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We give a description of invariants and attractors of the critical and subcritical Galton-Watson
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reduction). Under a regularity condition, the class of invariant measures consists of the critical
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with exponent R = (1 — qo)~ /.
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1. Introduction and motivation

The study of random trees invariant with respect to combinatorial pruning (erasure) from
leaves down to the root emerges in attempts to understand symmetries of natural trees
observed in fields as diverse as hydrology, phylogenetics, or computer science. In addition,
it provides a unifying framework for analysis of coalescence and annihilation dynamical
models, including the celebrated Kingman’s coalescent, and self-similar stochastic pro-
cesses on the real line; see a recent survey [13] for details. A special place in the invariance
studies is occupied by the family of Galton-Watson trees, whose transparent generation
mechanism makes it a convenient testbed for general theories and approaches. A Galton-
Watson tree describes the trajectory of the Galton-Watson branching process [1] with
a single progenitor and offspring distribution {¢z}, ¥ = 0,1,.... We write GW(qx) for
1
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2 Y. Kovchegov and I. Zaliapin

the probability measure that corresponds to this random tree. A tree is called critical if
the expected progeny of a single member equals unity: Y ;- ; kgy = 1. Similarly, a tree
is subcritical if "7~ | kg < 1. In this paper we analyze the invariance and attraction
properties of critical and subcritical Galton-Watson trees under the operation of combi-
natorial Horton pruning — cutting tree leaves and their parental edges followed by series
reduction (removing vertices of degree 2). The Horton pruning (formally introduced in
Sect. 2.2 and illustrated in Fig. 3) is a discrete, combinatorial analog of the continuous
erasure or trimming studied by Neveu [16], Neveu and Pitman [17, 18], Le Jan [14], Evans
[6], and Evans, Pitman and Winter [7].

1.1. Invariance

Combinatorial prune invariance of critical and subcritical Galton-Watson trees was first
examined by Burd et al. [2], under the assumption of a finite second moment for the
offspring distribution, Zzozl k2q;. < oo. These authors have shown that the only invariant
measure in this class corresponds to the critical binary Galton-Watson tree, gg = g2 = %
[2, Thm. 3.9]. Here we substantially relax the regularity constraint on the offspring
distribution; see Assumption 1 and Lem. 5 in Sect. 3.2. This reveals an abundance of
prune-invariant measures with infinite second moment. Theorem 2 describes all such
measures among the critical and subcritical Galton-Watson trees that satisfy Assumption
1. This infinite family of Invariant Galton- Watson (IGW) measures can be characterized
by a single parameter — the probability gy € [1/2,1) of having no offsprings. An individual
distribution from this family is denoted by ZGW)(qp); it is a critical distribution with the
offspring generating function

Qz) = quzk =z+qo(l— z)l/qo.

k=0

The case o = 1/2 with Q(z) = (1 + 22)/2 corresponds to the critical binary Galton-
Watson tree ZGW(1/2) = GW(qo = g2 =1/2). Every invariant Galton-Watson measure
TZGW(qo) with gy € (%, 1) corresponds to an unbounded offspring distribution of Zipf
type with infinite second moment:

Qe ~ Ck~0H1/0) a9 k- .

1.2. Attraction

Burd et al. [2, Thm. 3.11] have shown that any critical Galton-Watson tree with a
bounded offspring number (there exists b such that ¢ = 0 for all k > b) converges to
the critical binary Galton-Watson tree under iterative Horton pruning, conditioned on
surviving under the pruning. Our Thm. 3 shows that the collection of ZGW(qo) measures
for go € [1/2,1) and a point measure GW(qo =1) are the only possible attractors of critical
and subcritical Galton-Watson measures that satisfy Assumption 1, with respect to the
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Figure 1: Tokunaga parameters a (blue), ¢ (red) and Horton exponent R (black) in
invariant Galton-Watson trees ZGW(qq) for qo € [0.5,0.99].

iterative Horton pruning. Specifically, all subcritical measures converge to GW(qo = 1),
and critical measures converge to ZGW(qo). The domain of attraction of ZGW(q) for
any qo € [1/2,1) is characterized by the tail behavior of the offspring distribution {g}
of the initial Galton-Watson measure. In particular, Cor. 2 implies that every critical
measure with Zipf tail g ~ Ck~(+1/9) for ¢ € [1/2,1) and C > 0 converges to ZGW(q).
The subcritical attractor GW(go=1) is the limiting point of the IGW family for go = 1
with generating function Q(z) = z + (1 — z) = 1. This distribution, however, is not
prune-invariant.

Our results expand the attraction domain of the critical binary Galton-Watson tree
ZGW(1/2) initially described by Burd et al. [2]. Specifically, Lem. 2 shows that any
critical offspring distribution that has an infinite second moment, satisfies Assumption 1,
and has a finite 2—e moment for all € > 0 belongs to the attraction domain of ZGW(1/2).
We give an example of such a measure with ¢x ~ %k_?’.

1.3. Toeplitz property

The results of Burd et al. [2] revealed an interesting characterization of the critical binary
Galton-Watson distribution in terms of its Tokunaga sequence. Recall that the Horton
pruning removes the leaf vertices and their parental edges from a finite tree 7', with
subsequent series reduction (removing degree-2 vertices). The Horton order of a tree T is
the minimal number of Horton prunings sufficient to eliminate T'. Informally, a branch of
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Horton order k is a contiguous part of a tree (a collection of vertices and their parental
edges in the initial tree) eliminated at k-th iteration of Horton pruning (see Figs. 3,4,5,6
for examples, and Sect. 2.2 for a formal definition). Each leaf (i.e., a leaf vertex with its
parental edge) is a branch of order 1. Branches of higher orders may consist of lineages of
vertices and their parental edges. The vertex farthest from the root is called the terminal
vertex of a branch. Applied literature often examines the statistics of mergers of branches
of distinct orders within a tree. Burd et al. [2] formalize this by considering the Tokunaga
coefficients T; ; [T, for i < j, equal to the number of instances when a branch of order i
joins a non-terminal vertex of the leftmost branch of order j closest to the root within
T, given that the tree order is greater than j. This definition is suitable for describing
a generic branch structure within a Galton-Watson tree, given its symmetric iterative
generation mechanism. It has been shown [2, Thm. 3.16] that the critical binary Galton-
Watson distribution GW(qo = g2 = 1/2) is characterized, among the bounded offspring
distributions, by the Toeplitz property:

E[Tm- [TH =T;_; for a positive Tokunaga sequence {Tj}r=12,... (1)

Specifically, the critical binary Galton-Watson distribution corresponds to T}, = 2¥~1. In
Lem. 10, we show that all the invariant measures ZGW(qo) satisfy the Toeplitz property.
In this analysis, we adopt an alternative, more general, definition of the Tokunaga co-
efficient T; ;, which (i) accounts for branching at the terminal vertices, and (ii) can be
applied to general (non Galton-Watson) trees. In our definition, the invariant measure
ZGW!(qo) corresponds to the Tokunaga sequence (Lem. 10)
Ty=c/) —c—1, Tp=ac', k=23,...
with (Fig. 1)
c=(1—-q)"' and a=(c—1)(c/D 1),

The critical binary Galton-Watson case with ¢y = 1/2 corresponds to ¢ = 2 and a = 1,
which reconstructs the Burd et al. [2] result T}, = 2¥~1. Moreover, using the Tokunaga se-
quence definition from Burd et al. [2], we obtain a particularly simple Tokunaga sequence
Tp=cfork=1,2,....

1.4. Horton law

A ubiquitous empirical observation in the analysis of dendritic structures is the Horton
law [9, 13, 20]. Informally, the law states that the numbers Ny [T] of branches of order k
in a large tree T decays geometrically:
Ni[T]
Nia[T]

for some Horton exponent R > 2. A formal definition of the Horton law for tree measures
is given in Sect. 2.5.
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(a) Original tree (b) Tree after series reduction

Figure 2: Series reduction: Example. Tree T before (a) and after (b) series reduction.

It has been shown by McConnell and Gupta [15] for a particular case of T = acF~!

with @ > 0, ¢ > 0, and generalized by the authors of this paper [11] to an arbitrary
Tokunaga sequence {T}}, that the Toeplitz property implies the Horton law. Lemma 10
shows that the invariant Galton-Watson measure ZGW(qp) for any qo € [1/2,1) obeys
the Horton law with the Horton exponent R = (1 — go)~*/% (Fig. 1).

2. Preliminaries

2.1. Galton-Watson tree measures

Consider the space 7T of finite unlabeled rooted reduced trees. A tree is called rooted if
one of its vertices, denoted by p, is selected as the tree root. The existence of root imposes
a parent-offspring relation between each pair of adjacent vertices: the one closest to the
root is called the parent, and the other the offspring. The space T includes the empty
tree ¢ comprised of a root vertex and no edges. The tree root is the only vertex that
does not have a parent. Let 7! denote a subspace of planted trees in T it contains ¢ and
all the trees in 7" with the root vertex having exactly one offspring (see Figs. 2,3). The
degree of the root equals the number of its offsprings. The degree of a non-root vertex
is the number of its offsprings plus one (to account for the parent). The number of the
offsprings at a vertex is called the vertex branching number. A tree from T is called
reduced is it has no vertices of degree 2.
For a given offspring distribution {qx}r=0,1,2,.., we let GW({qx}) denote the corre-
sponding Galton-Watson tree measure. We assume that each tree begins with a single
root vertex which produces a single offspring, so the resulting trees are in 7. In this
renowned Markov chain construction, each non-root vertex produces k offsprings with
o0

probability g, independently of other vertices. We assume > kqr < 1 and ¢; = 0 as we
k=0

need GW({q1}) to be a probability measure on 71 (the trees in 7 are required to be
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Figure 3: The Horton-Strahler orders: Example. Consecutive prunings R*(T), k =
0,1,...,4, of tree T. The order of tree is ord(T) = 4 since R*(T) = ¢. Different col-
ors depict branches of different orders: ord = 1 (black), ord = 2 (green), ord = 3 (blue),
and ord = 4 (red).

finite and reduced). The assumption of subcriticality or criticality implies gy > %, since

o0 oo
1> kg >2) g =2(1— qo)-
k=2 -

k=2

2.2. Horton pruning, orders

Recall that series reduction on a tree T removes each vertex of degree 2 and merges its
two adjacent edges into one (Fig. 2).

Definition 1 (Horton pruning). Horton pruning R : T — T is an onto function
whose value R(T') for a tree T # ¢ is obtained by removing the leaves and their parental
edges from T, followed by series reduction. We also set R(¢p) = ¢.

The trajectory of each tree T' under R(:) is uniquely determined and finite:

T=RYT) — RYT) = - = R¥T) = ¢, (2)

with the empty tree ¢ as the (only) fixed point. The pre-image R~*(T') of any non-empty
tree T consists of an infinite collection of trees.

It is natural to think of the distance to ¢ under the Horton pruning map and introduce
the respective notion of tree order [9, 13, 20, 21].

imsart-bj ver. 2014/10/16 file: GWinvarianceBernoulliRevised.tex date: February 1, 2021



Invariance and attraction properties of Galton-Watson trees 7

Q ol
1
- 2
\ 5  Branch b of order 2
1o X
10 1
Terminal vertex of branch b 4
Initial vertex of branch & o1
1o Descendant subtree 7,
4 at vertex a is shown in black
04

Figure 4: Illustration of the Horton-Strahler terminology (Def. 3). A branch b of oder 2 is
shown in blue in the left part of the figure. The branch consists of three vertices of order
2 and their parental edges. The terminal vertex of branch b is shown by green circle. The
descendant subtree T, at vertex a is shown in black in the right part of the figure. The
Horton-Strahler orders are shown next to the vertices.

Definition 2 (Horton-Strahler order). The Horton-Strahler order ord(T) € Z4 of a
tree T € T is defined as the minimal number of Horton prunings necessary to eliminate
the tree:

ord(T) =min {k >0 : R¥T) = ¢}.

In particular, the order of the empty tree is ord(¢) = 0, because R°(¢) = ¢. This

definition is illustrated in Fig. 3 for a tree T with ord(7T") = 4. In this paper we consider
[e.e]

probability measures GW({qx}) on T that satisfy > kg < 1 and ¢; = 0 and assign

k=0
probability zero to the empty tree ¢.

Definition 3 (Horton-Strahler terminology). We introduce the following defini-
tions related to the Horton-Strahler order of a tree (see Fig. 4):

1. (Descendant subtree at a vertex) For any non-root vertex v in T # ¢, a
descendant subtree T,, C T is the only planted subtree in T rooted at the parental
vertex parent(v) of v, and comprised by v and all its descendant vertices together
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8 Y. Kovchegov and I. Zaliapin

with their parental edges. Figure 4 shows in black color the descendant subtree T,
at verter a.

2. (Vertex order) For any vertex v € T \ {p} we set ord(v) = ord(T},). We also set
ord(p) = ord(T).

3. (Edge order) The parental edge of a non-root vertex has the same order as the
verter.

4. (Branch) A mazimal connected component consisting of vertices and edges of the
same order is called a branch. Figure 4 shows a branch b of order 2 (blue) that
consists of three vertices and their parental edges. Note that a tree T always has a
single branch of the mazimal order ord(T). In a stemless tree, the mazimal order
branch may consist of a single root vertex.

5. (Initial and terminal vertex of a branch) The branch vertex closest to the
root is called the initial vertex of the branch. The branch vertex farthest from the
root is called the terminal vertex of a branch. Figure 4 shows the terminal vertex
of branch b (blue) as a green circle.

The Horton-Strahler orders can be equivalently defined via hierarchical counting [9, 21,
3, 20, 19]. The first such definition beyond the binary case appeared in [2]. In this
approach, each leaf is assigned order 1. If an internal vertex p has m > 1 offspring with

orders 41,42, ..,4, and r = max {i1, 42, ..., %}, then
T it #{s: i,=r}=1,
ord(p) =
) {r +1 otherwise. (3)

The parental edge of a non-root vertex has the same order as the vertex. The Horton-
Strahler order of a tree T # ¢ is ord(T) = max ord(v), where the maximum is taken
ve

over all vertices in T'. This definition is most convenient for practical calculations, which
explains its popularity in the literature.

Figures 5,6 illustrate Horton-Strahler orders in trees with a constant branching num-
ber b (g0 + ¢ = 1) and with a bounded offspring distribution (g = 0 for k > b),
repsectively.

2.3. Horton self-similarity

Here we define self-similarity of a Galton-Watson measure with respect to the Horton
pruning R, which is the main operation on trees discussed in this work.

Definition 4 (Horton self-similarity). Consider a Galton-Watson measure p on T
(or T1) such that u(¢) = 0. Let v be the pushforward measure, v = R.(u), i.e.,

v(T) =poRNT) = pn(R™IT)).
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Figure 5: Examples of Horton-Strahler ordering in trees with constant branching number
b(gpo+aw=1).(@)b=2,(b)b=3, (c) b=25, (d) b =10. Each panel shows a tree of
order ord = 4. Edges of different orders are shown in different colors, as indicated in the
legend.

Measure p is called invariant with respect to the Horton pruning (Horton prune-invariant),
or Horton self-similar, if for any tree T € T (or T!) we have

v(T|T # ¢) = u(T). (4)
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Figure 6: Examples of Horton-Strahler ordering in trees with bounded offspring distri-
bution: ¢, = 0 for k > b. (a) b =5, (b) b = 6. Each panel shows a tree of order ord = 4.
Edges of different orders are shown in different colors, as indicated in the legend.

Definition 4 does not distinguish between prune-invariance and self-similarity. Such
equivalence is a particular property of Galton-Watson measures connected to their Markov
structure. In a general case, prune-invariance happens to be a weak property that allows
a multitude of obscure measures. A general prune-invariant measure on 7 has to satisfy
an additional property, called coordination, to be called self-similar. The Galton-Watson
measures always satisfy the coordination property; see (10). We refer to [13] for a com-
prehensive discussion and examples.

2.4. Tokunaga coefficients and Toeplitz property

This section introduces Tokunaga coefficients that describe mergers of branches of dif-
ferent orders in a random tree. Empirically, a Tokunaga coefficient T; ; is the average
number of branches of order ¢ that merge a branch of order j within a tree 7. The Marko-
vian generation process ensures that all branches of a given order j in a Galton-Watson
tree have the same probabilistic structure. Hence, one can follow Burd et al. [2] and
define T; ; as the mean number of order ¢ branches within a particular branch of order j,
for instance — the leftmost branch closest to the root. We introduce below a more general
definition, which is equivalent to that of Burd et al. [2] for Galton-Watson trees, and
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can extend to non Markovian branching processes. This set up will also be needed to
formulate the Horton law in Sect. 2.5.

Consider a measure z on T (or T1) such that u(¢) = 0. The Horton pruning partitions
the underlying tree space into exhaustive and mutually exclusive collection of subspaces
Hy, of trees of Horton-Strahler order k£ > 0 such that R(Hgi1) = Hg. Here Ho = {¢},
H1 consists of a single tree comprised of a root and a leaf connected to the root by
its parental edge, and all other subspaces H, k > 2, consist of an infinite number of

trees. Naturally, Hy \Hp = 0 if k # k', and |J Hp = T (or T1). Consider a set of
k>1

conditional probability measures {ug}r>0 each of which is defined on Hj. Specifically,

we set () =0 for any k such that p(H) =0 and

we(T) = p(T|T € Hy) (5)

otherwise. Letting m, = u(Hy), the measure p can be represented as a mixture of the
conditional measures:

n= Zm#k- (6)
k=1

Let Ny = Ni[T] be the number of branches of order k in a tree T. For given integers
1 <i < j,let n;; = n;;[T] denote the total number of vertices of order i that have
parent of order j in a tree T € T (or T1). We write E[-] for the expectation with respect
to px of Eq. (5).

We define the average Horton numbers for subspace Hy as
Ni[K]=Ek[Ny], 1<k<K, K2>1.
For subspace H, let

_ Ex[niy] _ Exlnigl
Wl = By T AT

1<i<j<K, (7)

be the total Tokunaga merger statistics that is used to define the Tokunaga coefficients
Tij[K] = ti[K] = 20i;-1 (1<i<j). (8)

Remark 1. Recall that a branch of order j is formed by a merger of two or more
branches of order j — 1. We designate two arbitrarily selected branches of order j — 1
that descend from the terminal vertex of a branch of order j as principle branches. The
existence of such two branches follows from the definition of the Horton order (Def. 2).
The other branches (if any) of order i < j — 1 that descend from any vertex, including
the terminal vertex, in a branch of order j are said to be side branches of Tokunaga
index {i,j}. The Tokunaga coefficients T; ;K| are intended to count the number of side
branches of Tokunaga index {i,j}, which explains the need to subtract 20; j_1 in (8).
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12 Y. Kovchegov and I. Zaliapin

Finally, let nf; denote the total number of vertices of order i whose parent vertices

.
are non-terminal vertices of order j. Then,

R eI (9)

are called the reqular Tokunaga coefficients.

Remark 2. The quantities Ny [K], t; j|K], T; j[K], and TY;[K] depend on the measure
w. We skip this dependence in our notations.

We observe that for a subcritical or critical Galton-Watson measure p we have the fol-
lowing coordination property [13]:

T;;:=T;;[K] foral K>2and1<i<j<K. (10)

This is explained as follows. Consider all nodes in generation d € N (which may be an
empty set) in a critical or subcritical Galton-Watson tree T'. The descendant subtrees T,
(see Def. 3) for v in generation d are independently distributed according to u. Sampling
of T}, can be split into two steps, first selecting its order with probability distribution 7,
next sampling the tree of order j according to the probability measure ;. The branching
history F4 up to generation d together with the orders of the descendant subtrees T, with
v in generation d completely determines (i) the order of the tree T', and (ii) whether or
not v is the initial vertex (Def. 3) of the corresponding branch of order ord(T),). At the
same time, conditioned on Fy; and the orders ord(T,) for v in generation d, each T, is
independently distributed according to u;, where ord(T},) = j.

The respective Tokunaga matrix Tg is a K x K matrix

0 T172 T173 e TLK

0 0 T2,3 TZ,K
Tx=|0 0 . ' : ,

: : - 0 Txax

0 0 0 0

which coincides with the restriction of any larger-order Tokunaga matrix Ty, M > K,
to the first K x K entries.

Definition 5 (Toeplitz property). A Galton-Watson measure p is said to satisfy the
Toeplitz property if there exists a sequence Ty, > 0, k=1,2,... such that

T =Tj_s. (11)

The elements of the sequences Ty are also referred to as Tokunaga coefficients, which
does not create confusion with T; ;.
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For a Galton-Watson measure that satisfies the Toeplitz property, the corresponding
Tokunaga matrices T are Toeplitz:

0Ty T ... Tx_y
0 0 T ... Tk_os
Tx=|0 0 . ° :
s 00T
00 ... 0 0

The following statement has been proven in [13] for (not necessarily Galton-Watson)
binary trees; the argument applies verbatim to general Galton-Watson trees.

Proposition 1 (Prune-invariance implies Toeplitz). Suppose a Galton-Watson
measure p is Horton prune-invariant, then it satisfies the Toeplitz property (Def. 5).

Definition 6 (Tokunaga self-similarity). A Galton- Watson measure p on T is called
Tokunaga self-similar with parameters (a,c) if it satisfies the Toeplitz property and its
Tokunaga sequence {T;};=12, .. 1s expressed as

Tj=ad™t, j>1 (12)

for some constants a > 0 and ¢ > 0.

2.5. Horton law

Consider a measure p on 7 (or 71) and its conditional measures ug, each defined on
subspace Hyx C T of trees of Horton-Strahler order K > 1 as discussed in Sect. 2.4. We

write T < pux for a random tree T drawn from a subspace H (u(Hk) > 0) according
to measure pg.

Definition 7 (Strong Horton law for mean branch numbers). We say that a
probability measure p on T (or 7") satisfies a strong Horton law for mean branch numbers
if there exists such a positive (constant) Horton exponent R > 2 that for any k > 1,

Ni[K]

= R (13)

Here, the adjective strong refers to the type of geometric convergence; see [13] for details.
The work [11] establishes the strong Horton law in a binary tree that satisfies the
Toeplitz property (Def. 5). We observe that the results of [11] hold beyond the binary

'Note that in [2], the Tokunaga sequence was set to satisfy TP, = 17, [K] = Tj—;. That is, the
offsprings adjacent to the terminal vertex of order j branch were not counted.
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14 Y. Kovchegov and I. Zaliapin

case, as the derivation steps are identical. Specifically, assume the Toeplitz property with
a Tokunaga sequence {7} and consider a sequence t(k) defined by

t(0)=—1, and ¢t(k) =T+ 201y for k> 1.

Observe that t; ; = t; j[K] = t(j — ¢). The generating function of (k) is

t(z) = Z Ptk) = —14+22+ szTk.
k=0

k=1

Theorem 1 (Strong Horton law in a mean self-similar tree, [11]). Suppose p
is a Galton-Watson measure on T that satisfies the Toeplitz property with Tokunaga
sequence {T;};=12. such that

yeen

lim sup le/j < 00. (14)
Jj—o0
Then the strong Horton law for mean branch numbers (Def. 7) holds with the Horton

exponent R = 1/wq, where wy is the only real zero of the generating function t(z) in the
interval (O7 %} Moreover,

lim (NVi[K]R™ %) = const. > 0. (15)
K—oo
Conwversely, if limsup le/j = 00, then the limit Klim %’;{g}] does not exist at least for
—00

j—o0
some k.

3. Main results

3.1. Distribution of Horton orders and related functions

Consider a collection of critical or subcritical Galton-Watson measures GW({qx}) with

g1 =0on Tl Let Q(2) = 3 2™q, for z € [0,1] be the generating function of {qx}.
m=0

J
For T 4 GW({qr}) we denote m; := P(ord(T) = j). Finally, let 09 = 0 and 0 := > 7

i=1
(j=1).

Lemma 1 (Order distribution). Consider a Galton-Watson measure GW({qi}) with

q1 = 0. Assume criticality or subcriticality, i.e., kqr < 1. Then,
k=0
Qoj-1) — Qoj—2) —mj1Q'(0j-2) .
T = and ;= > 2). 16
1=4qo j 1_ Q/(qu) (J = ) ( )
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Invariance and attraction properties of Galton-Watson trees 15

Proof. The probability of tree T with a single leaf is 71 = P(ord(T) = 1) = qo.

Next we find the Horton-Strahler order of the offspring of the root using the rule (3).
The probability that the offspring of the root is a terminal vertex of a branch of order 7,
j>2,is

Z dm Z <TZ)7T§—10;1—22 =Q(0j-1) — Q(0j—2) — mj—1Q'(0-2).

m
m=2 (=2

Here we take a sum over all possible numbers m > 2 of offsprings, and calculate the
probability that ¢ > 2 of the offsprings have order j — 1, while the other m — ¢ offsprings
have orders less than j — 1.

Similarly, the probability of the offspring of the root to be a regular (non-terminal)
vertex of order j equals

oo
D ammmiol T =mQ (05). (17)
m=2
Therefore,
m; =m;Q (05-1) + (Q(Uj—l) —Q(0j—2) — Wj—lQ/(Uj—Q))a
which implies (16). O

Corollary 1. Consider a Galton-Watson measure GW({qx}) with 1 = 0. Assume crit-

o0
icality or subcriticality, i.e., Y kqw, < 1. Then, o; can be expressed via an iterated

function (Fig. 7) =
gj=50...05(0) for j>1, (18)
J times
where ,
S(z) = M (19)

1-Q'(2)
Proof. Equation (16) implies
;= [Qoj-1) + Q' (7j-1)] — [Q(oj-2) + Tj-1Q'(0j-2)] for j>2.  (20)

Hence, summing up the terms in (20), and substituting m; = ¢, we obtain

i
0j =Y mi=Q(0; 1) +mQ (0,-1) = Qloj 1) + (05 — 05-1)Q (05-1)
=1

for all j > 1. Thus, o; = Q(Uj’ll)izgfj(;,l?ll)(a"’l) = S(oj-1). O
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16 Y. Kovchegov and I. Zaliapin

S(z)
T
9
T
0 .
0 S 0, 1 z

Figure 7: Illustration to Cor. 1. Function S(z) is shown in red. Equation (18) implies that
the values of o; are obtained by iterative application of S(t), starting with ogp = 0. These
iterations are illustrated by blue lines with arrows. Vertical increments correspond to the
values of ;.

Set S(1) = xl_lgl_ %@;a)@c) Then, by L’Hopital’s rule, S(1) = xlg{l_ wg/,i((f)) = 1. Next,

for the progeny variable X 4 {qi}, consider the following important function
gl@) =Y E[(X —m—1)y]a™ =37 > (k—m—1ga™, (21)
m=0 m=0 k=m+1

where x4y = max{z, 0}.

Proposition 2. For a critical (i.e., Q' (1) = 1) Galton-Watson process GW({qx}) with
q1 =0, we have

Q(z) —z = (1-2)%g(x)
for g(x) as defined in (21).
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Invariance and attraction properties of Galton-Watson trees 17

Proof. Since Y kg =Q'(1) =1,
k=2

[e'e] e’} [e'e] 1—1}]971
Q(x)—$ZQO+ZQk$k —quU—qu =(1-2) [QO—Z%_%]
k=2 k=2

P 1—-=z
[e%S) [e%S) [e%S) 1 SL’k_l [e%S) k—1
=1-2) D k=D ar— > T 9012(1—95)2% k—1-) af
k=2 k=2 k=2 k=2 i=1
oo k—1 ‘ ) k—1 j—1
:(l—x)qu (1—2a?) —(1—96)22% me
k=2 j=1 k=2  j=1m=0
0o k—2 00 0o
:(1—10)22% (k—m—l):cm—(l—x)zz Z (k—m— g™
k=2 m=0 m=0 k=m-+2
= (1-x)%(z) (22)
O

Let L denote the limit lir{l (%) whenever the limit exists.
z—1—

Lemma 2. For the progeny variable X g {qr} and g(z) as defined in (21), if

E[X*™]=> k" qp <oo Ve>0, (23)
k=0

then L = lim (M) =0.

21— \ —In(1-2)
Proof. Suppose (23) holds, then by the Dominated Convergence Theorem, as m — oo,
(m+1)' " E[(X —m—1)4] <E[X" (X -m—1)3] <E[X> “Lixsmi1y] — 0. (24)

Accordingly, the m-th coefficient E[(X —m —1)] in the power series representation (21)

of g(x) is o (m*™t). Next, for € > 0, the m-th coefficient of the power series expansion of
(1—a)cis

m—1
I1 (e+14) .
=0 _Hetm) m 1 m — 0o (25)
m! T'(e)m! I'(e)’ ’
Together, (24) and (25) imply
. In g(x) . In g(x)
1 — L <1 1 — 27 < N .
;Iri}lelp In(1 —x)~¢ — < lzn_lfllip —In(1—2) — ¢ €>0
Hence, limsup _ﬂ%ﬁ)) = 0, while obviously lim inf % > 0. O
z—1— x z—1— n x
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18 Y. Kovchegov and I. Zaliapin
3.2. Regularity condition
Many of the results of the paper are proved under the following assumption.

Assumption 1. The following limit exists:
(26)

Observe that since S(z) — x = 162—(2)’?;)’ Assumption 1 is equivalent to the existence of
the limit
L QW) -
im
- (-0 (1- Q@)

—1-5(1). (27)

Lemma 3. Consider a critical Galton-Watson measure GW({q}) with ¢1 = 0. If As-
sumption 1 is satisfied, then for g(x) defined in (21) the following limit exists

xﬁi<_mu_@>L’ (28)

and S'(1) = :=£.

Proof. By the L’Hopital’s rule,

L In g(x) B . Ing(x) +2In(1l—z) _ In(Q(z) —z)
Liml—lgl— (—ln(l —x)> a 279;1—1{{1— In(1 — z) B 2—901_1{{1_ In(1 —z)

o 4y (Q(x) —33) ] (1—:5)(1 —Q’(x)) ) 1—=2
=2— lim €27 "/ _9_ lim =2— lim ——
=2 x1~>17 % ln(l — x) 2 zl~>17 Q({L‘) - 2 :1:1~>17 S({I;) —x

1
=2 — m

Remark 3. Notice that due to the conditions for the L’Hopital’s rule, there are cases
when the limit in (28) exists while the limit in (26) does not exists. Indeed, the L’Hopital’s

rule in (28) holds under the condition that the limit lir{l W
z—1— g M-

to infinity. This gap will be apparent in the context of Lem. g and Thm. 2.

exists, or diverges
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Invariance and attraction properties of Galton-Watson trees 19

Remark 4. Assumption 1 is satisfied with S'(1) = 0 for a subcritical Galton-Watson
process GW({qx}) with ¢ = 0. Indeed, we have

Q@) —x — l—gkt >
S S = (e ) ey ) =t a0 - ) (k- Va

k=2
=1-> kg =1-Q'(1) >0
k=2

and, therefore,
1y : Qz) —x L 1=
SW=1-1m s a—ow ' ioem " (20)

Lemma 4. Consider a critical Galton-Watson measure GW({qr}) with g1 = 0. If the
second moment of the offspring distribution is finite,

E[X?] =) K < oo,
k=0
then Assumption 1 is satisfied with S'(1) = % and L = lim (%) =0.
2 Tl In(1—=x)

Proof. By L’Hopital’s rule,

Q@ -z 1 1-Q() Q')
e e P e e
Thus,
v Q@ -z 1oz \ Q1) 1
S(”‘l‘zlir?((1—x>21—czf<x>>‘1 207(1) ~ 2
andbyLem.g,L:2—%:0. O

The next statement suggests a sufficient condition for Assumption 1.

Lemma 5 (Regularity condition). Consider a critical Galton- Watson process GW({qi})
o0

with g1 = 0 and infinite second moment, i.e., > k*q, = co. Suppose that for the progeny
k=0

variable X {qr} the following limit exists:

o0
kD am
m=k

A= lim ——% — — lim

o0 N (30)
m=k

Then Assumption 1 is satisfied with S'(1) = A.
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20 Y. Kovchegov and I. Zaliapin

Proof. For z € (0,1),

1—x 1—=z

Q) _ QW= _ %0, Lo S S gk = 3o,
m=0

where

b= mMgm. (31)

m=k+2

Recall that (22) shows that g(z) = > agz”, where

k=0
ar= > (m—k—1)gm=bp—cx with cr=k+1) > u  (32)
k42 m=k+2

and by, as defined in (31). Equations (31) and (32) yield

S apz® 3 cpat
Q(l‘) - — (1 — $)g($) — k=0 —1_ k=0 (33)
— . / _ ! oo (oo} :
T-00-QW)  1-Q@ &, Sy
k=0 k=0
The infinite second moment condition implies lim " bgz* = co and lim Y cpa® =
z—=1— "0 x—=1— ")

0o. As (30) postulates that klim (ck/bx) = A, for a given small value of € > 0, there
— 00

exists K € N such that |¢;/br — A| <€, Vk > K. Thus

o0 o0
3 epak > cpat
. . = . . =K
hminfkogi = hm%nf% >A—e¢
z—1— res1—
Z bkxk E bkl‘k
k=0 k=K
and

[ee] [e.e]

3 cpa® 3 cpa
. k= . k=K
lim sup 037 = lim sup ——; <A+e
r—1— Z bkxk rz—1— Z bkl‘k

k=0 k=K

Consequently,
o0
Ckik
T = R
r—1— k
k=0
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Invariance and attraction properties of Galton-Watson trees 21

Hence, the limit in (27) exists, and (33) implies

i Ckl'k
S'(1)y=1- 1 Q) — = lim *=° =A
a=1- (1 — m)(l - Ql(m» el io: bk
k=0

Corollary 2 (Zipf distribution). Consider a critical Galton- Watson process GW({qi})
with g1 = 0 and offspring distribution {qi} of Zipf type:

ar ~ CEk=@tY  with o e (1,2] and C > 0. (34)

Then Assumption 1 is satisfied,

S'(1) = a; ! and L= xl_lgl_ <_Lri(gl(x_)x)> =2—q. (35)

Proof. Suppose g = Ck~(@+1 (1 + 0(1)). Then,

0 fl-a 0 o
mZ::kmqm = Ca — (1+0(1)) and mZ::kqm = 07(1 +0(1)).

Hence, the limit A defined in (30) exists and is equal to

oo
k> am
A= lim —2=F S 1
oo
k—o0 Z MG «
m=k

Consequently, Lem. 5 implies Assumption 1 and S'(1) = 2=+, Finally, by Lem. 3 we
have 1
L=2———"-=2-0.
1-5(1) “

O

Ezample 1 (Infinite second moment, L = 0). Consider a critical Galton-Watson
process GW({qr}) with qo = 2, ¢1 =0, and
4/3
=" k> 2).
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22 Y. Kovchegov and I. Zaliapin

Observe that the offspring distribution qi is of Zipf type (34) with a = 2. This offspring
distribution has infinite second moment. Here,

2/3
Q) —z=(1-2)?g(x) with g)=-Ln(1-2),
x
and therefore, the limit in (27) exists and is equal to
lim Qz) —= — lim ln(l——x)l — 1

o=1- (1-2)(1-Q'(z)) «=1-2In(l—-a)+1 2

x

Hence, Assumption 1 is satisfied with S'(1) =1— % = 1. On the other hand,

L= lim (1“9<x)> — lim (m(—ln(l—fvﬂ) o,

z—1- \ —In(1 — z) 1 —In(1 —x)
which is consistent with Lem. 2. We also see that S'(1) = :=£ = <=L giving an ezample

for statements in Lem. 3 and Cor. 2.

3.3. Tokunaga coefficients in recursive form

Here we derive a recursive expression for the Tokunaga coefficients of a Galton-Watson
measure in the form T; ; = m; f(0—2, mj—1, 7;). The recursive nature of this representation
is connected to the recursive expression (16) for 7; of Lem. 1.

Lemma 6 (Tokunaga coefficients). Consider a Galton-Watson measure GW({qx})
with ¢1 = 0. Assume criticality or subcriticality, i.e., Y. kqx < 1. Then, for all 1 < i<

k=0
j—1, we have

Q(oj1) = Q(0j-2) = Mj-1Q"(7j=2) | 1o
Qoj—1) — Q(oj—2) — Tj—1Q'(0j-2) w7

T;j =mi (36)

and for 1 <i=j—-1,

7 1Q (0j_1)+7;1Q(05-2) —2Q(0-1)+2Q(0; )
Q(oj—1) — Q(oj—2) — mj—1Q'(0j—2)

Tj15= +T7 1,  (37)

where T, = ﬂ',% is the expected number of offsprings of order i descendant to

all reqular (non-terminal) vertices of order j.

Note that (36) can be rewritten as

- Yy Qx+mj—1) — Qx) —m;1Q'(x)
Tz,j _ﬂ-ld:ﬂl ( 1—Q/(x+7rj71) )

£B=O'j72
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Invariance and attraction properties of Galton-Watson trees 23

Proof. Fori < j—2,let M t‘;”“ denote the expected number of descendants of order i of
a terminal vertex of order 7, i.e., the expected number of side branches of Tokunaga index
{i,7}; see Remark 1. For d € N , consider all vertices in generation d. The probability
that a vertex is a terminal vertex in a branch of order j is

ng dm Z < ) w0 = Qojo1) — Qoj—2) — mj—1Q (0 -2),

where m > 2 is its branching number (i.e., the number of descendants) and ¢ > 2 is the
number of descendants of order j — 1.

Recall that Z ( )a™b*™ = ka(a + b)*~1. The expected number of offsprings of

order ¢ descendant to a vertex conditioned on having a total of m > 2 offsprings, of
which £ > 2 are of order j — 1 and m — £ are of order smaller than j — 1, is

13 m—t— .y
I

O
~2 k=0 i=2

O'

Thus, for i < j — 2,

00 m my g m—~ m—t\ _k me—l—k
. mX_:ZQW Zzz(é)ﬂj—l kzok( y ) (02 — )
erm — = =
M J B X & m\ __¢ V4
e
mzz:quez::Q(Z)ﬂj—la]—Q
= UL m\, 0 m—~—1
mmZ:qug:Q(m—E)(Z)WJ7103_2
 Qoj-1) — Qoj—2) — m—1Q'(0j_2)
oo
T Z2qm (mcf;”__ll —m(m —1)mj_107", fmajn_gl)
m=

Q(oj-1) — Q(oj—2) — mj—1Q'(0j-2)
o Q'(0j-1) —Q'(0-2) — Wj—lQ//(O'j—Q).
Q(oj-1) — Qoj—2) —mj-1Q'(0j-2)
Next, for i =75 — 1, let M ;erinj denote the expected number of order j — 1 side-branches
adjacent to a terminal vertex of a branch of order j. The expected number of order j —1
offsprings of a vertex conditioned on being the terminal vertex in a branch of order j
with a total of m > 2 offsprings is

m
mff
Tj-2

(38)

where ¢ > 2 counts the offspring of order j — 1, and the rest m — £ represent the offsprings
of order smaller than j — 1. Following Remark 1, we subtract two principal branches from
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24 Y. Kovchegov and I. Zaliapin

the number of order j — 1 offsprings. Consequently, the expected number of order j — 1
side branches adjacent to a vertex conditioned on being the terminal vertex in a branch
of order j with a total of m > 2 offsprings is equal to

1 — m e
a2 (L=2) ( g)”fl"jf'

j—2 =2

Here, of £ > 2 offspring of order j — 1, two are principle branches and ¢ — 2 are side
branches. Hence, we have

S g 3o (0= 2)(P)7 0
Mterm _ m=2 =2
7L Qojo1) — Qoj—2) — mj—1Q' (0j_2)

o0
. m—1 . m—1 _ m m
> m (mmj107) 107 — 207 + 207 )

_ m=2
Qoj—1) —Q(oj_2) —mj_1Q'(0;_2)
i 1Q (0j-1) + m1Q'(0j2) — 2Q(0j-1) +2Q(0— 2)

- Q(o;—1) — Q(oj—2) — mj1Q'(j_2) (39)

The expected number V7 of regular (non-terminal) vertices in a branch of order j is
computed as follows:

00 00 o1 r
V?:Tz—:or<kzzqkkoj_l> _ Qo)
J 00 [ e . ’

S (SO0

r=0

(40)

where, following (17), the probability of a vertex being a regular vertex in a branch of
order j, conditioned on it being of order j, equals

o0

2 : k—1
qkkO'j_l .

k=2

Finally, the expected number M, of order i offsprings (and therefore, side branches of
Tokunaga index {i,j}) in a regular (non-terminal) vertex on a branch of order j is

S e
1

i QkkU
k=2
_ 1 _ = . k—2 _ _Q"(Ujfl)
- Q/(a]_l)me:?Qkk(k 1)03—1 =T Q'(0;_1) (41)
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Invariance and attraction properties of Galton-Watson trees 25

for 1 < i < j. Here, k counts the total number of offsprings, of which we have k choices
for the offspring of order j. Of the remaining k — 1 ofsprings, we select s offsprings of

order ¢ and k — 1 — s of order other than i, but less than j. There are (k gl) such choices,

)k—l—

with probability of 7} (oj_l — T * for each such outcome.

The statement of the lemma follows from equations (38), (39), (40), (41) as T;; =
MS™ 4 T7; with TP ; = VP M7, by Wald’s equation. O

Example 2 (Critical binary Galton-Watson tree). Consider the critical binary
Galton-Watson distribution GW(qo= g2 =1/2). We have

2
Q) =15, s =11

Corollary 1 yields o; = S(0j_1) with o9 = 0, which implies by induction o; = 1 — 277
and ;=277 for j > 1. Equations (36) and (37) give

and g(z) =1/2.

T,; =T = YU forall 1<1i<yjy,
’ 1— 051
which implies the Toeplitz property (Def. 5) and Tokunaga self-similarity (Def. 6) with
(a,¢) = (1,2) and Ty, = 2F1.

Lemma 7 (Toeplitz implies criticality). Consider a subcritical or critical Galton-
Watson measure GW({qx}) with q1 = 0 that satisfies Assumption 1. If the Toeplitz prop-
erty (Def. 5) is satisfied, then the measure is either critical or qo = 1, the order distribu-
tion is geometric with 7, = qo(1 — qo)*~ 1, and qo = 1 — S'(1).

Proof. The Toeplitz property implies the existence of the Tokunaga sequence {7} }ren-
In the trivial case of ¢o = 1, we have Ty, = 0 for any &k > 1, Q(z) = S(z) = 1 so
S’(1) =0 =1— qo, and 7, = d15. This establishes the statement.
Suppose that gy < 1. Equation (36) shows that there is a scalar ¢ > 0 such that

T .
Tl T WEk>2,i> 1
Tk g1

Thus, as m = qo, we have m; = goc' 77 and since >o;m =1thenc=(1— q) L.

Next, observe that since S(z) = S(1) + S'(1)(z — 1) + o(1 — z) and S(1) = 1, we have
1— _ Ti+1 _ S(O’l) - S(O’i_l) _ S/(l)(O'l - CTi_l) + O(]. - 0'1'_1)
do T Uy T

that leads to

— S'(1) asi— oo

g0 =1-S5(1). (42)
The criticality follows from the constraint gy < 1, since in the subcritical case we have
S’(1) = 0 (see Rem. 4). O
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26 Y. Kovchegov and I. Zaliapin

The following statement gives an alternative proof to one of the main results of Burd
et al. [2] using the framework of the present study.

Corollary 3. Consider a subcritical or critical offspring distribution {qx} with ¢ =
0 and a finite second moment, > po; k*q, < co. The measure GW({qi}) satisfies the
Toeplitz property (Def. 5) if and only if it is the critical binary Galton-Watson measure,

qo =q2 = 35

P’roof. By Lem. 4, the finite second moment implies Assumption 1 with gg = 1—57(1) =
. Assume the Toeplitz property holds. Then the criticality follows from Lem. 7. The
cr1t1cahty with gy = 5 and q1 = 0 yield g2 = 5 as

Z 1-Q0—Zq;c

Conversely, the Toeplitz property for the critical binary Galton-Watson tree is established
in Ex. 2. [

w\?r

3.4. Invariant Galton-Watson measures

The following result was originally proved in [2]. We state and prove it here since the
expression (45) will be used in the proof of Thm. 2 below.

Lemma 8 (Pruning Galton-Watson tree, [2]). Consider a critical or subcritical
Galton- Watson measure p = GW({q}) with q1 = 0 on T with generating function Q(z),
and the corresponding pushforward probability measure induced by the Horton pruning

operator R,
v(T) = poR™H(T) = p(R™H(T)).
Then, v(T|T # ¢) is a Galton-Watson measure QW({q }) on T with offspring proba-

bilities Q)
(1 _ qo) — 4o
0 (1-q)(1-Q(q))’ (43)
qgl) =0, and
0 _ 1=0)"'QM () -,
and generating function
0u(=) = = + Qg0+ (1 —q0)z) — qo — 2(1 — qo) (45)

(1—q0)(1 — Q' (q0))
Moreover, if u(T) is critical, then so is V(T |T # ¢). If u( ) is subcritical, then the first

moment is decreasing with pruning, i.e., Z qul) < Z kqp < 1.
=2
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Proof. The standard thinning argument (with m; = go being the probability of elim-
inating an offspring) implies that R(T") is distributed as a Galton-Watson tree, i.e.,

R(T) 2 QW({qS,p}). Indeed, think of a random tree obtained as a result of the auxiliary
branching process defined in the following way. We trace the branching process that starts
with one generation zero progenitor vertex (the root) that produces exactly one offspring.
From generation one on, the branching process evolves according to the offspring distri-

bution {1qu . }k . Next, the process is thinned: once an offspring is produced (in
=2.3,...

each generation, including generation zero), it is either instantaneously eliminated with
probability go or is left untouched with probability 1—qq, where these Bernoulli trials are
performed independently of each other and the branching history. Naturally, this gener-
ates a Galton-Watson branching process with branching probabilities {p,, } calculated as

follows -
Pm = § k qk_m(l - q0)m Ik . (46)
m) "0 1—qo

k=mV2

The above defined thinned Galton-Watson process can be equivalently formulated by
tracking the original branching process with branching probabilities {q}. Here, for each
offspring, it is instantaneously decided whether the offspring is a leaf or not via a Bernoulli
trial with probabilities gg and 1 — gy for ‘leaf’ and ‘no leaf’ outcomes respectively. If the
offspring is decided to be a leaf, it is pruned instantaneously. If not a leaf, it will branch

according to the offspring distribution { 13’; . } . The thinned Galton-Watson pro-
k=23,...

cess differs from the original one by pruning all the leaves. Hence, it implements the
instantaneous Horton pruning, but not yet series reduction. Indeed, the above thinned
Galton-Watson prices with branching probabilities {p,,} can have single offspring nodes.

Next, we need to account for the series reduction by generating a Galton-Watson process
with the branching probabilities {qg)} by letting

o0
(1 —q0)™" X aga

(1 _  Po _ k=2
qO - 1 - 00 )

T 1= kqg 'ax
=2

q§1) =0, and for m > 2,

(1—gqo)™ ! io: (X)ab ™

1 _  Pm k=m
I =1 = 1. k-1
1= > kag
k=2
This branding process induces the tree measure v(T'). Note that there is an alternative
et (1) _ _m _ S(g0)—q0 _ Q(g90)—g0
derivation of (43) as by Cor. 1, g5’ = oo = Tice . = o) =0
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We notice that the corresponding generating function can be computed as follows

0o = k
9= 3 = B (S 35 Gt )" (ko
m=0 1-— Z kq Qk k=2 m=2k=m
(1 — q0 -1 > 1 m [
“1-00 Zqo%"'z Z zqo (1~ q0)) " a5

k=2m=2
7(1*110) !

10w (Q(z+ (1= 2)90) — 0 — 2(1 = q0)Q"(q0))

by the binomial theorem, implying (45). We proceed by differentiating % in (45), ob-

taining
Q' (g0 +2(1 — q)) — Q' (g
Q) = H 20— 0) = Qo) (47)
1-Q'(q0)
Next, we observe that if p(7T') is critical, (47) implies Z kq(l) Q1) = %&f?o) =1
That is, the critical process stays critical after a Horton pruning. Finally, in the subcritical
case, Q'(1) < 1, and by formula (47), Q1(1) = W < Q'(1). O

Formula (45) matches the evolution of the generator under tree erasure discussed by
He and Winkel [8, Lemma 11]; see also Neveu [16] and Kesten [10]. Also, observe that
expression (45) is of the same form as the generating function of a thinned Galton-Watson
process in the work of Duquesne and Winkel [4, eqn. (10) of Sec. 2.2], where the thinning
was done in the context of a Bernoulli leaf coloring scheme.

Lemma g. Consider a critical or subcritical Galton-Watson measure GW({qi}) with
q1 = 0. If it is Horton prune-invariant (self-similar) (Def. 4), then the limit

(i) -

exists and is finite. Moreover,

In (1— Q/(QO)).

L=1-
In(1 — qo)

Proof. The Horton prune-invariance implies Q1 (z) = Q(z) in the recursion (45):

) = 5 Q(QO + (1 - QO)Z) —qo — 2(1 — qo)
Qi) =2t (1 q0) (1~ Q(q0)) 7 (4
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which we rewrite as

Q(go+(1—q0)z)—(q0+2(1—q0)) = M(qo)(Q(2)—z), where M(qo) = (1—(10)(1—62/((1(0)))-
Then, for any k € N, 0
Q1= (1=go)" + (1 =g0)"2) = (1= (1 —q0)* + (1 —q0)*2) = (M(QO))k(Q(Z) —z)

and for z € [0,1),

g QO — (1 —0)* + (1 —q0)*2) — (1= (1= 40)" + (1~ 40)*2))
k—oc0 In (1_ (1_(1_q0)k+(1_q0)kz))

. kInM(q) +In(Q(2) —2)  InM(q)
= TE () (i —2) (- q0) (50)

Next, notice that for z € Iy = [0, qo),
In(qo) <In(Q(2) —2) <lIn (Q(qo) — qo) and In(l —¢qp) <In(1-—2) <0.
Hence, for any x € I}, = (1 —(1—qo)*, 1 -1~ qo)}”l), there is a z € I such that

r=1—(1-qo)f+(1—q)z

and
kInM (qo) +In(Q(q0) — qo) < In (Q(x) — ) _ klnM (qo)+1n (Q(z) — 2) - kInM (qo)+1n(qo)
kEln(l1—qo) +In(1—¢qo) — In(l1-2x) EIn(1 —qo) +In(1—2) =  kln(l1—-gqy)

Hence, the following limit exists

0y Q@) —x) _ In M(qo)
e1—  In(1— ) In(1—qo)

Finally,
. ln g(z) . 2In(1—2) - In(Q(z) —x) In M (qo)
zl—lgl— <— In(1 — x)) :xl—lgl— In(1—x) =2- In(1 — ;0)
B In (1 - Q'(q0))
=1- In(l—-gqo) (52)
O

Next, we define a single parameter family of critical Galton-Watson measures GW({qx})
with ¢; = 0 on 7.
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Definition 8 (Invariant Galton-Watson measures). For a given q € [1/2,1), a
critical Galton-Watson measure GW({qx}) is said to be the invariant Galton-Watson
(IGW) measure with parameter ¢ and denoted by ZGW(q) if its generating function is
given by

Q(2) = z+q(1 —2)"/. (52)
The respective branching probabilities are qo = q, ¢1 =0, g2 = (1 — q)/2q, and
1-q =
%= 1 g(z—l/q) (k> 3). (53)

Here, if ¢ = 1/2, then the distribution is critical binary, i.e., GW(qo = ¢q2 = 1/2). If
q € (1/2,1), the distribution is of Zipf type with

(1—-gT(k—1/q) —(1+ 1—¢
= ~ Ck D/ where C = .
= e - g k! qT'(2—1/q)

Theorem 2 (Self-similar Galton-Watson measures). Consider a critical or sub-
critical Galton-Watson measure GW({qx}) with ¢ = 0 that satisfies Assumption 1. The
measure is Horton prune-invariant (self-similar) (Def. 4) if and only if it is the invariant
Galton-Watson (IGW) measure ZGW(qo) with qo € [1/2,1).

(54)

Proof. Combining equations (43) and (45), we have
yQ(q0 + (1 —q0)z) — (g0 + (1 — q0)2)
Q) — a0

If the Galton-Watson measure is Horton prune-invariant, then Q1(z) = Q(z), and (55)
implies

Qi(2) = 2 + ¢ . (55)

R(z) = o ;El — @)?) Q) —=

0 0
for z € [0,1). Hence, letting ¢(z) :qln)R(l —z) for z € (0,1], we flave
0(z) +4(1 = qo) = £((1 — qo)2).
Finally, for 7(y) = £(e”¥) =InR(1 —¢eY) for y € [0,00) and ko = —In(1 — qo),
r(y + ko) =r(y) +r(ko) Yy €[0,00).

y
Therefore, 7/ (y+ o) = r'(y) and r(y) = — [ a(w) dw for some ko-periodic function a(y).

0
Thus,
—In(1-—2)
Q2) = 2+ qoR(2) = 2+ qoe" 0= = 2+ goer (F0=2)) =5 ¢ gexp { — / a(w) dw
0

(56)
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Next, 0 =¢1 = Q'(0) =1 — a(0)go implies «(0) = q%' Also, for z € (0,1), R/'(z) =
% < 0 and r(y) is a decreasing function. Hence, a(y) > 0 for all y € (0,1).

Letting w = —In(1 — z) in (56), we have

In (Q(z) — z) =In(qo) — / a(w)dw =In(gy) — / w dx Vz € [0,1).
X i (57)
Recall that d% In (Q(z) — z) = ﬁ)l_z, and therefore,
In (Q(z) — z) =1In(qo) — / S(xcixzc Vz € [0,1). (58)
0
Equations (57) and (58) yield
S() = 2 (1= 2)e(a),  where o(s) = — s, (59)
Here, a(0) = q% implies ¢(0) = 1. Since «(z) is Kg-periodic function,
a(—In(1 —2)) =a(—In(l —2) + ko) = a (—In (1 — (g0 + (1 — q0)2))
and ¢(z) satisfies
©(2) = (g0 + (1 — qo0)2) vz €[0,1). (60)

Equation (59) implies the existence of the limit

1 S(J;)—le—S’(l)

(1) = xlir{lf plz) = % mlir{lﬁ 1—2z Qo

Next, iterating (60), we have
(o) = lim ¢ ((1=(1-q)") + (1 —q)z) =¢(1) Vo e0,1).
Hence, ¢(z) =1, and by (59),
S(z) =2+ qo(1 - 2).
Consequently, (58) implies Q(2) = z + go(1 — 2)/%.

Finally, observe that for an invariant Galton-Watson measure ZGW(qp) with any go €
[1/2,1) satisfies (55). In particular, equation (52) implies

S(2) = qo+ (1 —qo)z. (61)

The statement of the theorem follows. O
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32 Y. Kovchegov and I. Zaliapin

Remark 5 (Heuristics for a linear S(z)). Consider a Horton prune-invariant mea-
sure (or at least a Toeplitz measure with qy < 1) that satisfies Assumption 1. Lemma 7
shows that in this case

Tk+1 _ Ok+1 — Ok :S,(l)zl—QO fOT al k> 1.
Tk Tk

Together with the recursion o, = S(ok—1) of Cor. 1 (see also Fig. 7), this implies that
the points (o, S(ok)) lie on the line

y(2) = qo + (1 — qo)=.

This observation suggests S(z) = qo+ (1 —qo)z as a possible solution of the equation (45)
with Q1(z) = Q(z), and the corresponding Q(z) = z + qo(1 — 2)1/9 s found by (58).
Theorem 2 ensures that this is the only solution under the reqularity Assumption 1.

Remark 6 (Intuition behind the regularity condition). The Horton pruning
acts as a rescaling (vertical and horizontal) on the function S(z) — z from the restricted
domain [qo, 1] to [0,1], according to (45). After k consecutive prunings, function Si(z)—z
with the domain [0, 1] is obtained via scaling from a restriction of S(z) — z to the interval
[1—(1—qo)*, 1]. Thus, consecutive pruning rescales and maps the function S(z)—z in the
vicinity of 1— to the interval [0, 1]. Assumption 1 requires a smooth behavior of S(z) at z =
1—. The rescaling translates this smooth behavior to the ultimate linearity of function S(z)
on the entire interval [0,1]. The most general form of prune-invariant Q(z) is given in
(56), which allows a non-linear oscillatory behavior of S(z) between the points (oy, S(ok))
discussed in Rem. 5. The rescaling argument shows that such oscillations necessarily lead
to non-smooth behavior of S(z) at z = 1— and hence violate Assumption 1.

Remark 7 (General prune-invariant measures). Recall that according to Lem. g,
the general Horton prune-invariant distributions adhere to the existence and finiteness

of the limit L = lir{1 (%), which is weaker than S'(1) required in Assumption 1
z—1—

(see Lem. 3). The gap between the two conditions allows for the existence of Horton
prune-invariant distributions that satisfy (48) and have a nonlinear function S(z). An
example of such a measure and further discussion is given in Sect. 4.

3.5. Attractors and basins of attraction

Theorem 3 (Attraction property of critical Galton-Watson trees). Consider a
critical Galton- Watson measure po = GW({qr}) with ¢1 = 0 on T'. Starting with k = 0,
and for each consecutive integer, let vy, = R.(pr) denote the pushforward probability
measure induced by the pruning operator, i.e., vi(T) = pr o R™H(T) = pr,(R™Y(T)), and
set pry1(T) = vy (T |T # $). Suppose Assumption 1 is satisfied. Then, for any T € T1,

lim px(T) = p*(T),
k—o0
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where p* denotes the invariant Galton-Watson measure ZGW(q) with ¢ =1 — S'(1).
Finally, if the Galton-Watson measure pg = GW({qr}) is subcritical, then pp(T) con-
verges to a point mass measure, GW(qo=1).

Proof. Let qgf) denote the offspring distribution corresponding to the critical Galton-
Watson tree measure pg, where q%k) = 0 by series reduction. First, we observe that

(k) UL S(or-1) = On-1

lim ¢y’ = lim ———— = lim
k—o0 k—ool —o0p_1 k—oo 1—0op_1
1+5(1 —1—1)+o(l —ok_1) — k-
— lim W (7r1 = 1) +o(l = 0k-1) = Tk =1-5(1).  (62)
k—o0 I—Uk_l

o0
Let Qr(z) == > z’”qgf) denote the generating function corresponding to the Galton-
m=0

Watson measure pg and Si(z) = %ﬁg’;(z) Equation (45) implies
k
1 ‘0
S =——389 1- - . 6
1(2) - (90 +(1—q0)2) - (63)

For a given z € [0, 1), we iterate (63), obtaining

Y k-1 ‘ k—1 ‘ kel
Sk(z) = H 7(1,)5 ((1 — H(l —qé”)) +zH(1 _q(()z))> + <1 — H (z)> ,

i—o L —q i=0 i=0 i=o L —qp
(64)
k=1 .
where [] (1 - q((f)) <27% 0 as k — oo. Next, we substitute
i=0
k-1 ‘ k-1 ‘ k—1 . k-1 '
s ((1 -[la —qé”>> +=]Ja —qo”>> = 1+(z-1)5'() [J (1-g5") o (H(l —a)
i=0 i=0 i=0 i=0
into (64), getting
Sk(z) =14 (2 —1)S"(1) + o(1).
Hence, for a given z € [0,1), we have
d 1 1
49 )= . .
LR @GE) =)= —e s = aTsmyeon Mo

Also, we notice that Qi (x) — = is a decreasing function (@} (z) < Q,.(1) = 1) and

067 > Q) — 2 > Qe(z) —2>0  Vae[0,2].
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34 Y. Kovchegov and I. Zaliapin

Therefore, letting k — oo, we have
1 a® d 1
In(Qr(z) —2) =1Ingy  + e In(Qr(x) —2z) de — Ing+ —In(1 — 2),
x
) q
where ¢ =1 — S'(1), as klim q(()k) = ¢ by (62). We conclude that
—00

lim Qx(2) =z +¢(1—2)"

k—oc0

where the right hand side is the generating function for ZGW (q).

Finally, if po = GW({qx}) is subcritical, (29) and (62) imply klim qék) =1-5'(1)=1. O
— 00

Theorem 3 and Cor. 2 immediately imply the following result.

Corollary 4 (Attraction property of critical Galton-Watson trees of Zipf type).
Consider a critical Galton-Watson process po = GW({qr}) with ¢1 = 0, with offspring
distribution qi. of Zipf type, i.e., qu ~ Ck=@tD with o € (1,2] and C > 0. Starting
with k = 0, and for each consecutive integer, let v, = R.(pr) denote the pushforward
probability measure induced by the pruning operator, and set pr+1(T) = vi (T |T # ¢).
Then, for any T € T,

lim px(T) = p(T),
k— o0
where p* is the invariant Galton-Watson measure IQW( )

1
e

Next, Lem. 2 and 4 imply the following attraction result as a corollary of our Thm. 3. The
same attraction property has been established in [2] under the assumption of a bounded
offspring distribution.

Corollary 5 (Attraction property of critical binary Galton-Watson tree, [2]).
Consider a critical Galton-Watson process po = GW({qx}) with 1 = 0. Assume one of
the following two conditions holds.

(a) The second moment assumption is satisfied:

o0
Z g, < oo.
k=2

(b) Assumption 1 is satisfied, and the “2—” moment assumption is satisfied, i.e.,

o0

Z l<:2_“q;.C < o0 Ve > 0.
k=2
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(b) (©

Figure 8: Binary attractor: Illustration. The tree T' (panel a) has maximal branching
number b = 6. Its first pruning (panel b) R(7T) has maximal branching number b = 3. Its
second pruning (panel ¢) R?(T") has maximal branching number b = 2. This convergence
to binary branching is generic in Galton-Watson trees that have offspring distribution
with a finite 2 — € moment; see Cor. 5.

Starting with k = 0, and for each consecutive integer, let vy = Ru(pr) denote the

pushforward probability measure induced by the pruning operator, and set pr1(T) =
ve (T |T # ¢). Then, for any T € T1,

lim pi(T) = p*(T),
k—oo
where p* is the critical binary Galton-Watson measure ZGW(1/2).

Figure 8 illustrates convergence of a tree with a large branching number to a binary
tree.

3.6. Explicit Tokunaga coefficients and Horton law

In the next lemma we find the Tokunaga coefficients and the Horton exponent for an
invariant Galton-Watson tree measure ZGW(qq).

Lemma 10 (Tokunaga coefficients). Consider an invariant Galton- Watson measure
ZGW(qo) for qo € [1/2,1). Then,

_ 1
1—qo

mi=qoctt  with ¢

The measure satisfies Toeplitz property (Def. 5) with the Tokunaga coefficients

T7; =17,

=

where TP =cF= 1 (k=1,2,...), (65)
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and
Tij=Tj—i, where Ty=c/V —c—1 and Tp=ac™ (k=2.3,...) (66)

with @ = (¢ = 1)(c"/“" —1). Finally, the strong Horton law (13) holds with Horton
exponent R = ¢¢/(c=1) = (1 — gg)~ /a0,

The functions a(qo), c(qo) and R(qp) are illustrated in Fig. 1.

Proof. Equations (18) and (61) imply o; = 1 — (1 — qo)* + (1 — qo)* 2. Hence, m; =
oi—0i—1 = qo(1 —qo)*!. Equations (65) and (66) are obtained via substituting m; and
o; into Lem. 6.

Finally, Thm. 1 implies the strong Horton law with the Horton exponent R = 1/wy,
where wy is the only real zero of the generating function #(z) in the interval (O, %] We

have
acz?

t(z)=—-1+(Th +2)z +

1—cz’

which gives wy = ¢=¢/(¢=1 and R = ¢¢/(c= 1), 0

4. Discussion

In this paper we described the invariance and attractor properties of combinatorial
Galton-Watson trees with respect to the Horton pruning. The results hold under the
regularity Assumption 1 that prohibits large tail oscillations of the offspring probabilities
gm that lead to a non-smooth behavior of S(z) at 1—. A sufficient condition under which
the regularity assumption holds is suggested in Lem. 5. Theorem 2 introduces a one-
parameter family of invariant Galton-Watson distributions ZGW(q) and asserts that this
family exhausts the Horton prune-invariant distributions within the examined regularity
class. The invariant family has a power-law tail of the offspring distribution, g ~ Ck™,
with exactly one distribution for every o € (2,3], and also includes the critical binary
Galton-Watson tree measure.

A similar approach can be applied to the search of invariant measures in a broader class
of generalized dynamical prunings on trees with edge lengths introduced and analyzed in
[12, 13] and to the pruning operation studied in Evans [6] and in Duquesne and Winkel
[5]. Informally, a generalized dynamical pruning erases a tree from leaves down to the root
at a rate that only depends on the descendant part of the tree. Most of such prunings,
with a notable exception of the Horton pruning and the continuous erasure of Neveu
[16], do not satisfy semigroup property. It has been shown in [12] that the critical binary
Galton-Watson tree with i.i.d. exponential edge lengths is invariant with respect to any
admissible generalized dynamical pruning. We conjecture that the Galton-Watson trees
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that have i.i.d. exponential edge lengths and combinatorial shapes sampled from the
invariant Galton-Watson measures ZGW(q) introduced in this work (Def. 8) are the only
Galton-Watson measures invariant with respect to all admissible generalized dynamical
prunings, up to rescaling of the edge lengths. Heuristically, this is supported by the
rescaling argument (Rem. 6) applied to the function S(z). The Horton pruning of the
present work only requires linearity of the function S(z) on the grid oy, which is related to
its discrete combinatorial action. This allows the existence of prune-invariant measures
with oscillatory behavior, outside of the invariant Galton-Watson family. However, a
continuous pruning, for instance the continuous erasure of Neveu [16], would constrain
the function S(z) on the entire interval [0, 1], hence leading to the family of invariant
Galton-Watson trees. This will be explored in a follow-up paper.

We are grateful to the anonymous referee for finding a problem with the first version of

this paper, caused by the gap consisting of all critical Galton-Watson measures for which

the limit L = lim (%) exists while the limit S'(1) = lim %(r) does not; see
r—1— In(1-z) r—1— 1=z

Rem. 7. In particular, the referee suggested the following family of Horton prune-invariant

critical Galton-Watson tree distributions different from the invariant distributions of

Thm. 2. For a given probability ¢o € (1/2,1), we let g1 = 0, and
_ 1 n _nm_ —p" _
Qm—mZBP e m=23,..., (67)
where p = 1 — qo. Then, the second derivative of the generating function is equal to

o
1 n
Q"(z) = Z m(m —1)gnz""2 = 1 Z Brp*re~(1=2)e" |z| < 1.

m=2 nez

Observe that
Q”(qo +(1- qo)z) =B 'p2Q"(2). (68)

Therefore, if A > 0and B € ((1—qo) !, (1—go)~?) are selected so that Q(1) = Q'(1) =1,
then Q(z) will satisfy the invariance criterion (48). Such B is found by solving

> B (1 —pM (4" - p”“)ff*pn> =0,
ne”Z

and A=Y B"p" (1 - e_””).
nez

Hence,
1 n n
Q) = a0+ S B (70 — (14 e ) el <,
nez

satisfies (49) with
M(qo) = (1 - CIO)(l - Q/((Jo)) =B
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Figure 9: Horton prune-invariant measures: Illustration. Figure compares the offspring
probabilities g,,, m > 2, of the invariant measure ZGW(qo) of Def. 8, also given in
(76) (open circles), with those of the invariant measure of (67) that does not satisfy
Assumption 1 (black circles). (a) go = 0.55, (b) go = 0.8.

Next, we show that this example belongs to the gap described in Rem. 7. Specifcally, we
show that the limit L exists while the limit S’(1) does not. First, Lem. g applies, yielding

the existence of limit L = liHll (%) Moreover, equation (51) implies
z—1—
In M InB
Lo M) _, B
In(1 —qo) In(1 — go)
Now, we show that the limit S’(1) = lil{l L S(x does not exist, whence Assumption 1
z—1—
is not satisfied. Since § > B"p" (1 —e~*") = 1, we have for z € [0,1),
nez
1-Q o\ 1-Q 1 — e (=2)p"
1—33 A% 1—:1: A,% < (1—az)pn >

(69)
Also, for z € [0,1),

_ n —(1—z)p"
1@l =g LB (120, (70

For a given a € [0, 1), consider a sequence z,, = 1 — p™ e for m € N, then, equation
(69) implies

pn+7n+a

1-— 1
S "\tm) n_n - )| _ = p-(mta) —(mta)
]_ — T Z B <1 pn+m+a ) - AB 14 C(a)a

nGZ
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where

n+a n+ta l_eianra
C(a):ZB+p+ (1—pn+a>~ (71)

neZ

Similarly, (70) implies

1 n n _ ntmta 1 —(m4+ao —(m+a
L= Qam) = 5 2B (1= ) = 3By D),

nez
where
D(a) = 3 Brteprte (1— "), (72)
nez
Hence,
1 —Q(zm) _Clo)

= VYm e N

(1 —apm) (1 - Ql(xm)) D(a)
with C(«) and D(a) as defined in (71) and (72). Thus, since ggz% is not constant for
a € [0,1), the limit in (26) does not exist, and the same is true about the limit S’(1).
Hence, in this example, Thms. 2 and 3 as currently stated do not apply since Assumption
1 does not hold.

The invariant measures (67) are in fact closely related to the ZGW(q) measures of Def. 8.
Specifically, consider a continuous integral version of (67), by selecting go € (1/2,1) and
letting ¢; = 0 and

_ 1 i w wm ,—p* _
qm_m!A/B p¥Me dw m=23,..., (73)

where p = 1 — go. Here too,

o0 1 o0
Z m(m — 1)gnz™ / BYp?ve=(1=2)r" gy
— 00

m=2

and so it satisfies (68), while Q(1) =Q'(1)=1c¢ auses Q(z) to satisfy (48). Analogously
to (67), the constants A > 0 and B € ((1 —q0)” % (1—qo)~ 2) are found by solving
/ B (1 =Pt = (14" - pw“)e’pw) dw =0 (74)
for B, and letting
o0
A= / BYp" (1 — e*pw) dw. (75)
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One can show that equation (74) has a unique solution using monotonicity of the integral
on the left hand side in the equation (74) as a function of B € ((1 —¢qo)™*, (1 —q0)72).
The uniqueness of B implies the uniqueness of A in (75).

In this situation, one easily shows that the limit S’(1) exists. Remarkably, the unique
offspring distribution ¢,, in (73) is the offspring distribution of ZGW(qp). Indeed, in
equation (54) we have for m > 2,

(1 —qo)I'(m —1/qo0)
qoI'(2 — 1/q0) m!

o0
1 w
— _ w  wm ,—p
Gm = = m!A/B e dw (76)

with p=1—¢qy, A= %, and B = (1 7q0)71/q0.

Figure g compares selected invariant measures ZGW(qo) of Def. 8, also given in (76),
with the invariant measures of (67) that do not satisfy Assumption 1. Both types of
measures decay in general as the power law m~(17%)/90 although the measures of (67)
fluctuate around this general trend. The amplitude of the fluctuations (on logarithmic
scale) increases with go. These fluctuations are related to the periodic function a(y) in
the proof of Thm. 2; they are inevitable in the invariant measures that do not satisfy

Assumption 1 (see Rem. 6).
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