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ABSTRACT: The rational improvement of the enzyme catalytic
activity is one of the most significant challenges in biotechnology.
Most conventional strategies used to engineer enzymes involve
selecting mutations to increase their thermostability. Determining
good criteria for choosing these substitutions continues to be a
challenge. In this work, we combine bioinformatics, electrostatic
analysis, and molecular dynamics to predict beneficial mutations
that may improve the thermostability of XynA from Bacillus
subtilis. First, the Tanford−Kirkwood surface accessibility method
is used to characterize each ionizable residue contribution to the
protein native state stability. Residues identified to be destabilizing
were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five
mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from
experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the
order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy
for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.

1. INTRODUCTION

Advances in protein engineering contribute to a vast and
growing number of biotechnology applications. These
applications include DNA manipulation, disease treatment,
natural and pharmaceutical compound synthesis, and many
others. In particular, the bioenergy industry has adopted
enzymes for the hydrolysis of lignocellulosic biomass to
produce soluble sugars that undergo a fermentation process for
bioethanol production.1 Improving the thermostability of these
enzymes would allow them to work longer under the
conditions prescribed by the biomass degradation process.
Moreover, the ability to use high temperatures for such
procedures might not only reduce microbial contamination but
also improve reaction rates.2 There are several strategies for
improving the thermostability of enzymes. Directed evolution,
for example, mimics the natural evolution cycle under specific
laboratory conditions to guide the proteins toward adapting to
the new environments through natural selection.3 In rational
design, the prediction of mutations is based on known
information about the enzyme sequence and/or structure. By
using such information, computational analyses are performed
to suggests good candidates to be used in synthetic work.
These computational techniques, combined with wet-labo-

ratory approaches, accelerate the protein design and make the
protein suitable for different applications.4

Despite recent advances in protein engineering, it remains a
challenging process to discover beneficial mutations. In this
work, we explore different techniques to improve the
thermostability of XynA from Bacillus subtilis. Xylanases are
enzymes that catalyze the hydrolysis of the β-1,4 glycosidic
linkages of xylans, present in many plant cell walls.5 XynA was
chosen for our study due to the availability of experimental
data in the literature regarding its thermostability and mutant
variants; therefore, it is a great test system for our theoretical
design approach. We propose to perform rational residue
substitution by combining several existing theoretical tools:
electrostatic analysis, ancestral sequence reconstruction strat-
egy, and consensus sequence strategy. First, the Tanford−
Kirkwood surface accessibility−Monte Carlo (TKSA−MC)6

method is used to identify candidate residues in the wild-type
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sequence to be mutated. Then, the residues suitable for
mutation are identified and later mutated with the correspond-
ing residue in the ancestral and consensus sequences (SI text
and Figure S1). The ancestral sequence can be reconstructed
via statistical techniques that help to infer the most statistically
probable amino acid sequence of each node on the
phylogenetic tree.7 Using each of the strategies individually
can be daunting since each of them still involves a degree of
trial and error to select and test beneficial mutations. For
example, in the consensus protein design, only 50% of
conserved residues are responsible for improved stability
while the remaining residues are either neutral or destabiliz-
ing.8 Depending on the complexity of the data used for
ancestral and consensus sequence construction, the two may
significantly differ from the sequence of interest, making it even
more of a challenge to determine an efficient way to proceed
with mutation selection. With the novel combination of
strategies presented here, it is possible to reduce the
randomness in selecting mutations by first identifying which
residue is most suitable to be replaced, and second, by directly
replacing those residues with those theoretically predicted to
be beneficial. Studies have suggested that over deep evolu-
tionary time, the native state stability of proteins tends to
decrease.9,10 Therefore, restoring some ancestral residues in
the reconstructed proteins might help to stabilize their extant
counterparts.2 In the consensus design strategy, the consensus
residues are simply those with the highest frequency of
occurrence at individual positions in the multiple sequence
alignment of extant homologues. The rationale is that residues
that are highly conserved through millions of years of evolution
are likely to hold the key to the thermodynamic stability and
catalytic activity of the protein.11 If those residues are not
already present in the protein of interest, then by restoring
them we can potentially produce mutants with higher
thermostability and activity than for the wild-type counterpart.
In the last step, molecular dynamics simulations were carried
out to explore the mutation effects on the protein folding and
stability.

2. METHODS
2.1. Selection of Eligible Mutations Based on the

Consensus and Ancestral Sequences. By accessing the
Protein Data Bank (http://rcsb.org),12 we obtained the
FASTA sequence and the tertiary structures of XynA using
PDB ID 1XXN.1 A search was then performed using the basic
local alignment search tool (BLAST) to look for putative
GH11s and other homologous protein sequences. The
consensus sequence was generated using the consensus finder
web server with a set of homologous proteins.13 The same set
of homologues is used to compute a phylogenetic tree in
PhyloBayes, a Bayesian Monte Carlo Markov Chain (MCMC)
sampler.14 Finally, using the FastML web server, the sequence
alignment and the consensus tree were used to reconstruct the
ancestral sequences of all corresponding proteins. The
ModWeb server was used to predict the tertiary structures of
the wild-type (WT) protein and of the ancestral and the
consensus models.15 Afterward, the TKSA-MC server was used
to evaluate the electrostatic free-energy contribution of each
polar-charged residue in the WT native state at a specific pH
and temperature.16 This is achieved by calculating protein
charge−charge interactions via the Tanford−Kirkwood surface
accessibility model combined with the Monte Carlo method
for sampling different protein protonation states.

Destabilizing residues that are candidates to be replaced
must fulfill two criteria: first, they must present unfavorable
energy values, ΔGqq ≥ 0, and second, their side chains must be
exposed to the solvent with a solvent-accessible surface area
(SASA) ratio of ≥50%. There is a strong correlation between
the heat capacity variation (ΔCp) and ΔSASA.17 The ΔCp
variation affects the protein free-energy profile (ΔG) and the
melting temperature (Tm). The criterion is adopted to avoid
significant changes in the protein ΔCp.

18 It is then expected
that the selected mutation will contribute to only a slight
variation of the protein structure and will not drastically
change the protein hydrophobic core. The ancestral, the
consensus, and the wild-type sequences were aligned together.
Residues identified to be electrostatically destabilizing by the
TKSA-MC method were replaced with those found at the
same positions in the ancestral or consensus sequences.
However, the method application was expanded, and the
mutations are not limited only to destabilizing residues: If a
charged residue appears in either the ancestral or the
consensus sequence while the residue at the same position in
the WT is uncharged, then the uncharged residue is replaced
with the charged one. After the mutant structures were
modeled, the TKSA-MC method was also applied to optimize
the electrostatics and to determine whether the mutation is
stabilizing. Five mutants were created (K99T/N151D, K99T,
S31R, N151D, and K154A), and their structures were
predicted using the ModWeb server.19 Figure 1 presents the
1D and 3D structures of XynA and highlights the mutated
residues on the basis of the criteria presented in the
methodology.

2.2. Non-Native Potential Addition to the Structure-
Based Cα Model. The protein folding process was
investigated in the wild type and the mutants of XynA by
molecular dynamics employing the Cα structure-based model
(SBM-Cα) with the addition of non-native potentials. The
amino acids of the protein in the SBM-Cα are represented by a
single bead located in the α-carbon position.20−22 The
contribution of the SBM-Cα potential is given by the first
five terms in eq 1, and the last term corresponds to the non-
native potential that accounts for the electrostatic interactions
among all charged residues. This approach has been widely
used in systems that take into account fixed charge.23−27
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In the SBM-Cα potential, parameters r, θ, and ϕ represent
the distance between two subsequent residues and the angles
formed by three and four subsequent residues of the protein,
respectively. All SBM parameters are obtained from the native

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01253
J. Phys. Chem. B 2021, 125, 4359−4367

4360

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c01253/suppl_file/jp1c01253_si_001.pdf
http://rcsb.org
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01253?rel=cite-as&ref=PDF&jav=VoR


structure. rij represents the distance between two noncovalent
beads, and dij is the distance between two beads in the native
structure. The contact map is determined by the shadow
contact map algorithm.28 The last term in the SBM-Cα
potential represents the nonspecific repulsion to all residue
pairs which are not in contact in the native structure. The
strength of the bonds, angles, and dihedral angles is described
by ϵr, ϵθ, and ϵϕ, respectively, and parameters ϵr = 100ϵC, ϵθ =
20ϵC, ϵϕ = ϵC, and ϵNC = ϵC in which ϵC is equal to 1 unit (in
reduced units).
The electrostatic interactions are considered by adding point

charges at beads,23,29−31 which represent the acidic/basic
residues (i.e., histidine, lysine, and arginine are positively
charged; glutamic acid and aspartic acid are negatively
charged). Two charged amino acids interact via the last term
in eq 1, in which Kelectrostatic = 332 kcal Å/(mol e2),32 qi and qj
are residue charges i and j, ϵK = 80 is the dielectric constant,
and κ is the inverse of the Debye length.25,33

2.3. Simulation Details. Simulations were performed
using the GROMACS (version 2019.2) molecular dynamic
package.34 All files necessary to perform structure-based
simulations were obtained from the SMOG web server.35

The Berendsen thermostat algorithm36 was employed to
maintain coupling to an external bath with a relaxation of 1
ps. The proteins were initialized in an open random
configuration and simulated over 2.5 × 109 steps (250 ns),

and this process was repeated for five simulations. The
configurations were saved every 4000 steps. The replica
exchange molecular dynamics (REMD)37,38 technique was
employed to allow systems with similar potential energies to
sample conformations at different temperatures, thus over-
coming energy barriers on the potential surface to better
sample the energy landscape. For each protein model, 12
replicas were set to run in a temperature range exponentially
distributed around an estimated folding temperature obtained
from preliminary testing. The reaction coordinate used to
follow the folding events is based on the fraction of the native
contacts (Q). A native contact is formed when the distance
between two residues with indices i and j, where j > i + 3, is
less than 1.2dij, where dij is such a distance in the folded state.
The thermodynamic free-energy profile for each mutant was
obtained using the weighted histogram analysis method
(WHAM) after combining multiple simulations for a range
of different temperatures. By combining all the three
approaches (electrostatics analysis, ancestral sequence recon-
struction approach, and the consensus sequence approach) as
demonstrated in Figure 2, we are able to identify residues
suitable for mutations to increase the enzyme thermostability.

3. RESULTS AND DISCUSSION
3.1. Mutant Selection and ΔGqq Analysis. First, the

consensus sequence was generated by the consensus-finder
web server using the closest 2000 homologous proteins.
Evolution can introduce new pathways and add roughness to
the energy landscape. Since independent pathways are not
highly conserved, constructing a consensus of homologues
removes them and smoothes the energy landscape.2 To
reconstruct the ancestral sequence, the same sequences were
imported into Jalview39 and aligned using MAFFT.40

Sequences with 95% redundancy or that were significantly
longer or shorter than the WT sequence were also selectively
removed. The remaining sequences were realigned with
MAFFT and fed to Gblock41 to further eliminate regions

Figure 1. Cartoon representation (A−C) and primary sequence (D)
of the wild-type xylanase structure with PDB ID 1XXN. (A) The gray
beads correspond to the mutations predicted by TKSA and their
structures created by the ModWeb server. (B) The blue beads are the
residues with energy favorable to stabilizing the protein, ΔGqq < 0.
(C) The red and blue beads are the residues with unfavorable energy,
ΔGqq ≥ 0, with SASA ≥ 50% and SASA < 50%, respectively. (D) The
primary sequence of xylanase with gray and red arrows indicating the
bead positions represented in A and B.

Figure 2. Outline of steps taken for the rational selection of mutants.
The process starts by obtaining the amino acid sequences and
predicting the corresponding tertiary structures. With this informa-
tion, the ancestral and consensus sequences are reconstructed. Next,
electrostatic interactions are optimized using the TKSA-MC web
server to determine destabilizing residues in the WT to serve as
candidates to be experimentally mutated. After mutating the
destabilizing residues, the mutant structures are predicted and their
thermostability is verified by a simulation of the folding process. *As a
possible expansion of application in the case of proteins absent of
electrostatically destabilizing residues, step 4 may also include
mutating uncharged residues in the WT with charged residues
located in the ancestral and consensus sequence at the same locations.
The resulting mutants are then considered for further analysis if they
display more favorable ΔGqq than does the WT per TKSA-MC results.
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with weak phylogenetic links. The resulting segments were
imported into ProtTest42 to determine the best-fitting evolu-
tionary model prior to MCMC sampling.43 With all of the
necessary information, the ancestral reconstruction process
could commence. The sequences were imported into
PhyloBayes, and two MCMC chains were set to run in parallel,
regularly probing for convergence. After 4000 cycles, 10% of
the initial trees were discarded as burn-in, and the remaining
trees were then used to compute averages. Only trees with a
posterior consensus of 0.70 or higher in each node are
considered in the final consensus tree. Finally, using the
FastML web server,44 the sequence alignment and the
consensus tree were used to reconstruct the ancestral
sequences of all corresponding proteins. For the next step,
the TKSA-MC method was performed on the WT with pH
and temperature parameters set at 6.0 and 328 K, respectively,
to evaluate the interaction energy among the charges of each
ionizable residue in the protein. The values for pH and
temperature were chosen because they have been exper-
imentally verified to be optimal for XynA.16 The mutants were
selected on the basis of the TKSA-MC results, as shown in
Figure 3. (See Figures S2−S4 in the SI.) Residues D11, K99,
K135, and K154 were found to destabilize the native structure
by having ΔGqq ≥ 0 with SASA ≥ 50%. Although D11 and
K135 are candidates to be mutated and increase the protein
thermostability, they are not explored because ancestral and
consensus sequences have identical residues at 11 and 135
locations. Electrostatics optimization using the TKSA-MC is
essential for optimization under different pH and temperature
conditions. These features make the method versatile enough
to be used for a variety of applications. After aligning all three
sequences (WT, ancestral, and consensus) using MAFFT,
candidate residues in the WT were mutated with other
residues found in the same locations in the ancestral or
consensus sequences. The 3D structures of all mutants were
generated using ModWeb.19 (See the RMSD in Table S1 and
the structures Figure S5 in the SI.) Another essential aspect to

consider is to perform the mutation to improve thermostability
while maintaining catalytic activity. The strategy includes
locating the enzyme activity site and avoiding mutations in that
region. The protein−ligand binding site was predicted using
the COACH web server.45,46 The mutants selected and the
reasons behind their selection are as follows:

• S31R: R appeared only in the ancestral sequence but
nowhere else at the same location in the multiple
sequence alignment (MSA).

• K154A: A appeared in both the ancestral and consensus
sequences at the same location in the MSA.

• K99T: T appeared in both the ancestral and consensus
sequences at the same location in the MSA.

• N151D: D appeared in both the ancestral and consensus
sequences at the same location in the MSA. N is
uncharged, and N151D exhibits a lower ΔGelec than does
the WT.

• K99T/N151D: We combined the previous two point
mutations after simulations revealed that both K99T and
N151D were stabilizing.

3.2. Molecular Dynamics Simulations with SBM-Cα
Models. Simulations were performed in GROMACS34 using
SBM-Cα models, and the thermodynamic properties of all
mutants and the WT are displayed in Figure 4. Four mutants
exhibited higher folding temperatures than the WT variant,
while one exhibited slightly lower folding temperature. Twelve
control mutants obtained from experiments were also
simulated to validate the simulation results of the new
mutants. The folding temperature, TF, for each model was
obtained by the peak of its heat capacity, Cv. In Figure 5A, the
changes in the folding temperature displayed a significant
improvement over the WT (see Figure S6 in the SI). The
K99T mutation displays the highest folding temperature,
making this mutation most likely viable for processes that
require higher temperatures. Higher TF is associated with an
increase in the native state free-energy stabilization, as shown

Figure 3. Sample usage of electrostatics analysis to identify candidate residues to be mutated by using the TKSA-MC web server. (A−C)
Generated 3D structures of the XynA WT variant and the S31R and K99T/N151D mutants, respectively. (D−F) TKSA-MC results of the
corresponding structures above them, indicating the charge−charge energy contribution of each ionizable residue to the native state stability when
compared to the unfolded state. Red bars represent destabilizing residues with unfavorable energy values ΔGqq ≥ 0. These residues, when mutated,
might help stabilize the protein. Bars that have unfavorable energy values but have SASA < 50% are not candidates to be replaced and remain blue.
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in Figure 5B. The Q region from 0 to 0.2 is used to calculate
the free energy of the protein unfolded conformations, Q = 0.2
to 0.8 for the transition state and Q = 0.8 or above for the

native state. Therefore, the lower the free-energy minimum of
the native state, the more stable the protein and consequently
the more difficult for the protein to unfold. The substantial
decrease in the native state free energy of the mutants relative
to the wild type indicates that mutants S31R and K99T were
successfully stabilized (Figure S7 in the SI). Therefore, there is
a direct connection between the native state free energy and
the folding temperature. The results reveal that the mutants
stabilized the native state of the protein, allowing them to
maintain the catalytic activity at higher temperatures compared
to the WT. The mutants’ folding temperatures obtained using
the approach outlined in this paper were compared against the
mutants’ folding temperatures investigated by wet-laboratory
experiments (Q7H/G13R/I107L, Q7H/G13R/S22P/S179C,
Q7H/S22P, Q7H, Q7H/V150A, S22P, G13R, S31Y,16

S179C,47 N181R, N32D, S22E/N32D, N54E, S27E, and
S22E48). Two control mutants were also intentionally
destabilized by mutating the most electrostatically stabilizing
residue identified in the TKSA-MC result with a random
residue of the opposite charge (D106K and D106R). As
predicted, these two mutants were observed to exhibit a lower
TF than the WT, as shown in Figure 4. Both mutations D106R
and D106K are responsible for a significant unfavorable change
in the electrostatic free energy. The values go from −47.91 and
−35.53 kJ/mol for D106R and D106K, respectively, to −72.03
kJ/mol for the WT. However, both mutations only decreased
the stability of the WT by a small amount. This can be
attributed to the fact that the mutated proteins form more
native contacts (685 and 683 contacts for D106R and D106K,
respectively, compared to 679 contacts for the native WT).
The formation of new native contacts slightly offsets the loss of
stability due to unfavorable electrostatic changes, resulting in a
small decrease in both mutants’ stability.23,31

At the folding temperature, the contributions of the contact
and electrostatic interactions to the folding process were
calculated from the simulation trajectory data and are
presented in Figure 6. The contact energy function depends
on the degree of nativeness of a particular configuration. As the
number of native contacts increases, so does the contact energy
contribution. This observation comes from the model

Figure 4. Thermodynamic parameters obtained from simulations for
all mutants. K99T and K154A were obtained by mutating an
electrostatically destabilizing residue in the WT, identified through
optimizing electrostatic interactions using the TKSA-MC method,
with a residue located in the ancestral or consensus sequence at the
same location. S31R and N151D were obtained by mutating an
uncharged residue in the WT with a charged residue located in the
ancestral and consensus sequence at the same location and exhibit
lower ΔGelec than the WT (ΔGelec = −72.22 and −91.07 kJ/mol,
respectively, compared to −72.03 kJ/mol for the WT). K99T/N151D
was obtained by mutating an electrostatically destabilizing residue and
an uncharged residue in the WT with residues located in the ancestral
and consensus sequence at the same locations and was found to
exhibit lower ΔGelec than the WT (ΔGelec = −82.08 vs −72.03 kJ/mol,
respectively).

Figure 5. (A) Heat capacity curve. (B) Free-energy profile as a function of the fraction of native contacts at the folding temperature of the WT.
Orange lines represent the mutant introduced as the negative control (D106R). Gray lines represent the wild type (WT). Blue and green lines
represent the most thermostable mutants (K99T/N151D and K99T, respectively) obtained using the methods described above. In A, the Cv peak
of D106R shows a lower folding temperature compared with the WT. In B, the free-energy profile shows that mutation D106R has a less stable
native state compared with the WT. In contrast, the Cv of S31R and K99T has a higher folding temperature than D106R and the WT. S31R and
K99T free-energy profiles show that both mutations present a more stable native state than the WT and the D106R mutation.
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construction and applies to the cases of D106R, WT, and
K99T shown in Figure 6A−C, respectively. On the other hand,
the electrostatic interactions are responsible for the most
significant variation in the energy plots (Figure 6D−F for
D106R, WT, and K99T, respectively) and play an essential role
in the folding process and native state stability. The energy
variations were expected once the mutants were chosen from
the TKSA-MC electrostatics optimization.6 For the destabiliz-
ing mutation (D106R), the electrostatic energy contributions
increase once the protein folds to its native state. This positive
energy contribution is responsible for making the D106R
native state less stable when compared to the WT. The WT
analysis presents some variation in the electrostatic energy
between the unfolded and the folded state. The electrostatic
energy decreases during the folding process, indicating that
charge−charge interactions help the formation of the native
contacts. A similar effect is observed in the electrostatically
optimized mutation K99T. This predicted mutant presents a
decrease in the electrostatic energy in the native state
compared with the WT. This mutation favors the formation
of native state contacts with optimized electrostatic inter-
actions in the protein (Figures S8 and S9 in the SI). This
nonnative interaction optimization helps to decrease the native
state frustration, which may increase protein stability.21,22,49−52

The hydrophobic nonnative interactions contribution was also
explored in the protein folding simulations, and the results lead
to a similar optimum mutation ranking (SI text and Figure
S10−S14.)
Among the mutants, S31R was the only instance in which

the residue selected to be the substitute (R) appeared in only
the ancestral sequence but not in the consensus sequence. In
K99T, N151D, and K154A, the substituting residues appear in
both the ancestral and consensus sequences. Over time,
residues that are important to protein stability and activity tend
to be conserved to help the protein function in its respective

biological context. Consistent with our findings, if a residue is
stabilizing in the ancestral protein, then it is likely to be
conserved throughout evolutionary time and appear in the
extant proteins. Even though most ancient proteins were highly
thermostable, the trend in thermostability is not smooth over
time as some studies have shown.10 As the protein adapts to
changes in the environment through the ages, its stability
fluctuates in response to environmental changes. For this
reason, there might not be a significant trend in stability in
recent ancestors without also accounting for even older
ancestors. Future studies could incorporate the utilizing
sequences from different ancestral nodes in the phylogenetic
tree for mutant selection to account for such fluctuations in
protein stability.

3.3. Estimations of Folding Temperatures for the
Mutant Based on Simulation Results. Both simulation and
experimental TF values of all control mutants are known
(except for D106K and D106R in Table 1), and the two
temperature data points are plotted against each other and
then linearly fitted. Then, the predicted mutants with only
simulation results are plotted along the regression line, as
shown in Figure 7. A rough estimation of the mutants’
theoretical TF was obtained using extrapolation and is
displayed in Table 2. Third-generation mutant Q7H/G13R/
S22P/S179C is reported experimentally to increase the
enzyme melting temperature by 17.7 °C. The results from
simulations did not predict such considerable stabilization. The
suggestion for the predictions’ underestimation is that this
mutant is reported to make a disulfide bond between
xylanases.53 The disulfide bond formation and interactions
between different chains are not taken into account in this
work.

Figure 6. (A−C) Distributions of the contact energy function over reaction coordinate Q at the simulation temperature closest to the folding
temperature of D106R, WT, and K99T protein models, respectively. (D−F) Those for the electrostatic potentials.
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4. CONCLUSIONS
Among the variety of computational tools for designing and
performing protein engineering, we chose to combine
electrostatic analysis, ancestral, and consensus sequences
approaches to identify destabilizing residues and predict
stabilizing mutations for them. First, the TKSA-MC method
reports locations of charged residues contributing to the
destabilization of the native state. The ancestral and consensus
sequences suggest possible replacements for these destabilizing
residues. The most thermostable mutant (K99T) exhibited a
higher folding temperature than other mutants and the WT.
The set of mutations was investigated by molecular dynamics
to identify the energy contributions during the folding process
and the native state stability. The comparison of the folding
temperature of the predicted stabilizing mutations of XynA
from B. subtilis with the experimental data from the literature
corroborates this approach by combining the presented
computational strategies. The method assists in predicting
whether a mutation will increase the protein thermostability.
Other mutations that have no experimental data are presented
in the Supporting Information. Although the predictions in this
work are single mutations only, the methodology presented
here could be applied to several mutation candidates at once.

These mutations can help experimental groups to speed up the
search for good mutations. While the enzymes’ catalytic
activity is also worth investigating in addition to just stability,
the strategy adopted and tested in this work is promising in
improving the thermostability of proteins, enabling them to be
used in processes that require higher temperatures than what
the wild type can withstand.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253.

FASTA sequences for the WT, ancestral, and consensus
sequences; multiple sequences alignment of the three
main sequences; TKSA-MC results for all mutants
tested; RMSD values for all mutants with the wild-type
protein; superposition of all mutants with the cartoon to
wild-type tertiary structure representation; heat capacity
curve for each investigated mutant; free-energy profile as
a function of the fraction of native contacts Q; changes
to contact frequency of the most and least thermostable
mutants compared to the WT at different temperatures;
simulation results of sample mutants obtained from
using only TKSA-MC compared to the TKSA-MC,
ancestral, and consensus combined approach; hydro-
phobic contributions were incorporate into the vanilla
C-α structure-based model; thermodynamic parameters
from folding simulations with the hydrophobic potential
for all mutants; heat capacity curve and the free-energy
profile comparing the best mutants, the negative control,

Table 1. Simulation and Experimental TF of All Mutants and
WT

model
simulation TF (reduced

units)
experimental

TF (K)

S31Y 1.2458−0.0059
+0.0058 332.216

Q7H/G13R/I107L 1.2450−0.0042
+0.0050 344.616

N181R 1.2392−0.0016
+0.0050 331.048

S22E/N32D 1.2392−0.0016
+0.0017 332.448

Q7H/S22P 1.2383−0.0017
+0.0016 341.816

S22P 1.2383−0.0034
+0.0075 334.816

G13R 1.2367−0.0033
+0.0042 335.416

N32D 1.2350−0.0017
+0.0017 328.348

Q7H 1.2342−0.0033
+0.0050 335.816

Q7H/G13R/S22P/S179C 1.2342−0.0016
+0.0042 349.516

S179C 1.2342−0.0033
+0.0025 333.047

N54E 1.2292−0.0033
+0.0025 329.048

S27E 1.2292−0.0016
+0.0034 328.748

Q7H/V150A 1.2283−0.0034
+0.0058 335.116

S22E 1.2283−0.0034
+0.0025 330.648

WT 1.2267−0.0033
+0.0017 331.8,16 330.448

Figure 7. Plot of TF from simulations in reduced units against TF from experiments (K). Models labeled in orange have both simulation and
experimental TF known and were used to create a linear regression line (represented as an orange dotted line in the plot). Models in blue have only
simulation TF values known and are plotted along the regression line for estimations of theoretical folding temperatures in Kelvin.

Table 2. Folding Temperature Estimations of the Tested
Mutants in Kelvin

rank model
simulation TF
(reduced units)

extrapolated
TF (K)

ΔTF from
WT (K)

1 K99T 1.2475−0.0017
+0.0017 352.6652 20.87

2 K99T/N151D 1.2442−0.0041
+0.0025 347.5702 15.77

3 S31R 1.2417−0.0016
+0.0042 343.7103 11.91

4 N151D 1.2350−0.0025
+0.0025 333.3657 1.57

5 WT 1.2267−0.0033
+0.0017 331.8000 0.00

6 D106K 1.2267−0.0025
+0.0025 320.5508 −11.25

7 K154A 1.2267−0.0025
+0.0025 320.5508 −11.25

8 D106R 1.2258−0.0034
+0.0033 319.1613 −12.64

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01253
J. Phys. Chem. B 2021, 125, 4359−4367

4365

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c01253/suppl_file/jp1c01253_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?fig=fig7&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01253?rel=cite-as&ref=PDF&jav=VoR


and the WT; energy contributions from the native
contacts and electrostatic and hydrophobic potentials;
heat capacity curve for each investigated mutant with the
hydrophobic potential; free-energy profile as a function
of the fraction of native contacts Q with the hydrophobic
potential (PDF)
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Estadual Paulista, Saõ José do Rio Preto, SP, Brazil;
orcid.org/0000-0003-0008-9079

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.1c01253

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This research was supported by the Center for Theoretical
Biological Physics sponsored by the NSF (grant PHY-
2019745). J.N.O. was also supported by the NSF (grant
CHE-1614101) and by the Welch Foundation (grant C-1792).
J.N.O. is a Cancer Prevention and Research Institute of Texas
(CPRIT) Scholar in Cancer Research. V.G.C. is a Robert A.
Welch Postdoctoral Fellow and was also funded by FAPESP
(Sa ̃o Paulo Research Foundation) and CAPES (Higher
Education Personnel Improvement Coordination) grants
2016/13998-8 and 2017/09662-7. V.B.P.L. was supported by
the National Council for Scientific and Technological
Development (CNPq) and FAPESP grants 2014/06862-7,
2016/19766-1, and 2019/22540-3. F.B.d.S. was supported by
the National Council for Scientific and Technological
Development (CNPq) grant process no. 141715/2017-0

■ REFERENCES
(1) Binod, P.; Gnansounou, E.; Sindhu, R.; Pandey, A. Enzymes for
second generation biofuels: Recent developments and future
perspectives. Bioresource Technology Reports 2019, 5, 317−325.
(2) Kazlauskas, R. Engineering more stable proteins. Chem. Soc. Rev.
2018, 47, 9026−9045.

(3) Cobb, R. E.; Chao, R.; Zhao, H. Directed evolution: Past,
present, and future. AIChE J. 2013, 59, 1432−1440.
(4) Hellinga, H. W. Rational protein design: Combining theory and
experiment. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10015−10017.
(5) Alponti, J. S.; Maldonado, R. F.; Ward, R. J. Thermostabilization
of Bacillus subtilis GH11 xylanase by surface charge engineering. Int. J.
Biol. Macromol. 2016, 87, 522−528.
(6) Contessoto, V. G.; Oliveira, V. M. D.; Fernandes, B. R.; Slade, G.
G.; Leite, V. B. P. TKSA-MC: A web server for rational mutation
through the optimization of protein charge interactions. Proteins:
Struct., Funct., Genet. 2018, 86, 1184−1188.
(7) Thornton, J. W. Resurrecting ancient genes: experimental
analysis of extinct molecules. Nat. Rev. Genet. 2004, 5, 366−375.
(8) Porebski, B. T.; Buckle, A. M. Consensus protein design. Protein
Eng., Des. Sel. 2016, 29, 245−251.
(9) Gaucher, E. A.; Govindarajan, S.; Ganesh, O. K. Palae-
otemperature trend for Precambrian life inferred from resurrected
proteins. Nature 2008, 451, 704−707.
(10) Wheeler, L. C.; Lim, S. A.; Marqusee, S.; Harms, M. J. The
thermostability and specificity of ancient proteins. Curr. Opin. Struct.
Biol. 2016, 38, 37−43.
(11) Sternke, M.; Tripp, K. W.; Barrick, D. Consensus sequence
design as a general strategy to create hyperstable, biologically active
proteins. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 11275−11284.
(12) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235−242.
(13) Jones, B. J.; Lim, H. Y.; Huang, J.; Kazlauskas, R. J. Comparison
of Five Protein Engineering Strategies for Stabilizing an /-Hydrolase.
Biochemistry 2017, 56, 6521−6532.
(14) Lartillot, N.; Lepage, T.; Blanquart, S. PhyloBayes 3: a Bayesian
software package for phylogenetic reconstruction and molecular
dating. Bioinformatics 2009, 25, 2286−2288.
(15) Pieper, U.; Eswar, N.; Davis, F. P.; Braberg, H.; Madhusudhan,
M. S.; Rossi, A.; Marti-Renom, M.; Karchin, R.; Webb, B. M.;
Eramian, D.; et al. MODBASE: a database of annotated comparative
protein structure models and associated resources. Nucleic Acids Res.
2006, 34, D291−D295.
(16) Ruller, R.; Deliberto, L.; Ferreira, T. L.; Ward, R. J.
Thermostable variants of the recombinant xylanase a from Bacillus
subtilis produced by directed evolution show reduced heat capacity
changes. Proteins: Struct., Funct., Genet. 2008, 70, 1280−1293.
(17) Myers, J. K.; Nick Pace, C.; Martin Scholtz, J. Denaturant m
values and heat capacity changes: relation to changes in accessible
surface areas of protein unfolding. Protein Sci. 1995, 4, 2138−2148.
(18) Gribenko, A. V.; Patel, M. M.; Liu, J.; McCallum, S. A.; Wang,
C.; Makhatadze, G. I. Rational stabilization of enzymes by
computational redesign of surface charge−charge interactions. Proc.
Natl. Acad. Sci. U. S. A. 2009, 106, 2601−2606.
(19) Pieper, U.; Eswar, N.; Webb, B. M.; Eramian, D.; Kelly, L.;
Barkan, D. T.; Carter, H.; Mankoo, P.; Karchin, R.; Marti-Renom, M.
A.; et al. modbase, a database of annotated comparative protein
structure models and associated resources. Nucleic Acids Res. 2009, 37,
D347−D354.
(20) Clementi, C.; Nymeyer, H.; Onuchic, J. N. Topological and
Energetic Factors: What Determines the Structural Details of the
Transition State Ensemble and ”En-Route” Intermediates for Protein
Folding? An Investigation for Small Globular Proteins. J. Mol. Biol.
2000, 298, 937−953.
(21) Contessoto, V. G.; Lima, D. T.; Oliveira, R. J.; Bruni, A. T.;
Chahine, J.; Leite, V. B. P. Analyzing the Effect of Homogeneous
Frustration in Protein Folding. Proteins: Struct., Funct., Genet. 2013,
81, 1727−1737.
(22) Mouro, P. R.; de Godoi Contessoto, V.; Chahine, J.; Junio de
Oliveira, R.; Pereira Leite, V. B. Quantifying Nonnative Interactions in
the Protein-Folding Free-Energy Landscape. Biophys. J. 2016, 111,
287−293.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01253
J. Phys. Chem. B 2021, 125, 4359−4367

4366

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.1c01253/suppl_file/jp1c01253_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vini%CC%81cius+G.+Contessoto"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1891-9563
http://orcid.org/0000-0002-1891-9563
mailto:contessoto@rice.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jose%CC%81+N.+Onuchic"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9448-0388
http://orcid.org/0000-0002-9448-0388
mailto:jonuchic@rice.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Khoa+Ngo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fernando+Bruno+da+Silva"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vitor+B.+P.+Leite"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0008-9079
http://orcid.org/0000-0003-0008-9079
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01253?ref=pdf
https://doi.org/10.1016/j.biteb.2018.06.005
https://doi.org/10.1016/j.biteb.2018.06.005
https://doi.org/10.1016/j.biteb.2018.06.005
https://doi.org/10.1039/C8CS00014J
https://doi.org/10.1002/aic.13995
https://doi.org/10.1002/aic.13995
https://doi.org/10.1073/pnas.94.19.10015
https://doi.org/10.1073/pnas.94.19.10015
https://doi.org/10.1016/j.ijbiomac.2016.03.003
https://doi.org/10.1016/j.ijbiomac.2016.03.003
https://doi.org/10.1002/prot.25599
https://doi.org/10.1002/prot.25599
https://doi.org/10.1038/nrg1324
https://doi.org/10.1038/nrg1324
https://doi.org/10.1093/protein/gzw015
https://doi.org/10.1038/nature06510
https://doi.org/10.1038/nature06510
https://doi.org/10.1038/nature06510
https://doi.org/10.1016/j.sbi.2016.05.015
https://doi.org/10.1016/j.sbi.2016.05.015
https://doi.org/10.1073/pnas.1816707116
https://doi.org/10.1073/pnas.1816707116
https://doi.org/10.1073/pnas.1816707116
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1021/acs.biochem.7b00571
https://doi.org/10.1021/acs.biochem.7b00571
https://doi.org/10.1093/bioinformatics/btp368
https://doi.org/10.1093/bioinformatics/btp368
https://doi.org/10.1093/bioinformatics/btp368
https://doi.org/10.1093/nar/gkj059
https://doi.org/10.1093/nar/gkj059
https://doi.org/10.1002/prot.21617
https://doi.org/10.1002/prot.21617
https://doi.org/10.1002/prot.21617
https://doi.org/10.1002/pro.5560041020
https://doi.org/10.1002/pro.5560041020
https://doi.org/10.1002/pro.5560041020
https://doi.org/10.1073/pnas.0808220106
https://doi.org/10.1073/pnas.0808220106
https://doi.org/10.1093/nar/gkn791
https://doi.org/10.1093/nar/gkn791
https://doi.org/10.1006/jmbi.2000.3693
https://doi.org/10.1006/jmbi.2000.3693
https://doi.org/10.1006/jmbi.2000.3693
https://doi.org/10.1006/jmbi.2000.3693
https://doi.org/10.1002/prot.24309
https://doi.org/10.1002/prot.24309
https://doi.org/10.1016/j.bpj.2016.05.041
https://doi.org/10.1016/j.bpj.2016.05.041
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01253?rel=cite-as&ref=PDF&jav=VoR


(23) Azia, A.; Levy, Y. Nonnative Electrostatic Interactions Can
Modulate Protein Folding: Molecular Dynamics with a Grain of Salt.
J. Mol. Biol. 2009, 393, 527−542.
(24) Tripathi, S.; Garcìa, A. E.; Makhatadze, G. I. Alterations of
Nonconserved Residues Affect Protein Stability and Folding
Dynamics through Charge−Charge Interactions. J. Phys. Chem. B
2015, 119, 13103−13112.
(25) Tzul, F. O.; Schweiker, K. L.; Makhatadze, G. I. Modulation of
folding energy landscape by charge−charge interactions: Linking
experiments with computational modeling. Proc. Natl. Acad. Sci. U. S.
A. 2015, 112, E259−E266.
(26) Bruno da Silva, F.; Contessoto, V. G.; De Oliveira, V. M.;
Clarke, J.; Leite, V. B. Non-native cooperative interactions modulate
protein folding rates. J. Phys. Chem. B 2018, 122, 10817−10824.
(27) da Silva, F. B.; de Oliveira, V. M.; Sanches, M. N.; Contessoto,
V. G.; Leite, V. B. P. Rational Design of Chymotrypsin Inhibitor 2 by
Optimizing Non-Native Interactions. J. Chem. Inf. Model. 2020, 60,
982−988.
(28) Noel, J. K.; Whitford, P. C.; Onuchic, J. N. The Shadow Map:
A General Contact Definition for Capturing the Dynamics of
Biomolecular Folding and Function. J. Phys. Chem. B 2012, 116,
8692−8702.
(29) Contessoto, V. G.; de Oliveira, V. M.; de Carvalho, S. J.;
Oliveira, L. C.; Leite, V. B. P. NTL9 Folding at Constant pH: The
Importance of Electrostatic Interaction and pH Dependence. J. Chem.
Theory Comput. 2016, 12, 3270−3277.
(30) Coronado, M. A.; Caruso, I. P.; De Oliveira, V. M.; Contessoto,
V. G.; Leite, V. B. P.; Kawai, L. A.; Arni, R. K.; Eberle, R. J. Cold
Shock Protein A from Corynebacterium Pseudotuberculosis: Role of
Electrostatic Forces in the Stability of the Secondary Structure. Protein
Pept. Lett. 2017, 24, 358−367.
(31) de Oliveira, V. M.; de Godoi Contessoto, V.; da Silva, F. B.;
Caetano, D. L. Z.; de Carvalho, S. J.; Leite, V. B. P. Effects of pH and
salt concentration on stability of a protein G variant using coarse-
grained models. Biophys. J. 2018, 114, 65−75.
(32) Ullner, M.; Woodward, C. E.; Jönsson, B. A Debye-Hückel
Theory for Electrostatic Interactions in Proteins. J. Chem. Phys. 1996,
105, 2056−2065.
(33) Tan, Z.-J.; Chen, S.-J. Electrostatic correlations and fluctuations
for ion binding to a finite length polyelectrolyte. J. Chem. Phys. 2005,
122, 044903.
(34) Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.;
Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to super-
computers. SoftwareX 2015, 1−2, 19−25.
(35) Noel, J. K.; Levi, M.; Raghunathan, M.; Lammert, H.; Hayes, R.
L.; Onuchic, J. N.; Whitford, P. C. SMOG 2: A Versatile Software
Package for Generating Structure-Based Models. PLoS Comput. Biol.
2016, 12, No. e1004794.
(36) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, W. F. v.;
Nola, A. D.; Haak, J. R. Molecular dynamics with coupling to an
external bath. J. Chem. Phys. 1984, 81, 3684−3690.
(37) Day, R.; Paschek, D.; Garcia, A. E. Microsecond simulations of
the folding/unfolding thermodynamics of the Trp-cage miniprotein.
Proteins: Struct., Funct., Genet. 2010, 78, 1889−1899.
(38) Qi, R.; Wei, G.; Ma, B.; Nussinov, R. Replica Exchange
Molecular Dynamics: A Practical Application Protocol with Solutions
to Common Problems and a Peptide Aggregation and Self-Assembly
Example. Methods Mol. Biol. (N. Y., NY, U. S.) 2018, 1777, 101−119.
(39) Waterhouse, A. M.; Procter, J. B.; Martin, D. M. A.; Clamp, M.;
Barton, G. J. Jalview Version 2−a multiple sequence alignment editor
and analysis workbench. Bioinformatics 2009, 25, 1189−1191.
(40) Katoh, K.; Standley, D. M. MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in Performance and
Usability. Mol. Biol. Evol. 2013, 30, 772−780.
(41) Castresana, J. Selection of conserved blocks from multiple
alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000,
17, 540−552.

(42) Darriba, D.; Taboada, G. L.; Doallo, R.; Posada, D. ProtTest 3:
fast selection of best-fit models of protein evolution. Bioinformatics
2011, 27, 1164−1165.
(43) Le, S. Q.; Gascuel, O. An improved general amino acid
replacement matrix. Mol. Biol. Evol. 2008, 25, 1307−1320.
(44) Ashkenazy, H.; Penn, O.; Doron-Faigenboim, A.; Cohen, O.;
Cannarozzi, G.; Zomer, O.; Pupko, T. FastML: a web server for
probabilistic reconstruction of ancestral sequences. Nucleic Acids Res.
2012, 40, W580−584.
(45) Yang, J.; Roy, A.; Zhang, Y. Protein−ligand binding site
recognition using complementary binding-specific substructure
comparison and sequence profile alignment. Bioinformatics 2013,
29, 2588−2595.
(46) Yang, J.; Roy, A.; Zhang, Y. BioLiP: a semi-manually curated
database for biologically relevant ligand−protein interactions. Nucleic
Acids Res. 2012, 41, D1096−D1103.
(47) Silva, S. B.; Pinheiro, M. P.; Fuzo, C. A.; Silva, S. R.; Ferreira, T.
L.; Lourenzoni, M. R.; Nonato, M. C.; Vieira, D. S.; Ward, R. J. The
role of local residue environmental changes in thermostable mutants
of the GH11 xylanase from Bacillus subtilis. Int. J. Biol. Macromol.
2017, 97, 574−584.
(48) Alponti, J. S.; Fonseca Maldonado, R.; Ward, R. J.
Thermostabilization of Bacillus subtilis GH11 xylanase by surface
charge engineering. Int. J. Biol. Macromol. 2016, 87, 522−528.
(49) Ferreiro, D. U.; Komives, E. A.; Wolynes, P. G. Frustration,
function and folding. Curr. Opin. Struct. Biol. 2018, 48, 68−73.
(50) Clementi, C.; Plotkin, S. S. The effects of nonnative
interactions on protein folding rates: theory and simulation. Protein
Sci. 2004, 13, 1750−1766.
(51) Sutto, L.; Lätzer, J.; Hegler, J. A.; Ferreiro, D. U.; Wolynes, P.
G. Consequences of localized frustration for the folding mechanism of
the IM7 protein. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 19825−
19830.
(52) Chahine, J.; Oliveira, R. J.; Leite, V. B.; Wang, J. Configuration-
dependent diffusion can shift the kinetic transition state and barrier
height of protein folding. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
14646−14651.
(53) Wakarchuk, W. W.; Sung, W. L.; Campbell, R. L.; Cunningham,
A.; Watson, D. C.; Yaguchi, M. Thermostabilization of the Bacillus
circulans xylanase by the introduction of disulfide bonds. Protein Eng.,
Des. Sel. 1994, 7, 1379−1386.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01253
J. Phys. Chem. B 2021, 125, 4359−4367

4367

https://doi.org/10.1016/j.jmb.2009.08.010
https://doi.org/10.1016/j.jmb.2009.08.010
https://doi.org/10.1021/acs.jpcb.5b08527
https://doi.org/10.1021/acs.jpcb.5b08527
https://doi.org/10.1021/acs.jpcb.5b08527
https://doi.org/10.1073/pnas.1410424112
https://doi.org/10.1073/pnas.1410424112
https://doi.org/10.1073/pnas.1410424112
https://doi.org/10.1021/acs.jpcb.8b08990
https://doi.org/10.1021/acs.jpcb.8b08990
https://doi.org/10.1021/acs.jcim.9b00911
https://doi.org/10.1021/acs.jcim.9b00911
https://doi.org/10.1021/jp300852d
https://doi.org/10.1021/jp300852d
https://doi.org/10.1021/jp300852d
https://doi.org/10.1021/acs.jctc.6b00399
https://doi.org/10.1021/acs.jctc.6b00399
https://doi.org/10.2174/0929866524666170207153808
https://doi.org/10.2174/0929866524666170207153808
https://doi.org/10.2174/0929866524666170207153808
https://doi.org/10.1016/j.bpj.2017.11.012
https://doi.org/10.1016/j.bpj.2017.11.012
https://doi.org/10.1016/j.bpj.2017.11.012
https://doi.org/10.1063/1.472046
https://doi.org/10.1063/1.472046
https://doi.org/10.1063/1.1842059
https://doi.org/10.1063/1.1842059
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1371/journal.pcbi.1004794
https://doi.org/10.1371/journal.pcbi.1004794
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.448118
https://doi.org/10.1002/prot.22702
https://doi.org/10.1002/prot.22702
https://doi.org/10.1007/978-1-4939-7811-3_5
https://doi.org/10.1007/978-1-4939-7811-3_5
https://doi.org/10.1007/978-1-4939-7811-3_5
https://doi.org/10.1007/978-1-4939-7811-3_5
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/oxfordjournals.molbev.a026334
https://doi.org/10.1093/oxfordjournals.molbev.a026334
https://doi.org/10.1093/bioinformatics/btr088
https://doi.org/10.1093/bioinformatics/btr088
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1093/molbev/msn067
https://doi.org/10.1093/nar/gks498
https://doi.org/10.1093/nar/gks498
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/bioinformatics/btt447
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1093/nar/gks966
https://doi.org/10.1016/j.ijbiomac.2017.01.054
https://doi.org/10.1016/j.ijbiomac.2017.01.054
https://doi.org/10.1016/j.ijbiomac.2017.01.054
https://doi.org/10.1016/j.ijbiomac.2016.03.003
https://doi.org/10.1016/j.ijbiomac.2016.03.003
https://doi.org/10.1016/j.sbi.2017.09.006
https://doi.org/10.1016/j.sbi.2017.09.006
https://doi.org/10.1110/ps.03580104
https://doi.org/10.1110/ps.03580104
https://doi.org/10.1073/pnas.0709922104
https://doi.org/10.1073/pnas.0709922104
https://doi.org/10.1073/pnas.0606506104
https://doi.org/10.1073/pnas.0606506104
https://doi.org/10.1073/pnas.0606506104
https://doi.org/10.1093/protein/7.11.1379
https://doi.org/10.1093/protein/7.11.1379
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01253?rel=cite-as&ref=PDF&jav=VoR

