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Abstract New featurization schemes for describing materials as composition vectors
in order to predict their properties using machine learning are common in the field of
Materials Informatics. However, little is known about the comparative efficacy of these
methods. This work sets out to make clear which featurization methods should be used
across various circumstances. Our findings include, surprisingly, that simple fractional
and random-noise representations of elements can be as effective as traditional and new
descriptors when using large amounts of data. However, in the absence of large datasets
or for data that is not fully representative, we show that the integration of domain
knowledge offers advantages in predictive ability.
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Introduction

In Materials Informatics (MI), composition-based Machine Learning (ML) entails the
creation of a composition-based feature vector (CBFV) that represents materials based
on expertly-curated element properties. Traditionally, descriptive statistics (average,
range, sum, and variance) regarding the constituent elements represent the core of a
CBFV scheme (see Figure 1). An exemplar of the CBFV method is the Magpie[1]
descriptor. This domain-derived approach (CBFV) has been successfully employed in
materials informatics studies in the literature[2–7]. Not only has this approach been
successful, but the information it contains is also human-readable, potentially allowing
for physically interpretable results.

Contra to the CBFV are data-driven techniques such as CGCNN[8], mat2vec[9], SchNet[10],
ElemNet[11], etc. These represent a new philosophy. When featurization is reliant pri-
marily on data, domain knowledge is less important. The representation of chemical
systems is no longer relegated to expert opinion. When used within learning frame-
works, these data-driven techniques allow for materials insight that may be outside of
current scientific understanding. The removal of materials experts stands juxtaposed

R. Murdock, S. Kauwe, & T. Sparks
University of Utah, Materials Science & Engineering Department, Salt Lake City, UT, 84109
E-mail: sparks@eng.utah.edu

A. Wang
Technische Universität Berlin, Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Mate-
rials, 10623 Berlin, Germany



2 Ryan J. Murdock et al.

to traditional learning that uses hand-engineered materials representations, such as the
classic CBFV.

Fig. 1 Construction of a Composition-Based Feature Vector (CBFV).

Although a variety of data-driven approaches can be utilized, works such as mat2vec
rely heavily on curated materials knowledge. For mat2vec, this knowledge comes in the
form of materials science abstracts. Natural language processing techniques are applied
to these abstracts, reportedly yielding vector encodings containing latent knowledge that
is otherwise inaccessible to even the most expert materials scientists. This process results
in an encoding of elemental information that is ultimately in a non-human-readable
embedding. Although techniques such as vector arithmetic can be applied in an attempt
to understand the relationships between various material embeddings, challenges arise
in the deciphering of any governing chemistry underlying material properties.

On the other hand, data-driven but domain-agnostic approaches, such as ElemNet[11],
use a Fractional representation (named as such because the initial element vectors,
which are dummy encoded, contribute to a representation that identifies what fraction
of the composition is made up of each element) to differentiate atoms based solely on
their elemental identity. In the case of crystal systems, models such as CGCNN[8] use
similar dummy element vectors embedded in a non-directed graph to represent crystal
structure. These approaches use human-readable inputs and are designed to allow for
limited inspection into model workings.

In Materials Informatics, interpretability of a model can be a very attractive quality.
If a model’s output cannot be understood at some level by humans, it may be more dif-
ficult to justify funding the synthesis of whatever materials it may recommend. Further,
interpretability may be helpful in the pursuit of new physics and underlying chemical
insights. The value of interpretability is often noted within the field of MI[6,12–14].

Regardless of the featurization approaches used it can easily be shown that differ-
ent approaches to train-test splits, hyperparameter optimization, training time, random
seeds etc., can drastically impact model performance. Therefore, drawing conclusions
on featurization in the absence of a standardized hyperparameter schema is problem-
atic. Furthermore, due to non-standardized data itself across the studies, we questioned
whether or not the published results were even comparable. Therefore, in this brief com-
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Table 1 Comparison of current featurization techniques (i.e., model inputs) used in MI

Feature Data source Expert
knowledge

Hand-
engineering

Domain-
agnostic

Magpie Element Chemistry High High No
Jarvis Element Chemistry High High No
Oliynyk Element Chemistry High High No
Atom2Vec Extant Compounds Medium None Partial
mat2vec NLP Medium None Partial
CGCNN Structural Low None to low Yes
SchNet Structural Low None to low Yes
ElemNet Fractional Low None Yes

munication, we seek to set up a fair comparison. Using published works, we set up the
following study using their described (or provided) featurization techniques:

1. Collect featurization schemes: in total, seven schemes comprising ElemNet[11] (Frac-
tional), Jarvis[15], mat2vec[9], Atom2Vec[16], Magpie[1], Oliynyk[17]), and Random,
where a unique random vector is generated and assigned to each element (see Ta-
ble 1).

2. Establish six benchmark datasets, each representing a material property from the
AFLOW database[18].

3. Standardize the train-test dataset split across each property, so that each model is
trained and evaluated on the same featurized datasets.

4. Construct two prototypical neural network architectures, representing low-parameter
(32× 32) and high-parameter situations (512 × 512).

5. Evaluate performance metrics on each model-property-featurization combination (7
featurization schemes × 6 properties × 2 model architectures):

(a) Benchmark model performance using mean absolute error (MAE), mean squared
error (MSE), and r2 scores (see Equations 1, 2, and 3)

(b) Compare learning curves
(c) Test generalizability (withhold elements during training)

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

r2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
(3)

Where:
ȳ = the mean of all labels
yi = the ith label
ŷi = the ith prediction

Results & Discussion

Based on the generated learning curves (such as Figure 2), we find that the top per-
forming featurizers have very similar predictive performance when given sufficient data.
In fact, the Fractional representation often performs as well as or better than many
other featurizers in the limit of “large” data (in agreement with previous work analyzing
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Fig. 2 Left: The difference in r2 score of each featurization scheme compared to Fractional represen-
tation averaged over all properties at different amounts of training data. Right: Performance of each
featurization scheme at different amounts of training data on band gap.

Fig. 3 Learning curves of shear modulus (Left) and Debye temperature (Right).

models that use little-to-no domain knowledge[19]). For instance, band gap and forma-
tion energy, which have significantly more data samples in the dataset, show extremely
similar performance for Fractional featurization. However, when data is scarce, tradi-
tional CBFVs tend to outperform other descriptors, with Jarvis [15] and Olyinyk[17]
often producing the best results (see Figure 3; for figures concerning other properties
and metrics, see the GitHub[20]). Though it should be noted that mat2vec[9] can be
seen performing quite well at mid-to-high levels of training data. In addition, CBFVs
(and, to a lesser extent, mat2vec) generalize more effectively when elements are with-
held from the dataset[21] (see Figure 4; the GitHub[20] contains additional figures for
comparison). This suggests that projects interested in novel, out-of-dataset chemical
systems may find more success with CBFVs.

The Fractional representation was treated as a baseline for comparison (Figure
2) because it is plausible as an effective featurization method to be both created and
utilized by most data scientists. In contrast, assigning random vectors from a normal
distribution to elements was seen as a bare-minimum to beat, although it resulted in
better results than Fractional on some properties at high training dataset sizes.

Although a portion of the Random featurization scheme’s success could be attributed
to chance, we also speculate that it benefits from reduced sparsity compared to the
Fractional representations along with reduced redundancy in comparison to CBFVs.
While the sparsity of Fractional encoding allows for easy differentiation between ele-
ments, it may preclude the utilization of a portion of the network’s first layer of param-
eters. The formula H represented sparsely as [1, 0, ..., 0] will have a meaningful repre-
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Fig. 4 Mean Absolute Error of bulk modulus predictions using Oliynyk (Top) and Random (Bottom)
when compounds that include the shaded element are heldout during training and then tested on.

sentation of up to the number of units connected to the input, as all others are set to
zero (or if scaled/normalized, some other singular value). Meanwhile, H featurized as
random noise may allow for more complicated representations to arise early on in the
network, utilizing more parameters in the earlier layer. This explanation is supported by
the observation that the larger, (512 × 512) network showed more similar performance
between Random and Fractional representations compared to the (32 × 32) network.
In addition, any given column of a CBFV may have many repeats, and any given row
may have many collinear features. Neither of these issues is present in sufficiently-long
random noise.

We found that our implementation of Atom2Vec[16] was, on multiple properties,
worse compared to both the Fractional baseline and Random vector approach. This
demonstrates that a CBFV can potentially have adversarial effects on training, making
it more difficult to learn some properties.

Conclusion

Our results in aggregate lead to the following recommendations: when using small data
or data that may be applied to elements outside of the training set, traditional CBFVs
are most likely to provide optimal results. Domain-agnostic approaches to featurization,
such as Fractional, can be viable with large datasets, but should be compared to
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standard CBFVs like Oliynyk and Jarvis. Although new, data-driven approaches are
of interest, those studied here have yet to surpass CBFVs in terms of material property
prediction with small data. In the case of projects with large amounts of data, the field
may be advanced further through alternative activities to engineering new featurization
schemes. These include creating and applying new architectures (such as multi-headed,
self-attention networks[22]), collecting more data[23–25], and even investigating avenues
outside of traditional property prediction, such as inverse design and semi-supervised
learning. In contrast, projects with little data may see significant improvements through
carefully selecting features.

Methods

Data Acquisition.

To begin comparing the various featurization methods’ efficacy in predicting material
properties, we collected various descriptors, first focusing on those that attempt to rep-
resent chemical information. The Jarvis[15] and Magpie[1] chemical featurizers were
obtained from matminer[26]. In addition, the Oliynyk[17] chemical descriptor vectors
were obtained from their author. The mat2vec[9] embeddings were obtained from its
publication. The Atom2Vec[16] encoding was unreleased, and attempts to contact the
authors were unsuccesful; consequently, we attempted to recreate it and validated our
implementation on a similar dataset of elpasolites, obtaining similar validation mean
absolute errors.

In addition, we included the following descriptors: Fractional representation, which
simply conveys how many of each element is included in a given material’s formula, and
random noise vectors with a length of 200 sampled from a Gaussian distribution repre-
senting each element. Table 1 summarizes key differences between the various featurizers.

Band gap, formation energy, shear modulus, bulk modulus, Debye temperature, ther-
mal expansion, and thermal conductivity data were then collected from the ICSD cata-
logue of the AFLOW database[18]. Duplicate entries were replaced by a single entry and
each material property’s formulae and ground-truth values were randomly partitioned
into training, validation, and test sets (the dataset is available in the GitHub reposi-
tory[20]). Note that, for this work, the associated Crystal Information Files (CIF) were
discarded.

Table 2 Approximately 2940 models were created and trained to generate our learning curves, given
the dimensions below along with six levels of training data per curve.

Properties (x7)
Band Gap
Formation Energy
Shear Modulus
Bulk Modulus
Debye Temperature
Thermal Expansion
Thermal Conductivity

Featurizers (x7)
Fractional

Random

Magpie

Jarvis

mat2vec

Oliynyk

atom2Vec

seeds (x5)
1
2
3
4
5

models (x2)
32 × 32

512 × 512
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Model Training.

In order to understand which descriptors are optimal—and under which circumstances—
we used artificial neural networks (ANNs) to map from these descriptors to various
material properties. ANNs are models that take in some input, pass them through various
summing and learned weighting operations, and produce a prediction. The difference
between the predicted values and the known target values determines how these learned
weights are adjusted in the process called backpropagation, which iteratively improves
the model. The complexity of specific ANNs is determined by how many layers and units
are included in the model, i.e., the model’s architecture.

To avoid bias in the determination of any one feature as superior and to confirm that
our results are not dependent on a single architecture, we chose to use two unoptimized
ANN architectures for our models. Both architectures use two fully-connected layers. The
first architecture has 32 units in each of its two layers, and in the second architecture,
512 units in each of its two layers. Both ANNs are trained using the Adam optimizer[27]
with a learning rate of 1× 10−3 and a batch size of 16.

Although ideally each model would be separately optimized for each property and
feature, an exhaustive search for parameters would require massive amounts of compu-
tational time and power. As such, we leave the benchmarking of larger models to future
works. We determined that two unoptimized models with varying complexity created
the most fair comparison possible with the resources available. Our current learning
curve analysis requires 2940 models to be trained (see Table 2).

The networks were trained on varying amounts of data from the training set until
an early-stopping mechanism was triggered by a lack of improvement on the validation
set. The highest validation metrics were collected for each descriptor on each material
property to assess the impact of differing amounts of data. To verify these results, the
models were trained on the full datasets and tested on previously unseen data. For more
information, please refer to the GitHub repository accompanying this work[20].

Other Methods.

The analysis for held-out elements (Figure 4) was generated using a ridge regressor from
scikit-learn on bulk modulus data with the formulae including each element within
the dataset were withheld. The model was then tested on these withheld formulae. The
code for these methods is also available on GitHub[20].
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10. K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-R. Müller, “Schnetpack:
A deep learning toolbox for atomistic systems,” Journal of Chemical Theory and Computation,
vol. 15, no. 1, pp. 448–455, 2019.

11. D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, and A. Agrawal, “Elemnet:
Deep learning the chemistry of materials from only elemental composition,” Scientific reports, vol. 8,
no. 1, pp. 1–13, 2018.

12. B. Meredig, “Five high-impact research areas in machine learning for materials science,” 2019.
13. N. Wagner and J. M. Rondinelli, “Theory-guided machine learning in materials science,” Frontiers

in Materials, vol. 3, p. 28, 2016.
14. L. Ward and C. Wolverton, “Atomistic calculations and materials informatics: A review,” Current

Opinion in Solid State and Materials Science, vol. 21, no. 3, pp. 167–176, 2017.
15. K. Choudhary, B. DeCost, and F. Tavazza, “Machine learning with force-field-inspired descrip-

tors for materials: Fast screening and mapping energy landscape,” Phys. Rev. Materials, vol. 2,
p. 083801, Aug 2018.

16. Q. Zhou, P. Tang, S. Liu, J. Pan, Q. Yan, and S.-C. Zhang, “Learning atoms for materials discovery,”
Proceedings of the National Academy of Sciences, vol. 115, no. 28, pp. E6411–E6417, 2018.

17. A. O. Oliynyk, E. Antono, T. D. Sparks, L. Ghadbeigi, M. W. Gaultois, B. Meredig, and A. Mar,
“High-throughput machine-learning-driven synthesis of full-heusler compounds,” Chemistry of Ma-
terials, vol. 28, no. 20, pp. 7324–7331, 2016.

18. AFLOW, “AFLOW - automatic-flow for materials discovery,” 2018. [Online; accessed 14-July-2019].
19. C. J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain, and G. Ceder, “A critical examination of

compound stability predictions from machine-learned formation energies.” arXiv, 2020.
20. R. J. Murdock and S. K. Kauwe, “Online GitHub repository for Is domain knowledge necessary for

machine learning material properties.” https://github.com/rynmurdock/domain_knowledge, 2020.
21. S. K. Kauwe, J. Graser, R. Murdock, and T. D. Sparks, “Can machine learning find extraordinary

materials?,” Computational Materials Science, vol. 174, p. 109498, 2020.
22. A. Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks, “Compositionally-Restricted

Attention-Based Network for Materials Property Prediction,” 2 2020.



Is domain knowledge necessary for machine learning materials properties? 9

23. F. Belviso, V. E. Claerbout, A. Comas-Vives, N. S. Dalal, F.-R. Fan, A. Filippetti, V. Fiorentini,
L. Foppa, C. Franchini, B. Geisler, et al., “Atomic-scale design protocols toward energy, electronic,
catalysis, and sensing applications,” 2019.

24. C. L. Clement, S. K. Kauwe, and T. D. Sparks, “Benchmark AFLOW Data Sets for Machine
Learning,” Integrating Materials and Manufacturing Innovation, 2020. Accepted, in press. DOI:
https://doi.org/10.1007/s40192-020-00174-4.

25. A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking Materials Property Prediction
Methods: The Matbench Test Set and Automatminer Reference Algorithm.” arXiv, 2020. accessed
May 5, 2020.

26. L. Ward, A. Dunn, A. Faghaninia, N. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen,
K. Bystrom, M. Dylla, K. Chard, M. Asta, K. Persson, G. Snyder, I. Foster, and A. Jain, “Matminer:
An open source toolkit for materials data mining,” Comput. Mater. Sci, vol. 152, p. 6069.

27. D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Conference
on Learning Representations, 12 2014.




