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1. Introduction and motivation
The study of random trees invariant with respect to combinatorial pruning (erasure) from
leaves down to the root emerges in attempts to understand symmetries of natural trees
observed in fields as diverse as hydrology, phylogenetics, or computer science. In addition,
it provides a unifying framework for analysis of coalescence and annihilation dynamical
models, including the celebrated Kingman’s coalescent, and self-similar stochastic pro-
cesses on the real line; see a recent survey [13] for details. A special place in the invariance
studies is occupied by the family of Galton-Watson trees, whose transparent generation
mechanism makes it a convenient testbed for general theories and approaches. A Galton-
Watson tree describes the trajectory of the Galton-Watson branching process [1] with
a single progenitor and offspring distribution {qk}, k = 0, 1, . . . . We write GW(qk) for
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2 Y. Kovchegov and I. Zaliapin

the probability measure that corresponds to this random tree. A tree is called critical if
the expected progeny of a single member equals unity:

∑∞
k=1 kqk = 1. Similarly, a tree

is subcritical if
∑∞
k=1 kqk < 1. In this paper we analyze the invariance and attraction

properties of critical and subcritical Galton-Watson trees under the operation of combi-

natorial Horton pruning – cutting tree leaves and their parental edges followed by series
reduction (removing vertices of degree 2). The Horton pruning (formally introduced in
Sect. 2.2 and illustrated in Fig. 3) is a discrete, combinatorial analog of the continuous
erasure or trimming studied by Neveu [16], Neveu and Pitman [17, 18], Le Jan [14], Evans
[6], and Evans, Pitman and Winter [7].

1.1. Invariance

Combinatorial prune invariance of critical and subcritical Galton-Watson trees was first
examined by Burd et al. [2], under the assumption of a finite second moment for the
offspring distribution,

∑∞
k=1 k

2qk <∞. These authors have shown that the only invariant
measure in this class corresponds to the critical binary Galton-Watson tree, q0 = q2 = 1

2
[2, Thm. 3.9]. Here we substantially relax the regularity constraint on the offspring
distribution; see Assumption 1 and Lem. 5 in Sect. 3.2. This reveals an abundance of
prune-invariant measures with infinite second moment. Theorem 2 describes all such
measures among the critical and subcritical Galton-Watson trees that satisfy Assumption
1. This infinite family of Invariant Galton-Watson (IGW) measures can be characterized
by a single parameter – the probability q0 ∈ [1/2, 1) of having no offsprings. An individual
distribution from this family is denoted by IGW(q0); it is a critical distribution with the
offspring generating function

Q(z) =
∞∑
k=0

qkz
k = z + q0(1− z)1/q0 .

The case q0 = 1/2 with Q(z) = (1 + z2)/2 corresponds to the critical binary Galton-
Watson tree IGW(1/2) = GW(q0 = q2 = 1/2). Every invariant Galton-Watson measure
IGW(q0) with q0 ∈ ( 1

2 , 1) corresponds to an unbounded offspring distribution of Zipf
type with infinite second moment:

qk ∼ Ck−(1+1/q0) as k →∞.

1.2. Attraction

Burd et al. [2, Thm. 3.11] have shown that any critical Galton-Watson tree with a
bounded offspring number (there exists b such that qk = 0 for all k ≥ b) converges to
the critical binary Galton-Watson tree under iterative Horton pruning, conditioned on
surviving under the pruning. Our Thm. 3 shows that the collection of IGW(q0) measures
for q0 ∈ [1/2, 1) and a point measure GW(q0 =1) are the only possible attractors of critical
and subcritical Galton-Watson measures that satisfy Assumption 1, with respect to the
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Invariance and attraction properties of Galton-Watson trees 3

Figure 1: Tokunaga parameters a (blue), c (red) and Horton exponent R (black) in
invariant Galton-Watson trees IGW(q0) for q0 ∈ [0.5, 0.99].

iterative Horton pruning. Specifically, all subcritical measures converge to GW(q0 = 1),
and critical measures converge to IGW(q0). The domain of attraction of IGW(q0) for
any q0 ∈ [1/2, 1) is characterized by the tail behavior of the offspring distribution {qk}
of the initial Galton-Watson measure. In particular, Cor. 2 implies that every critical
measure with Zipf tail qk ∼ Ck−(1+1/q) for q ∈ [1/2, 1) and C > 0 converges to IGW(q).
The subcritical attractor GW(q0 =1) is the limiting point of the IGW family for q0 = 1
with generating function Q(z) = z + (1 − z) = 1. This distribution, however, is not
prune-invariant.

Our results expand the attraction domain of the critical binary Galton-Watson tree
IGW(1/2) initially described by Burd et al. [2]. Specifically, Lem. 2 shows that any
critical offspring distribution that has an infinite second moment, satisfies Assumption 1,
and has a finite 2−ε moment for all ε > 0 belongs to the attraction domain of IGW(1/2).
We give an example of such a measure with qk ∼ 4

3k
−3.

1.3. Toeplitz property

The results of Burd et al. [2] revealed an interesting characterization of the critical binary
Galton-Watson distribution in terms of its Tokunaga sequence. Recall that the Horton

pruning removes the leaf vertices and their parental edges from a finite tree T , with
subsequent series reduction (removing degree-2 vertices). The Horton order of a tree T is
the minimal number of Horton prunings sufficient to eliminate T . Informally, a branch of
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4 Y. Kovchegov and I. Zaliapin

Horton order k is a contiguous part of a tree (a collection of vertices and their parental
edges in the initial tree) eliminated at k-th iteration of Horton pruning (see Figs. 3,4,5,6
for examples, and Sect. 2.2 for a formal definition). Each leaf (i.e., a leaf vertex with its
parental edge) is a branch of order 1. Branches of higher orders may consist of lineages of
vertices and their parental edges. The vertex farthest from the root is called the terminal

vertex of a branch. Applied literature often examines the statistics of mergers of branches
of distinct orders within a tree. Burd et al. [2] formalize this by considering the Tokunaga
coefficients Ti,j [T ], for i < j, equal to the number of instances when a branch of order i
joins a non-terminal vertex of the leftmost branch of order j closest to the root within
T , given that the tree order is greater than j. This definition is suitable for describing
a generic branch structure within a Galton-Watson tree, given its symmetric iterative
generation mechanism. It has been shown [2, Thm. 3.16] that the critical binary Galton-
Watson distribution GW(q0 = q2 = 1/2) is characterized, among the bounded offspring
distributions, by the Toeplitz property:

E
[
Ti,j [T ]

]
= Tj−i for a positive Tokunaga sequence {Tk}k=1,2,.... (1)

Specifically, the critical binary Galton-Watson distribution corresponds to Tk = 2k−1. In
Lem. 10, we show that all the invariant measures IGW(q0) satisfy the Toeplitz property.
In this analysis, we adopt an alternative, more general, definition of the Tokunaga co-
efficient Ti,j , which (i) accounts for branching at the terminal vertices, and (ii) can be
applied to general (non Galton-Watson) trees. In our definition, the invariant measure
IGW(q0) corresponds to the Tokunaga sequence (Lem. 10)

T1 = cc/(c−1) − c− 1, Tk = ack−1, k = 2, 3, . . .

with (Fig. 1)
c = (1− q0)−1 and a = (c− 1)(c1/(c−1) − 1).

The critical binary Galton-Watson case with q0 = 1/2 corresponds to c = 2 and a = 1,
which reconstructs the Burd et al. [2] result Tk = 2k−1. Moreover, using the Tokunaga se-
quence definition from Burd et al. [2], we obtain a particularly simple Tokunaga sequence
Tk = ck−1 for k = 1, 2, . . . .

1.4. Horton law

A ubiquitous empirical observation in the analysis of dendritic structures is the Horton

law [9, 13, 20]. Informally, the law states that the numbers Nk[T ] of branches of order k
in a large tree T decays geometrically:

Nk[T ]
Nk+1[T ] ≈ R

for some Horton exponent R ≥ 2. A formal definition of the Horton law for tree measures
is given in Sect. 2.5.
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(a) Original tree (b) Tree after series reduction

Figure 2: Series reduction: Example. Tree T before (a) and after (b) series reduction.

It has been shown by McConnell and Gupta [15] for a particular case of Tk = ack−1

with a ≥ 0, c > 0, and generalized by the authors of this paper [11] to an arbitrary
Tokunaga sequence {Tk}, that the Toeplitz property implies the Horton law. Lemma 10
shows that the invariant Galton-Watson measure IGW(q0) for any q0 ∈ [1/2, 1) obeys
the Horton law with the Horton exponent R = (1− q0)−1/q0 (Fig. 1).

2. Preliminaries

2.1. Galton-Watson tree measures

Consider the space T of finite unlabeled rooted reduced trees. A tree is called rooted if
one of its vertices, denoted by ρ, is selected as the tree root. The existence of root imposes
a parent-offspring relation between each pair of adjacent vertices: the one closest to the
root is called the parent, and the other the offspring. The space T includes the empty

tree φ comprised of a root vertex and no edges. The tree root is the only vertex that
does not have a parent. Let T | denote a subspace of planted trees in T ; it contains φ and
all the trees in T with the root vertex having exactly one offspring (see Figs. 2,3). The
degree of the root equals the number of its offsprings. The degree of a non-root vertex
is the number of its offsprings plus one (to account for the parent). The number of the
offsprings at a vertex is called the vertex branching number. A tree from T | is called
reduced is it has no vertices of degree 2.

For a given offspring distribution {qk}k=0,1,2,..., we let GW({qk}) denote the corre-
sponding Galton-Watson tree measure. We assume that each tree begins with a single
root vertex which produces a single offspring, so the resulting trees are in T |. In this
renowned Markov chain construction, each non-root vertex produces k offsprings with
probability qk, independently of other vertices. We assume

∞∑
k=0

kqk ≤ 1 and q1 = 0 as we

need GW({qk}) to be a probability measure on T | (the trees in T | are required to be
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T R(T) R2(T) R3(T) R4(T)

Figure 3: The Horton-Strahler orders: Example. Consecutive prunings Rk(T ), k =
0, 1, . . . , 4, of tree T . The order of tree is ord(T ) = 4 since R4(T ) = φ. Different col-
ors depict branches of different orders: ord = 1 (black), ord = 2 (green), ord = 3 (blue),
and ord = 4 (red).

finite and reduced). The assumption of subcriticality or criticality implies q0 ≥ 1
2 , since

1 ≥
∞∑
k=2

kqk ≥ 2
∞∑
k=2

qk = 2(1− q0).

2.2. Horton pruning, orders

Recall that series reduction on a tree T removes each vertex of degree 2 and merges its
two adjacent edges into one (Fig. 2).

Definition 1 (Horton pruning). Horton pruning R : T → T is an onto function

whose value R(T ) for a tree T 6= φ is obtained by removing the leaves and their parental

edges from T , followed by series reduction. We also set R(φ) = φ.

The trajectory of each tree T under R(·) is uniquely determined and finite:

T ≡ R0(T )→ R1(T )→ · · · → Rk(T ) = φ, (2)

with the empty tree φ as the (only) fixed point. The pre-image R−1(T ) of any non-empty
tree T consists of an infinite collection of trees.

It is natural to think of the distance to φ under the Horton pruning map and introduce
the respective notion of tree order [9, 13, 20, 21].
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Figure 4: Illustration of the Horton-Strahler terminology (Def. 3). A branch b of oder 2 is
shown in blue in the left part of the figure. The branch consists of three vertices of order
2 and their parental edges. The terminal vertex of branch b is shown by green circle. The
descendant subtree Ta at vertex a is shown in black in the right part of the figure. The
Horton-Strahler orders are shown next to the vertices.

Definition 2 (Horton-Strahler order). The Horton-Strahler order ord(T ) ∈ Z+ of a

tree T ∈ T | is defined as the minimal number of Horton prunings necessary to eliminate

the tree:

ord(T ) = min
{
k ≥ 0 : Rk(T ) = φ

}
.

In particular, the order of the empty tree is ord(φ) = 0, because R0(φ) = φ. This
definition is illustrated in Fig. 3 for a tree T with ord(T ) = 4. In this paper we consider
probability measures GW({qk}) on T | that satisfy

∞∑
k=0

kqk ≤ 1 and q1 = 0 and assign

probability zero to the empty tree φ.

Definition 3 (Horton-Strahler terminology). We introduce the following defini-

tions related to the Horton-Strahler order of a tree (see Fig. 4):

1. (Descendant subtree at a vertex) For any non-root vertex v in T 6= φ, a

descendant subtree Tv ⊂ T is the only planted subtree in T rooted at the parental

vertex parent(v) of v, and comprised by v and all its descendant vertices together
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8 Y. Kovchegov and I. Zaliapin

with their parental edges. Figure 4 shows in black color the descendant subtree Ta
at vertex a.

2. (Vertex order) For any vertex v ∈ T \ {ρ} we set ord(v) = ord(Tv). We also set

ord(ρ) = ord(T ).
3. (Edge order) The parental edge of a non-root vertex has the same order as the

vertex.

4. (Branch) A maximal connected component consisting of vertices and edges of the

same order is called a branch. Figure 4 shows a branch b of order 2 (blue) that

consists of three vertices and their parental edges. Note that a tree T always has a

single branch of the maximal order ord(T ). In a stemless tree, the maximal order

branch may consist of a single root vertex.

5. (Initial and terminal vertex of a branch) The branch vertex closest to the

root is called the initial vertex of the branch. The branch vertex farthest from the

root is called the terminal vertex of a branch. Figure 4 shows the terminal vertex

of branch b (blue) as a green circle.

The Horton-Strahler orders can be equivalently defined via hierarchical counting [9, 21,
3, 20, 19]. The first such definition beyond the binary case appeared in [2]. In this
approach, each leaf is assigned order 1. If an internal vertex p has m ≥ 1 offspring with
orders i1, i2, . . . , im and r = max {i1, i2, . . . , im}, then

ord(p) =
{
r if # {s : is = r} = 1,
r + 1 otherwise.

(3)

The parental edge of a non-root vertex has the same order as the vertex. The Horton-
Strahler order of a tree T 6= φ is ord(T ) = max

v∈T
ord(v), where the maximum is taken

over all vertices in T . This definition is most convenient for practical calculations, which
explains its popularity in the literature.

Figures 5,6 illustrate Horton-Strahler orders in trees with a constant branching num-
ber b (q0 + qb = 1) and with a bounded offspring distribution (qk = 0 for k > b),
repsectively.

2.3. Horton self-similarity

Here we define self-similarity of a Galton-Watson measure with respect to the Horton
pruning R, which is the main operation on trees discussed in this work.

Definition 4 (Horton self-similarity). Consider a Galton-Watson measure µ on T
(or T |) such that µ(φ) = 0. Let ν be the pushforward measure, ν = R∗(µ), i.e.,

ν(T ) = µ ◦ R−1(T ) = µ
(
R−1(T )

)
.
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(a) (b)

(d)(c)

Figure 5: Examples of Horton-Strahler ordering in trees with constant branching number
b (q0 + qb = 1). (a) b = 2, (b) b = 3, (c) b = 5, (d) b = 10. Each panel shows a tree of
order ord = 4. Edges of different orders are shown in different colors, as indicated in the
legend.

Measure µ is called invariant with respect to the Horton pruning (Horton prune-invariant),

or Horton self-similar, if for any tree T ∈ T (or T |) we have

ν (T |T 6= φ) = µ(T ). (4)
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(a) (b)

Figure 6: Examples of Horton-Strahler ordering in trees with bounded offspring distri-
bution: qk = 0 for k > b. (a) b = 5, (b) b = 6. Each panel shows a tree of order ord = 4.
Edges of different orders are shown in different colors, as indicated in the legend.

Definition 4 does not distinguish between prune-invariance and self-similarity. Such
equivalence is a particular property of Galton-Watson measures connected to their Markov
structure. In a general case, prune-invariance happens to be a weak property that allows
a multitude of obscure measures. A general prune-invariant measure on T has to satisfy
an additional property, called coordination, to be called self-similar. The Galton-Watson
measures always satisfy the coordination property; see (10). We refer to [13] for a com-
prehensive discussion and examples.

2.4. Tokunaga coefficients and Toeplitz property

This section introduces Tokunaga coefficients that describe mergers of branches of dif-
ferent orders in a random tree. Empirically, a Tokunaga coefficient Ti,j is the average
number of branches of order i that merge a branch of order j within a tree T . The Marko-
vian generation process ensures that all branches of a given order j in a Galton-Watson
tree have the same probabilistic structure. Hence, one can follow Burd et al. [2] and
define Ti,j as the mean number of order i branches within a particular branch of order j,
for instance – the leftmost branch closest to the root. We introduce below a more general
definition, which is equivalent to that of Burd et al. [2] for Galton-Watson trees, and
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can extend to non Markovian branching processes. This set up will also be needed to
formulate the Horton law in Sect. 2.5.

Consider a measure µ on T (or T |) such that µ(φ) = 0. The Horton pruning partitions
the underlying tree space into exhaustive and mutually exclusive collection of subspaces
Hk of trees of Horton-Strahler order k ≥ 0 such that R(Hk+1) = Hk. Here H0 = {φ},
H1 consists of a single tree comprised of a root and a leaf connected to the root by
its parental edge, and all other subspaces Hk, k ≥ 2, consist of an infinite number of
trees. Naturally, Hk

⋂
Hk′ = ∅ if k 6= k′, and

⋃
k≥1
Hk = T (or T |). Consider a set of

conditional probability measures {µk}k≥0 each of which is defined on Hk. Specifically,
we set µk(·) ≡ 0 for any k such that µ(Hk) = 0 and

µk(T ) = µ(T |T ∈ Hk) (5)

otherwise. Letting πk = µ(Hk), the measure µ can be represented as a mixture of the
conditional measures:

µ =
∞∑
k=1

πkµk. (6)

Let Nk = Nk[T ] be the number of branches of order k in a tree T . For given integers
1 ≤ i < j, let ni,j = ni,j [T ] denote the total number of vertices of order i that have
parent of order j in a tree T ∈ T (or T |). We write EK [·] for the expectation with respect
to µK of Eq. (5).

We define the average Horton numbers for subspace HK as

Nk[K] = EK [Nk], 1 ≤ k ≤ K, K ≥ 1.

For subspace HK , let

ti,j [K] = EK [ni,j ]
EK [Nj ]

= EK [ni,j ]
Nj [K] , 1 ≤ i < j ≤ K, (7)

be the total Tokunaga merger statistics that is used to define the Tokunaga coefficients

Ti,j [K] = ti,j [K]− 2δi,j−1 (1 ≤ i < j). (8)

Remark 1. Recall that a branch of order j is formed by a merger of two or more

branches of order j − 1. We designate two arbitrarily selected branches of order j − 1
that descend from the terminal vertex of a branch of order j as principle branches. The

existence of such two branches follows from the definition of the Horton order (Def. 2).

The other branches (if any) of order i ≤ j − 1 that descend from any vertex, including

the terminal vertex, in a branch of order j are said to be side branches of Tokunaga

index {i, j}. The Tokunaga coefficients Ti,j [K] are intended to count the number of side

branches of Tokunaga index {i, j}, which explains the need to subtract 2δi,j−1 in (8).
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Finally, let noi,j denote the total number of vertices of order i whose parent vertices
are non-terminal vertices of order j. Then,

T oi,j [K] =
EK [noi,j ]
EK [Nj ]

=
EK [noi,j ]
Nj [K] (1 ≤ i < j) (9)

are called the regular Tokunaga coefficients.

Remark 2. The quantities Nk[K], ti,j [K], Ti,j [K], and T oi,j [K] depend on the measure

µ. We skip this dependence in our notations.

We observe that for a subcritical or critical Galton-Watson measure µ we have the fol-
lowing coordination property [13]:

Ti,j := Ti,j [K] for all K ≥ 2 and 1 ≤ i < j ≤ K. (10)

This is explained as follows. Consider all nodes in generation d ∈ N (which may be an
empty set) in a critical or subcritical Galton-Watson tree T . The descendant subtrees Tv
(see Def. 3) for v in generation d are independently distributed according to µ. Sampling
of Tv can be split into two steps, first selecting its order with probability distribution πj ,
next sampling the tree of order j according to the probability measure µj . The branching
history Fd up to generation d together with the orders of the descendant subtrees Tv with
v in generation d completely determines (i) the order of the tree T , and (ii) whether or
not v is the initial vertex (Def. 3) of the corresponding branch of order ord(Tv). At the
same time, conditioned on Fd and the orders ord(Tv) for v in generation d, each Tv is
independently distributed according to µj , where ord(Tv) = j.

The respective Tokunaga matrix TK is a K ×K matrix

TK =



0 T1,2 T1,3 . . . T1,K
0 0 T2,3 . . . T2,K

0 0
. . . . . .

...
...

...
. . . 0 TK−1,K

0 0 . . . 0 0

 ,

which coincides with the restriction of any larger-order Tokunaga matrix TM , M > K,
to the first K ×K entries.

Definition 5 (Toeplitz property). A Galton-Watson measure µ is said to satisfy the

Toeplitz property if there exists a sequence Tk ≥ 0, k = 1, 2, . . . such that

Ti,j = Tj−i. (11)

The elements of the sequences Tk are also referred to as Tokunaga coefficients, which

does not create confusion with Ti,j.
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For a Galton-Watson measure that satisfies the Toeplitz property, the corresponding
Tokunaga matrices TK are Toeplitz1:

TK =



0 T1 T2 . . . TK−1
0 0 T1 . . . TK−2

0 0
. . . . . .

...
...

...
. . . 0 T1

0 0 . . . 0 0

 .

The following statement has been proven in [13] for (not necessarily Galton-Watson)
binary trees; the argument applies verbatim to general Galton-Watson trees.

Proposition 1 (Prune-invariance implies Toeplitz). Suppose a Galton-Watson

measure µ is Horton prune-invariant, then it satisfies the Toeplitz property (Def. 5).

Definition 6 (Tokunaga self-similarity). A Galton-Watson measure µ on T is called

Tokunaga self-similar with parameters (a, c) if it satisfies the Toeplitz property and its

Tokunaga sequence {Tj}j=1,2,... is expressed as

Tj = a cj−1, j ≥ 1 (12)

for some constants a ≥ 0 and c > 0.

2.5. Horton law

Consider a measure µ on T (or T |) and its conditional measures µK , each defined on
subspace HK ⊂ T of trees of Horton-Strahler order K ≥ 1 as discussed in Sect. 2.4. We
write T d∼ µK for a random tree T drawn from a subspace HK (µ(HK) > 0) according
to measure µK .

Definition 7 (Strong Horton law for mean branch numbers). We say that a

probability measure µ on T (or T |) satisfies a strong Horton law for mean branch numbers

if there exists such a positive (constant) Horton exponent R ≥ 2 that for any k ≥ 1,

lim
K→∞

Nk[K]
N1[K] = R1−k. (13)

Here, the adjective strong refers to the type of geometric convergence; see [13] for details.
The work [11] establishes the strong Horton law in a binary tree that satisfies the

Toeplitz property (Def. 5). We observe that the results of [11] hold beyond the binary
1Note that in [2], the Tokunaga sequence was set to satisfy T o

i,j = T o
i,j [K] = Tj−i. That is, the

offsprings adjacent to the terminal vertex of order j branch were not counted.
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14 Y. Kovchegov and I. Zaliapin

case, as the derivation steps are identical. Specifically, assume the Toeplitz property with
a Tokunaga sequence {Tk} and consider a sequence t(k) defined by

t(0) = −1, and t(k) = Tk + 2δ1,k for k ≥ 1.

Observe that ti,j = ti,j [K] = t(j − i). The generating function of t(k) is

t̂(z) =
∞∑
k=0

zkt(k) = −1 + 2z +
∞∑
k=1

zkTk.

Theorem 1 (Strong Horton law in a mean self-similar tree, [11]). Suppose µ
is a Galton-Watson measure on T | that satisfies the Toeplitz property with Tokunaga

sequence {Tj}j=1,2,... such that

lim sup
j→∞

T
1/j
j <∞. (14)

Then the strong Horton law for mean branch numbers (Def. 7) holds with the Horton

exponent R = 1/w0, where w0 is the only real zero of the generating function t̂(z) in the

interval
(
0, 1

2
]
. Moreover,

lim
K→∞

(
N1[K]R−K

)
= const. > 0. (15)

Conversely, if lim sup
j→∞

T
1/j
j = ∞, then the limit lim

K→∞
Nk[K]
N1[K] does not exist at least for

some k.

3. Main results

3.1. Distribution of Horton orders and related functions

Consider a collection of critical or subcritical Galton-Watson measures GW({qk}) with
q1 = 0 on T |. Let Q(z) =

∞∑
m=0

zmqm for z ∈ [0, 1] be the generating function of {qk}.

For T d∼ GW({qk}) we denote πj := P
(
ord(T ) = j

)
. Finally, let σ0 = 0 and σj :=

j∑
i=1

πi

(j ≥ 1).

Lemma 1 (Order distribution). Consider a Galton-Watson measure GW({qk}) with
q1 = 0. Assume criticality or subcriticality, i.e.,

∞∑
k=0

kqk ≤ 1. Then,

π1 = q0 and πj = Q(σj−1)−Q(σj−2)− πj−1Q
′(σj−2)

1−Q′(σj−1) (j ≥ 2). (16)
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Invariance and attraction properties of Galton-Watson trees 15

Proof. The probability of tree T with a single leaf is π1 = P
(
ord(T ) = 1

)
= q0.

Next we find the Horton-Strahler order of the offspring of the root using the rule (3).
The probability that the offspring of the root is a terminal vertex of a branch of order j,
j ≥ 2, is

∞∑
m=2

qm

m∑
`=2

(
m

`

)
π`j−1σ

m−`
j−2 = Q(σj−1)−Q(σj−2)− πj−1Q

′(σj−2).

Here we take a sum over all possible numbers m ≥ 2 of offsprings, and calculate the
probability that ` ≥ 2 of the offsprings have order j− 1, while the other m− ` offsprings
have orders less than j − 1.

Similarly, the probability of the offspring of the root to be a regular (non-terminal)
vertex of order j equals

∞∑
m=2

qmmπjσ
m−1
j−1 = πjQ

′(σj−1). (17)

Therefore,
πj = πjQ

′(σj−1) +
(
Q(σj−1)−Q(σj−2)− πj−1Q

′(σj−2)
)
,

which implies (16).

Corollary 1. Consider a Galton-Watson measure GW({qk}) with q1 = 0. Assume crit-

icality or subcriticality, i.e.,
∞∑
k=0

kqk ≤ 1. Then, σj can be expressed via an iterated

function (Fig. 7)

σj = S ◦ . . . ◦ S︸ ︷︷ ︸
j times

(0) for j ≥ 1, (18)

where

S(z) = Q(z)− zQ′(z)
1−Q′(z) . (19)

Proof. Equation (16) implies

πj =
[
Q(σj−1) + πjQ

′(σj−1)
]
−
[
Q(σj−2) + πj−1Q

′(σj−2)
]

for j ≥ 2. (20)

Hence, summing up the terms in (20), and substituting π1 = q0, we obtain

σj =
j∑
i=1

πi = Q(σj−1) + πjQ
′(σj−1) = Q(σj−1) + (σj − σj−1)Q′(σj−1)

for all j ≥ 1. Thus, σj = Q(σj−1)−σj−1Q
′(σj−1)

1−Q′(σj−1) = S(σj−1).
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16 Y. Kovchegov and I. Zaliapin

z

S(z)

0 1
0

1

s1 s2

p1

p2

p3

q0

Figure 7: Illustration to Cor. 1. Function S(z) is shown in red. Equation (18) implies that
the values of σj are obtained by iterative application of S(t), starting with σ0 = 0. These
iterations are illustrated by blue lines with arrows. Vertical increments correspond to the
values of πj .

Set S(1) = lim
x→1−

Q(x)−xQ′(x)
1−Q′(x) . Then, by L’Hôpital’s rule, S(1) = lim

x→1−
xQ′′(x)
Q′′(x) = 1. Next,

for the progeny variable X d∼ {qk}, consider the following important function

g(x) =
∞∑
m=0

E
[
(X −m− 1)+

]
xm =

∞∑
m=0

∞∑
k=m+1

(k −m− 1)qk xm, (21)

where x+ = max{x, 0}.

Proposition 2. For a critical (i.e., Q′(1) = 1) Galton-Watson process GW({qk}) with

q1 = 0, we have

Q(x)− x = (1− x)2g(x)

for g(x) as defined in (21).
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Invariance and attraction properties of Galton-Watson trees 17

Proof. Since
∞∑
k=2

kqk = Q′(1) = 1,

Q(x)− x = q0 +
∞∑
k=2

qkx
k − q0x−

∞∑
k=2

qkx = (1− x)
[
q0 −

∞∑
k=2

qk
1− xk−1

1− x x

]

= (1− x)
[ ∞∑
k=2

kqk −
∞∑
k=2

qk −
∞∑
k=2

qk
1− xk−1

1− x x

]
= (1− x)

∞∑
k=2

qk

k − 1−
k−1∑
j=1

xj


= (1− x)

∞∑
k=2

qk

k−1∑
j=1

(1− xj)

 = (1− x)2
∞∑
k=2

qk

k−1∑
j=1

j−1∑
m=0

xm

= (1− x)2
∞∑
k=2

qk

k−2∑
m=0

(k −m− 1)xm = (1− x)2
∞∑
m=0

∞∑
k=m+2

(k −m− 1)qkxm

= (1− x)2g(x). (22)

Let L denote the limit lim
x→1−

(
ln g(x)
− ln(1−x)

)
whenever the limit exists.

Lemma 2. For the progeny variable X
d∼ {qk} and g(x) as defined in (21), if

E[X2−ε] =
∞∑
k=0

k2−εqk <∞ ∀ε > 0, (23)

then L = lim
x→1−

(
ln g(x)
− ln(1−x)

)
= 0.

Proof. Suppose (23) holds, then by the Dominated Convergence Theorem, as m→∞,

(m+ 1)1−ε E
[
(X −m− 1)+

]
≤ E

[
X1−ε(X −m− 1)+

]
≤ E

[
X2−ε 1{X≥m+1}

]
→ 0. (24)

Accordingly, the m-th coefficient E
[
(X−m−1)+

]
in the power series representation (21)

of g(x) is o
(
mε−1). Next, for ε > 0, the m-th coefficient of the power series expansion of

(1− x)−ε is
m−1∏
i=0

(ε+ i)

m! = Γ(ε+m)
Γ(ε)m! ∼

mε−1

Γ(ε) , m→∞. (25)

Together, (24) and (25) imply

lim sup
x→1−

ln g(x)
ln(1− x)−ε ≤ 1 ⇔ lim sup

x→1−

ln g(x)
− ln(1− x) ≤ ε ∀ε > 0.

Hence, lim sup
x→1−

ln g(x)
− ln(1−x) = 0, while obviously lim inf

x→1−
ln g(x)
− ln(1−x) ≥ 0.
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18 Y. Kovchegov and I. Zaliapin

3.2. Regularity condition

Many of the results of the paper are proved under the following assumption.

Assumption 1. The following limit exists:

S′(1) = lim
x→1−

1− S(x)
1− x . (26)

Observe that since S(x) − x = Q(x)−x
1−Q′(x) , Assumption 1 is equivalent to the existence of

the limit
lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) = 1− S′(1). (27)

Lemma 3. Consider a critical Galton-Watson measure GW({qk}) with q1 = 0. If As-
sumption 1 is satisfied, then for g(x) defined in (21) the following limit exists

lim
x→1−

(
ln g(x)
− ln(1− x)

)
= L, (28)

and S′(1) = 1−L
2−L .

Proof. By the L’Hôpital’s rule,

L = lim
x→1−

(
ln g(x)
− ln(1− x)

)
= 2− lim

x→1−

ln g(x) + 2 ln(1− x)
ln(1− x) = 2− lim

x→1−

ln
(
Q(x)− x

)
ln(1− x)

= 2− lim
x→1−

d
dx ln

(
Q(x)− x

)
d
dx ln(1− x)

= 2− lim
x→1−

(1− x)
(
1−Q′(x)

)
Q(x)− x = 2− lim

x→1−

1− x
S(x)− x

= 2− 1
1− S′(1) .

Remark 3. Notice that due to the conditions for the L’Hôpital’s rule, there are cases

when the limit in (28) exists while the limit in (26) does not exists. Indeed, the L’Hôpital’s
rule in (28) holds under the condition that the limit lim

x→1−

d
dx ln(Q(x)−x)
d
dx ln(1−x) exists, or diverges

to infinity. This gap will be apparent in the context of Lem. 9 and Thm. 2.
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Remark 4. Assumption 1 is satisfied with S′(1) = 0 for a subcritical Galton-Watson

process GW({qk}) with q1 = 0. Indeed, we have

lim
x→1−

Q(x)− x
1− x = lim

x→1−

(
q0 −

∞∑
k=2

qk
1− xk−1

1− x x

)
= lim
x→1−

(
q0 −

∞∑
k=2

(k − 1)qk

)

= 1−
∞∑
k=2

kqk = 1−Q′(1) > 0

and, therefore,

S′(1) = 1− lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) = 1− 1−Q′(1)
1−Q′(1) = 0. (29)

Lemma 4. Consider a critical Galton-Watson measure GW({qk}) with q1 = 0. If the
second moment of the offspring distribution is finite,

E[X2] =
∞∑
k=0

k2qk <∞,

then Assumption 1 is satisfied with S′(1) = 1
2 and L = lim

x→1−

(
ln g(x)
− ln(1−x)

)
= 0.

Proof. By L’Hôpital’s rule,

lim
x→1−

Q(x)− x
(1− x)2 = 1

2 lim
x→1−

1−Q′(x)
1− x = Q′′(1)

2 .

Thus,

S′(1) = 1− lim
x→1−

(
Q(x)− x
(1− x)2

1− x
1−Q′(x)

)
= 1− Q′′(1)

2Q′′(1) = 1
2 ,

and by Lem. 3, L = 2− 1
1−S′(1) = 0.

The next statement suggests a sufficient condition for Assumption 1.

Lemma 5 (Regularity condition). Consider a critical Galton-Watson process GW({qk})
with q1 = 0 and infinite second moment, i.e.,

∞∑
k=0

k2qk =∞. Suppose that for the progeny

variable X
d∼ {qk} the following limit exists:

Λ = lim
k→∞

k

E[X |X ≥ k] = lim
k→∞

k
∞∑
m=k

qm

∞∑
m=k

mqm

. (30)

Then Assumption 1 is satisfied with S′(1) = Λ.
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20 Y. Kovchegov and I. Zaliapin

Proof. For x ∈ (0, 1),

1−Q′(x)
1− x = Q′(1)−Q′(x)

1− x =
∞∑
m=0

mqm
1− xm−1

1− x =
∞∑
m=0

m−2∑
k=0

mqmx
k =

∞∑
k=0

bkx
k,

where

bk =
∞∑

m=k+2
mqm. (31)

Recall that (22) shows that g(x) =
∞∑
k=0

akx
k, where

ak =
∞∑

m=k+2
(m− k − 1)qm = bk − ck with ck = (k + 1)

∞∑
m=k+2

qm (32)

and bk as defined in (31). Equations (31) and (32) yield

Q(x)− x
(1− x)(1−Q′(x)) = (1− x)g(x)

1−Q′(x) =

∞∑
k=0

akx
k

∞∑
k=0

bkxk
= 1−

∞∑
k=0

ckx
k

∞∑
k=0

bkxk
. (33)

The infinite second moment condition implies lim
x→1−

∞∑
k=0

bkx
k = ∞ and lim

x→1−

∞∑
k=0

ckx
k =

∞. As (30) postulates that lim
k→∞

(ck/bk) = Λ, for a given small value of ε > 0, there
exists K ∈ N such that |ck/bk − Λ| < ε, ∀k ≥ K. Thus

lim inf
x→1−

∞∑
k=0

ckx
k

∞∑
k=0

bkxk
= lim inf

x→1−

∞∑
k=K

ckx
k

∞∑
k=K

bkxk
≥ Λ− ε

and

lim sup
x→1−

∞∑
k=0

ckx
k

∞∑
k=0

bkxk
= lim sup

x→1−

∞∑
k=K

ckx
k

∞∑
k=K

bkxk
≤ Λ + ε.

Consequently,

lim
x→1−

∞∑
k=0

ckx
k

∞∑
k=0

bkxk
= Λ.
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Hence, the limit in (27) exists, and (33) implies

S′(1) = 1− lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) = lim
x→1−

∞∑
k=0

ckx
k

∞∑
k=0

bkxk
= Λ.

Corollary 2 (Zipf distribution). Consider a critical Galton-Watson process GW({qk})
with q1 = 0 and offspring distribution {qk} of Zipf type:

qk ∼ Ck−(α+1) with α ∈ (1, 2] and C > 0. (34)

Then Assumption 1 is satisfied,

S′(1) = α− 1
α

and L = lim
x→1−

(
ln g(x)
− ln(1− x)

)
= 2− α. (35)

Proof. Suppose qk = Ck−(α+1)(1 + o(1)
)
. Then,

∞∑
m=k

mqm = C
k1−α

α− 1
(
1 + o(1)

)
and

∞∑
m=k

qm = C
k−α

α

(
1 + o(1)

)
.

Hence, the limit Λ defined in (30) exists and is equal to

Λ = lim
k→∞

k
∞∑
m=k

qm

∞∑
m=k

mqm

= α− 1
α

Consequently, Lem. 5 implies Assumption 1 and S′(1) = α−1
α . Finally, by Lem. 3 we

have
L = 2− 1

1− S′(1) = 2− α.

Example 1 (Infinite second moment, L = 0). Consider a critical Galton-Watson

process GW({qk}) with q0 = 2
3 , q1 = 0, and

qk = 4/3
k(k2 − 1) (k ≥ 2).
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Observe that the offspring distribution qk is of Zipf type (34) with α = 2. This offspring

distribution has infinite second moment. Here,

Q(x)− x = (1− x)2 g(x) with g(x) = −2/3
x

ln(1− x),

and therefore, the limit in (27) exists and is equal to

lim
x→1−

Q(x)− x
(1− x)

(
1−Q′(x)

) = lim
x→1−

ln(1− x)
2 ln(1− x) + 1

x

= 1
2 .

Hence, Assumption 1 is satisfied with S′(1) = 1− 1
2 = 1

2 . On the other hand,

L = lim
x→1−

(
ln g(x)
− ln(1− x)

)
= lim
x→1−

(
ln (− ln(1− x))
− ln(1− x)

)
= 0,

which is consistent with Lem. 2. We also see that S′(1) = 1−L
2−L = α−1

α , giving an example

for statements in Lem. 3 and Cor. 2.

3.3. Tokunaga coefficients in recursive form

Here we derive a recursive expression for the Tokunaga coefficients of a Galton-Watson
measure in the form Ti,j = πif(σj−2, πj−1, πj). The recursive nature of this representation
is connected to the recursive expression (16) for πi of Lem. 1.

Lemma 6 (Tokunaga coefficients). Consider a Galton-Watson measure GW({qk})
with q1 = 0. Assume criticality or subcriticality, i.e.,

∞∑
k=0

kqk ≤ 1. Then, for all 1 ≤ i <

j − 1, we have

Ti,j = πi
Q′(σj−1)−Q′(σj−2)− πj−1Q

′′(σj−2)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2) + T oi,j , (36)

and for 1 ≤ i = j − 1,

Tj−1,j = πj−1Q
′(σj−1)+πj−1Q

′(σj−2)−2Q(σj−1)+2Q(σj−2)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2) + T oj−1,j , (37)

where T oi,j = πi
Q′′(σj−1)

1−Q′(σj−1) is the expected number of offsprings of order i descendant to

all regular (non-terminal) vertices of order j.

Note that (36) can be rewritten as

Ti,j = πi
d

dx
ln
(
Q(x+ πj−1)−Q(x)− πj−1Q

′(x)
1−Q′(x+ πj−1)

) ∣∣∣∣∣
x=σj−2

.
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Proof. For i ≤ j−2, let M term
i,j denote the expected number of descendants of order i of

a terminal vertex of order j, i.e., the expected number of side branches of Tokunaga index
{i, j}; see Remark 1. For d ∈ N, consider all vertices in generation d. The probability
that a vertex is a terminal vertex in a branch of order j is

∞∑
m=2

qm

m∑
`=2

(
m

`

)
π`j−1σ

m−`
j−2 = Q(σj−1)−Q(σj−2)− πj−1Q

′(σj−2),

where m ≥ 2 is its branching number (i.e., the number of descendants) and ` ≥ 2 is the
number of descendants of order j − 1.

Recall that
k∑

m=0
m
(
k
m

)
ambk−m = ka(a + b)k−1. The expected number of offsprings of

order i descendant to a vertex conditioned on having a total of m ≥ 2 offsprings, of
which ` ≥ 2 are of order j − 1 and m− ` are of order smaller than j − 1, is

1
σm−`j−2

m−∑̀
k=0

k

(
m− `
k

)
πki
(
σj−2 − πi

)m−`−k = πi
m− `
σj−2

.

Thus, for i ≤ j − 2,

M term
i,j =

∞∑
m=2

qm
m∑̀
=2

(
m
`

)
π`j−1

m−`∑
k=0

k
(
m−`
k

)
πki
(
σj−2 − πi

)m−`−k
∞∑
m=2

qm
m∑̀
=2

(
m
`

)
π`j−1σ

m−`
j−2

=
πi
∞∑
m=2

qm
m∑̀
=2

(m− `)
(
m
`

)
π`j−1σ

m−`−1
j−2

Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2)

=
πi
∞∑
m=2

qm
(
mσm−1

j−1 −m(m− 1)πj−1σ
m−2
j−2 −mσ

m−1
j−2

)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2)

= πi
Q′(σj−1)−Q′(σj−2)− πj−1Q

′′(σj−2)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2) . (38)

Next, for i = j − 1, let M term
j−1,j denote the expected number of order j − 1 side-branches

adjacent to a terminal vertex of a branch of order j. The expected number of order j− 1
offsprings of a vertex conditioned on being the terminal vertex in a branch of order j
with a total of m ≥ 2 offsprings is

1
σm−`j−2

m∑
`=2

`

(
m

`

)
π`j−1σ

m−`
j−2 ,

where ` ≥ 2 counts the offspring of order j−1, and the rest m−` represent the offsprings
of order smaller than j−1. Following Remark 1, we subtract two principal branches from
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the number of order j − 1 offsprings. Consequently, the expected number of order j − 1
side branches adjacent to a vertex conditioned on being the terminal vertex in a branch
of order j with a total of m ≥ 2 offsprings is equal to

1
σm−`j−2

m∑
`=2

(`− 2)
(
m

`

)
π`j−1σ

m−`
j−2 .

Here, of ` ≥ 2 offspring of order j − 1, two are principle branches and ` − 2 are side
branches. Hence, we have

M term
j−1,j =

∞∑
m=2

qm
m∑̀
=2

(`− 2)
(
m
`

)
π`j−1σ

m−`
j−2

Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2)

=

∞∑
m=2

qm
(
mπj−1σ

m−1
j−1 +mπj−1σ

m−1
j−2 − 2σmj−1 + 2σmj−2

)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2)

= πj−1Q
′(σj−1) + πj−1Q

′(σj−2)− 2Q(σj−1) + 2Q(σj−2)
Q(σj−1)−Q(σj−2)− πj−1Q′(σj−2) . (39)

The expected number V oj of regular (non-terminal) vertices in a branch of order j is
computed as follows:

V oj =

∞∑
r=0

r

( ∞∑
k=2

qkkσ
k−1
j−1

)r
∞∑
r=0

( ∞∑
k=2

qkkσ
k−1
j−1

)r = Q′(σj−1)
1−Q′(σj−1) , (40)

where, following (17), the probability of a vertex being a regular vertex in a branch of
order j, conditioned on it being of order j, equals

∞∑
k=2

qkkσ
k−1
j−1 .

Finally, the expected number Mo
i,j of order i offsprings (and therefore, side branches of

Tokunaga index {i, j}) in a regular (non-terminal) vertex on a branch of order j is

Mo
i,j = 1

∞∑
k=2

qkkσ
k−1
j−1

∞∑
k=0

qkk

k−1∑
s=0

s

(
k − 1
s

)
πsi
(
σj−1 − πi

)k−1−s

= 1
Q′(σj−1)πi

∞∑
k=2

qkk(k − 1)σk−2
j−1 = πi

Q′′(σj−1)
Q′(σj−1) (41)
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for 1 ≤ i < j. Here, k counts the total number of offsprings, of which we have k choices
for the offspring of order j. Of the remaining k − 1 ofsprings, we select s offsprings of
order i and k− 1− s of order other than i, but less than j. There are

(
k−1
s

)
such choices,

with probability of πsi
(
σj−1 − πi

)k−1−s for each such outcome.

The statement of the lemma follows from equations (38), (39), (40), (41) as Ti,j =
M term
i,j + T oi,j with T oi,j = V oj M

o
i,j by Wald’s equation.

Example 2 (Critical binary Galton-Watson tree). Consider the critical binary

Galton-Watson distribution GW(q0 = q2 =1/2). We have

Q(z) = 1 + z2

2 , S(z) = 1 + z

2 , and g(z) = 1/2.

Corollary 1 yields σj = S(σj−1) with σ0 = 0, which implies by induction σj = 1 − 2−j
and πj = 2−j for j ≥ 1. Equations (36) and (37) give

Ti,j = T oi,j = πi
1− σj−1

= 2j−i−1 for all 1 ≤ i < j,

which implies the Toeplitz property (Def. 5) and Tokunaga self-similarity (Def. 6) with

(a, c) = (1, 2) and Tk = 2k−1.

Lemma 7 (Toeplitz implies criticality). Consider a subcritical or critical Galton-

Watson measure GW({qk}) with q1 = 0 that satisfies Assumption 1. If the Toeplitz prop-

erty (Def. 5) is satisfied, then the measure is either critical or q0 = 1, the order distribu-

tion is geometric with πk = q0(1− q0)k−1, and q0 = 1− S′(1).

Proof. The Toeplitz property implies the existence of the Tokunaga sequence {Tk}k∈N.
In the trivial case of q0 = 1, we have Tk = 0 for any k ≥ 1, Q(z) = S(z) = 1 so

S′(1) = 0 = 1− q0, and πk = δ1k. This establishes the statement.
Suppose that q0 < 1. Equation (36) shows that there is a scalar c > 0 such that

Tk+1

Tk
= πi
πi+1

= c ∀k ≥ 2, i ≥ 1.

Thus, as π1 = q0, we have πj = q0c
1−j and since

∑
j πj = 1 then c = (1− q0)−1.

Next, observe that since S(x) = S(1) + S′(1)(x− 1) + o(1− x) and S(1) = 1, we have

1− q0 = πi+1

πi
= S(σi)− S(σi−1)

πi
= S′(1)(σi − σi−1) + o(1− σi−1)

πi
→ S′(1) as i→∞

that leads to
q0 = 1− S′(1). (42)

The criticality follows from the constraint q0 < 1, since in the subcritical case we have
S′(1) = 0 (see Rem. 4).
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The following statement gives an alternative proof to one of the main results of Burd
et al. [2] using the framework of the present study.

Corollary 3. Consider a subcritical or critical offspring distribution {qk} with q1 =
0 and a finite second moment,

∑∞
k=1 k

2qk < ∞. The measure GW({qk}) satisfies the

Toeplitz property (Def. 5) if and only if it is the critical binary Galton-Watson measure,

q0 = q2 = 1
2 .

Proof. By Lem. 4, the finite second moment implies Assumption 1 with q0 = 1−S′(1) =
1
2 . Assume the Toeplitz property holds. Then the criticality follows from Lem. 7. The
criticality with q0 = 1

2 and q1 = 0 yield q2 = 1
2 as

∞∑
k=2

k

2 qk = 1
2 = 1− q0 =

∞∑
k=2

qk.

Conversely, the Toeplitz property for the critical binary Galton-Watson tree is established
in Ex. 2.

3.4. Invariant Galton-Watson measures

The following result was originally proved in [2]. We state and prove it here since the
expression (45) will be used in the proof of Thm. 2 below.

Lemma 8 (Pruning Galton-Watson tree, [2]). Consider a critical or subcritical

Galton-Watson measure µ ≡ GW({qk}) with q1 = 0 on T | with generating function Q(z),
and the corresponding pushforward probability measure induced by the Horton pruning

operator R,
ν(T ) = µ ◦ R−1(T ) = µ

(
R−1(T )

)
.

Then, ν(T |T 6= φ) is a Galton-Watson measure GW({q(1)
k }) on T | with offspring proba-

bilities

q
(1)
0 = Q(q0)− q0

(1− q0)
(
1−Q′(q0)

) , (43)

q
(1)
1 = 0, and

q
(1)
k = (1− q0)k−1Q(k)(q0)

k!
(
1−Q′(q0)

) (k ≥ 2), (44)

and generating function

Q1(z) = z +
Q
(
q0 + (1− q0)z

)
− q0 − z(1− q0)

(1− q0)
(
1−Q′(q0)

) . (45)

Moreover, if µ(T ) is critical, then so is ν(T |T 6= φ). If µ(T ) is subcritical, then the first

moment is decreasing with pruning, i.e.,
∞∑
k=2

kq
(1)
k <

∞∑
k=2

kqk < 1.
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Proof. The standard thinning argument (with π1 = q0 being the probability of elim-
inating an offspring) implies that R(T ) is distributed as a Galton-Watson tree, i.e.,
R(T ) d∼ GW({q(1)

m }). Indeed, think of a random tree obtained as a result of the auxiliary
branching process defined in the following way. We trace the branching process that starts
with one generation zero progenitor vertex (the root) that produces exactly one offspring.
From generation one on, the branching process evolves according to the offspring distri-
bution

{
qk

1−q0

}
k=2,3,...

. Next, the process is thinned: once an offspring is produced (in
each generation, including generation zero), it is either instantaneously eliminated with
probability q0 or is left untouched with probability 1−q0, where these Bernoulli trials are
performed independently of each other and the branching history. Naturally, this gener-
ates a Galton-Watson branching process with branching probabilities {pm} calculated as
follows

pm =
∞∑

k=m∨2

(
k

m

)
qk−m0 (1− q0)m qk

1− q0
. (46)

The above defined thinned Galton-Watson process can be equivalently formulated by
tracking the original branching process with branching probabilities {qk}. Here, for each
offspring, it is instantaneously decided whether the offspring is a leaf or not via a Bernoulli
trial with probabilities q0 and 1− q0 for ‘leaf’ and ‘no leaf’ outcomes respectively. If the
offspring is decided to be a leaf, it is pruned instantaneously. If not a leaf, it will branch
according to the offspring distribution

{
qk

1−q0

}
k=2,3,...

. The thinned Galton-Watson pro-
cess differs from the original one by pruning all the leaves. Hence, it implements the
instantaneous Horton pruning, but not yet series reduction. Indeed, the above thinned
Galton-Watson prices with branching probabilities {pm} can have single offspring nodes.

Next, we need to account for the series reduction by generating a Galton-Watson process
with the branching probabilities {q(1)

m } by letting

q
(1)
0 = p0

1− p1
=

(1− q0)−1
∞∑
k=2

qk0qk

1−
∞∑
k=2

kqk−1
0 qk

,

q
(1)
1 = 0, and for m ≥ 2,

q(1)
m = pm

1− p1
=

(1− q0)m−1
∞∑
k=m

(
k
m

)
qk−m0 qk

1−
∞∑
k=2

kqk−1
0 qk

.

This branding process induces the tree measure ν(T ). Note that there is an alternative
derivation of (43) as by Cor. 1, q(1)

0 = π2
1−σ1

= S(q0)−q0
1−q0

= Q(q0)−q0
(1−q0)(1−Q′(q0)) .
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We notice that the corresponding generating function can be computed as follows

Q1(z) =
∞∑
m=0

zmq(1)
m = (1− q0)−1

1−
∞∑
k=2

kqk−1
0 qk

( ∞∑
k=2

qk0qk +
∞∑
m=2

∞∑
k=m

(
zq−1

0 (1− q0)
)m( k

m

)
qk0qk

)

= (1− q0)−1

1−Q′(q0)

( ∞∑
k=2

qk0qk +
∞∑
k=2

k∑
m=2

(
k

m

)(
zq−1

0 (1− q0)
)m
qk0qk

)

= (1− q0)−1

1−Q′(q0)
(
Q
(
z + (1− z)q0

)
− q0 − z(1− q0)Q′(q0)

)
by the binomial theorem, implying (45). We proceed by differentiating d

dz in (45), ob-
taining

Q′1(z) = Q′(q0 + z(1− q0))−Q′(q0)
1−Q′(q0) . (47)

Next, we observe that if µ(T ) is critical, (47) implies
∞∑
k=2

kq
(1)
k = Q′1(1) = Q′(1)−Q(q0)

1−Q(q0) = 1.

That is, the critical process stays critical after a Horton pruning. Finally, in the subcritical
case, Q′(1) < 1, and by formula (47), Q′1(1) = Q′(1)−Q(q0)

1−Q(q0) < Q′(1).

Formula (45) matches the evolution of the generator under tree erasure discussed by
He and Winkel [8, Lemma 11]; see also Neveu [16] and Kesten [10]. Also, observe that
expression (45) is of the same form as the generating function of a thinned Galton-Watson
process in the work of Duquesne and Winkel [4, eqn. (10) of Sec. 2.2], where the thinning
was done in the context of a Bernoulli leaf coloring scheme.

Lemma 9. Consider a critical or subcritical Galton-Watson measure GW({qk}) with

q1 = 0. If it is Horton prune-invariant (self-similar) (Def. 4), then the limit

lim
x→1−

(
ln g(x)
− ln(1− x)

)
= L

exists and is finite. Moreover,

L = 1−
ln
(
1−Q′(q0)

)
ln(1− q0) .

Proof. The Horton prune-invariance implies Q1(z) = Q(z) in the recursion (45):

Q(z) = z +
Q
(
q0 + (1− q0)z

)
− q0 − z(1− q0)

(1− q0)
(
1−Q′(q0)

) , (48)
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which we rewrite as

Q
(
q0+(1−q0)z

)
−
(
q0+z(1−q0)

)
= M(q0)

(
Q(z)−z

)
, where M(q0) = (1−q0)

(
1−Q′(q0)

)
.

(49)
Then, for any k ∈ N,

Q
(
1− (1− q0)k + (1− q0)kz

)
−
(
1− (1− q0)k + (1− q0)kz

)
=
(
M(q0)

)k(
Q(z)− z

)
and for z ∈ [0, 1),

lim
k→∞

ln (Q
(
1− (1− q0)k + (1− q0)kz

)
−
(
1− (1− q0)k + (1− q0)kz

)
)

ln
(

1−
(
1− (1− q0)k + (1− q0)kz

))
= lim
k→∞

k lnM(q0) + ln (Q(z)− z)
k ln(1− q0) + ln(1− z) = lnM(q0)

ln(1− q0) . (50)

Next, notice that for z ∈ I0 = [0, q0),

ln(q0) ≤ ln (Q(z)− z) ≤ ln
(
Q(q0)− q0

)
and ln(1− q0) ≤ ln(1− z) ≤ 0.

Hence, for any x ∈ Ik =
(
1− (1− q0)k, 1− (1− q0)k+1), there is a z ∈ I0 such that

x = 1− (1− q0)k + (1− q0)kz

and

k lnM(q0) +ln
(
Q(q0)− q0

)
k ln(1− q0) + ln(1− q0) ≤ ln (Q(x)− x)

ln(1− x) = k lnM(q0)+ln (Q(z)− z)
k ln(1− q0) + ln(1− z) ≤

k lnM(q0)+ln(q0)
k ln(1− q0) .

Hence, the following limit exists

lim
x→1−

ln (Q(x)− x)
ln(1− x) = lnM(q0)

ln(1− q0) .

Finally,

lim
x→1−

(
ln g(x)
− ln(1− x)

)
= lim
x→1−

2 ln(1− x)− ln (Q(x)− x)
ln(1− x) = 2− lnM(q0)

ln(1− q0)

= 1−
ln
(
1−Q′(q0)

)
ln(1− q0) . (51)

Next, we define a single parameter family of critical Galton-Watson measures GW({qk})
with q1 = 0 on T |.
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Definition 8 (Invariant Galton-Watson measures). For a given q ∈ [1/2, 1), a
critical Galton-Watson measure GW({qk}) is said to be the invariant Galton-Watson

(IGW) measure with parameter q and denoted by IGW(q) if its generating function is

given by

Q(z) = z + q(1− z)1/q. (52)
The respective branching probabilities are q0 = q, q1 = 0, q2 = (1− q)/2q, and

qk = 1− q
k! q

k−1∏
i=2

(i− 1/q) (k ≥ 3). (53)

Here, if q = 1/2, then the distribution is critical binary, i.e., GW(q0 = q2 = 1/2). If

q ∈ (1/2, 1), the distribution is of Zipf type with

qk = (1− q)Γ(k − 1/q)
qΓ(2− 1/q) k! ∼ Ck−(1+q)/q, where C = 1− q

q Γ(2− 1/q) . (54)

Theorem 2 (Self-similar Galton-Watson measures). Consider a critical or sub-

critical Galton-Watson measure GW({qk}) with q1 = 0 that satisfies Assumption 1. The

measure is Horton prune-invariant (self-similar) (Def. 4) if and only if it is the invariant

Galton-Watson (IGW) measure IGW(q0) with q0 ∈ [1/2, 1).

Proof. Combining equations (43) and (45), we have

Q1(z) = z + q
(1)
0
Q
(
q0 + (1− q0)z

)
−
(
q0 + (1− q0)z

)
Q(q0)− q0

. (55)

If the Galton-Watson measure is Horton prune-invariant, then Q1(z) = Q(z), and (55)
implies

R(z) =
R
(
q0 + (1− q0)z

)
R(q0) for R(z) = Q(z)− z

q0

for z ∈ [0, 1). Hence, letting `(z) = lnR(1− z) for z ∈ (0, 1], we have

`(z) + `(1− q0) = `
(
(1− q0)z

)
.

Finally, for r(y) = `
(
e−y
)

= lnR
(
1− e−y

)
for y ∈ [0,∞) and κ0 = − ln(1− q0),

r(y + κ0) = r(y) + r(κ0) ∀y ∈ [0,∞).

Therefore, r′(y+κ0) = r′(y) and r(y) = −
y∫
0
α(w) dw for some κ0-periodic function α(y).

Thus,

Q(z) = z + q0R(z) = z + q0e
`(1−z) = z + q0e

r
(
−ln(1−z)

)
= z + q0 exp

−
− ln(1−z)∫

0

α(w) dw

 .

(56)
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Next, 0 = q1 = Q′(0) = 1 − α(0)q0 implies α(0) = 1
q0
. Also, for z ∈ (0, 1), R′(z) =

Q′(z)−1
q0

< 0 and r(y) is a decreasing function. Hence, α(y) > 0 for all y ∈ (0, 1).

Letting w = − ln(1− x) in (56), we have

ln
(
Q(z)− z

)
= ln(q0)−

− ln(1−z)∫
0

α(w) dw = ln(q0)−
z∫

0

α(− ln(1− x))
1− x dx ∀z ∈ [0, 1).

(57)
Recall that d

dz ln
(
Q(z)− z

)
= −1

S(z)−z , and therefore,

ln
(
Q(z)− z

)
= ln(q0)−

z∫
0

dx

S(x)− x ∀z ∈ [0, 1). (58)

Equations (57) and (58) yield

S(z) = z + q0(1− z)ϕ(z), where ϕ(z) = 1
q0α(− ln(1− z)) . (59)

Here, α(0) = 1
q0

implies ϕ(0) = 1. Since α(z) is κ0-periodic function,

α(− ln(1− z)) = α(− ln(1− z) + κ0) = α
(
− ln

(
1− (q0 + (1− q0)z

))
and ϕ(z) satisfies

ϕ(z) = ϕ
(
q0 + (1− q0)z

)
∀z ∈ [0, 1). (60)

Equation (59) implies the existence of the limit

ϕ(1) = lim
x→1−

ϕ(x) = 1
q0

lim
x→1−

S(x)− x
1− x = 1− S′(1)

q0
.

Next, iterating (60), we have

ϕ(x) = lim
k→∞

ϕ
((

1− (1− q0)k
)

+ (1− q0)kx
)

= ϕ(1) ∀x ∈ [0, 1).

Hence, ϕ(x) ≡ 1, and by (59),

S(z) = z + q0(1− z).

Consequently, (58) implies Q(z) = z + q0(1− z)1/q0 .

Finally, observe that for an invariant Galton-Watson measure IGW(q0) with any q0 ∈
[1/2, 1) satisfies (55). In particular, equation (52) implies

S(z) = q0 + (1− q0)z. (61)

The statement of the theorem follows.
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Remark 5 (Heuristics for a linear S(z)). Consider a Horton prune-invariant mea-

sure (or at least a Toeplitz measure with q0 < 1) that satisfies Assumption 1. Lemma 7

shows that in this case

πk+1

πk
= σk+1 − σk

πk
= S′(1) = 1− q0 for all k ≥ 1.

Together with the recursion σk = S(σk−1) of Cor. 1 (see also Fig. 7), this implies that

the points (σk, S(σk)) lie on the line

y(z) = q0 + (1− q0)z.

This observation suggests S(z) = q0 +(1−q0)z as a possible solution of the equation (45)
with Q1(z) = Q(z), and the corresponding Q(z) = z + q0(1 − z)1/q0 is found by (58).
Theorem 2 ensures that this is the only solution under the regularity Assumption 1.

Remark 6 (Intuition behind the regularity condition). The Horton pruning

acts as a rescaling (vertical and horizontal) on the function S(z)− z from the restricted

domain [q0, 1] to [0, 1], according to (45). After k consecutive prunings, function Sk(z)−z
with the domain [0, 1] is obtained via scaling from a restriction of S(z)−z to the interval

[1−(1−q0)k, 1]. Thus, consecutive pruning rescales and maps the function S(z)−z in the

vicinity of 1− to the interval [0, 1]. Assumption 1 requires a smooth behavior of S(z) at z =
1−. The rescaling translates this smooth behavior to the ultimate linearity of function S(z)
on the entire interval [0, 1]. The most general form of prune-invariant Q(z) is given in

(56), which allows a non-linear oscillatory behavior of S(z) between the points (σk, S(σk))
discussed in Rem. 5. The rescaling argument shows that such oscillations necessarily lead

to non-smooth behavior of S(z) at z = 1− and hence violate Assumption 1.

Remark 7 (General prune-invariant measures). Recall that according to Lem. 9,

the general Horton prune-invariant distributions adhere to the existence and finiteness

of the limit L = lim
x→1−

(
ln g(x)
− ln(1−x)

)
, which is weaker than S′(1) required in Assumption 1

(see Lem. 3). The gap between the two conditions allows for the existence of Horton

prune-invariant distributions that satisfy (48) and have a nonlinear function S(z). An
example of such a measure and further discussion is given in Sect. 4.

3.5. Attractors and basins of attraction

Theorem 3 (Attraction property of critical Galton-Watson trees). Consider a

critical Galton-Watson measure ρ0 ≡ GW({qk}) with q1 = 0 on T |. Starting with k = 0,
and for each consecutive integer, let νk = R∗(ρk) denote the pushforward probability

measure induced by the pruning operator, i.e., νk(T ) = ρk ◦R−1(T ) = ρk
(
R−1(T )

)
, and

set ρk+1(T ) = νk (T |T 6= φ). Suppose Assumption 1 is satisfied. Then, for any T ∈ T |,

lim
k→∞

ρk(T ) = ρ∗(T ),
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where ρ∗ denotes the invariant Galton-Watson measure IGW(q) with q = 1− S′(1).
Finally, if the Galton-Watson measure ρ0 ≡ GW({qk}) is subcritical, then ρk(T ) con-

verges to a point mass measure, GW(q0 =1).

Proof. Let q(k)
m denote the offspring distribution corresponding to the critical Galton-

Watson tree measure ρk, where q(k)
1 = 0 by series reduction. First, we observe that

lim
k→∞

q
(k)
0 = lim

k→∞

πk
1− σk−1

= lim
k→∞

S(σk−1)− σk−1

1− σk−1

= lim
k→∞

1 + S′(1)
(
σk−1 − 1

)
+ o
(
1− σk−1

)
− σk−1

1− σk−1
= 1− S′(1). (62)

Let Qk(z) :=
∞∑
m=0

zmq
(k)
m denote the generating function corresponding to the Galton-

Watson measure ρk and Sk(z) = Qk(z)−zQ′k(z)
1−Q′

k
(z) . Equation (45) implies

S1(z) = 1
1− q0

S
(
q0 + (1− q0)z

)
− q0

1− q0
. (63)

For a given z ∈ [0, 1), we iterate (63), obtaining

Sk(z) =
k−1∏
i=0

1
1− q(i)

0
S

((
1−

k−1∏
i=0

(1− q(i)
0 )
)

+ z

k−1∏
i=0

(1− q(i)
0 )
)

+
(

1−
k−1∏
i=0

1
1− q(i)

0

)
,

(64)

where
k−1∏
i=0

(1− q(i)
0 ) ≤ 2−k → 0 as k →∞. Next, we substitute

S

((
1−

k−1∏
i=0

(1− q(i)
0 )
)

+ z

k−1∏
i=0

(1− q(i)
0 )
)

= 1+(z−1)S′(1)
k−1∏
i=0

(1−q(i)
0 )+o

(
k−1∏
i=0

(1− q(i)
0 )
)

into (64), getting
Sk(z) = 1 + (z − 1)S′(1) + o(1).

Hence, for a given z ∈ [0, 1), we have

d

dz
ln (Qk(z)− z) = 1

z − Sk(z) −→
1

(1− S′(1))(z − 1) as k →∞.

Also, we notice that Qk(x)− x is a decreasing function (Q′k(x) < Q′k(1) = 1) and

q
(k)
0 ≥ Qk(x)− x ≥ Qk(z)− z > 0 ∀x ∈ [0, z].
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Therefore, letting k →∞, we have

ln (Qk(z)− z) = ln q(k)
0 +

z∫
0

d

dx
ln (Qk(x)− x) dx −→ ln q + 1

q
ln(1− z),

where q = 1− S′(1), as lim
k→∞

q
(k)
0 = q by (62). We conclude that

lim
k→∞

Qk(z) = z + q (1− z)1/q

where the right hand side is the generating function for IGW (q).

Finally, if ρ0 ≡ GW({qk}) is subcritical, (29) and (62) imply lim
k→∞

q
(k)
0 = 1−S′(1) =1.

Theorem 3 and Cor. 2 immediately imply the following result.

Corollary 4 (Attraction property of critical Galton-Watson trees of Zipf type).
Consider a critical Galton-Watson process ρ0 ≡ GW({qk}) with q1 = 0, with offspring

distribution qk of Zipf type, i.e., qk ∼ Ck−(α+1), with α ∈ (1, 2] and C > 0. Starting
with k = 0, and for each consecutive integer, let νk = R∗(ρk) denote the pushforward

probability measure induced by the pruning operator, and set ρk+1(T ) = νk (T |T 6= φ).
Then, for any T ∈ T |,

lim
k→∞

ρk(T ) = ρ∗(T ),

where ρ∗ is the invariant Galton-Watson measure IGW
( 1
α

)
.

Next, Lem. 2 and 4 imply the following attraction result as a corollary of our Thm. 3. The
same attraction property has been established in [2] under the assumption of a bounded
offspring distribution.

Corollary 5 (Attraction property of critical binary Galton-Watson tree, [2]).
Consider a critical Galton-Watson process ρ0 ≡ GW({qk}) with q1 = 0. Assume one of

the following two conditions holds.

(a) The second moment assumption is satisfied:

∞∑
k=2

k2qk <∞.

(b) Assumption 1 is satisfied, and the “2−” moment assumption is satisfied, i.e.,

∞∑
k=2

k2−εqk <∞ ∀ε > 0.
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(a) (b) (c)

Figure 8: Binary attractor: Illustration. The tree T (panel a) has maximal branching
number b = 6. Its first pruning (panel b) R(T ) has maximal branching number b = 3. Its
second pruning (panel c) R2(T ) has maximal branching number b = 2. This convergence
to binary branching is generic in Galton-Watson trees that have offspring distribution
with a finite 2− ε moment; see Cor. 5.

Starting with k = 0, and for each consecutive integer, let νk = R∗(ρk) denote the

pushforward probability measure induced by the pruning operator, and set ρk+1(T ) =
νk (T |T 6= φ). Then, for any T ∈ T |,

lim
k→∞

ρk(T ) = ρ∗(T ),

where ρ∗ is the critical binary Galton-Watson measure IGW(1/2).

Figure 8 illustrates convergence of a tree with a large branching number to a binary
tree.

3.6. Explicit Tokunaga coefficients and Horton law

In the next lemma we find the Tokunaga coefficients and the Horton exponent for an
invariant Galton-Watson tree measure IGW(q0).

Lemma 10 (Tokunaga coefficients). Consider an invariant Galton-Watson measure

IGW(q0) for q0 ∈ [1/2, 1). Then,

πi = q0 c
1−i with c = 1

1− q0
.

The measure satisfies Toeplitz property (Def. 5) with the Tokunaga coefficients

T oi,j = T oj−i, where T ok = ck−1 (k = 1, 2, . . .), (65)
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and

Ti,j = Tj−i, where T1 = cc/(c−1) − c− 1 and Tk = a ck−1 (k = 2, 3, . . .) (66)

with a = (c − 1)
(
c1/(c−1) − 1

)
. Finally, the strong Horton law (13) holds with Horton

exponent R = cc/(c−1) = (1− q0)−1/q0 .

The functions a(q0), c(q0) and R(q0) are illustrated in Fig. 1.

Proof. Equations (18) and (61) imply σi = 1 − (1 − q0)i + (1 − q0)i z. Hence, πi =
σi − σi−1 = q0(1− q0)i−1. Equations (65) and (66) are obtained via substituting πi and
σi into Lem. 6.

Finally, Thm. 1 implies the strong Horton law with the Horton exponent R = 1/w0,
where w0 is the only real zero of the generating function t̂(z) in the interval

(
0, 1

2
]
. We

have
t̂(z) = −1 + (T1 + 2)z + acz2

1− cz ,

which gives w0 = c−c/(c−1) and R = cc/(c−1).

4. Discussion
In this paper we described the invariance and attractor properties of combinatorial
Galton-Watson trees with respect to the Horton pruning. The results hold under the
regularity Assumption 1 that prohibits large tail oscillations of the offspring probabilities
qm that lead to a non-smooth behavior of S(z) at 1−. A sufficient condition under which
the regularity assumption holds is suggested in Lem. 5. Theorem 2 introduces a one-
parameter family of invariant Galton-Watson distributions IGW(q) and asserts that this
family exhausts the Horton prune-invariant distributions within the examined regularity
class. The invariant family has a power-law tail of the offspring distribution, qk ∼ Ck−α,
with exactly one distribution for every α ∈ (2, 3], and also includes the critical binary
Galton-Watson tree measure.

A similar approach can be applied to the search of invariant measures in a broader class
of generalized dynamical prunings on trees with edge lengths introduced and analyzed in
[12, 13] and to the pruning operation studied in Evans [6] and in Duquesne and Winkel
[5]. Informally, a generalized dynamical pruning erases a tree from leaves down to the root
at a rate that only depends on the descendant part of the tree. Most of such prunings,
with a notable exception of the Horton pruning and the continuous erasure of Neveu
[16], do not satisfy semigroup property. It has been shown in [12] that the critical binary
Galton-Watson tree with i.i.d. exponential edge lengths is invariant with respect to any
admissible generalized dynamical pruning. We conjecture that the Galton-Watson trees
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that have i.i.d. exponential edge lengths and combinatorial shapes sampled from the
invariant Galton-Watson measures IGW(q) introduced in this work (Def. 8) are the only
Galton-Watson measures invariant with respect to all admissible generalized dynamical
prunings, up to rescaling of the edge lengths. Heuristically, this is supported by the
rescaling argument (Rem. 6) applied to the function S(z). The Horton pruning of the
present work only requires linearity of the function S(z) on the grid σk, which is related to
its discrete combinatorial action. This allows the existence of prune-invariant measures
with oscillatory behavior, outside of the invariant Galton-Watson family. However, a
continuous pruning, for instance the continuous erasure of Neveu [16], would constrain
the function S(z) on the entire interval [0, 1], hence leading to the family of invariant
Galton-Watson trees. This will be explored in a follow-up paper.

We are grateful to the anonymous referee for finding a problem with the first version of
this paper, caused by the gap consisting of all critical Galton-Watson measures for which
the limit L = lim

x→1−

(
ln g(x)
− ln(1−x)

)
exists while the limit S′(1) = lim

x→1−
1−S(x)

1−x does not; see
Rem. 7. In particular, the referee suggested the following family of Horton prune-invariant
critical Galton-Watson tree distributions different from the invariant distributions of
Thm. 2. For a given probability q0 ∈ (1/2, 1), we let q1 = 0, and

qm = 1
m!A

∑
n∈Z

Bnρnme−ρ
n

m = 2, 3, . . . , (67)

where ρ = 1− q0. Then, the second derivative of the generating function is equal to

Q′′(z) =
∞∑
m=2

m(m− 1)qmzm−2 = 1
A

∑
n∈Z

Bnρ2ne−(1−z)ρn , |z| < 1.

Observe that
Q′′
(
q0 + (1− q0)z

)
= B−1ρ−2Q′′(z). (68)

Therefore, if A > 0 andB ∈
(
(1−q0)−1, (1−q0)−2) are selected so that Q(1) = Q′(1) = 1,

then Q(z) will satisfy the invariance criterion (48). Such B is found by solving∑
n∈Z

Bn
(

1− ρn+1 − (1 + ρn − ρn+1)e−ρ
n
)

= 0,

and A =
∑
n∈Z

Bnρn
(
1− e−ρn

)
.

Hence,
Q(z) = q0 + 1

A

∑
n∈Z

Bn
(
e−(1−z)ρn − (1 + ρnz)e−ρ

n
)
, |z| < 1,

satisfies (49) with
M(q0) = (1− q0)

(
1−Q′(q0)

)
= B−1.
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Figure 9: Horton prune-invariant measures: Illustration. Figure compares the offspring
probabilities qm, m ≥ 2, of the invariant measure IGW(q0) of Def. 8, also given in
(76) (open circles), with those of the invariant measure of (67) that does not satisfy
Assumption 1 (black circles). (a) q0 = 0.55, (b) q0 = 0.8.

Next, we show that this example belongs to the gap described in Rem. 7. Specifcally, we
show that the limit L exists while the limit S′(1) does not. First, Lem. 9 applies, yielding
the existence of limit L = lim

x→1−

(
ln g(x)
− ln(1−x)

)
. Moreover, equation (51) implies

L = 2− lnM(q0)
ln(1− q0) = 2 + lnB

ln(1− q0) .

Now, we show that the limit S′(1) = lim
x→1−

1−S(x)
1−x does not exist, whence Assumption 1

is not satisfied. Since 1
A

∑
n∈Z

Bnρn
(
1− e−ρn

)
= 1, we have for x ∈ [0, 1),

1−Q(x)
1− x = 1

A

∑
n∈Z

Bnρn
(

1− e−ρ
n
)
− 1−Q(x)

1− x = 1
A

∑
n∈Z

Bnρn
(

1− 1− e−(1−x)ρn

(1− x)ρn

)
.

(69)
Also, for x ∈ [0, 1),

1−Q′(x) = 1
A

∑
n∈Z

Bnρn
(

1− e−(1−x)ρn
)
. (70)

For a given α ∈ [0, 1), consider a sequence xm = 1 − ρm+α for m ∈ N, then, equation
(69) implies

1−Q(xm)
1− xm

= 1
A

∑
n∈Z

Bnρn

(
1− 1− e−ρn+m+α

ρn+m+α

)
= 1
A
B−(m+α)ρ−(m+α)C(α),
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where

C(α) =
∑
n∈Z

Bn+αρn+α

(
1− 1− e−ρn+α

ρn+α

)
. (71)

Similarly, (70) implies

1−Q′(xm) = 1
A

∑
n∈Z

Bnρn
(

1− e−ρ
n+m+α

)
= 1
A
B−(m+α)ρ−(m+α)D(α),

where
D(α) =

∑
n∈Z

Bn+αρn+α
(

1− e−ρ
n+α
)
. (72)

Hence,
1−Q(xm)

(1− xm)
(
1−Q′(xm)

) = C(α)
D(α) ∀m ∈ N

with C(α) and D(α) as defined in (71) and (72). Thus, since C(α)
D(α) is not constant for

α ∈ [0, 1), the limit in (26) does not exist, and the same is true about the limit S′(1).
Hence, in this example, Thms. 2 and 3 as currently stated do not apply since Assumption
1 does not hold.

The invariant measures (67) are in fact closely related to the IGW(q) measures of Def. 8.
Specifically, consider a continuous integral version of (67), by selecting q0 ∈ (1/2, 1) and
letting q1 = 0 and

qm = 1
m!A

∞∫
−∞

Bwρwme−ρ
w

dw m = 2, 3, . . . , (73)

where ρ = 1− q0. Here too,

Q′′(z) =
∞∑
m=2

m(m− 1)qmxm−2 = 1
A

∞∫
−∞

Bwρ2we−(1−x)ρw dw

and so it satisfies (68), while Q(1) = Q′(1) = 1 causes Q(z) to satisfy (48). Analogously
to (67), the constants A > 0 and B ∈

(
(1− q0)−1, (1− q0)−2) are found by solving

∞∫
−∞

Bw
(

1− ρw+1 − (1 + ρw − ρw+1)e−ρ
w
)
dw = 0 (74)

for B, and letting

A =
∞∫
−∞

Bwρw
(

1− e−ρ
w
)
dw. (75)
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One can show that equation (74) has a unique solution using monotonicity of the integral
on the left hand side in the equation (74) as a function of B ∈

(
(1− q0)−1, (1− q0)−2).

The uniqueness of B implies the uniqueness of A in (75).

In this situation, one easily shows that the limit S′(1) exists. Remarkably, the unique
offspring distribution qm in (73) is the offspring distribution of IGW(q0). Indeed, in
equation (54) we have for m ≥ 2,

qm = (1− q0)Γ(m− 1/q0)
q0Γ(2− 1/q0)m! = 1

m!A

∞∫
−∞

Bwρwme−ρ
w

dw (76)

with ρ = 1− q0, A = q0Γ(2−1/q0)
−(1−q0) ln(1−q0) , and B = (1− q0)−1/q0 .

Figure 9 compares selected invariant measures IGW(q0) of Def. 8, also given in (76),
with the invariant measures of (67) that do not satisfy Assumption 1. Both types of
measures decay in general as the power law m−(1+q0)/q0 , although the measures of (67)
fluctuate around this general trend. The amplitude of the fluctuations (on logarithmic
scale) increases with q0. These fluctuations are related to the periodic function α(y) in
the proof of Thm. 2; they are inevitable in the invariant measures that do not satisfy
Assumption 1 (see Rem. 6).
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