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Summary: Humankind’s unparalleled access to computing, data, and materials resources has resulted 
in the discovery of new, technology enabling materials. This work is a preview of a recent publication 
wherein predictive and generative machine learning models are applied on the largest polymer 
dataset to correlate chemical structure with glass transition temperature thereby leading to the 
discovery of new high-temperature polymers. 

 

 

In the introduction to Stephen L. Sass’ classic book “The Substance of Civilization” we read that 
“Materials not only affect the destinies of nations but define the periods within which they rise and 
fall. Materials and the story of human civilization are intertwined as the naming of eras after materials 
– the Stone Age, the Bronze Age, the Iron Age – reminds us.” [1] This statement begs the obvious 
question of “What age do we currently live in?” Sass himself argues that we are living in the Silicon 
Age impacted pre-eminently by computer hardware. Others have suggested that we live in the 
Information Age with data itself as the key innovation of the 21st century. The Economist went so far 
as to publish a story entitled “The world’s most valuable resource is no longer oil, but data”. [2] Still 
others contend that we are currently living in the Plastic Age. [3] 

It’s certainly easy to argue for the merits of each of these three possibilities! Transistors are now 
fabricated at the nm length scale enabling radical computer hardware miniaturization. The internet of 
things means that more and more of the devices that we interact with are in a constant state of data 
connectivity and data collection. Meanwhile, synthetic polymers, the youngest of the traditional 
materials categories has burst on the scene in only the last century but has managed to infiltrate every 
aspect of our lives. With their nearly infinite range of structures and compositions, polymers are 
certainly among the most versatile of materials.  

After reading the recent paper by Tao, Chen, and Li entitled “Machine learning discovery of high-
temperature polymers” [4] we are of the opinion that we needn’t choose between silicon, 
information, or polymers when defining our age since the most exciting innovations come at the 
intersection of these three! In the last decade we have seen materials informatics, or the application 
of data science to materials research, grow from relative obscurity to a formidable and well-respected 
technique driving the discovery of new materials. The field has had particular success among metal 
alloy and inorganic compound development. The first 3D printable aluminium alloy and new 
superhard materials are great examples. [5,6] However, machine learning development of new 
polymers has been slower in comparison.  



This is not for lack of utility in discovering new polymers but the lack of data! Polymers having high 
strength to weight ratio – particularly  those that exhibit high-temperature durability, high thermal 
decomposition temperatures or high glass transition temperatures – would have ample applications 
in industry. The development of such polymers began in the late 1950s primarily to satisfy the needs 
of aerospace and electronics industry. The following decades have witnessed the discovery and 
commercialization these polymers due to their low cost, excellent processability and moderate 
mechanical properties. Polymers like polytetrafluoroethylene (PTFE), perfluoro alkoxy alkanes (PFA), 
polyether ether ketone (PEEK) and fluorinated ethylene propylene (FEP) fall under the aforesaid 
category and find a wide range of applications due to their low density and high specific strength. 
However, the exploration of the molecular engineering of such polymers were limited to experimental 
trial and error strategies and in some cases, such as in the unintentional discovery of PTFE, serendipity! 
These Edisonian approaches are time and cost consuming, biased towards known chemical groups, 
and all too often fail to result in promising new materials. The time is right for a data-driven revolution 
in high-temperature polymer discovery.  

The glass transition temperature, 𝑇𝑇𝑔𝑔 is defined as the range of temperatures over which an amorphous 
material exhibits a gradual and reversible transformation from a hard and brittle (glassy) state to a 
rubbery (viscous) state. To develop robust and high-throughput screening methods for designing high-
temperature polymers, researchers have established empirical relations where 𝑇𝑇𝑔𝑔 is be expressed as 
functions of relative rigidities of chain backbone and side groups, repeating units of polymers chains, 
atomic mobilities etc. But most of these relations are applicable primarily to previously investigated 
polymer structures and tend to fail when extrapolated into new materials. To date there is not yet a 
universal model that can connect a polymer’s 𝑇𝑇𝑔𝑔 with its repeating units and molecular structure. This 
has led to the development of molecular dynamics (MD), i.e., molecular simulation and high-
performance computing to simulate this important property. However, this too has limitations due to 
the high computational cost involved. 

On the other hand, the barriers for data-driven techniques are being lowered continually with the 
growth of polymer databases. Indeed, data-driven approaches like quantitative structure property 
relationship (QSPR) and machine learning (ML) have emerged as effective methods in correlating 
molecular structure with a polymer’s 𝑇𝑇𝑔𝑔.  In these approaches a large array of molecular descriptors 
is extracted from the polymer’s repeating unit. These are then trained using multi-step linear 
regression, neural networks, support vector regression (SVR) etc. resulting in a good match between 
predicted and experimental values of 𝑇𝑇𝑔𝑔. QSPR however, becomes time consuming where density 
functional theory (DFT) calculations are involved and it is difficult to give physical interpretation to the 
parameters generated through this process. While ML recent models have shown promise, they have 
also been very limited in their generalizability due to small and relatively confined ranges in chemistry 
in the training data sets.  Furthermore, it’s not clear which of the many descriptor tools should be 
implemented to be represent the structure for the models.  

The new editorial by Tao et al. focuses in overcoming the above challenges. The largest polymer 
dataset, PoLyInfo, has been considered in this work which comprises about 13,000 homopolymers. 
This dataset is divided into two parts, dataset-1 and dataset-2. Dataset-1 consists of labelled data 
(6923 polymers with their experimentally measured 𝑇𝑇𝑔𝑔 values). The authors compare three types of 
feature representations that have been considered based on the SMILES notation of each polymer: 
molecular descriptors, Morgan fingerprints and images. The authors then use these representations 
to construct four different machine learning models: least absolute shrinkage and selection operator 
(Lasso), deep neural networks (DNN) and convolutional neural networks (CNN). In addition to 
discussing the advantages and disadvantages of these models and descriptors on the labelled dataset, 



they then carry out an important analysis of these models on unlabelled data to probe generalizability 
to new data outside of the training data. This is done not only on 5690 real polymers (dataset-2) from 
the PoLyInfo database, but also on an additional 1 million hypothetical polymers generated by a 
generative machine learning model.   

A particularly captivating result from this paper is that the authors use their machine models to predict 
new high-temperature polymers. Across the various datasets, the authors demonstrate an ability to 
discover thousands of new candidate materials for future evaluation. This approach shows promise 
for identifying polymers with 𝑇𝑇𝑔𝑔 ≥ 400 ℃ particularly since subsequent MD simulations showed a 
good agreement with the 𝑇𝑇𝑔𝑔 values predicted by the ML models. 

It’s noteworthy to point out that the authors did not simply build a black-box tool for recommending 
new polymer chemistries. Instead, they also focused on interpretability by analysing feature weighting 
and posterior analysis of chemical descriptors. Their findings reinforce and supplement existing 
models to offer a better understanding of chemical insight related to glass transition temperature.  

This paper demonstrates the ability for machine learning models to generate new compounds and 
new understanding in the traditionally challenging field of high-temperature polymers by leveraging 
growing databases of experimental and computational data alongside predictive and generative 
machine learning models.  This latest example of materials informatics portends a bright future for 
humankind as we leverage silicon, information, and polymers to address the technological challenges 
of the 21st century. 
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