 paragraph 2.

After creating a working model with the random for-
est algorithm, predictions were validated with physical
experimentation, as shown in Figure 4. It is also seen
that the random forest model predicted a peak conduc-
tivity of 41-43 wt% LiTSFI. We believe that the random
forest model’s predictions show a step-like dependence
as a result of only sampling a few concentrations. If the
dataset included a greater range of LiTFSI wt% con-
centrations at smaller intervals, then the graph would
gradually smooth out.

These experimental validations found that the ran-
dom forest model’s predictions were fairly accurate
with a MAE of 0.253 log(S/cm) and a RMSE of 0.453
log(S/cm). The reason why these calculated MAE and
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Figure 5: Random forest predictions on temperature dependence of
conductivity for a 40 wt% LiTFSI SPE across different operating tem-
peratures

RMSE are slightly higher than those reported in the
model comparisons above is possibly due to the small
LiTSFI wt% range tested experimentally. Nonetheless,
these reported MAE and RMSE still demonstrate a rel-
atively low amount of error predicted by the random
forest model and provides further validation towards its
predictions.

Next, we compared Ea calculated from the random
forest model predictions with those reported in litera-
ture. A lower Ea directly correlates to faster Li+ ion dif-
fusion. In Figure 9, a linear trend is observed: conduc-
tivity increases as temperature increases (the value of
1000/T decreases), which is a relationship that has been
previously observed in literature, thus confirming the
ability of the random forest model to track theoretical
trends. It is assumed herein that the pre-exponential fac-
tor remains constant because the electrolyte constituents
remain unchanged. The pre-exponential factor does not
vary based on the ratio of constituents (LiTSFI wt%).

Lower Ea means easier ionic transportation and
higher ionic conductivity. Figure 10 shows that the ran-
dom forest model does in fact predict this inverse rela-
tionship between Ea and conductivity. When compar-
ing the predicted values of Ea from Figure 6 with those
that are reported in literature, Chen [49] and Zhao [50]
report Ea of 77.56 and 75.5 kJ/mol for a PEO-LiTFSI
SPE of 18 wt% LiTFSI, respectively. The random for-
est model predicts a similar value of 71.53 kJ/mol at
15 wt% LiTFSI, demonstrating high Ea prediction ac-

Figure 6: Correlation between the random forest model’s predicted
values for activation energy, Ea, and conductivity at 25◦C. As dis-
cussed in section 3.1 paragraph 2, the dramatic decrease in conductiv-
ity and consequently, increase in Ea, is due to an outlier found in the
dataset.

curacy. This can be harnessed to uncover Ea in an ac-
celerated manner for uncharacterized SPE materials.

4. Conclusion

This study presents an investigation in SPE material
development by comparing various ML methods for ac-
curacy and relevance to SPE composition and tempera-
ture in order to determine an ideal model.

After analysis, it was found that a dataset combining
data from both literature and independently conducted
experiments (Dataset 3) results in the most accurate pre-
dictions from the decision tree and random forest mod-
els. Independently controlled experiments are demon-
strated to enable key standardization for accurate data
inputs and fill in gaps for conductivity data from com-
positions that were not accounted for in literature. Over-
all, using a combination of data from experiments and
literature review is shown to be an effective approach for
high-accuracy prediction of SPE conductivity by com-
position.

Furthermore, this study demonstrates that the ad-
dition of data without homogeneous parameters can
be detrimental for accurate ML model predictions,
as varied control parameters muddle trend prediction
(an apples-to-apples comparison is necessary). It was
seen that including more data from a purely literature
(Dataset 2) made predictions less accurate for the de-
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cision and random forest models. These results high-
light a crucial future direction for battery researchers:
experimental parameters and reporting procedures must
be standardized to provide both meaningful independent
results as well as aggregable information to help stabi-
lize models, enabling accelerated collaboration between
materials and computational researchers.

The random forest model was found to be the best
predictive model compared with all other tested mod-
els: linear regression, lasso regression, ridge regression,
decision tree, and the radial basis function SVM. The
SVM developed was seen to be less accurate than the
random forest model. This shows that while transform-
ing the model through selection of a kernel function
can improve its accuracy to some extent, SPE prediction
specifically benefited most from a random forest model.
The low MAE and RMSE are significantly better than
previously reported studies.

The LiTFSI wt% that resulted in the highest conduc-
tivity was found to be between 41% and 43%, which
was validated by independently conducted experiments.
Further validation using the Arrhenius Equation to cal-
culate Ea for different compositions of SPEs found that
the random forest model predicted similar Ea as those
reported in literature and predicted similar trends seen
between conductivity and temperature.

This study was able to achieve high resolution and
predictive abilities that normally would not have been
possible due to material, time, and human error con-
straints. These results provide a foundation in a method
for researchers to advance battery innovation and have
the potential for many applications to related materials
research in batteries.

This study builds on a growing body of evidence us-
ing materials informatics for materials development to
incorporate aspects of solid electrolyte synthesis that re-
searchers have not thoroughly investigated, such as the
effects of additives, stirring time, stirring speed, stirring
method, drying temperature, drying environment. Op-
timizing PEO molecular weight is another parameter to
consider, as it was not explored in this study.

By studying the relationship of temperature and
lithium salt concentration for one type of electrolyte
(LiTFSI-PEO), this model can also be extended to in-
clude other types of commonly used salts and can per-
haps be used to predict conductivities for bisalt and
trisalt components as well. The model can also be ex-
panded to evaluate materials for other battery compo-
nents, including cathodes, anodes, electrode-electrolyte
interfaces, and potential additive components.

5. Data Availability

The code and data used in this article can be found at
https://github.com/mliu7051/SPE-Design.
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