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1. Introduction

The mapping class group Mod(Σg) of a closed connected orientable surface of genus 
g is known to be perfect, i.e. equal to its commutator subgroup, when g ≥ 3 [11]. We 
prove the following peculiar result:

Theorem 1. The mapping class group Mod(Σg) is generated by two commutators if g ≥ 5, 
and by three commutators if g ≥ 3.

* Corresponding authors.
E-mail addresses: baykur@math.umass.edu (R.İ. Baykur), korkmaz@metu.edu.tr (M. Korkmaz).
https://doi.org/10.1016/j.jalgebra.2021.01.021
0021-8693/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2021.01.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2021.01.021&domain=pdf
mailto:baykur@math.umass.edu
mailto:korkmaz@metu.edu.tr
https://doi.org/10.1016/j.jalgebra.2021.01.021


R.İ. Baykur, M. Korkmaz / Journal of Algebra 574 (2021) 278–291 279
Our result is clearly sharp when g ≥ 5, for Mod(Σg) is not cyclic. When g = 1 and 2, 
the abelianization of Mod(Σg) is Z12 and Z10, respectively, so the mapping class group 
cannot be generated by commutators in these low genera cases.

A geometric implication of Theorem 1 is that any pair of genus g ≥ 5 surface bundle 
over the circle are cobordant through a finite sequence of basic building blocks, which are 
fibrations over two-holed tori, prescribed by the two commutator generators and their 
inverses.

Since the action of mapping classes on the integral first homology group H1(Σg) of 
Σg induces an epimorphism from Mod(Σg) onto the symplectic group Sp(2g, Z), another 
immediate implication is the following:

Corollary 2. The symplectic group Sp(2g, Z) is generated by two commutators if g ≥ 5, 
and by three commutators if g ≥ 3.

Theorem 1 adds to the ever-growing literature on minimal generating sets for 
Mod(Σg); e.g. by 2g + 1 Dehn twists [3,9,6], by three involutions [1,8], or by two general 
elements [13,7].

It is interesting to know for which perfect groups the minimal number of generators 
is equal to the minimal number of commutator generators. There are numerous other 
groups satisfying this property. For example; any finite non-abelian simple group, such 
as the alternating group An for n ≥ 5, is a perfect group generated by two elements, 
whereas by the resolution of Ore’s conjecture [10], any element in such a group is a 
commutator. The same holds for the special linear group SL(n, R) for various n ≥ 3 and 
coefficient rings R, which goes back to the classical works of Thompson [12]. However, 
the situation is much more subtle for the mapping class group, since Mod(Σg), for g ≥ 3, 
is not even uniformly perfect [4], i.e. there is not even a fixed positive number that any 
element in Mod(Σg) can be expressed as a product of that many commutators.

The explicit set of generators we provide for Theorem 1 consists of a finite order 
mapping class and an infinite order one (or two) that is a product of disjoint Dehn twists. 
In Section 2, we review the basic results regarding Dehn twists. The torsion elements, 
and their expressions as commutators, come from the symmetries of the surface, and 
are discussed in Section 3. Various new generating sets for Mod(Σg) featuring the above 
mapping classes are obtained in Section 4, and the proof of Theorem 1 is given in 
Section 5.
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Foundation Grants DMS-1510395, DMS-2005327, and The Simons Foundation Grant 
634309. The second author thanks UMass Amherst for its generous support and won-
derful research environment during this project.
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Fig. 1. The curves of the lantern relation.

2. Preliminaries

The mapping class group Mod(Σ) of a compact connected oriented surface Σ is the 
group of orientation–preserving diffeomorphisms of Σ → Σ which restrict to the identity 
near the boundary ∂Σ modulo isotopies of the same type. We are primarily interested 
in the case when Σ = Σg, the closed surface of genus g.

We denote simple closed curves on Σ by lowercase letters such as a, b, c, d, and denote 
positive (right-handed) Dehn twists ta, tb, tc, td about them by the corresponding capital 
letters A, B, C, D, all with indices. In our notation, both the curves on Σ and self-
diffeomorphisms of Σ should be understood up to isotopy. We use the functional notation 
for the composition of diffeomorphisms (i.e. for φψ, ψ acts on Σ first), yet we still express 
the commutator of φ and ψ as [φ, ψ] = φψφ−1ψ−1.

We make repeated use of the following basic relations in Mod(Σ), without referring 
to them explicitly: for two simple closed curves a and b on Σ, and for any f ∈ Mod(Σ),

• (Conjugation) ftaf−1 = tf(a),
• (Commutativity) AB = BA if a and b are disjoint,
• (Braid relation) ABA = BAB if a and b intersect transversely at one point.

We also need

• (Lantern relation) for xi, yj the simple closed curves on the four-holed sphere in 
Fig. 1 (embedded in Σ), X1X2X3 = Y1Y2Y3Y4.

All the relations above appeared in the pioneering work of Dehn [3], who then proved 
that Mod(Σg) is generated by finitely many Dehn twists. Later works of Lickorish [9]
and Humphries [6] led to the following minimal collection of Dehn twist generators 
{Ai, Bj , Ck} along the curves {ai, bj , ck} on Σg in Fig. 2.

Theorem 3. (Dehn-Lickorish-Humphries) The mapping class group Mod(Σg) is generated 
by {A1, A2, B1, B2, . . . , Bg, C1, C2, . . . , Cg−1}.
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Fig. 2. The three models for the surface Σg. The x–axis is perpendicular to the page in all.

3. Finite order mapping classes as commutators

Consider the three different embeddings of the closed surface Σg in R3 as depicted in 
Fig. 2. The surface in (ii) is the boundary of the solid handlebody which consists of two 
thickened (g + 1)–gons, stacked on top of each other, and (g + 1) solid handles joining 
their corresponding vertices. There are orientation-preserving diffeomorphisms between 
the three models which identify the curves labeled as ai, bj , ck in each one. These models 
allow us to easily introduce and study certain torsion elements in Mod(Σg) coming from 
the symmetries of the surface. The surface Σg is invariant under the following maps:

• the clockwise 2π
g –rotation R about the x–axis in Fig. 2(i),

• the clockwise 2π
g+1 –rotation S about the x–axis in Fig. 2(ii),

• the rotations ρ1 and ρ2 by π about the z–axis and the line �, respectively, in Fig. 2(i),
• the rotations σ1 and σ2 by π about the z–axis and the line �, respectively, in Fig. 2(ii),
• the rotations σ and h by π about the z–axis and the y–axis, respectively, in Fig. 2(iii).

Clearly, in Mod(Σg), the rotations R and S yield torsion elements of orders g and 
g + 1, respectively, and ρi, σi, σ, h yield involutions (elements of order 2), where h is a 
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hyperelliptic involution. It is easy to check (say by the Alexander’s method applied to the 
maximal chain a1, b1, c1, b2, c2, . . . , cg−1, bg) that the involutions σ and h we described 
on the model (iii) correspond on the model (ii) to σ1 and the involution h1 which in-
terchanges the top and bottom thickened (g + 1)–gons. Under these identifications, we 
define one more torsion element:

• T is the “alternating rotation” of the surface in Fig. 2(ii), prescribed as T = Sh1.

Here S and h1 commute, so T = h1S as well. Note that T is of order g + 1 if g is odd, 
and 2(g + 1) if g is even.

Proposition 4. In Mod(Σg), the mapping classes R when g = 2k + 1, k ≥ 1, and S, h, T
when g = 2k, k ≥ 1, are all commutators, which can be expressed as

(1) R = [Rk+1, ρ1],
(2) S = [Sk+1, σ1],
(3) h = [σ, P −(2k+1)],
(4) T = [Sk+1P 2k+1 , P −(2k+1)σ1P 2k+1],

where P = A1B1(C1B2) · · · (Ck−1Bk).

Proof. From the dihedral symmetries of the models (i) and (ii) in Fig. 2, we easily deduce 
that

R = ρ2ρ1 and ρ2 = Rk+1ρ1 R−(k+1), when g = 2k + 1 ≥ 3, and

S = σ2σ1 and σ2 = Sk+1σ1S−(k+1), when g = 2k ≥ 2.

Therefore R = ρ2ρ1 = (Rk+1ρ1 R−(k+1))ρ1 = [Rk+1, ρ1], as ρ−1
1 = ρ1, and similarly 

S = [Sk+1, σ1]. This proves (1) and (2).
For (3), let g = 2k and let δ be the separating curve that is the intersection of Σg

with the xz–plane in Fig. 2(iii), so that δ is the common boundary of two compact 
genus–k subsurfaces Σ and Σ′. The surfaces Σ and Σ′ are tubular neighborhoods of the 
(2k)–chains a1, b1, c1, b2, . . . , ck−1, bk and ag, bg, cg−1, bg−1, . . . ck+1, bk+1.

We first show that, by letting

P = A1B1C1B2 · · · Ck−1Bk

and

P ′ = AgBgCg−1Bg−1 · · · Ck+1Bk+1,

the hyperelliptic involution h can be expressed as
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Fig. 3. The genus–k subsurface Σ with boundary δ.

h = P 2k+1(P ′)−(2k+1) = (P ′)−(2k+1)P 2k+1 .

Note that the diffeomorphism P 2k+1 is a π–rotation of the subsurface Σ along the 
y–axis, followed by isotoping the boundary back to its original position, so that its 
square P 4k+2 = tδ. (The latter equality is known as the (2k)–chain relation; see e.g. 
[5].) This can be easily checked by the Alexander’s method: P 2k+1 maps each one of the 
curves a1, b1, c1, . . . , ck−1, bk to itself, but with reversed orientation, whereas it maps the 
arc α to the arc β in Fig. 3. By the same token, (P ′)2k+1 is a similar π–rotation of the 
subsurface Σ′ along the y–axis, albeit in the opposite direction. So taking the inverse of 
one, as we did above, we get a π–rotation of the whole surface Σg = Σ ∪δ Σ′, which is 
the hyperelliptic involution h.

Next, we observe that the involution σ on Σg interchanges these two 2k–chains. It 
follows that P ′ = σPσ−1, and therefore

h = (σPσ−1)−(2k+1) P 2k+1 = σP −(2k+1)σ−1P 2k+1 = [σ, P −(2k+1)].

Finally, since σ and h correspond to σ1 and h1 in model (ii), we have

T = Sh1

= [Sk+1, σ1][σ1, P −(2k+1)]

= (Sk+1σ1S−(k+1)σ−1
1 )(σ1P −(2k+1)σ−1

1 P 2k+1)

= Sk+1σ1S−(k+1)P −(2k+1)σ−1
1 P 2k+1

= Sk+1(P 2k+1P −(2k+1))σ1(P 2k+1P −(2k+1))S−(k+1)P −(2k+1)σ−1
1 P 2k+1

= (Sk+1P 2k+1)(P −(2k+1)σ1P 2k+1)(Sk+1P 2k+1)−1(P −(2k+1)σ1P 2k+1)−1

= [Sk+1P 2k+1 , P −(2k+1)σ1P 2k+1],

which1 concludes (4). �
4. New generating sets for the mapping class group

Here we obtain several new generating sets for Mod(Σg), focusing on generators that 
can be expressed as commutators (for suitable g).

1 In general, [x, y][y, z] = [xz−1, zyz−1] for any three elements x, y, z in a group (cf. [2]).
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Fig. 4. The curves of the embedded lantern relation A1C1C2A3 = A2D1D2 in Σg.

Lemma 5. For g ≥ 3, the mapping class group Mod(Σg) is generated by A1B−1
1 , A2B−1

2 ,

B1C−1
1 , BiB

−1
i+1 and CjC−1

j+1, where 1 ≤ i ≤ g − 1 and 1 ≤ j ≤ g − 2.

Proof. Let Γ be the subgroup of Mod(Σg) generated by the set

{A1B−1
1 , A2B−1

2 , B1C−1
1 , BiB

−1
i+1, CjC−1

j+1 }∀i,j .

Then

{A2A−1
1 , BiB

−1
j , CiC

−1
j , BiC

−1
j , A1B−1

i , A2B−1
i , A1C−1

j , A2C−1
j }∀i,j ⊂ Γ.

For example, we have A2C−1
1 = (A2B−1

2 )(B1B−1
2 )−1(B1C−1

1 ) ∈ Γ. Since CjC−1
j+1 ∈ Γ, 

multiplying these elements in increasing index, we get C1C−1
j ∈ Γ. So A2C−1

j ∈ Γ. The 
others can be easily verified in a similar fashion.

By the lantern relation, the following holds in Mod(Σg):

A1C1C2A3 = A2D1D2,

where the curves are as in Fig. 4. We can rewrite this relation as

A3 = (A2C−1
1 )(D1C−1

2 )(D2A−1
1 ), (1)

as C1, C2 and A3 commute with all the other Dehn twists here. Note that A2C−1
1 ∈ Γ. 

One can check that the diffeomorphism

F = (A1B−1
2 )(A1C−1

1 )(A1C−1
2 )(A1B−1

2 )

maps the pair (a2, a1) of simple closed curves to (d2, a1). Since F ∈ Γ, we have 
F (A2A−1

1 )F −1 = D2A−1
1 ∈ Γ by the conjugation relation. We also have D2C−1

2 =
(D2A−1

1 )(A1C−1
2 ) ∈ Γ.
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Likewise, the diffeomorphism

G = (C2B−1
1 )(C2A−1

1 )(C2C−1
1 )(C2B−1

1 )

lies in Γ and maps the pair (d2, c2) of simple closed curves to (d1, c2). Therefore, the 
element G(D2C−1

2 )G−1 = D1C−1
2 is also in Γ, once again by the conjugation relation.

Now the equality (1) implies that the Dehn twist A3 is in Γ. Also,
A3(B3B−1

1 )A3(B1B−1
3 )A−1

3 = B3 is in Γ. It now follows easily that A1, A2, B1, B2, . . . , Bg

and C1, C2, . . . , Cg−1 are all contained in Γ. We conclude from Theorem 3 that 
Γ = Mod(Σg). �

We now present various new generators for the mapping class group Mod(Σg) we need 
for our main theorem.

Theorem 6. For g ≥ 5, the mapping class group Mod(Σg) is generated by R and 
A1A2C−1

2 B−1
4 .

Proof. First note that the rotation R on Σg maps each ai, bi, ci to ai+1, bi+1, ci+1. Here, 
the indices are considered modulo g. The Dehn twist curves of mapping classes Fi defined 
below are illustrated in Fig. 5 for the case g = 5.

Let F1 := A1A2C−1
2 B−1

4 and let Γ be the subgroup of Mod(Σg) generated by R and 
F1. We make the following series of observations:

F2 := RF1R−1 = A2A3C−1
3 B−1

5 ∈ Γ.

F3 := (F2F1)F2(F2F1)−1 = A2A3B−1
4 B−1

5 ∈ Γ.

Let us spell out the details of this calculation, as we have several others akin to this 
one. It is easy to see that the diffeomorphism F2F1 maps the curves a2, a3, c3, b5 to 
a2, a3, b4, b5, respectively, so that

F3 := (F2F1)F2(F2F1)−1

= (F2F1)(A2A3C−1
3 B−1

5 )(F2F1)−1

= A2A3B−1
4 B−1

5 .

We then have F −1
3 F2 = B4C−1

3 ∈ Γ and F3F −1
2 = B−1

4 C3 ∈ Γ. By conjugating these 
elements with powers of R, we see that

BiC
−1
i−1 ∈ Γ and B−1

i Ci−1 ∈ Γ

for all i.
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Fig. 5. The Dehn twist curves of F1, . . . , F8 and F ′
6 in the proof of Theorem 6 drawn on Σ5.

We also have

F4 := R−1F −1
3 R = A−1

1 A−1
2 B3B4 ∈ Γ,

F5 := (F4F3)F4(F4F3)−1 = A−1
1 A−1

2 A3B4 ∈ Γ.

Thus, F5F −1
4 = A3B−1

3 ∈ Γ and F −1
5 F4 = A−1

3 B3 ∈ Γ. Again, by conjugating with 
powers of R, we conclude that

AiB
−1
i , A−1

i Bi ∈ Γ, (2)

and in turn,

AiC
−1
i−1 ∈ Γ

as well, as we already have BiC
−1
i−1 ∈ Γ.
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Furthermore,

F6 := (CgA−1
1 )F1(B4C−1

3 ) = CgA2C−1
2 C−1

3 ∈ Γ,

F ′
6 := R−4F6R4 = Cg−4Ag−2C−1

g−2C−1
g−1 ∈ Γ,

F7 := (F ′
6)−1(C−1

g−1Bg) = C−1
g−4A−1

g−2Cg−2Bg ∈ Γ

and

F8 := (F7F6)F7(F7F6)−1 = C−1
g−4A−1

g−2Cg−2Cg ∈ Γ,

by a similar calculation to the one we had for F3 above. From these, we get F7F −1
8 =

BgC−1
g ∈ Γ, so that

BiC
−1
i ∈ Γ (3)

by the action of R.
Hence we have all of the following elements in Γ:

BiB
−1
i+1 = (BiC

−1
i )(CiB

−1
i+1), (4)

CiC
−1
i+1 = (CiB

−1
i+1)(Bi+1C−1

i+1). (5)

It follows from (2)–(5) and Lemma 5 that Γ = Mod(Σg). �
Theorem 7. For g ≥ 3, the mapping class group Mod(Σg) is generated by T, A1A−1

2 and 
A1B1C1C−1

2 B−1
3 A−1

3 .

Proof. Let Γ be the subgroup of Mod(Σg) generated by T, A1A−1
2 and F :=

A1B1C1C−1
2 B−1

3 A−1
3 .

Below we repeatedly use the conjugation relation, both when conjugating with F and 
with powers of T . The action of T on Σg maps a1 to c1, ci to ci+1 for each i = 1, . . . , g−2, 
cg−1 to ag, and ag back to a1, whereas it maps bi to bi+1 for each i = 1, . . . , g, and bg+1
back to b1.

Note that F (a2) = a2. Since F (a1) = b1 and F (b1) = c1,

F (A1A−1
2 )F −1 = B1A−1

2 ∈ Γ

and

F (B1A−1
2 )F −1 = C1A−1

2 ∈ Γ.

It follows that

A1B−1
1 , B1C−1

1 ∈ Γ.
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Hence, the elements

C1B−1
2 = T (A1B−1

1 )T −1,

A2B−1
2 = (A2C−1

1 )(C1B−1
2 ),

B2C−1
2 = T (B1C−1

1 )T −1,

C1C−1
2 = (C1B−1

2 )(B2C−1
2 ),

B1B−1
2 = (B1C−1

1 )(C1B−1
2 ),

CjC−1
j+1 = T j−1(C1C−1

2 )T −(j−1) for 1 ≤ j ≤ g − 2,

BiB
−1
i+1 = T i−1(B1B−1

2 )T −(i−1) for 1 ≤ i ≤ g − 1

are all in Γ. It follows now from Lemma 5 that Γ = Mod(Σg). �
Theorem 8. For g ≥ 6, the mapping class group Mod(Σg) is generated by T and 
A1A2C−1

2 B−1
4 .

Proof. Let Γ be the subgroup of Mod(Σg) generated by T and G1 := A1A2C−1
2 B−1

4 . The 
Dehn twist curves of mapping classes Gi defined in this proof are illustrated in Fig. 6
for the case g = 6.

Let d = T (a2).2 We then have

G2 := TG1T −1 = C1DC−1
3 B−1

5 ∈ Γ.

2 To view the action of T (specifically on the curve a2) in the “standard” model as in Fig. 6, one can 
observe that S = (A1B1C1B2C2 · · · Bg−1Cg−1BgAg)2.
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Since G2G1 maps the curve c3 to b4 and fixes c1, d, b5, the conjugation of G2 with G2G1
gives3

G3 := (G2G1)G2(G2G1)−1

= C1DB−1
4 B−1

5 ∈ Γ.

Hence, the subgroup Γ contains the elements G2G−1
3 = C−1

3 B4 and G−1
2 G3 = C3B−1

4 . 
Thus, by conjugating by powers of T , we see that

A1B−1
1 ∈ Γ and CiB

−1
i+1 ∈ Γ (6)

for 1 ≤ i ≤ g − 1.
We also have

G4 := G−1
1 (C−1

2 B3) = A−1
1 A−1

2 B3B4 ∈ Γ

and

G5 := (G3G4)G3(G3G4)−1 = C1B3B−1
4 B−1

5 ∈ Γ

by a similar calculation to that of G3 above. From this we get

G3G−1
5 = DB−1

3 ∈ Γ

and hence

T −1(DB−1
3 )T = A2B−1

2 ∈ Γ. (7)

Let

G6 := T −1(B2C−1
1 )G5T = B1B2B−1

3 B−1
4 ∈ Γ

and

G7 := (T 3G5T −3) = C4B6B−1
7 B−1

8 ∈ Γ.

Here, we take B8 = B1 if g = 6. It is then easy to see that

G8 := (G7G−1
6 )G7(G7G−1

6 )−1 = B4B6B−1
7 B−1

8 ∈ Γ.

3 Here we use the fact that a2 is disjoint from d = T (a2), which would not be the case for S(a2). This 
is essentially the reason why we preferred to work with the slightly more complicated torsion element T
rather than S.
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We then have

G8G−1
7 = B4C−1

4 ∈ Γ.

Thus, by the action of T , we get

BiC
−1
i ∈ Γ (8)

for all i. As in the proof of Theorem 6, we obtain that

BiB
−1
i+1, CiC

−1
i+1 ∈ Γ. (9)

Once again from (6)–(9) and Lemma 5, we conclude Γ = Mod(Σg). �
5. Proof of the main theorem

The proof of our main theorem now follows easily from the array of results we have 
obtained thus far.

Proof of Theorem 1. We obtain our sharpest results in four cases:

g ≥ 5 is odd: By Theorem 6, the mapping class group Mod(Σg) is generated by R and 
A1A2C−1

2 B−1
4 . By Proposition 4, R is a single commutator. On the other hand, there is 

clearly a diffeomorphism φ of Σg mapping the pair (a1, a2) to (b4, c2), so that

A1A2C−1
2 B−1

4 = A1A2(B4C2)−1

= A1A2(φA1A2φ−1)−1

= A1A2φ(A1A2)−1φ−1

= [A1A2, φ].

g ≥ 6 is even: By Theorem 8, the mapping class group Mod(Σg) is generated by T

and A1A2C−1
2 B−1

4 . Again T is a commutator by Proposition 4, and A1A2C−1
2 B−1

4 =
[A1A2, φ] as above.

g = 3: By similar arguments we had in Section 4, one can show that when g ≥ 3, Mod(Σg)
is generated by the elements R, A1A−1

2 , and A1B1C1C−1
2 B−1

3 A−1
3 ; see Theorem 6 in [8]. 

Once again R is a commutator by Proposition 4. Clearly there is a diffeomorphism ψ
of Σ3 mapping a1 to a2 and a diffeomorphism ϕ mapping (a1, b1, c1) to (a3, b3, c2). It 
follows that A1A−1

2 = [A1, ψ] and A1B1C1C−1
2 B−1

3 A−1
3 = [A1B1C1, ϕ].

g = 4: By Theorem 7, Mod(Σ4) is generated by the three elements T, A1A−1
2 and 

A1B1C1C−1
2 B−1

3 A−1
3 . Once again T is a commutator by Proposition 4 and so are the 

other two elements, as we have argued above.
This completes the proof of Theorem 1. �
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