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Abstract

The development of structural materials with outstanding mechani-
cal response have long been sought for innumerable industrial, techno-
logical, and even biomedical applications. However, these compounds
tend to achieve their fascinating properties from a myriad of inter-
actions spanning multiple scales, from localized chemical bonding to
macroscopic interactions between grains. This has limited the abil-
ity for researchers to develop new materials on a reasonable timeline.
Fortunately, the advent of machine learning in materials science has
provided a new approach to analyze high-dimensional space and iden-
tify correlations among the structure-composition-property-processing
relationships that may have been previously missed. In this review,
we examine some successful examples using data science to improve
known structural materials by analyzing fatigue and failure as well as
discuss approaches to develop entirely new classes of structural mate-
rials in complex compositions spaces including high entropy alloys and
bulk metallic glasses. Highlighting the recent advancement in this field
demonstrates the power of data-driven methodologies that will hope-
fully lead to the production of market-ready structural materials.
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1. INTRODUCTION

Over the course of history humanity has engineered their surroundings into the tools and
materials they needed. Perhaps the best example of this has been the evolution of structural
materials over time. The fundamental role of any structural material is their load bearing
nature. Consider the homes and buildings in which we live, from the most humble hut made
of natural materials to the modern skyscraper made exclusively from engineered materials
like modern steel, concrete, and glass.

This progression from natural to engineered materials certainly included improvement
to load bearing aspects such as strength, hardness, and toughness. Nevertheless, the appli-
cation of structural materials has evolved with modern technology to incorporate additional
constraints and materials requirements. Consider the hubris of the engineer who thought
to design an airplane that could carry 838 passengers over almost 15,000 kilometers, more
than a third the circumference of the earth. The material requirements for this go far be-
yond the natural world. Indeed, the aluminum alloys making up the skin of modern day
aviation have incredible strength to density ratios, just to name one aspect. In the case
of Al 319, this achievement required eleven different elements, about a tenth of the usable
periodic table (1). In addition to this absurd compositional complexity, the weight fraction
requirements extend into 4 significant digits (2). Now compare that to the “original” avia-
tion alloy, the Wright Flyer crankcase (3). In this alloy 8% copper was simply added to aid
in processing but had the unexpected result of strengthening via precipitate hardening (4).
It took over 100 years for the modern Al 319 to emerge with its incredibly specific and
complex composition, but the result is an alloy that vastly supersedes previous innovation.

Even if flying is a rare event, consider the daily exercise of charging your cellphone or
even turning on the lights. The typical assumption is that reliable, inexpensive electrical
power will be available everywhere we go. Making this possible is the unseen innovation
of the gas turbine engine which provides over a third of the electrical power of the United
States. The materials operating in these turbines are exposed to incredibly severe envi-
ronments. For example, combustion gases reach up to 2000°C. System innovations such
as thermal barrier coatings (5) and micro cooling channels (6) can do much to address
problems associated with thermal stability. Other challenges require materials innovation
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to address oxidation and creep resistance. In response to the failure of steel and other state-
of-the-art materials, engineers had to develop superior materials such as single-crystal nickel
superalloys for the turbine blades (7). Today we enjoy unprecedented energy efficiency.

Given the complexity of modern aviation and turbines, it is easy to understand why
these applications would require similarly complex structural materials. At the same time,
the human body itself is far more complex than any engineered system and so it too requires
advanced materials for biomaterials. Within the last 160 years, the average life expectancy
in the United States went from 35 to 76 years old (8). Similar trends are occurring world-
wide. This sets the stage for an interesting biomedical engineering challenge. Parts of
the human body that experience high wear and cyclic loading such as knees, hips, valves,
and more are wearing out and eventually failing. Today, artificial prosthesis to improve
quality of life at advanced ages and in the cases of accidents or defects are widespread
and increasingly common. For example, there were over 300,000 hip replacements in the
United States in 2010 alone (9)! Demand is greater than ever for effective structural bio-
materials to serve as joints, stents, screws, valves, and more. Unique biomaterials such as
titanium alloys and Nitinol have been developed as structural materials to address unique
challenges in biocompatibility and corrosion, but they also require mechanical properties
such as high hardness for wear resistance and low elastic modulus to better mechanically
couple to biological structural materials like cortical bone (10, 11).

These vignettes show how structural materials are making possible incredible advances
in aviation, energy, and biomaterials but also unfortunately serve as reminders of how slow
materials discovery, development, and deployment can be. Indeed, the typical timeline for
this process can span decades (12).

The postwar era of the 1950s and 60s saw incredible technological advances in energy,
telecommunication, computing, materials and much more. Thiel and Masters defined this
era as definite optimism (13) since the society in this era imagined a specific future unlimited
by current technological constraints. Consider the 1954 speech by the chairman of the
United States Atomic Energy Commission:

It is not too much to expect that our children will enjoy in their homes
electrical energy too cheap to meter, will know of great periodic regional famines
in the world only as matters of history, will travel effortlessly over the seas and
under them and through the air with a minimum of danger and at great speeds,
and will experience a lifespan far longer than ours, as disease yields and man
comes to understand what causes him to age (14).

Even though we have not yet reached the aspirations of 1954, today we nevertheless have
ambitious expectations for structural materials of the future as we hope for hypersonic
or interstellar flight, blast and impact resistant armor, clothing and fabrics that never
wear out, energy conversion approaching Carnot efficiency, rapid drilling, polishing, and
grinding at low cost, extremely efficient transportation and buildings, and much more. The
realization of mankind’s ambitions will rely on the continued improvement and development
of advanced structural materials and there exists greater need than ever to accelerate this
the production of market-ready materials. Fortunately, the boom in materials informatics,
or the application of data science to materials research, could lead to greatly accelerated
production of novel materials (15, 16, 17, 18, 19, 20).

Structural materials is a broad class and includes structural glasses, ceramics, concrete
and cements, alloys, and more. For this review, we restrict our summary to materials
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informatics-based research on investigating fatigue and microstructure of alloys, properties
of high entropy alloys, and the glass forming ability of bulk metallic glasses. These materi-
als each play critical roles in transportation, energy, and biomedical engineering; however,
there remains much to be done and understood. For example, fatigue is the leading cause of
failure and remains a critical problem in aviation and many other applications. A great deal
of research has gone into quantifying the relationships between fatigue and microstructure
for alloys and exploring ways to model the entire fatigue process with machine learning
(ML) approaches. High entropy alloys are poised to displace state-of-the-art structural ma-
terials in a variety of applications featuring extreme environments. However, modeling the
behavior has been challenging considering their chemical makeup and structural complexity.
Bulk metallic glasses feature a unique combination of biocompatibility, high hardness, high
strength, and low stiffness. Not all compositions form bulk metallic glasses, therefore, a
great deal of data-driven research has been directed towards better understanding the glass
forming ability of the compositions and to predict potential new compositions.

This review article will assume a basic understanding of machine learning principles
and shall instead focus on describing the application of data science on structural materials.
However, as a general introduction to describe the essential processes involved in a materials
informatics-based approach, consider the following case study on the accelerated discovery
of superhard materials.

1.1. Case study: Accelerated discovery of superhard materials via materials
informatics

Hardness, defined as the surface resistance of a material to indentation, is potentially one
of the main mechanical characteristics that is sought after in a multitude of applications
for wear resistance. Consequently, the quest to achieve materials with higher hardness has
entertained scientists for decades. Interestingly, a naturally occurring metastable form of
carbon, diamond, is one of the hardest known materials with a Vickers hardness of approx-
imately 96 GPa surpassed only by wurtzite BN and lonsdaleite (21). Diamond itself forms
under extreme temperatures and pressures and even synthetic, polycrystalline diamond re-
quires temperatures and pressures of 1400°C and 6 GPa that limit its applications due to
costly synthesis (22).

Materials are deemed “superhard” if their Vickers hardness exceeds 40 GPa. Over the
years, only a handful of signle phase compounds, such as c-BN and BC:2N, prepared at high
temperatures and pressures have been reported to exhibit superhardness. More recently, it
was proposed that the incorporation of light main group elements in the structure of 5d-
transition metals could enhance their hardness by creating strong localized bonds within
the metallic framework (23, 24). ReBs and WBy are the best example of such materials
surpassing the superhard region at low indentation loads while only requiring high tem-
perature for synthesis. Despite such a breakthrough, the progress of finding new intrinsic
superhard materials has remained challenging.

The compositional space for new candidate superhard materials is vast and the search
for new materials would benefit from a screening technique to reduce the number of potential
candidates. Materials informatics methods such as machine learning can be implemented
to reduce the amount of trial-and-error necessary, and, therefore, accelerate the discovery
rate. Recently, Mansouri Tehrani and coworkers employed just such a materials informatics
approach and successfully identified two new superhard materials (25).
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Figure 1

a) Overview of a typical machine learning work-flow. Figure reproduced from (26). b) Vickers
hardness measurement of Mog.gW71,1BC at various indentation loads. Figure reproduced
from (25).

The first step to any materials informatics approach is to identify, collect, and organize
data, Figure la. Unfortunately, compiling a comprehensive list of compositions with exper-
imentally measured hardness to be used as training data for machine learning algorithms is
quite arduous made worse by the fact that reported hardness data are often inconsistent;
for example not reporting the indentation load, or using various indentation techniques
compounds the problem. Alternatively, researchers have utilized bulk modulus and shear
modulus as proxies for hardness since these properties are related (27). More importantly,
the source of the moduli can be from density functional perturbation theory (DFPT) cal-
culations, which in this work stem from the Materials Project database for 2572 inorganic
compositions.

Once data is identified, the next step is to featurize the data. Materials informatics
approaches typically rely on a composition-based or structure-based feature vectors. In the
work by Mansouri Tehrani and coworkers, both composition and structure-based features
were used for predictions with 71 unique features being used for bulk modulus and 55
features being used for shear modulus (25). After the data were assembled and featurized
the next step is to select an algorithm and then train and validate a model (Figure la).
Many different algorithms exist such as linear regressions, support vector machine (SVM),
random forests, and neural networks. K-fold cross-validation and grid searches are employed
to optimally train a model and then validation is done on a completely separate test data set.
This worked that an SVM was able to predict bulk modulus with a root mean square error
(RMSE) of 17.21 GPa (R?*=0.94) and shear modulus with a RMSE of 16.35 GPa (R?=0.84)
suggested excellent predictive power of their model.

Machine learning based on this model can then be employed to rapidly screen candidate
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materials from known structural databases. In this example, the researchers were able to
predict 15770 binary, 56266 ternary, and 46251 quaternary compounds. In addition to rapid
predictions (~ 30s of wall time) the algorithm was able to generate predictions for many
disordered structures and f-electron containing compounds that would not have been easily
possible to screen with DFT alone. The team then analyzed the predicted data set for the
highest predicted bulk and shear modulus values. Among these were two compositions,
Mop.9W1.1BC and ReWCy s that stood out and were therefore selected for experimental
investigation. These compounds were synthesized and Vickers hardness measurements were
carried out. Interestingly, both of these compositions exhibited high hardness even reaching
the 40 GPa limit of superhardness at low indentation loads. Figurelb shows the load-
dependent Vickers hardness measurement of Mog.9W1.1BC confirming high hardness even at
the asymptotic region. The team then followed up with studies to confirm the predicted bulk
modulus values, examine lattice strain and texture formation upon loading (28), and explain
the chemical origin of the high hardness and surprising ductility in Mog.oW1.:1BC (29) and
other compounds in the chemical series (30). This case study is an excellent example of the
powerful role that machine learning can play in not only the identification of new structural
materials, but it also shows how a research project that begins with machine learning can
develop into a grander endeavour.

2. FATIGUE AND MICROSTRUCTURE OF ALLOYS

In this section we cover machine learning approaches focused on steels and alloys. These
materials are critical to modern society and represent incredible amounts of scientific and
engineering effort over the past century. Although the literature in this field encompasses
a staggering amount of material, the application of machine learning on these systems has
largely focused on two critical areas. First, there has been a focus on the prediction of
fatigue properties, and second the generation of quantitative representations of microstruc-
ture (QRM) is a major research effort. We look at these two areas in detail by examining
the progress these fields have made and highlight many of the influential works.

2.1. Fatigue properties

Fatigue is when materials weaken upon cyclic loading conditions. Weakening can result
in fracture and failure after a low or high number of cycles. Since fatigue represents the
most common form of failure of metals and alloys, it is of particular interest of study for
materials scientists, mechanical engineers, and civil engineers alike. Not all materials are
equally susceptible to fatigue. In fact, some steel and titanium alloys exhibit a fatigue limit
after which, theoretically, a material can be cyclically loaded indefinitely without fatigue
failure. Other materials weaken continuously until failure upon cycling. The application of
machine learning techniques for predicting properties related to fatigue extends back more
than two decades.

The majority of machine learning applications for predicting steel and alloy fatigue
properties can be considered within the realm of two different applications. The first ap-
plication focuses on learning from large macroscopic features in relation to the structural
failure of steel and alloy components. This topic is more thematically appropriate for civil
engineering tasks and is not covered here. Instead, we focus on works that predict fatigue
behavior as a materials property using techniques and data that are reminiscent to tradi-
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tional fatigue characterization and modeling but approached from a data-driven direction.
Among these works are a particular focus on predicting fatigue crack growth and fatigue
strength, which we cover below.

2.1.1. Fatigue crack growth. Traditional approaches to predicting fatigue crack growth
often assume a mathematical model, e.g., the Paris-Erdogan model, to relate stress intensity
factor range and fatigue crack growth rate. Although these fracture mechanics concepts
have served well in guiding the structural decisions of many materials scientists, there have
been a number of machine learning approaches that have been developed to predict fatigue
crack growth in a data-driven manner. Among these approaches, some predict crack growth
directly, while others predict useful parameters pertaining to traditional fracture mechanics
concepts used to predict crack growth rate.

One of the early works for the prediction of fatigue crack growth rate was done by
Bhadeshia et al. using Bayesian neural networks on nickel-based superalloys (31). This
work used a database of almost 2000 instances of fatigue crack growth with 51 inputs
to the network including the stress intensity factor range, the chemical composition, the
temperature, the grain size, the condition of heat treatment, frequency, loading condition,
atmosphere, r-ratio, load waveform, sample thickness and yield strength. They showed
effective ability to predict fatigue crack growth rates across a large variety of superalloys.

In 1997, shortly after the work of Bhadeshia, Kang et al. explored fatigue crack opening
load using machine learning. This subsequent work showed that a neural network approach
could take the differential displacement signal curve as an input, and return the crack
opening load while avoiding the use of empirical parameters (32). To accomplish this
outcome, simulated data for generating and learning on these curves was used. They then
showed their approach was capable of predicting the experimental crack opening load at
acceptable values for 2024-T351 aluminum alloy even when trained on the simulated single
phase data. Neural network based learning was also investigated by lacovillo et al. as a way
to build a nonlinear model the could remarkably learn beyond the Paris region (see Figure 2).
They trained their models on experimental results using a duplex austeniticferritic stainless
steel obtained by powder metallurgy routes using AISI 316 LHC (70%) and AISI 434 LHC
stainless steels powders and showed very good agreement between the network performance
and the held-out experimental data.

In contrast to purely data-driven modeling, Mohanty et al. were able to demonstrate
the symbiotic nature of physical and statistical modeling by incorporating a Gaussian pro-
cess and state-space model in conjunction for crack growth predictions as a function of
cycles (33). This was achieved by training the Gaussian process to predict crack length
given the number of cycles. This output was then used to calculate a constraint factor
which is used in the state-space model to generate a final prediction. This hybrid approach
was more successful than a pure physics or data-driven approach. They theorized this
success was due to the Gaussian process accounting for uncertainty in the crack length,
avoiding the issue of integrating error associated with a purely state-space model.

More recently, Wang et al. performed a comparison study where they made predictions
on the fatigue crack growth rate using three different machine learning algorithms (34).
For this task, they used three different neural net architectures: extreme learning machines
(ELM), radial basis function networks, and genetic algorithm optimized back propagation.
Each network used the stress intensity factor range (AK) and the stress ratio as inputs
to predict the crack growth rate. They demonstrated that ELM was the only algorithm
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neural network

Figure 2

A neural network-based modeling approach allows researchers to model the crack growth rate
through all regimes. Contrast this to the common Paris model which only captures the linear
behavior, hence the name “Paris region”.

which succeeded at both interpolation, and extrapolation beyond the training data. Using
these three models, they also showed that the algorithms were more robust than the two-
parameter k* method (35), with the advantage of being able to predict different sample
types including 7050-T7451 aluminum alloy, Ti6Al4V titanium alloy, ADB610 steel and
D16 aluminum. They suggest the use of a data-driven approach for predicting crack growth
if one has access to sufficient data.

Machine learning applications in fatigue prediction have not been limited to so called
“abstract” or “black-box” modeling. Physics-inspired materials models have also been de-
veloped for describing the small fatigue crack driving force in polycrystalline materials. The
work of Rovinelli et al. employed two Bayesian networks, one trained on crack propagation
rate and the other trained on crack propagation direction. In this work, directly generating
predictions is not the primary goal of the network. Instead, the learned parameters are
ultimately used to ascertain a deterministic driving force mechanism behind small fatigue
crack growth. Although multiple micromechanical variables and features had already been
identified in influencing the propagation of small fatigue cracks, they show the Bayesian net-
work prediction outperforms the fatigue metrics available in the literature. Furthermore,
the proposed expression, though worse than the Bayesian network itself also outperforms
previous literature metrics and also provides a meaningful explanation as to the driving
forces behind the small fatigue crack propagation.

2.1.2. Fatigue strength. Studies have not been limited to fatigue crack propagation. Indeed,
there has also been interest in predicting the fatigue strength of materials. One of the earlier
works, by Canyurt et al. predicted the fatigue strength of bonded joints by employing a
genetic algorithm in combination with cubic and quadratic fits to the data (36). The
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genetic algorithm considered the design parameters of surface roughness, bonding clearance,
interference fit, temperature and adherent material and devised proper coefficients to fit
the experimental results. They concluded that a genetic algorithm could be an alternate
technique for discovering near-optimal solutions in regards to fatigue strength estimations
for bonded materials.

Fatigue strength has also been to subject of a series of publications showing how machine
learning tools can be used to explore the effects of composition and processing parameters
on the fatigue strength of steel. Work done by Agrawal et al. makes use of the open access
materials database hosted by Japans National Institute for Materials Science. In their
first work, they focused on creating a framework for exploring materials informatics by
highlighting techniques for effective preprocessing, establishing effective feature selection,
applying machine learning techniques to the data, and effective evaluation to avoid over-
fitting (37). Their followup works then establish improvements to their predictions using
various model ensembling (38), and finally, they publish the tool online democratizing the
ability to make highly accurate steel fatigue strength predictions (12).

Overall, we see a positive application of machine learning techniques for the prediction
of fatigue properties. In general, machine learning models have been shown to be particu-
larly potent for specific experimental or simulation setups. We have also seen exhibits of
minor generality with effective predictions outside of the material group used for training.
However, the use of these models is limited to the training data and, to our knowledge,
there has been no attempt for creating a general model for all structural systems.

2.2. Microstructure

Microstructural predictions using machine learning take a number of different forms based
on a general theme: the generation of statistically accurate representations and/or recon-
structions of the microstructure. Methods regarding this task have focused on generating
lower dimensional representation of statistical descriptors, and end-to-end learning frame-
works.

2.2.1. Reduced-order statistical representation. The classification and reconstruction of mi-
crostructure using statistical methods is a well established practice (39, 40, 41). Machine
learning has been consistently used in this domain for reducing the feature space, there-
fore increasing the efficiency of the representation. An early example of this was shown
by Sundararaghavan et al. who extracted planar image statistics from the 3D microstruc-
tures (42). They then showed that principle component analysis (PCA) could be applied
to these statistics and an SVM could be used to classify microstructures showing the effec-
tiveness of PCA for creating a reduced-order representation of microstructure. In 2015 Xu
et al. demonstrated how a more meaningful reduction of statistical features could be de-
veloped by using a machine-learning based method to eliminate redundant microstructure
descriptors while preserving physical relevance (43).

Concurrently, DeCost and Holm used a “bag of visual features” to create generic mi-
crostructural signatures for classifying different microstructures (44) showing that a machine
learning-based process could preserving accurate representation, and therefore function for
classification of microstructures. This same machine learning functionality was demon-
strated by Liu et al. who used effective microstructure classification to reduce microstruc-
tural search space for the optimization of magnetoelastic Fe-Ga alloy microstructure (45).
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In 2017 DeCost et al. also showed how computer visions systems could be used to extract
features by processing micrograph images, which could then be fed to a SVM to classify
powder feedstocks (46).

2.2.2. End-to-end learning. Although many works use statistical methods for featurizing
images, featurization can take the form via purely data-driven methods. For example, in
2016, Cang et al. showed that a 5-layer deep belief network, using orientation-invariant
filters, could create microstructure features that drastically reduce dimensionality while
creating visually plausible reconstructions across various systems corresponding to Ti-6Al-
4V alloy (47). Moreover, these representations were also shown to preserve the original
critical fracture force of the non-reconstructed system. Chawdhury et al. also explored
featurization using neural networks in 2016 (48). However, instead of using a deep belief
network trained on micrograph images, they passed the micrographs into a pre-trained caffe
model(49) and used the output from the fully connected 6th layer as features for learning
(Illustrated in Figure3). Interestingly, they showed that this featurization step performs
better than texture and shape statistics or a visual bag of words despite never being trained
on micrograph images.

mircostructure fully connected
image layer 6 (fc6)

2
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HH layer 2 conv.
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for classification

conv. conv.
layer 3 layer 5
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@
<
(0]
=
=

\_ _/

pretrained on ImageNet

Figure 3

Effective classification of microstructure can be done with relatively few data. This is achieved
using transfer learning where the convolutional filters from a neural network, pre-trained on
natural images, can be applied to extract features from the micrographs. These features can then
be used with statistical learning tools to achieve excellent results.

Lubbers et al. also used a pre-trained neural network for microstructural identifica-
tion (50). In their work, they use multidimensional scaling to compare the vector rep-
resentation from a pre-trained VGG (51) network and standard two-point correlations by
reconstructing a 1D manifold of images with fixed noise amplitude and scale parameter, but
varying angle. They show that the CNN-based texture representation outperform 2-point
statistics and is applicable to small synthetic datasets. Indeed, the use of a pre-trained
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VGG network connected to a learning pipeline even demonstrates successful classification
in the in-718 dataset which is difficult even for expert humans (52). Using an approach sim-
ilar to Lubbers, Cecen et al. explored how a neural network and 2-point spatial correlation
based features compare when used to explain structure-property linkages for effective elastic
properties of high contrast composites (53). Using a database of 5900 3D microstructures,
they were able to train a 3D convolutional neural network (CNN) to generate features that
were then input to a linear regression to predict the effective elastic properties. 2-points
statistics were used on these same volumes and PCA was used to get a reduced representa-
tion before being used in a linear regression. They show that although the CNN produces
better results, the optimal model is built using both 2-point and CNN filters for the input
to the linear regression.

3. HIGH ENTROPY ALLOYS

High entropy alloys (HEAs), or multi-principal element alloys (MPEAs), are an emerging,
intriguing class of materials which appeared in the early 2000s. Initial study of HEAs was
motivated by two separate research groups; one intrigued by the immense, unexplored com-
positional phase space of multicomponent alloys (54), and another interested in controlling
configurational entropy to favor single-phase solid solutions over intermetallic phases (55).
HEAs typically consist of five or more principal elements, each with a concentration be-
tween 5at.% and 35at.%, but may also contain minor elements at lower concentrations.
The unique compositional makeup of HEAs fundamentally deviates from historically con-
ventional structural alloys, in which a material is comprised of a single base element with
appealing properties, while small amounts of alloying elements may be added for property
optimization. As illustrated in Figure4, the large majority of conventional structural al-
loys contain a dominant base element of at least 80 wt.%, while all but few sophisticated
superalloys and austenitic nickel alloys contain a base element of at least 50 wt.%. (56, 57)
HEAs present the opportunity to explore unfamiliar compositional phase space and for
novel materials discovery.

Due to entropic effects, HEAs exhibit a high degree of solid-solid solubility and can pos-
sess exceptional properties. For instance, MPEAs have illustrated extraordinary strength,
ductility, and fracture toughness at cryogenic temperatures (58), as well as exceptional me-
chanical properties, thermal properties, and irradiation resistance at high temperatures (59).
The vast compositional phase space and potential to tailor hardness, strength, oxidation
and corrosion resistance, irradiation resistance, and thermal stability drive the appeal for
HEASs as structural materials of the future. However, complex chemistries, data limitations,
and the near infinite compositional range of HEAs present challenges to alloy design. Mate-
rials informatics techniques are key to combat these challenges and explore the vast phase
space. In this section, we turn our focus towards some of the data driven approaches taken
to achieve accelerated HEA design, while the many unanswered questions and untapped
potential relating to HEAs are reviewed elsewhere (57, 60, 61, 62, 63).

3.1. Phase formation

The discovery of novel single-phase solid solutions is a primary motivation in HEA research
because single-phase solid solutions have promising mechanical properties for structural
applications, such as increased strength, ductility, and the potential for solid solution hard-
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Figure 4

The concentration of the base element in commercially and industrially relevant alloys and steels
is portrayed. The large majority have a base element concentration greater than 80 wt.%, and all
have a base element concentration above 50 wt.% aside from a select few superalloys and
austenitic nickel alloys. Data extracted from (56); figure reproduced from (57).

ening. MPEAs with intermetallic phases are also of interest as strengthening may occur
via precipitate hardening. Several groups have utilized computational strategies to predict
the formation of single-phase HEAs, implementing first-principles DFT calculations and
calculated phase diagram (CALPHAD)-based approaches to assess phase formation and
stability (62, 64, 65, 66, 67, 68). Though useful, the computational expense of these meth-
ods limits their utility in the accelerated exploration of unfamiliar HEA compositional space.
The recent implementation of data-driven techniques confronts this issue in an attempt to
efficiently predict phase formation in HEAs.

For example, Islam et al. employed a neural network architecture on a data set of 118
equiatomic or near-equiatomic, as-cast MPEAs to predict phase formation; amorphous,
intermetallic, or solid solution (69). The model established correlations between one cate-
gorical feature, describing the phase, and five numerical features, including valence electron
concentration (V EC), difference in Pauling electronegativities (Ax), atomic size difference
(6), mixing enthalpy (AHmiz), and mixing entropy (ASmiz). Cross-validation revealed a
predictive accuracy of 83% on this limited data set, indicative of the potential aptitude for
machine learning techniques to predict phase formation as the field progresses and data
becomes more readily available. Furthermore, Islam and coworkers ranked the importance
of the features, reporting that VEC was the most influential to phase formation, while
ASmig illustrated the least relative importance. These findings corroborate a previous ex-
perimental study which explored the relationship between the phase stability of an HEA to
the physicochemical and thermodynamic properties of its constituent elements (70). Guo
et al. determined that the AH,,;, is key to the formation of solid solutions, but VEC
decisively establishes the stability of face-centered cubic (FCC) and body-centered cubic
(BCC) phases in HEAs. These results are invaluable to the future design of HEAs with
tailored ductility.
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Following up to the study by Islam and coworkers, Huang et al. comparatively examined
three common machine learning frameworks to assess the predictive accuracy of the phase
selection of HEAs (71). A K-nearest neighbors algorithm, SVM, and artificial neural net-
work were implemented on an expanded experimental dataset (63) comprised of 401 HEAs,
partitioned into 174 solid solution phases, 54 intermetallic phases, and 173 combinations
of solid solution and intermetallic phases. A supervised multi-layer feed-forward neural
network outperformed an unsupervised neural network model, as well as the K-nearest
neighbors and SVM models. Additionally, Huang and coworkers illustrated that the super-
vised neural network more accurately classified phase selection than parametric methods.
The relative importance of the five input features was again evaluated, illustrating that the
VEC and ¢ features are significantly more important in determining phase selectivity than
Ax, AHpiz, and ASp,iz. The architecture of the supervised neural network is illustrated
in Figure 5, consisting of an input layer, three hidden layers with bias nodes, and an out-
put layer. Three hidden layers were chosen to optimize testing accuracy while minimizing
computational cost. The hidden layers, combined with sigmoid activation functions, are
key to the effectiveness of the framework as they learn correlations to solve the nonlinearity
problems within the data set.

Solid Solution (SS)
Intermetallic (IM)
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Figure 5

A supervised multi-layer feed forward artificial neural network illustrating the five numerical input
features, input layer, three hidden layers, bias nodes, and output layer. Figure reproduced
from (71).

3.2. Mechanical properties

Although informatics-based approaches in HEA research have primarily focused on phase
selection, several studies have applied machine learning techniques to predict hardness and
other mechanical properties of HEAs directly. Due to the limited availability of hardness
data across the vast compositional phase space for HEAs, this task proves difficult. In
one study, Chang et al. employed artificial neural network-based methods to suggest high-
hardness HEAs within a non-equimolar, six-component AlICoCrFeMnNi system, maintain-
ing the fraction of each element between 5at.% and 35at.% (72). To optimize the concen-
tration of each element for hardness, a simulated annealing algorithm was implemented,
iteratively adjusting composition from an initial Alg.3CoCrFeMnNi alloy. The optimization
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process is illustrated in Figure 6, with compositional variations revealing the importance of
Co, Cr, and Al in achieving high hardness in contrast to Ni, Mn, and Fe. Three composi-
tionally distinctive candidates with predicted high hardness were selected for experimental
study. Each alloy exhibited Vickers hardness > 600 HV, while one composition was mea-
sured at 650 HV, greater than the highest literature-reported hardness value (539 HV) for
this alloy system at the time (73). Hardness results were also correlated to structural and
phase information, providing insight to inform data frameworks in the future. This study
illustrates the potential to efficiently explore unknown compositional space to optimize
hardness using a limited database, though only within a specific HEA system consisting of
a specified set of elements.
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Figure 6

Alloy composition is iteratively optimized (bottom) to achieve high predicted hardness (top).
Figure reproduced from (72).

A similar study was performed on an AlCoCrCuFeNi system, in which Wen and cowork-
ers applied a machine learning surrogate model to identify high-hardness HEAs within the
specified system (74). In addition, the study considered experimental design and feedback
in an iterative optimization strategy, resulting in improved model performance with each
iteration. Utility functions were used to select experimental candidates for fabrication and
testing, then to reinform the training data. Of the 42 alloys synthesized, 35 exhibited hard-
ness values greater than the highest value in the training dataset, while 17 alloys saw an
increase of more than 10% when compared to the maximum hardness value in the training
data. The authors suggested that a similar design strategy be applied to the search for
optimized lightweight HEAs with high strength, and to extend the framework to the study
of bulk metallic glasses and superalloys.

While the studies mentioned above demonstrate the ability to optimize hardness of a
particular HEA system comprised of a specific set of elements, predicting entirely novel HEA
compositions in the broader phase space remains a challenge. In the search for new, useful
HEAs with high strength and high hardness, Rickman et al. employed a canonical corre-
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lation analysis combined with a genetic algorithm optimization strategy to systematically
explore HEA chemistry and compositional space, rapidly screening alloys to accelerate the
identification of HEAs with targeted properties (75). A dataset of 82 HEAs with experimen-
tally measured Vickers Hardness values was utilized as a training set, while seven quantities
were considered as predictor variables; Radius asymmetry (6), AHpmiz, ASmiz, mean melt-
ing temperature (T, ), ratio of entropy/enthalpy (£2), Young’s modulus asymmetry (), and
VEC. Four outcome variables were considered; the presence of BCC solid solution(s) only,
the presence of FCC solution(s) only, the presence of intermetallic phases (IM), and the
Vickers hardness. It was found that ASiiz, AHmiz, and VEC were most influential to
hardness. Compositional disorder (AS.,;,;) was positively correlated to hardness enhance-
ment. Conversely, AH,,;, scaled inversely to hardness, illustrating that phase separation
results in decreased hardness. Furthermore, decreased V EC encourages the formation of
a BCC phase, consistent with an increase in strength and hardness (76). To evaluate the
method, Rickman et al. selected seven candidate alloys suggested by the genetic algorithm
for fabrication and indentation testing, demonstrating with 90% confidence that the process
appropriately suggested alloys with enhanced hardness and illustrating the capabilities of
machine learning to jointly suggest mechanical properties and phase information of HEAs.

Another research group has performed related investigations in the search for low den-
sity, high-hardness HEAs (77, 78). Menou et al. implemented a multi-objective genetic
algorithm, allowing for the concurrent optimization of density, single-phase stability, and
solid solution hardening, while permitting the efficient screening of non-equimolar HEA
compositions (77). The proposed method was applied to the design of FCC HEAs, re-
sulting in the selection of an Al;pCoi7FesaMosNiss (at.%) alloy with appealing predicted
properties for further exploration. Characterization of the alloy revealed superior hardness,
yield stress, and tensile strength at a lower or comparable density to other FCC HEAs
previously examined. In a related study, Menou et al. employed a multi-objective ge-
netic algorithm to explore light and strong BCC HEA compositions (78), as BCC phases
may exhibit improved solid solution hardening at lower densities when compared to FCC
phases (63). From more than 3000 suggested compositions with optimal phase stability,
solid solution hardening, and density, a BCC Al CrzzMnrMogTiie (at.%) alloy was se-
lected for experimental characterization. Menou et al. observed exceptional solid solution
hardening, a hardness of 658 HV, and a density below 5.5 g/cm®, making the selected alloy
one of the hardest materials yet reported for such low density.

4. BULK METALLIC GLASSES

Bulk metallic glasses (BMGs) are an exciting class of amorphous materials that display
a varied range of physical properties due to their vast potential compositional space and
lack of long-range crystallographic order (79). These glassy alloys specifically have some
of the unique mechanical properties including near-theoretical strength and large elastic
strain limits (80, 81, 82, 83). Researchers are therefore continually working to not only
identify novel BMGs but they are also developing tools to predict glass forming ability a
priori. However, the multicomponent nature of these systems has generally limited the
ability to predict the novel BMGs. As a result, most of the BMGs identified thus far have
been discovered by trial and error, using simple empirical rules, or through considerable
experimental effort (84).

One method that researchers have considered is using materials screening by searching
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for correlations among independent mechanical properties. For example, as discussed in
Section 1.1, hardness is known to be correlated to shear modulus (G). Indeed, a correla-
tion between hardness (Hyv) and G has already been established for crystalline materials,
H, =0.151G, and also used to analyze the intrinsic hardness of 37 BMGs. The results re-
veal reasonable agreement between the predicted hardness and the experimentally measured
values. This simple empirical equation is an excellent starting point that can be utilized
in predicting the mechanical properties of BMGs (84). High-throughput methods are an-
other way researchers have tackled exploring the glass forming ability of BMGs as well as
to analyze the composition-based functional properties such as hardness (85, 86, 87). Em-
ploying a systematic approach using a laser additive manufacturing techniques to deposit
the library of continuously graded Cu-Zr-Ti alloys produced an extensive number of com-
positions while subsequent nanoindentation measurements revealed a relationship between
the hardness and ductility that was dependent on the Cu content with a notable improve-
ment in the ductility for lower Cu concentrations (87). Other BMG compositions such as
Zr50Cuso have also demonstrated an incredible plasticity, strain stiffening, and enhanced
ductility (88). Additionally, high toughness and ductility with simultaneous high strength
can be achieved through bulk metallic glass matrix composites of Ti-based systems (89).
These observations are all particularly interesting because BMGs are generally considered
brittle materials. The massive chemical tunability of BMGs provides an incredible avenue
to acquire unanticipated structural functionality that are not readily available in crystalline
compounds.

Accelerating the development of BMGs require two fundamental steps. First, the prior
glass forming ability of the constituent elements should be predicted with high accuracy and
ease. Second, the mechanical attribute-composition relationship should be realized to only
target compositions with high potential. Machine-learning methods are a natural pathway
that have already been pursued by researchers with ample opportunity remaining.

4.1. Descriptors for bulk metallic glasses

Machine-learning models are constructed based on a combination of training data repre-
sented in vector formats that can be described as linear coefficients of features capable of
capturing the systems essential physics or chemistry. These coefficients are then optimized
during the training process until reaching a reasonable degree of predictive power for in-
stances outside of the training data set. One of the biggest limitations for machine learning,
in particular for materials science, are the limited amount of data that can be represented
by the model. A solution to acquire a statistically robust model even with a small data set
is to engineer simple, yet highly-correlated proxies that correlate to the desired properties
but are simple to estimate. For example, critical cooling rate is an essential factor for the
formation of metallic glasses but these data are not readily available. The unavailability as
well as the difficulty in attaining the critical cooling rate limits its suitability to be included
as a feature despite the high relevance. The critical cooling rate is, however, dependent on
some thermodynamic and kinetic properties that are more easily accessible. The entropy of
fusion and kinetic fragility are shown to demonstrate high correlation to the critical cooling
rate for the formation of metallic glasses which can therefore be implemented in subsequent
machine learning analysis as important physical descriptors (90).

To correlate attributes to the glass forming ability of BMGs, research has postulated that
the existence of many competing meta-stable crystalline structures with different structures
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are crucial for the formation of BMGs. This competition is likely to hinder the growth of
nucleation before reaching the critical radius that results in crystallization. Therefore,
utilizing high-throughput DFT calculations within the framework of AFLOW, a simple
descriptor is constructed, called entropic factor. The entropic factor indicates the frustration
of the formation of a single homogeneous crystal structure. High values of the entropic factor
correlates positively with the glass forming ability of a particular structure. Based on this
analysis, 17% of binary alloys are predicted to be able to form as glasses which demonstrate
the breadth of possible glassy materials that are unexplored (85). Another example of
work in this field, has turned to use genetic programming to find correlation to the critical
diameter of BMGs. The critical diameter which is defined as the maximum diameter at
which metallic glass can be formed is reported to be a valid indicator of glass forming
ability. A parameter (G,) based on glass transition temperature, onset crystallization
temperature, and offset temperature of melting is then introduced showing a high correlation
coefficient, 0.67. Gp is later implemented in using principle component analysis (PCA) to
develop a predictive model for glass forming ability of BMGs (86, 91). Construction of
such descriptors, as opposed to exhaustive and random selection of descriptors, provide an
opportunity to build strong predictive models with even limited number of training data
that is commonly observed in materials science informatics problems.

4.2. ML-prediction of glass forming ability

A majority of research applying machine learning to BMGs has centered on predicting glass
forming ability. For example, PCA has been used based on 594 BMGs defined by eleven
descriptors leading to classification of the clusters of BMGs (92). A general machine-
learning framework applicable to the prediction of glass forming ability of BMGs was then
constructed. This research shows that partitioning the inputs into similar groups can results
in restriction of the degrees of freedom that are needed to capture a phenomenon and
therefore enhancing the outcome. For BMGs, a random forest classifier is implemented and
trained on 5369 compositions derived from melt-spinning experiments. 90% accuracy is
achieved using a 10-fold cross validation and the method is further verified by confirming
the accurate reproduction of the experimental Zr-Al-Ni ternary phase diagram (93).
Support vector machine (SVM) algorithms were also employed to predict the glass
forming ability of BMGs on a small data set based only on compositional information. To
distinguish compositions that can be formed as glasses and the ones that cannot, both
positive and negative instances of such compositions are required in the training set. Un-
fortunately, it is usually not straightforward to find negative reports within the literature.
Regardless, 31 binary alloys are collected with their composition ranging from 5 to 95% with
1% increments used as training data. Due to the limited number of training data, all data
are reserved for training instead of setting a portion of the data aside as a test set. Instead,
two new groups of data are introduced as the test set. A set called the “Target” which
includes 339 binaries that form metallic glasses using the melt-spun technique. The other
set, called “All”, consists of 1131 possible binary compositions with available input data.
The performance of the model is evaluated by its capability to distinguish between these
two groups, as glass former and non-glass former. Initially, eleven descriptors were utilized;
however, exhaustively exploring the influence of all the possible combination of these de-
scriptors revealed that the best performing model is obtained when only two descriptors,
fictive liquidus temperature and the difference in liquidus temperature, are included with
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the latter being the most influential descriptor (94).

A combined machine learning and high-throughput experimental method has shown a
significantly accelerated rate for discovering metallic glasses. Initially, an ML model was
created using a random forest algorithm to describe the glass forming ability of compo-
sitions. Two different theories are then added as descriptors to potentially enhance the
models. Even though these two descriptors do not clearly improve the overall statistics,
as they most likely are already covered within the rest of the variables, the nuances that
they make turns out to be of merit later when comparing machine learning prediction to
experimental results. Synthetic routes are also taken into consideration in this research
as they are imperative to the formation of BMGs. This initial model shows high accuracy
when assessed based on grouping cross-validation as well as the subsequent high-throughput
experimentation on the Co-V-Zr ternary phase space leading to new metallic glasses. Fol-
lowing the experimentation in the Co-V-Zr phase space, a down-sized set of the new data
are included in training set to improve the model accordingly. The down-sizing is per-
formed to avoid the introduction of bias by the addition of many data-points within the
Co-V-Zr composition-space. The inclusion of these data are particularly useful as they con-
tain many negative instances. As shown by Figure 7a, the second-generation of ML model
is capable of accurately predicting the glass forming ability of the Co-V-Zr with log-loss
of only 0.28 compared to 1.75 of the first generation. Further, the ternaries are ranked in
a decreasing order as shown by the black line in Figure 7b whereas the blue line indicate
the fraction of the compositions that have not been experimentally measured. Therefore,
two more ternaries systems with high glass forming ability and low number of known com-
pounds have been selected for further analysis (Co-Ti-Zr and Co-Fe-Zr) while Fe-Ti-Nb
is picked as a system with an extremely low predicted glass forming ability. Subsequent
experimentation confirm the accuracy of the ML predictions for all the selected systems.
Finally, Figure 7c demonstrate the ROC curve of the first, second, and the third generation
of ML models highlighting how this iterative experimental /ML approach can lead to more
accurate models and hence discovery of new compounds (95).
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4.3. Beyond glass forming ability

A major challenge in this field is that identifying deep eutectic points in simple systems is
difficult and information on quaternary or higher systems are rarely known. Therefore, re-
searchers have gone beyond text recognition and have identified deep eutectic points of phase
diagrams showing another viable platform to predict glass forming ability of BMGs (96).
Research has also shown it is possible to predict the glass forming ability of BMGs, have
trained machine learning models to predict critical casting diameter and supercooled liquid
range of metals. These models are then used to predict these properties for 2.7 million ad-
justment of alloys and the top candidates have been experimentally made showing superior
properties (97). Finally, a machine learning framework using a gradient boosted decision
tree model is made to correlate plastic heterogeneity of BMGs to quench-in structural de-
fects in Cu-Zr (98).

5. CHALLENGES AND FUTURE DIRECTIONS

In this review we have covered many of the current works regarding the data-driven study
of structural materials. Researchers have used machine learning for high-accuracy modeling
of fatigue behavior, and classification/reconstruction of micrographs. Researchers have also
demonstrated the successful discovery of new HEAs, new superhard materials, as well as
the ability to predict BMG formation. While this is encouraging, these are only first steps.
Many of the limitations and challenges for structural materials mirror those of the broader
materials informatics field (20, 99, 100). Future work is required to unlock the potential for
data-enabled development of future structural materials. The most pressing need is for ad-
ditional data. There is an enormous amount of experimental and computational data being
generated at present. Despite this monumental effort, data is often unusable for data-driven
research due to a lack of standardization at publication. As a result, materials properties
are not located in databases that can be easily accessed for machine learning, visualiza-
tion, and data analytics. Moreover, when data is available for learning, the community
has not always adopted best practices. In particular, overly optimistic results have often
been reported due to overfitting associated with improper use of training and test data.
An emphasis on experimental validation and repeatability made possible by code archival
is helping to overcome this challenge. As we work towards better practices regarding data
and modeling, we expect the field to produce viable and novel results. There is outstanding
potential to apply data science across materials science and it will also play a central role
in the advancement of structural materials.
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