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1. Introduction

The mapping class group Mod(X,) of a closed connected orientable surface of genus
g is known to be perfect, i.e. equal to its commutator subgroup, when g > 3 [11]. We
prove the following peculiar result:

Theorem 1. The mapping class group Mod(X,) is generated by two commutators if g > 5,
and by three commutators if g > 3.
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Our result is clearly sharp when g > 5, for Mod(X,) is not cyclic. When g =1 and 2,
the abelianization of Mod(X,) is Z12 and Z1o, respectively, so the mapping class group
cannot be generated by commutators in these low genera cases.

A geometric implication of Theorem 1 is that any pair of genus g > 5 surface bundle
over the circle are cobordant through a finite sequence of basic building blocks, which are
fibrations over two-holed tori, prescribed by the two commutator generators and their
inverses.

Since the action of mapping classes on the integral first homology group H;(3,) of
¥4 induces an epimorphism from Mod(2,) onto the symplectic group Sp(2¢, Z), another
immediate implication is the following:

Corollary 2. The symplectic group Sp(2g,Z) is generated by two commutators if g > 5,
and by three commutators if g > 3.

Theorem 1 adds to the ever-growing literature on minimal generating sets for
Mod(%,); e.g. by 2g + 1 Dehn twists [3,9,6], by three involutions [1,8], or by two general
elements [13,7].

It is interesting to know for which perfect groups the minimal number of generators
is equal to the minimal number of commutator generators. There are numerous other
groups satisfying this property. For example; any finite non-abelian simple group, such
as the alternating group A, for n > 5, is a perfect group generated by two elements,
whereas by the resolution of Ore’s conjecture [10], any element in such a group is a
commutator. The same holds for the special linear group SL(n, R) for various n > 3 and
coefficient rings R, which goes back to the classical works of Thompson [12]. However,
the situation is much more subtle for the mapping class group, since Mod(%,), for g > 3,
is not even uniformly perfect [4], i.e. there is not even a fixed positive number that any
element in Mod(X,) can be expressed as a product of that many commutators.

The explicit set of generators we provide for Theorem 1 consists of a finite order
mapping class and an infinite order one (or two) that is a product of disjoint Dehn twists.
In Section 2, we review the basic results regarding Dehn twists. The torsion elements,
and their expressions as commutators, come from the symmetries of the surface, and
are discussed in Section 3. Various new generating sets for Mod(X,) featuring the above
mapping classes are obtained in Section 4, and the proof of Theorem 1 is given in
Section 5.
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634309. The second author thanks UMass Ambherst for its generous support and won-
derful research environment during this project.
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Fig. 1. The curves of the lantern relation.

2. Preliminaries

The mapping class group Mod(X) of a compact connected oriented surface ¥ is the
group of orientation—preserving diffeomorphisms of ¥ — ¥ which restrict to the identity
near the boundary 9% modulo isotopies of the same type. We are primarily interested
in the case when ¥ = X, the closed surface of genus g.

We denote simple closed curves on X by lowercase letters such as a, b, ¢, d, and denote
positive (right-handed) Dehn twists tq, ty, te, tq about them by the corresponding capital
letters A, B,C, D, all with indices. In our notation, both the curves on ¥ and self-
diffeomorphisms of 3 should be understood up to isotopy. We use the functional notation
for the composition of diffeomorphisms (i.e. for ¢, ¥ acts on X first), yet we still express
the commutator of ¢ and v as [¢, V] = prhp~ 1y~

We make repeated use of the following basic relations in Mod(X), without referring
to them explicitly: for two simple closed curves a and b on ¥, and for any f € Mod(X),

« (Conjugation) ftof~' = tsa),
o (Commutativity) AB = BA if a and b are disjoint,
o (Braid relation) ABA = BAB if a and b intersect transversely at one point.

We also need

o (Lantern relation) for x;,y,; the simple closed curves on the four-holed sphere in
Flg 1 (embedded in E), X1X2X3 = KY2Y3Y4.

All the relations above appeared in the pioneering work of Dehn [3], who then proved
that Mod(X,) is generated by finitely many Dehn twists. Later works of Lickorish [9]
and Humphries [6] led to the following minimal collection of Dehn twist generators
{A;, Bj, Cy} along the curves {a;,b;,c;} on X, in Fig. 2.

Theorem 3. (Dehn-Lickorish-Humphries) The mapping class group Mod(X,) is generated
by {A17A27 317 BQ) s 7Bga Cla CQa R Cg—l}'
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Fig. 2. The three models for the surface ¥ . The z—axis is perpendicular to the page in all.

3. Finite order mapping classes as commutators

Consider the three different embeddings of the closed surface ¥, in R? as depicted in
Fig. 2. The surface in (ii) is the boundary of the solid handlebody which consists of two
thickened (g + 1)—gons, stacked on top of each other, and (g + 1) solid handles joining
their corresponding vertices. There are orientation-preserving diffeomorphisms between
the three models which identify the curves labeled as a;, b;, ci; in each one. These models
allow us to easily introduce and study certain torsion elements in Mod(X,) coming from
the symmetries of the surface. The surface ¥, is invariant under the following maps:

o the clockwise 2X-rotation R about the r—axis in Fig. 2(i),

« the clockwise “F-rotation S about the z—axis in Fig. 2(ii),

o the rotations p; and py by 7 about the z—axis and the line ¢, respectively, in Fig. 2(i),
o the rotations o7 and o4 by m about the z—axis and the line ¢, respectively, in Fig. 2(ii),
o the rotations o and h by 7 about the z—axis and the y—axis, respectively, in Fig. 2(iii).

Clearly, in Mod(%,), the rotations R and S yield torsion elements of orders g and
g + 1, respectively, and p;, 0y, 0, h yield involutions (elements of order 2), where h is a
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hyperelliptic involution. It is easy to check (say by the Alexander’s method applied to the
maximal chain ai,b1,c1,be,¢2,...,¢9-1,by) that the involutions ¢ and h we described
on the model (iii) correspond on the model (ii) to oy and the involution h; which in-
terchanges the top and bottom thickened (g + 1)-gons. Under these identifications, we
define one more torsion element:

o T is the “alternating rotation” of the surface in Fig. 2(ii), prescribed as T' = Shy.

Here S and h; commute, so T = h1.S as well. Note that T is of order g + 1 if g is odd,
and 2(g + 1) if g is even.

Proposition 4. In Mod(X,), the mapping classes R when g =2k +1, k> 1, and S,h,T
when g = 2k, k > 1, are all commutators, which can be expressed as

(1) R=[RFY py],

(2) 5= [SkH 1,

(3) h= [0, P~CFH1],

(4) T = [Sk+1p2k+1 P- (2k+1)0. P2k+1]

where P = AlBl(ClBg) ce (Ck'lek)-

Proof. From the dihedral symmetries of the models (i) and (ii) in Fig. 2, we easily deduce
that

R = pap1 and ps = R¥p, R~ 41 when g=2k+12>3, and
S = 0901 and o9 = Sk+1015—(k+1)’ when g = 2k > 2.
Therefore R = popy = (R¥'py R=FHD)py = [RFY py], as p;' = p1, and similarly
S = [S*+1 51]. This proves (1) and (2).
For (3), let ¢ = 2k and let § be the separating curve that is the intersection of X,
with the zz-—plane in Fig. 2(iii), so that ¢ is the common boundary of two compact
genus—k subsurfaces ¥ and ¥'. The surfaces ¥ and ¥/ are tubular neighborhoods of the

(2k)fchains ap, bl, C1, bz, ey Cl—1, bk- and Qg, bg, Cg—1, bg_l, oo o Ch41, bk+1.
We first show that, by letting

P = A1310132 e Cklek
and
= AngCg—lBg—l -+ Cpy1Br41,

the hyperelliptic involution i can be expressed as
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Fig. 3. The genus—k subsurface ¥ with boundary 4.

h= P2k+1(P1)—(2k+1) — (P/)—(2k+1)P2k+1 ]

Note that the diffeomorphism P?**! is a mrotation of the subsurface ¥ along the
y—axis, followed by isotoping the boundary back to its original position, so that its
square P**2 = ¢;. (The latter equality is known as the (2k)-chain relation; see e.g.
[5].) This can be easily checked by the Alexander’s method: P2**1 maps each one of the

curves ai, by, cq,...,Cr_1, b to itself, but with reversed orientation, whereas it maps the

2k+1

arc « to the arc 8 in Fig. 3. By the same token, (P’) is a similar w-rotation of the

subsurface ¥’ along the y—axis, albeit in the opposite direction. So taking the inverse of
one, as we did above, we get a m-rotation of the whole surface ¥, = ¥ Us ¥/, which is
the hyperelliptic involution h.

Next, we observe that the involution o on X, interchanges these two 2k-chains. It
follows that P’ = 0 Po~!, and therefore

h = (gpgfl)f(%ﬂ) P2+l _ o p—(2k+1) o1 p2k+1 _ [0, P7(2k+1)].
Finally, since o and h correspond to o1 and h; in model (ii), we have
T=25h
_ [Sk+1,01][01, P—(2k+1)]
= (Sl g 5~ D g1y (o) p~(2FH1) 5ol p2hitly
_ Sk+10'1S_(k+1)P_(2k+1)Uf1P2k+l
— Sk—‘,—l(PQk—‘rlP—(Qk—‘rl))o_l (P2k+1p_(2k+1))S_(k+1)P_(2k+1)U;1P2k+l

— (SkJrlPZkJrl)(P7(2k+1)0'1p2k+1)(Sk+1p2k+1)71(P7(2k+1)0'1p2k+1)71
_ [Sk+lp2k+1 ,P7(2k+1)01P2k+1},
which! concludes (4). O

4. New generating sets for the mapping class group

Here we obtain several new generating sets for Mod(%,), focusing on generators that
can be expressed as commutators (for suitable g).

! In general, [z, y][y, 2] = [z~ 2y2z~ "] for any three elements x,y, z in a group (cf. [2]).
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Fig. 4. The curves of the embedded lantern relation A;C1C2A3 = A3 D1 D3 in Xy

Lemma 5. For g > 3, the mapping class group Mod(3,) is generated by Alel, AgB{l,
Blel, BZ-B;_irl1 and CjC’j]_ll, where 1 <i<g—1land1<j<g—2.

Proof. Let I' be the subgroup of Mod(X,) generated by the set

{A1B !, A2 By BiCy Y, BB, GG Yvig.

Then

{A2 AT, BB, C,C Y BiCy Y ALB Y A Byt ALC Y AsC by C T
For example, we have A4,C; ! = (AQBQI)(BlBgl)_l(Blel) € T'. Since C} Cj_ll erl,
multiplying these elements in increasing index, we get C’lC el So AQC € T'. The

others can be easily verified in a similar fashion.
By the lantern relation, the following holds in Mod(3,):

A1C1C2A3 = A Dy Do,
where the curves are as in Fig. 4. We can rewrite this relation as
Az = (A2C71)(D1Cy ) (Do ATY), (1)

as C1,Cy and Az commute with all the other Dehn twists here. Note that AQC erl.
One can check that the diffeomorphism

F=(AB (AT )(AC ) (ABy )
maps the pair a1) of simple closed curves to (da,a;). Since F' € TI', we have

(a2,a
(AQA )F L'=D A1_1 € T by the conjugation relation. We also have DyCy ' =
(D2 A7) (A:1C 1) €
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Likewise, the diffeomorphism
G = (CoBy )(C2AT (G207 ) (Ca B

lies in T" and maps the pair (da,ce) of simple closed curves to (dq,cs). Therefore, the
element G(DgC’2_1)G_1 = D;LC'Q_1 is also in I', once again by the conjugation relation.

Now the equality (1) implies that the Dehn twist Az is in I. Also,
A3(B3By M) A3(B1B; ' )A;! = By isinT. It now follows easily that Ay, Ay, By, Ba, ..., B,
and C1,C5,...,Cy—1 are all contained in I We conclude from Theorem 3 that
I'=Mod(Z,). O

We now present various new generators for the mapping class group Mod(X,) we need
for our main theorem.

Theorem 6. For g > 5, the mapping class group Mod(X,) is generated by R and
A AC Bt

Proof. First note that the rotation R on X, maps each a;, b;, ¢; to a;41,biy1,ci+1. Here,
the indices are considered modulo g. The Dehn twist curves of mapping classes F; defined
below are illustrated in Fig. 5 for the case g = 5.

Let Fy = AlAQC;lBZI and let I" be the subgroup of Mod(X,) generated by R and
Fy. We make the following series of observations:

F2 = RFlRil == A2A3C3_1B5_1 erl.
F3; .= (FgFl)FQ(FgFl)_l = A2A3B4_1B5_1 erl.

Let us spell out the details of this calculation, as we have several others akin to this
one. It is easy to see that the diffeomorphism F5F; maps the curves as,as,c3, bs to
as, as, by, bs, respectively, so that

F3 = (FQFl)FQ(F2F1)71
= (FyFy)(AyA305 By ) (FoFy )t
= A A3B;'By .

We then have Fy 'Fy = B,C5' € T and F3F, ' = B;'C3 € T. By conjugating these
elements with powers of R, we see that

B;,Ci4 €T and B;'C;_1 €T

for all 7.
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Fig. 5. The Dehn twist curves of Fi,..., Fs and FG' in the proof of Theorem 6 drawn on Xs.

We also have

Fy:=R'F;'R=A7'A;'B3B, €T,
Fs = (FyF3)Fy(FyFy) ' = AT Ay A3 By € T

Thus, F5F; ' = A3B;' € T and F;'F, = A;'Bs € T'. Again, by conjugating with
powers of R, we conclude that

AiBzilaA;lB’L € Fa (2)
and in turn,
A0 eT

as well, as we already have B;C;_ 11 erl.
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Furthermore,
Fs = (C,AT ) FL(B4Cy ) = CyAsCy ' Cst e T
F§ =R "FR" = Cy_4Ay_2C,1,C 1 €T,
Fr = (F§) NC,; ! \By) = C; 1A Cy 2By €T
and

Fy = (FrFg)Fr(FrFg) ™ = C;_l4A;_1209_20g el

by a similar calculation to the one we had for F3 above. From these, we get F7Fg 1=
BgC'g_1 € I', so that

B,C7'erl (3)

K2

by the action of R.
Hence we have all of the following elements in I':

Bz‘Bi—Jrl1 = (Bici_l)(CiBi_Jr11)a (4)
CiCi_-rll = (CiBi_—i-ll)(Bi-i-lCi_-i—ll)' (5)

It follows from (2)—(5) and Lemma 5 that I' = Mod(%,). O

Theorem 7. For g > 3, the mapping class group Mod(%,) is generated by T, A1A2_1 and
A1BC1Cy BT AS!

Proof. Let I' be the subgroup of Mod(X,) generated by T,AlAgl and F :=
A1B,C,Cy By AT
Below we repeatedly use the conjugation relation, both when conjugating with F' and

with powers of T'. The action of T" on ¥, maps a; to c1, ¢; to ¢j4q foreachi =1,...,9-2,
cg—1 to ag, and ay back to a1, whereas it maps b; to b;y; for each ¢ =1,...,g, and by11
back to b;.

Note that F(as) = as. Since F(ay) = by and F(by) = ¢1,
F(AA;YF ' =BiA; el
and
F(BiA;)YF~ ' =1 A7 el
It follows that

AB;Y, BiCyteT.
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Fig. 6. The Dehn twist curves of G1,...,Gsg in the proof of Theorem 8 drawn on Xg.

Hence, the elements

C1By' =T(A By YT,

A;By ' = (A,C7H)(CiBy Y,

BoCy ' =T(B,Cy YT,

C1Cy 1 = (C1By 1) (BCy 1),

BBy = (B1CyY)(C1By ),

C;C L =T ey )T U D for 1 <j < g -2,

BB,/ = T BB YT D for1<i<g-1

are all in T". It follows now from Lemma 5 that I' = Mod(X,). O

Theorem 8. For g > 6, the mapping class group Mod(X,) is generated by T and
A1 ACy Byt

Proof. Let ' be the subgroup of Mod(X,) generated by T and G := A; AyCy ' By ', The
Dehn twist curves of mapping classes G; defined in this proof are illustrated in Fig. 6
for the case g = 6.

Let d = T'(az2).” We then have

Gy :=TG,T ' =C,DC;'B; €T

2 To view the action of T (specifically on the curve as) in the “standard” model as in Fig. 6, one can
observe that S = (A1 B1C1B2C> - - - Bg,ng,lBgAg)Q.
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Since G2(G; maps the curve c3 to by and fixes ¢y, d, bs, the conjugation of Gy with GoG1

gives®

G = (G2G1)G2(G2Gy)
= C,DB;'B; ! €.

Hence, the subgroup I contains the elements G2G5* = C; ' By and G5 'Gs = C3B; .
Thus, by conjugating by powers of T', we see that

A;Bi'eT and O;B 4 €T (6)

forl1<i<g-—1.
We also have

Gy =G Cy'Bs) = AT'A;'B3B, €T
and
Gs = (G3G4)G3(G3Gy) ™ = C1B3B'B; ' €T
by a similar calculation to that of G5 above. From this we get

G3G;'=DB;'eT

and hence
T-YDB3)T = AyB; ' €T (7)
Let
Ge :=T Y (BsCyY)GsT = BiBoB; 'By ' €T
and

Gr:= (T3GsT73) = C4BsB; 'Bg* € T.
Here, we take Bg = By if g = 6. It is then easy to see that

Gg = (G7Gg1)G7(G7Ggl>_1 = B4BGB;IB§1 erl.

3 Here we use the fact that as is disjoint from d = T'(az), which would not be the case for S(az). This
is essentially the reason why we preferred to work with the slightly more complicated torsion element T
rather than S.
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We then have
GsG- ' =ByC;t el
Thus, by the action of T', we get
B,C;leTl (8)
for all 4. As in the proof of Theorem 6, we obtain that
B;B\,C;Ci Y €T (9)
Once again from (6)—(9) and Lemma 5, we conclude I' = Mod(%,). O

5. Proof of the main theorem

The proof of our main theorem now follows easily from the array of results we have
obtained thus far.

Proof of Theorem 1. We obtain our sharpest results in four cases:

g > 5 is odd: By Theorem 6, the mapping class group Mod(X,) is generated by R and
A1 ACY 1B4_1. By Proposition 4, R is a single commutator. On the other hand, there is
clearly a diffeomorphism ¢ of ¥, mapping the pair (a1, as2) to (bs, c2), so that

A1 A0y Bt = A1 Ay(ByCs) !
= A1 As(pA1 Az~ ")}
= A1 Asp(A1Az) Mo}
= [A1 42, ¢].

g > 6 is even: By Theorem 8, the mapping class group Mod(X,) is generated by T
and A;A,Cy ' By ' Again T is a commutator by Proposition 4, and A;4,C; !Byt =
[A1 A2, ¢] as above.

g = 3: By similar arguments we had in Section 4, one can show that when g > 3, Mod(%,)
is generated by the elements R, AlAgl, and AlBlCnglBglAgl; see Theorem 6 in [8].
Once again R is a commutator by Proposition 4. Clearly there is a diffeomorphism
of 33 mapping a; to as and a diffeomorphism ¢ mapping (aq,b1,c1) to (as,bs,c2). It
follows that A; Ay = [Ay,¢] and A, B,C1Cy ' By Ay = [A1B1Cy, o).

g =4: By Theorem 7, Mod(X4) is generated by the three elements T, AlA;I and
A1 B Cy 02—133—114??1. Once again T is a commutator by Proposition 4 and so are the

other two elements, as we have argued above.
This completes the proof of Theorem 1. O
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