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Abstract—Disparate treatment occurs when a machine learn-
ing model produces different decisions for individuals based
on a legally protected or sensitive attribute (e.g., age, sex).
In domains where prediction accuracy is paramount, it could
potentially be acceptable to fit a model which exhibits disparate
treatment. To evaluate the effect of disparate treatment, we
compare the performance of split classifiers (i.e., classifiers
trained and deployed separately on each group) with group-
blind classifiers (i.e., classifiers which do not use a sensitive
attribute). In the information-theoretic regime, we introduce the
benefit-of-splitting for quantifying the performance improvement
by splitting classifiers. Computing the benefit-of-splitting directly
from its definition could be intractable since it involves solving
optimization problems over an infinite-dimensional functional
space. Under different performance measures, we (i) prove an
equivalent expression for the benefit-of-splitting which can be
efficiently computed by solving small-scale convex programs; (ii)
provide sharp upper and lower bounds for the benefit-of-splitting
which reveal precise conditions where a group-blind classifier will
always suffer from a non-trivial performance gap from the split
classifiers. In the finite sample regime, splitting is not necessarily
beneficial and we provide data-dependent bounds to understand
this effect. Finally, we validate our theoretical results through
numerical experiments on both synthetic and real-world datasets.

Index Terms—Trustworthy machine learning, fairness, domain
adaptation, f-divergence, converse bounds.

I. INTRODUCTION

machine learning (ML) model exhibits disparate treat-

ment [1] if it treats similar data points from distinct
individuals differently based on a sensitive attribute (e.g., age,
sex). In applications such as hiring, the existence of disparate
treatment can be illegal [2]. However, in settings such as
healthcare, it can be legal and ethical to fit a model which
presents disparate treatment in order to improve prediction
accuracy [3]-[5]. For example, the Equal Credit Opportunity
Act (ECOA) permits a creditor to use an applicant’s age and
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income for analyzing credit, as long as such information is
used in a fair manner (see 12 CFR §1002.6(b)(2) in [6]).

The role of a sensitive attribute in fair classification can
be understood through several metrics and principles. When a
ML model is deployed in practice, fairness can be quantified in
terms of the performance disparity conditioned on a sensitive
attribute, such as statistical parity [7] and equalized odds
[8]. In domains where the goal is to predict accurately (e.g.,
medical diagnostics), non-maleficence (i.e., “do no harm”) and
beneficence (i.e., “do good”) [9] become more appropriate
moral principles for fairness [10]-[12]. Accordingly, a ML
model should avoid the causation of harm and be as accurate
as possible on each protected group.

The relationship between achieving the above-mentioned
principles and allowing a classifier to exhibit disparate treat-
ment is complex. On the one hand, using a group-blind
classifier (i.e., a classifier that does not use the sensitive
attribute as an input feature) may cause harm unintentionally
since model performance relies on the distribution of the input
data [10], [13]-[15]. This probability distribution can vary
significantly conditioned on a sensitive attribute due to, for
example, inherent differences between groups [13], differences
in labeling [16], and differences in sampling [17]. On the
other hand, training a separate classifier for each protected
group—a setting we refer to as splitting classifiers—does not
necessarily guarantee non-maleficence when sample size is
limited [18]: groups with insufficient samples may incur a high
generalization error and suffer from overfitting.

We consider two questions that are central to understanding
non-maleficence and beneficence through the use of a sensitive
attribute by a ML model:

(1) When is it beneficial to split classifiers in terms of model
performance?

(i1)) When splitting is beneficial, how much do the split
classifiers outperform a group-blind classifier?

First, we show that in the information-theoretic regime where
the underlying distribution is known—or, equivalently, an
arbitrarily large number of samples are available—splitting
never harms any group in terms of average performance met-
rics. Thus, splitting will naturally follow the non-maleficence
principle in the large-sample regime. Second, we introduce
a notion called the benefit-of-splitting which measures the
performance improvement by splitting classifiers compared to
using a group-blind classifier across all groups. The benefit-
of-splitting is also an information-theoretic quantity as it only
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or altering the hypothesis class.
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In Section IV, we consider false error rate as a performance
measure since in applications such as medical diagnostics, high
false error rate could result in unintentional harm [21]. Under
this metric, computing the benefit-of-splitting directly from
its definition may at first seem intractable since it involves
an optimization over an infinite-dimensional functional space.
Nonetheless, we prove that the benefit-of-splitting under false

Similar
labeling
functions
(yo = y1)

error rate has an equivalent, dual expression (Theorem 2)
which only requires solving two small-scale convex programs.
Furthermore, the objective functions of these convex programs
have closed-form supergradients (Proposition 2). Combining
these two results leads to an efficient procedure (Algorithm 1)
for computing the benefit-of-splitting. We validate our pro-
cedure through numerical experiments on synthetic datasets
in Section VI-A. When the underlying data distribution is

Fig. 1: The taxonomy of splitting based on two different factors.
Samples from two groups are depicted in red and blue, respectively,
and their labels are represented by +, —. Each group’s labeling
function is shown with the corresponding color and the arrows
indicate the regions where the points are labeled as 4. Information-
theoretically, splitting classifiers benefits model performance the most
if the labeling functions are different and the unlabeled distributions
are similar (yellow region).

relies on the underlying data distribution rather than number
of samples or hypothesis class.

The definition of the benefit-of-splitting involves a model
performance measure and, hence, we divide our analyses into
two parts based on different choices of this measure. In Sec-
tion III, we quantify model performance in terms of standard
loss functions (e.g., 1 and cross entropy loss). For the benefit-
of-splitting under these loss functions, we provide sharp upper
and lower bounds (Theorem 1) that capture when splitting
classifiers benefits model performance the most. These bounds
indicate two factors (see Figure 1 for an illustration) which
are central to the benefit-of-splitting: (i) disagreement be-
tween labeling functions', (i) similarity between unlabeled
distributions'. Based on these two factors, our upper bounds
in Theorem 1 indicate that splitting does not produce much
benefit if the labeling functions are similar or the unlabeled
distributions are different; our lower bounds in Theorem 1
indicate that splitting benefits the most if two groups’ labeling
functions are different and unlabeled distributions are similar.
Furthermore, our lower bounds in Theorem 1 lead to an
impossibility (i.e., converse) result for group-blind classifiers:
under certain precise conditions, using a group-blind classifier
will always suffer from an inherent accuracy trade-off between
different groups and splitting classifiers can reconcile this
issue. This converse result is information-theoretic: a data

! We borrow the terms “labeling function” and “unlabeled distribution”
from the domain adaptation literature [19], [20]. The labeling function takes
a data point as an input and produces a probability of its binary label being
1 and the unlabeled distribution is a (marginal) probability distribution of
the unlabeled data. Furthermore, the labeling function can be viewed as a
“channel” (i.e., conditional distribution) in the information theory parlance.
The formal definitions are given in Section I-B.

known—our-procedure has a provable convergence guarantee
and returns the precise values of the benefit-of-splitting. When
the underlying data distribution is unknown, our procedure
may suffer from approximation errors but still outperforms
more naive empirical approaches.

The aforementioned results capture the benefit-of-splitting
from an information-theoretic perspective where the under-
lying data distributions are assumed to be known and the
space of potential classifiers is unrestricted. In Section V, we
consider the effect of splitting classifiers in a more practical
setting where group-blind and split classifiers are restricted
over the same hypothesis class (e.g., logistic regressions) and
the underlying distribution is accessed only through finitely
many i.i.d. samples. In this case, splitting classifiers is not
necessarily beneficial since the group with less samples may
suffer from overfitting. To quantify the effect of splitting
classifiers, we analyze the sample-limited benefit-of-splitting.
We derive upper and lower bounds for the benefit-of-splitting
in this regime in Theorem 4. These bounds disentangle three
factors which determine the effect of splitting classifiers in
practice: (i) disagreement between optimal (split) classifiers
and training error associated with these optimal classifiers;
(i1) similarity between (empirical) unlabeled distributions; and
(iii) model complexity and number of samples. The first two
factors are analogous to the ones that affect the benefit-of-
splitting in the information-theoretic regime: when the hy-
pothesis class is complex enough and the sample size tends
to infinity, the optimal classifiers approximate the labeling
functions and the empirical unlabeled distributions converge
to the true unlabeled distributions. Finally, we illustrate how
these factors determine the performance impact of splitting
classifiers through experiments on 40 datasets downloaded
from OpenML [22].

The proof techniques of this paper are based on fundamental
tools found in statistics, such as Brown-Low’s two-points
lower bound [23], and methods in convex analysis, such as
Ky Fan’s min-max theorem [24]. These tools are widely
used in applications such as non-parametric estimation [25],
and are useful for analyzing the min-max risk in statistical
settings [26]—[30]. Furthermore, the factors that we provide for
understanding the effect of splitting classifiers are inspired by
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the necessary and sufficient conditions of domain adaptation
learnability in Ben-David e al. [31].

The rest of this paper is organized as follows. In the
remainder of this section, we review related works and present
notation adopted in this paper. In Section II, we introduce the
main object of interest: the benefit-of-splitting. Under different
performance measures, we provide upper and lower bounds for
the benefit-of-splitting in Section III and present an efficient
procedure for computing the benefit-of-splitting in Section I'V.
The effect of splitting classifiers in the finite sample regime is
studied in Section V. Finally, we illustrate our results through
numerical experiments in Section VI and provide conclusion
remarks and future works in Section VIIL.

A. Related Work

a) Privacy: Fairness and privacy are closely connected
and central to trustworthy machine learning. In this paper, we
study the impact of disparate treatment from an information-
theoretic perspective: we assume the underlying data distri-
bution is known and analyze how the different distributions
between groups affect the performance improvement by split-
ting classifiers. In this regard, our present work relates with
studies on information-theoretic privacy, see e.g., [32]-[38].
These efforts explore the fundamental limits of privacy-utility
trade-offs by also assuming the underlying data distribution
is known. For example, Makhdoumi et al. [39] introduce
privacy funnel method for solving the privacy-utility trade-offs
and connect it with the information bottleneck [40], and this
connection is further studied in [41]. Kairouz et al. [42] study
the trade-offs between local differential privacy [30], [43], [44]
and utility functions measured by f-divergence [45]. Besides
analyzing the fundamental limits, there are works [46]—[49] on
designing privacy mechanisms which enable a certain level
of utility to be obtained from the disclosed datasets while
controlling private information leakage. The robustness of the
privacy mechanisms is analyzed in [50], [51] when these
privacy mechanisms are constructed by using finitely many
samples. We follow a similar line of analysis in order to
understand the effect of splitting classifiers in the finite sample
regime and complement our bounds for the benefit-of-splitting
by incorporating additional factors such as sample size and
model complexity.

b) Domain adaptation: A standard assumption in ML is
that the training and testing data are drawn from the same
underlying probability distribution. Domain adaptation [19],
[20], [52] and transfer learning [53], [54] consider a more
general setting where models are trained on a source domain
and deployed on a (different) target domain. A common
assumption therein is known as covariate shift, which requires
the source and target domain share the same labeling function.
In this paper, we prove (see Theorem 1) that if the covari-
ate shift assumption is violated and two groups’ unlabeled
distributions are similar, then no classifier can perform well
on both groups. In this regard, our work is connected to
Ben-David et al. [31] which present impossibility results on
domain adaptation learnability. Compared to [31], Theorem 1
characterizes an information-theoretic fundamental limit which

cannot be circumvented by using a large number of samples or
a carefully designed hypothesis class. Furthermore, the lower
bound in Theorem 1 serves as a complementary statement
to the upper bounds in domain adaptation [19], [20]. These
bounds jointly describe the range of the loss a data scientist
may incur by training a model on the source domain and
deploying on the target domain.

c) Fair ML: ML models have been increasingly used
in applications of individual-level consequences, ranging from
recidivism prediction [55] and lending [56] to healthcare [57].
A number of works in fair ML aim at understanding why
discrimination happens [58]-[66]; how it can be quantified
[67]-[69]; and how it can be reduced [70]-[79]. There are
also an increasing number of studies that take causality into
account for understanding and mitigating discrimination [80]-
[84]. We build on a line of recent results on decoupling
predictive models for improving accuracy-fairness trade-offs
see e.g., [10], [12], [13], [85], [86]. For example, Ustun et
al. [10] introduce a tree structure to recursively choose
sensitive attributes for decoupling. Lipton et al. [85] show
that using group-blind classifiers could be suboptimal in terms
of trading off accuracy and fairness. The work closest to ours
is Dwork et al. [13] which present a decoupling technique
to learn separate models for different groups. A detailed
comparison with [13] is given in Section V-B.

B. Notation and Definitions

Consider a binary classification task (e.g., detecting pneu-
monia from X-rays) where the goal is to learn a probabilistic
classifier h : X — [0, 1] that predicts a label (e.g., presence
of pneumonia) Y € {0,1} using input features (e.g., chest
X-rays) X € X. We assume there is an additional binary?
sensitive attribute (e.g., sex) S € {0,1} that does not belong
to the input features X. We denote the unlabeled probability
distributions of input features conditioned on the sensitive
attribute by

Py £ Px|s—0, P1 = Px|s_1.

The labeling functions of the two groups are denoted by

Yo(z) £ Py|x,s(1]z,0), wyi(z) = Pyix,s(1]z,1).

In order to measure the difference between two unla-
beled distributions (i.e., Py and P;), we recall Csiszar’s f-
divergence [45]. Let f : (0,00) — R be a convex function
with f(1) =0 and P, @ be two probability distributions over
X. The f-divergence between P and () is defined by

. P
D (P||Q) £ /X f<dQ> ao. M

Some examples of f-divergence are included in Appendix A.
The proofs of some of our main results (Lemma 2 and
Theorem 2) rely on Ky Fan’s min-max theorem [24]. As a

2For the sake of illustration, we assume that the sensitive attribute S
is binary but our results can be extended to a setting of multi-groups.
Furthermore, split classifiers can be applied to a scenario where multiple
subgroups overlap [74], [87] since individuals belonging to both groups can
opt for either one of the split classifiers.
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reminder, a function f : X x )J) — R is said to be concave-
like on X if, for any two elements z1,z5 € X and A € [0,1],
there exists an element zo € X such that for all y € Y

f(xo,y) > Af(z1,y) + (1= N) f(z2,y).

Similarly, f is said to be convex-like on ), if for any two
elements y1,y2 € Y and X € [0, 1], there exists an element
yo € Y such that for all z € X

f(xvyO) < /\f(m>y1) + (1 - )‘)f(x?yQ)

A function g : X — R is called upper semicontinuous on a
metric space A’ if for every point 7o € X, limsup,_,, g(z) <
g(z0). Next, we recall® Ky Fan’s min-max theorem [24].

Lemma 1 ([24, Theorem 2]). Let X be a compact Hausdorff
space and ) an arbitrary set (not topologized). Let f be a
real-valued function on X x Y such that, for every y € ),
f(,y) is upper semicontinuous on X. If f is concave-like on
X and convex-like on ), then

inf max f(z,y) = max ingj f(z,y). )

yeY zeX TEX y€E

II. THE BENEFIT-OF-SPLITTING

We study the impact of disparate treatment by comparing
the performance between optimal group-blind and split clas-
sifiers. Recall that a ML model exhibits disparate treatment if
it explicitly uses a sensitive attribute to produce an output.
We illustrate the difference between group-blind and split
classifiers through the example of logistic regressions:

« a group-blind classifier does not use a sensitive attribute
as an input: h(z) = logistic(w”x) where logistic(t) =
1/(1 + exp(—t)) for t € R;

« split classifiers are a set of classifiers trained and deployed
separately on each group: hs(z) = logistic(w!'z) for s €
{0,1}.

We measure the performance of both group-blind and split
classifiers in terms of the disadvantaged group (i.e., the group
with worst performance). For a given performance measure
L (+) (higher values indicate a worse performance), the perfor-
mance of a group-blind classifier i and a set of split classifiers
{hs}seqo,1}» respectively, is measured by
max_ Lg(h) max Lg(hs).

se{0,1} se{0,1}
Consequently, the optimal group-blind and split classifiers
(across all measurable functions from X’ to [0, 1]) achieve the
performance

and

inf  max Lg(h)
h:X—[0,1] s€{0,1}

max inf
s€{0,1} h:X—[0,1]

and Ly(h).
Next, we introduce the benefit-of-splitting to quantify the
effect of splitting classifiers compared to using a group-blind
classifier.

Definition 1. For each s € {0,1}, let Px y|g—, be a fixed
probability distribution and Lg(-) be a performance measure,
we define the benefit-of-splitting as

Ls(h), (3)

inf  max Lg(h)— max  inf

A
Esplit =
P i S[0,1] se{0.1} $€{0,1} h:X—[0,1]

3We apply Ky Fan’s min-max theorem to the function — f instead of f.

4

where the infimum is taken over all (measurable) functions.

The benefit-of-splitting is the difference between the per-
formance of the optimal group-blind and split classifiers. In
other words, if h* and {h}}scf0,1; are optimal group-blind
and split classifiers respectively, i.e.,

h* € argmin max Ls(h),
h:x—[0,1] s€{0,1}

h% € argmin Ls(h) s € {0,1},
h:X—[0,1]
the benefit-of-splitting can be equivalently expressed as

Esplit — Sg%ﬁ} Ls(h*) - Sg%ﬁ} Ls(h:) 4)
In practice, a data scientist may restrict the type of classifiers
by fixing a hypothesis class (e.g., logistic regressions). The
benefit-of-splitting can be adapted for capturing the effect of
splitting classifiers in this case (see Definition 5).

By the optimality of h} and the max-min inequality, we have
Ls(h*) > Ls(h%) for s € {0,1} and egie > 0 which implies
that, information-theoretically, using a separate classifier on
each group will never diminish model performance com-
pared to using a group-blind classifier. A natural question is:
how much performance improvement does splitting classifiers
bring? Before answering this question, we specify performance
measures of interest and present the benefit-of-splitting under
these performance measures.

A. Loss Reduction by Splitting

The first type of performance measures contains standard
loss functions which have been widely used in fair ML see e.g.,
[13] and domain adaptation see e.g., [19]. These loss functions
quantify the disagreement between the labeling function y, and
the probabilistic classifier h. We recast the benefit-of-splitting
under these loss functions below.

Definition 2. The ¢;-benefit-of-splitting €1 is the benefit-
of-splitting in Definition 1 with the performance measure:

) —ys(X)[| S =]

The {>-benefit-of-splitting €pit,2 is the benefit-of-splitting in
Definition 1 with the performance measure:

Ls(h) = E[|M(X

La(h) = E [(A(X) — g (X))2 | S = 5] .

The KL-benefit-of-splitting €1, kL s the benefit-of-splitting
in Definition 1 with the performance measure:

Ls(h) = E D (ys(X)[|(X)) | S = s],
(1—p)log((1 —p)/(1 —q))

where Dk (p||q) £ plog(p/q) +
for p,q € [0,1].

Remark 1. Another widely used loss function is cross entropy
Ls(h) = E[H(ys(X),h(X)) | S = s] where for p,q € [0,1],
H(p,q) & —plogq — (1 — p)log(l — q). Since H(p,q) =
Dk (p|lq) +H(p), the analysis of the benefit-of-splitting under
cross entropy is essentially the same as the analysis of egyi, kL
(see Appendix B-C).
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B. False Error Rate Reduction by Splitting

Now we use the false error rate (FER) as a performance
measure. The false error rate of a classifier is the maximum®
between (generalized) false positive rate and (generalized)
false negative rate [67]. In healthcare, assuring low false
error rate is as important as guaranteeing high accuracy since
patients could suffer from harm due to a classifier’s false error
rate [21]. For example, the false negative diagnosis may delay
treatment in patients who are critically ill; the false positive
diagnosis could lead to an unnecessary treatment. Furthermore,
a classifier with high accuracy does not necessarily mean it has
low false error rate. Hence, we consider how split classifiers
reduce the false error rate by recasting the benefit-of-splitting
under this performance measure.

Definition 3. The FER-benefit-of-splitting egpiir,Fer is the
benefit-of-splitting in Definition 1 with the performance mea-
sure L¢(h) being equal to

max {E[h(X)|]Y = 0,8 = s],E[1 — h(X)[Y = 1,5 = s]}.

a) Connection with equalized odds: Equalized odds, dis-
cussed by Hardt ef al. [8], is a commonly used group fairness
measure that requires different groups to have (approximately)
the same false positive and false negative rates. Specifically, a
probabilistic classifier h : X — [0, 1] satisfies equalized odds
[8], [67] if

E[h(X)]Y =0,S = 0] = E[h(X)]Y =0,8 = 1],
E[l-h(X)[Y =1,S=0]=E[l - A(X)|Y = 1,8 =1].

Under this definition, classifiers are considered “unfair” if their
false positive rate or false negative rate vary across different
groups. However, imposing equalized odds constraints may
lead to a significant performance reduction in classification
[60], [88]-[90]. In contrast, the benefit-of-splitting definition
studied in this work aims to capture the principles of non-
maleficence and beneficence [9]: classifiers should avoid the
causation of harm and achieve the best performance on each
group. By taking the optimal group-blind classifier as a base-
line approach, this may allow split classifiers to potentially
exhibit performance disparities between groups—as long as
the split classifiers do not perform worse than the baseline
approach and are as accurate as possible.

III. THE TAXONOMY OF SPLITTING

In this section, we analyze the loss reduction by splitting
classifiers compared to using a group-blind classifier. We
achieve this goal by upper and lower bounding the benefit-
of-splitting under different loss functions (see Definition 2).
These bounds reveal factors which could impact the effect of
splitting classifiers and lead to a taxonomy of splitting, i.e., a
characterization of when splitting benefits model performance
the most or splitting does not bring much benefit.

Before stating the main result (i.e., bounds for the benefit-
of-splitting), we prove a lemma first which converts the
definition of the benefit-of-splitting into a single variable

4Our analysis can be extended to any convex combination of false positive
rate and false negative rate.

5

optimization problem. This lemma will be used in the proof
of our lower bounds.

Lemma 2. The benefit-of-splitting under different loss func-
tions in Definition 2 have equivalent expressions

sup (1 - w) /A 1 (2) — yo(2)|dPy ()

Esplit,1 —
w€e(0,1] w
o [ n@) - (@A),
A5
(y1(x) — yo(x))?dPo(x)dPy (x)
spli = 1-—
Cotin2 wilfol?u Wil =w) / wdPy(z) + (1 — w)dP (z)

Egplit, KL = Sl[lp ] JSu(Px yis=ollPx,y|s=1) — JSw(Pol|Pr1),
welo,1

where A, £ {z € X | Zg’gzg > 177“} and IS, (-||-) is the
1T

Jensen-Shannon divergence.

Proof. See Appendix B-A. O

We provide upper and lower bounds for €gyiit,1, €spiit,2, and
€split,KL, respectively, in Theorem 1. These bounds rely on
two main factors: (i) disagreement between different groups’
labeling functions and (ii) similarity between their unlabeled
distributions. In particular, the second factor is captured by a
certain f-divergence [45] (see Appendix A for some examples
of f-divergence).

Now we consider extreme scenarios to verify the sharpness
of the bounds and to understand when splitting classifiers
benefits model performance the most (see Figure 1 for an
illustration).

o Consider the setting where two groups share the same
labeling function (i.e., yo = y1). All the upper and lower
bounds in Theorem 1 for the benefit-of-splitting under
different loss functions become zero and, hence, the bounds
are sharp. This is quite intuitive as one can use the labeling
function yq as a group-blind classifier and it achieves perfect
performance on both groups. Hence, there is no benefit of
splitting classifiers.

o Consider the setting where two groups share the same
unlabeled distribution (i.e., Py = P;). The upper and lower
bounds of €1 are both E [Jy1 (X) — yo(X)|] /2, which is
equal to €gpit,1. The bounds of e 2 become

TE 00 = w0 < eine < 7B [ (X) — 3(X))?].

If, in addition, |yo(x) — y1(x)]| is the same across all z, the
upper and lower bounds become the same and, hence, are
sharp. Finally, the bounds of i, k. become

yo(X)erl(X))]

EsplitkL < max [E {DKL (yq(X)| 5

s€{0,1}
esplit,KL > E [JS(yo (X)[ly1(X))] -

If, in addition, E[Dic (yo(X)ll(yo(X) + 41(X))/2)] =
E Dkv (y1(X)]|(yo(X) +y1(X))/2)], then the upper and
lower bounds are equal. This extreme case indicates that
when different groups have the same unlabeled distribution
(i.e., Py = Py), the benefit-of-splitting is determined by
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Theorem 1. The {1-benefit-of-splitting can be upper and lower bounded

Esplir,1 < Min
P s€{0,1}

min /E[(y1(X) —y0(X))? | S = s] - v/1 = Drv(Ro| Py),

L e E [l (X) — 50| | S—s]},

2 se{0,1}

1
Esplit,1 = 3 gggui}

{El51(X) = 9o(X)] | 8 = 5] = VE[m (X) — yo(X))? [ S = 5] - da(P || P) }

where Dy (P || Py) is the total variation distance and da(Py—s||Ps) is Marton’s divergence. The {s-benefit-of-splitting can be

upper and lower bounded

Esplit,2 < min {SG{O 1}

min /E [(y1(X) —yo(X))* | § = s] - v/1 = Drv(Bo| Py,

1 max E [(y1(X) —yo(X))? | S = 5]}’

4 se{0,1}

€splir,2 = Max (E“%(X) —y(X)[[S= 5]>2 ,

s€{0,1}

VDo (P[P T 141

where D2 (Ps||P1_s) is the chi-square divergence. The KL-benefit-of-splitting can be upper and lower bounded

2

. X))+ (X
esplit,KL S min {2JS(PX7ys_0||PX1y|S_1) — 2JS(P0||P1), gg%g.)i}]E |:DKL (yS(X)|zm()yl(>> | S — 3:| } R

egplit kL > IS(Px y|s=ollPx,y|s=1) — JS(Fol| P1),
where JS(+||) is the Jensen—Shannon divergence.

Proof. See Appendix B-B.

the disagreement between their labeling functions (i.e., large
disagreement leads to high benefit).

o Consider the setting where two groups have unlabeled
distributions lying on disjoint support sets. In this case,
D1v(Py||P1) = 1 and JS(Py||Py) = log 2. Hence, the upper
bounds of €gpyit,1 and egpji,2 become zero. Furthermore,

0 < JS(Px,y|s=ollPx.y|s=1) — JS(Pl[ P1)
= JS(Px,y|s=ollPx,y|s=1) — log2 < 0.

where the last step is because the Jensen—Shannon diver-
gence is always upper bounded by log2. Therefore, the
upper bound of egpi kL is zero as well. In other words,
there is no benefit of splitting classifiers when the unlabeled
distributions are mutually singular. One can interpret this
fact by considering a special group-blind classifier which
mimics the labeling function of each group in the region
where its unlabeled distribution lies. This classifier achieves
perfect performance for each group. Note that such a group-
blind classifier exists since we do not restrict the space of
potential classifiers and, hence, any (measurable) function
could become a classifier.

To summarize, from an information-theoretic perspective,
splitting classifiers benefits the most if two groups have similar
unlabeled distributions and different labeling functions. This
taxonomy of splitting appears for all the commonly used loss
functions (i.e., #1, £, and KL loss).

Recall that the benefit-of-splitting (see Definition 1) mea-
sures the performance improvement by using the optimal
split classifiers compared to deploying the optimal group-
blind classifier across all groups. Here model performance
is quantified in terms of the disadvantaged group (i.e., the
group with the worst performance). We end this section by
considering the Bayes risk as an alternative way of measuring
model performance’. Specifically, the performance of a group-
blind classifier h and a set of split classifiers {hs}sc0,13
respectively, is measured by

> Pr(S=s)-E[Jh(X) - ys(X)|| S =],
s€{0,1}

S Pr(S = ) E[Jhu(X) — 5u(X)] | S = 5].
s€{0,1}

They can be equivalently written as
Ef[n(X) —ys(X)]] and  E[hs(X) —ys(X)]].

The performance difference between the optimal group-blind
and split classifiers leads to the following definition.

Definition 4. We define the population-benefit-of-splitting as

€split,pop £ h:XiEf[‘O 1 E [lh(X) —Ys (X)H
— inf E[|lhg(X)— X)].
poato [[hs(X) — ys(X)]]
for s€{0,1}

SFor the sake of illustration, in what follows we only consider the ¢1 loss.
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The population-benefit-of-splitting is upper bounded by the
benefit-of-splitting (i.€., €plit,pop < €split,1) since the Bayes risk
is upper bounded by the worst-case risk and the split classifiers
{¥s}sego,13 composed by the labeling functions can achieve
zero risk. Hence, the upper bound of €gyi,1 in Theorem 1
naturally translates into an upper bound of eyt pop. Next,
we provide alternative bounds for ey pop Which reveal an
additional factor influencing €glit,pop-

Proposition 1. Assume Pr(S = 0) < 0.5. The population-
benefit-of-splitting can be upper and lower bounded:

Esplipop < Pr(S =0) - E[Jy1(X) — yo(X)[ | § =10],
epipop = Pr(S = 0) (E [l (X) = yo(X)] | § = 0]
- Br=y (R|1P2)).
where Erws—n) (Py||P1) is the E.-divergence with v =
Pr(S = 1)/Pr(S = 0).
Proof. See Appendix B-D. O

Remark 2. The E,-divergence plays an important role in
Bayesian statistical hypothesis testing [91], [92]. Since v —
E,(P||Q) is non-increasing and E:(P||Q) = Dtv(P|Q)
[92], we can further lower bound ey pop by using the total
variation distance

€split,pop > PI‘(S = O)(E Hyl (X) - yO(X)‘ ‘ S = 0}

— Drv (B Fr)).

The E,-divergence relates with the DeGroot statistical infor-
mation [93] through (see Equation (421) in [91])
PE1e(PQ) pe ]
(1-pE= (QIP) pelb).
Hence, we can write our lower bound of €yt pop €quivalently
as

L,(P[Q) = {

Pr(5 =0) - E[ly(X) = yo(X)[ | S = 0] = Zpr(s=0)(Foll ).

As shown in Proposition 1, the population-benefit-of-
splitting is affected not only by the above-mentioned two
factors (i.e., disagreement between labeling functions and
similarity between unlabeled distributions) but also by the
percentage of the minority group over the whole population.
This reveals a caveat of the population-benefit-of-splitting: the
minority group can be underrepresented when one designs a
group-blind classifier by minimizing the loss over the whole
population. In contrast, the benefit-of-splitting (see Defini-
tion 2) does not rely on the probability of the sensitive attribute
and, hence, represents each group equally.

IV. AN EFFICIENT PROCEDURE FOR COMPUTING THE
EFFECT OF SPLITTING

In the last section, we provide upper and lower bounds for
the benefit-of-splitting under different kinds of loss functions.
Here, we consider a different performance measure: false error
rate. It turns out that the benefit-of-splitting under false error
rate, denoted by egpi,FER (See Definition 3), has an equivalent

7

expression which leads to an efficient procedure of computing
€split, FER -

Even with the knowledge of the underlying data distribution,
computing the benefit-of-splitting directly from its definition is
challenging. This is because the space of potential classifiers
is unrestricted (i.e., any measurable function could be used
as group-blind or split classifiers) and solving optimization
problems over this infinite-dimensional functional space could
be intractable. One may attempt to circumvent this issue by
restricting the classifiers over a hypothesis class. However,
this naive approach has two limitations. First, it is unclear
how to choose a hypothesis class in order to compute the
benefit-of-splitting reliably. We will show in Example 1 that
different hypothesis classes could result in completely different
values of the benefit-of-splitting. Second, as evidenced in [94],
training the optimal group-blind or split classifiers may suffer
from a non-convexity issue.

We leverage the special form of the false error rate in
Definition 3 and prove an equivalent expression of €y, FER
below which can be computed by solving two small-scale
convex programs. The objective functions of these convex
programs have closed-form supergradients. Hence, they can
be solved efficiently via standard solvers, such as (stochastic)
mirror descent [95], [96]. When the data distribution is known,
our procedure returns the precise values of e, FER Without
the need of training optimal group-blind and split classifiers.
The equivalent expression of e Fer 1S given in the following
theorem.

Theorem 2. Assume that Pr(Y = i,.S = s) > 0 for any
s,i € {0,1}. The FER-benefit-of-splitting e€girrer can be
equivalently written as

1max > i +E Z fs,ihs,i(X)
s€{0,1} s,4€{0,1} _
—  max Vis) +E Z V,»(S)QSs,i(X)
jor se o) ie{0.1} -

Here Ay = {z € R? | Zle zi = 1, z; > 0}, for any
a €R (a)- £ min{a,0}, p = (10, Ho,1, k1,0, p11,1), V1Y) £
(1/(()3), V{S)), and for s,i € {0,1}
s (1—i—ys(x))Pr(S=s| X =x)
EXS = . . 5
9(®) Pr(Y =4,5 =5s) ©®)

Proof. See Appendix C-A. O

Remark 3. We demonstrate a proof sketch of Theorem 2.
Note €gpiit,Fer is composed by infj,. x 10,1 maxe 0,13 Ls(h)
and max,eqo,1} infp.x0,1] Ls(h). The first term can be
equivalent written as

inf OER(X) Y =0,5 =
h:Xlg[og] ;{%i)i{ Z s, 0 [A(X) | s]
s€{0,1} ©)

+MMEH—MXHY:LS:ﬂ}

The key step in our proof is to swap maximum and infi-
mum in (6) by using Ky Fan’s min-max theorem [24] (see
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Lemma 1). Then for a fixed p, the optimal classifier owns
a closed-form expression. After some algebraic manipula-
tions, (6) becomes the first convex program in the equivalent
expression of egpiFer. In the same vein, the another term
maxge(o,1} infp:x—0,1) Ls(h) becomes the second convex
program.

Next, we show that the objective functions of the convex
programs in Theorem 2 have closed-form supergradients.

Proposition 2. Under the same notations and assumptions in
Theorem 2, the functions g : Ay — R and gs : Ay — R with
s € {0,1} defined as

g(l") 2 Z ps1 + E Z ,Us,id)s,i(X)
s€{0,1} s,1€{0,1} _
gS(V> =+ E Z Vi(bs,i(X)

1€{0,1}

have a closed-form supergradient, respectively:

P+ E | 0i(X) 1] 3 i (X) < 0] |8 = 5

s’ i’
<z~ v

where 1[-] is the indicator function and

S,

s (X) ]I[Z virs.ir(X) < o} S = SD

%

1—1i—ys(x)
Pr(Y =i|S=5s)’

Proof. See Appendix C-B. O

Vsi(w) £ s,i € {0,1}.

When the underlying data distribution is known, one can
compute € FER Dy solving the convex programs in The-
orem 2 via standard tools, such as mirror descent, with
convergence guarantees [96]. This is non-trivial because, as
stated before, computing egiir,Fer directly from its definition
could be intractable.

In practice, when the underlying data distribution is un-
known, one can first approximate the conditional distribution
Pr(S = 1|X = z) and the labeling functions yo(z), y1(z)
by training three well-calibrated binary classifiers. These clas-
sifiers will be called when computing the supergradient of
the objective functions (see Proposition 2). We summarize
our procedure of computing e, Fer in Algorithm 1 where
stochastic mirror descent is used for solving the convex
programs in Theorem 2. The numerical results are deferred
to Section VI-A.

Our procedure can be understood through the following two
steps:

« training a classifier to identify the sensitive attribute using
input features and a classifier for each group to predict
label using input features;

« solving (convex) programs with these classifiers in hand.

We remark that this two-step approach has also appeared in
e.g., [14], [72] for designing “fair” classifiers.

Algorithm 1 Compute €5, FEr Via stochastic mirror descent.

Input:

dataset: D = {(=, Y, 8i) }i=1, max number of iterations: T,
step size: {n: }i—1

Initialize

Zo+{i=1,---,n|s; =0} > indices of points with s; = 0

Do (:Ei,yi) for i € Ty
Dy < (zi,y;) for i € I
approximate Pr(S =1| X = z)
approximate yo(z) and yi1(x)
p <+ (0.25,0.25,0.25,0.25) and v**) < (0.5,0.5)
fort=12,---T do
draw unlabeled sample zq ¢, 1, from Do, D;
pick w € dg(u) and w'® € dg, ()
fg <= g exp(mw;)/ 30 e exp(mw;)

o et explnn )47 explmn?)

end for
return: g(p) — maxXseo,1} s (u<5>)

> points with s; =0
> points with s; =1

V. SPLITTING IN PRACTICE

So far we have studied the benefit-of-splitting from an
information-theoretic view as we assume the underlying data
distribution is known and do not restrict the space of potential
classifiers. In this section, we study the effect of splitting clas-
sifiers from a more practical perspective. First, we restrict the
classifiers over a hypothesis class (e.g., logistic regressions)
and analyze the hypothesis class dependent splitting. Second,
we consider splitting classifiers in a finite sample regime and
study the sample limited splitting.

A. Hypothesis Class Dependent Splitting

We restrict both group-blind and split classifiers over the
same hypothesis class and introduce a hypothesis class depen-
dent benefit-of-splitting for quantifying the loss reduction by
splitting classifiers.

Definition 5. For a fixed probability distribution Px y|s—s
with s € {0, 1} and a given hypothesis class H, the H{-benefit-
of-splitting is defined as
Mo = inf E[[h(X) — ys(X =
Coin = fof max E[A(X) =y, (X)[] 5 =]

— inf E[|A(X) — ys(X = s/
jmax inf E{[[A(X) —ys(X)[ | § = 5]

)

Clearly, the %H-benefit-of-splitting maintains the non-
maleficence principle GZ;m > 0, i.e., given sufficient sam-
ples, splitting classifiers will never diminish model accuracy
compared to using a group-blind classifier. Next, we provide
upper and lower bounds for e;”pfm in order to understand when
splitting classifiers brings the most benefit. As before, these
bounds rely on three major factors: (i) disagreement between
optimal (split) classifiers; (ii) similarity between unlabeled
distributions; and (iii) approximation error defined as the
smallest loss achieved by split classifiers. In particular, we
assume that the last factor is small. This is a common
assumption in, e.g., the domain adaptation literature [19] since
when the hypothesis class is complex enough, this term will
be negligible. Furthermore, one central notion of fairness we

follow is non-maleficence (i.e., classifiers should avoid the
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causation of harm on any group). When the approximation
error is large, neither group-blind classifiers nor splitting
classifiers are accurate and “harm” is inevitable. Hence, one
should change the hypothesis class first instead of splitting.

Theorem 3. Let hY be an optimal classifier for group s €
{0,1}:

h; € argminE [|h(X) — ys(X)| | S = s].
heH

Then we have the following upper and lower bounds for the
‘H-benefit-of-splitting

o < _min E[A{(X) = hj(X)] | =
1 * *
> 5 max E(X) = h(X)|| S = 5] = Dru(Ril1P)
32 seroy BIAS(X) —ys (X[ 5 = ¢
5 .
Proof. See Appendix D-A. O

Analogous to our discussions in Section III, the bounds
in Theorem 3 delineate a taxonomy of splitting when both
group-blind and split classifiers are restricted over the same
hypothesis class: splitting classifiers does not bring much
benefit when two groups have similar optimal classifiers;
splitting classifiers benefits the most when two groups have
similar unlabeled distributions and different optimal classifiers.
We further demonstrate this taxonomy of splitting and show
how these factors influence the effect of splitting through
numerical experiments in Section VI-B.

In contrast to the upper bound for g (see Theorem 1), the
upper bound for ezgm does not involve the similarity between
the unlabeled distributions. Consequently, when the optimal
classifiers are different and the unlabeled distributions are
different as well, it is unclear how much benefit splitting
classifiers brings. We provide the following example which
shows that different hypothesis classes may result in largely
different values of the H-benefit-of-splitting. Hence, one must
study the effect of splitting on a case-by-case basis for different
hypothesis classes.

Example 1. Let two groups’ unlabeled distributions and
labeling functions be Py ~ N(—pu, 1), yo(z) = Iz > —py]
and P ~ N(u,1), y1(z) = I[z < p], respectively. As pu
grows larger, the distance between the unlabeled distributions
Py and P; increases (i.e., Drv(Py||P1) — 1 as p — 00). Now
we consider the following two hypothesis classes:

o Hinreshold 1S the class of threshold functions over R:

I[z > a] or [[z < b].

o Hinervar 18 the class of intervals over R: I[z € (a, b)].
Here, a, b are allowed to be —oc and 00, respectively. In both
cases, the labeling functions are included in the hypothesis
classes and, hence, are optimal classifiers. The disagreement
between these optimal classifiers is at least 1/2:

Eflyi(X) —go(X)[ | S =s] = 1/2, s€{0,1}.

The benefit-of-splitting under Hreshold i 1/2 as any group-
blind classifier incurs at least 1/2 loss on the disadvantaged

9

group. On the other hand, as © becomes larger, the benefit-of-
splitting under Hineervar 1S nearly O since a group-blind classifier
with the form h*(z) = Iz € (—u, )] can achieve almost
perfect accuracy.

The previous example shows that using a threshold function
as a group-blind classifier will always incur an inevitable
accuracy trade-off between two groups. On the other hand,
if we enrich the hypothesis class to include interval functions,
this trade-off can be reconciled. Motivated by this observation,
when two groups have different unlabeled distributions and
different labeling functions, we conjecture that the #-benefit-
of-splitting is determined by the “richness” of the hypothesis
class: a more complex hypothesis class can produce a group-
blind classifier which mimics the labeling function of each
group in the region they lie in, and, hence, this classifier
guarantees high accuracy for both groups. We formalize this
intuition through the example of feedforward neural networks.
Recall that a sigmoidal function [97] (e.g., logistic function)
S : R — R is a bounded measurable function which satisfies
S(z) - 1 as z = +oo and S(z) — 0 as z — —oo. The
hypothesis class associated to feedforward neural networks
with one layer of sigmoidal functions has the form

k
H = {ZCiS(CLi .%‘—l—bz) + co ‘ a; € Rd,bi,ci GR}. ()
=1

In this case, Barron’s approximation bounds [97] guarantee
that these neural networks can approximate a large class of
functions reliably.

Proposition 3. Consider the hypothesis class H in (8). If X C
RY is compact, we have

e < SS{%%}VE [(y1(X) —yo(X))? | S = 5]

2di X)C
% VT—Dr(BlIP) + ”;%)

2,

2 Yo(@)dPo(x) + y1 (z)d P (x)

where diam(X) = sup, ,/c x|z — 2’

h*
(z) dPy(x) + dP, () o)
:/ exp(iwx);z\;(w)dw
]Rd
for some_ complex-valued function ;Lv* and C &
Jpallwll2|h* (w)]|dw.
Proof. See Appendix D-B. O

Remark 4. The condition in (9) goes back to the seminal
work of Barron [97]. By the Fourier inversion theorem, if both
h* and its Fourier transform are integrable, this condition is
satisfied. Further situations where (9) holds are discussed in
[97, Section IX].

In contrast to Theorem 3, the upper bound for the H-
benefit-of-splitting above involves the similarity between the
unlabeled distributions (i.e., D1y (Py|| P1)) at the cost of having
an additional term which is inversely proportional to the
hypothesis class complexity. The intuition behind our proof
is that if a data scientist is able to train a neural network
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with enough neurons, a group-blind classifier is capable of
guaranteeing high accuracy for both groups when their un-
labeled distributions are different. Consequently, there is no
much room for accuracy improvement by splitting classifiers.

B. Comparison with the Cost-of-Coupling

We compare our notion of the H-benefit-of-splitting with
the cost-of-coupling introduced by Dwork et al. [13]. We first
illustrate the difference between group blind, coupled, split
classifiers through the example of logistic regressions:

« a group blind classifier never uses a sensitive attribute as
an input: h(z) = logistic(w’ z);
« acoupled classifier uses a sensitive attribute while sharing
other parameters: h(s,z) = logistic(w?z + wgs);
« split classifiers are a set of classifiers applied to each
separate group: h,(x) = logistic(w?! z).
Now we recast the definition of the cost-of-coupling [13] using
our notation.

Definition 6 ([13]). Let ¢ be a hypothesis class which
contains coupled classifiers from a finite set S x X" to [0, 1].
For a given loss function £(-, -), the cost-of-coupling is defined
as

in L(h) = min L({hs}es)}.
gnax { min L(h) — min L({h:}ses)
for s€S

where the maximum is
X x {0,1} and L(h) £
E[((Y, hs(S, X))].

over all distributions on S X
E[0(Y, (S, X))], L({hs}ses) =

There are two important differences between the H-benefit-
of-splitting (see Definition 5) and the cost-of-coupling [13].
First, our notion quantifies the gain in accuracy by using
split classifiers rather than a group-blind classifier. In contrast,
the cost-of-coupling compares coupled classifiers with split
classifiers which both take a sensitive attribute as an input.
Second, the cost-of-coupling is a worst-case quantity as it max-
imizes over all distributions. By allowing our notion to rely
on the data distribution, Definition 5 captures more intricate
scenarios for characterizing the benefit of splitting classifiers.
Furthermore, by taking the maximum over all distributions,
we recover an analogous result of Theorem 2 in [13].

Corollary 1. There exists a probability distribution Qs x y
whose H-benefit-of-splitting is at least 1/2 under

1) Linear predictors: H = {I[wTx > 0] | w € R4};
2) Decision trees: H is the set of binary decision trees.

Furthermore, under this hypothetical probability distribution
Qs,x,y, no matter which group-blind classifier h € H
is used, there is always a group s € {0,1} such that
EJh(X) —ys(X)[ | §=s] =2 1/2.

The proof technique used for this corollary can be extended
to many other models (e.g., kernel methods or neural net-
works) and we defer its proof to Appendix D-C.
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C. Sample Limited Splitting

Consider the following scenario. A data scientist has access
to finitely many samples and she/he solves an empirical
risk optimization in order to obtain an optimal group-blind
classifier or a set of optimal split classifiers. When these
classifiers are deployed on new fresh samples, a natural
question is whether the optimal split classifiers still outperform
the group-blind classifier. We introduce the sample-limited-
splitting which quantifies the effect of splitting classifiers
within this finite sample regime.

Definition 7. For a given hypothesis class H and ng i.i.d.
samples {(s4,s.)}", from group s € {0,1}, let h* and
{fzz}se{071} be optimal group-blind and split classifiers for
the empirical /7 loss, respectively:

Z?;ﬂh(xs,i) - ysﬁi|

h* e argmin max , (10)
her s€{0,1} Ng

7 e h s,i) T Ys,t

h* € argmin 2iza|P(@s:) ~ ¥, |, sefo,1}. a1
heH Ng

The sample-limited-splitting is defined as
e it 2 E 10 (X) = ys(X)] | S = 5|
ol = max |h"(X) —ys(X)[ | § =5
. (12)
- a]E{thst S:}.
e E [[B3(X) (X)) | S = s

Unlike the benefit-of-splitting or the #-benefit-of-splitting,
the sample-limited-splitting is not necessarily non-negative.
In other words, with limited amount of samples available,
splitting classifiers may not improve accuracy for both groups.
In what follows, we provide data-dependent upper and lower
bounds for the sample-limited-splitting in order to understand
the effect of splitting classifiers in the finite sample regime.

Theorem 4. Let H be a hypothesis class from X to {0,1}
with VC dimension D. If ﬁ: is a minimizer of the empirical
Oy loss >0 |h(ws,:) —ys,i| /ns computed via ng i.i.d. samples
{(@s,i,Ys,i) }121, then, with probability at least 1 — 6,

s }AL* ) — fAL* )
Esptir <MD > it |hi(ws.i) 0(@s,1)|
s€{0,1} Ng
1 s }AL* N }AL* )
€splir =7 Max 2 il (2s,) 0(®s,)l
2 se{0,1} Ns

—Drv(Po]|Py) — 30 — @,

+Q

)

where Py is the empirical unlabeled distribution and

AA1<22mmm»—mA+Z$mmm»—mA>

2 o nq

Q£ 4 max
s€{0,1}

Proof. See Appendix D-D. O

\/ 2D log(6n,) + 2log(8/9)

ns

Here, the term )\ is the (average) training loss and 2 is the
complexity term, which is approximately /D /min{ng,n;}.
As shown, the upper and lower bounds for € rely on
four factors. The first three factors, which also appear in our
bounds of the H-benefit-of-splitting (see Theorem 3), are the
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disagreement between the (empirically) optimal classifiers, the
similarity of the (empirically) unlabeled distributions, and the
(empirically) training error. In addition to these factors, our
bounds for € also depend on the number of samples from
each group, especially minority group with less samples, and
model complexity (measured by the VC dimension [98]).

VI. NUMERICAL EXPERIMENTS

We illustrate the theoretical results presented in this paper
through experiments. In Section IV, we presented an algorithm
(Algorithm 1) for computing the benefit-of-splitting. In partic-
ular, when the data distribution is known, this algorithm prov-
ably converges to the exact value of the benefit-of-splitting. To
evaluate Algorithm 1, we conduct experiments on a synthetic
example where both the data distribution and the values of the
benefit-of-splitting are known. In Section V, we characterized
a taxonomy of splitting when classifiers are restricted over a
hypothesis class. We demonstrate this taxonomy of splitting
through experiments on 40 real-world datasets.

A. Synthetic Datasets

We introduced the FER-benefit-of-splitting egpii,Fer in Sec-
tion II-B and proposed an efficient procedure for computing
this quantity (Algorithm 1). Here, we validate Algorithm 1
through experiments on synthetic datasets. For a fixed pa-
rameter 6 € [0,7/2], let two groups’ unlabeled distributions
be zero-mean Gaussian distributions with different covariance
matrices: Py ~ N (0,3g) and P; ~ N (0,3;) where

~ {0.5c08(0)>+1 0.5sin(0) cos(6)
o = <0.5 sin(f) cos(f)  0.5sin(6)? + 1 ) ’
_{ 05cos(f)>+1  —0.5sin(f) cos(8)
1= <—0.5sm(a) cos(d)  0.5sin(6)2 + 1 )

The distributions P, and P; correspond to 6 counterclock-
wise and clockwise rotation of the Gaussian distribution
N(0,diag(1.5,1)). Furthermore, let the labeling functions be

Yo(z) = {(1)

() = {;

The left-hand side of Figure 2 displays the level sets of Py as
well as its labeling function.

In this synthetic example, ey ,Fer has a closed-form ex-
pression: ey rer = 2Pr(X € A|S = 0) where the set
A2 {z = (v1,22) € R? | yi(x) = 1,29 < 0} (see
Appendix E-A for a proof). When § = 0, two groups share
the same unlabeled distribution (i.e., Py = P;) and the same
labeling function (i.e., yo = y1). Hence, there is no benefit
of splitting classifiers: €gpi,FEr = 0. On the other hand, when
6 = /2, two groups have the same unlabeled distribution
but completely different labeling functions. Splitting classifiers
achieves the most benefit: €, Fer = 0.5.

By varying the values of 6 and drawing 10k samples from
each group, we compare the true values of eglFer With
the outputs from Algorithm 1 as well as other empirical

if (—sin(f),cos(d)) -z >0
otherwise,

if (sin(@), cos()) - & > 0
otherwise.
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approximations. Recall that Algorithm 1 requires a conditional
distribution Pr(S = s | X = z) and the labeling functions
yo and y;. Since the conditional distribution and labeling
functions are known in this synthetic example, we feed their
explicit forms into Algorithm 1 for computing €gpii¢,Fer (Orange
curve in Figure 2 Right). In practice, the conditional distribu-
tion and labeling functions are unknown, so we also train a
Naive Bayes classifier [99] to approximate Pr(S = s | X = z)
and two linear support-vector machine (SVM) classifiers [99]
to approximate the labeling functions. By feeding these binary
classifiers into Algorithm 1, another approximation of €y, FER
is output (red curve in Figure 2 Right). Furthermore, we com-
pute €, FER empirically by training optimal group-blind and
split classifiers via logistic regression, linear SVM, or Naive
Bayes classifier. Computing the false error rate reduction leads
to three empirical approximations of €t FER-

As shown in Figure 2, when Algorithm 1 has access to the
explicit forms of Pr(S = s | X = z), yo, and 1, it accurately
recovers €, FER. Lhis is remarkable since even with the
knowledge of the underlying distributions, it is unclear how to
compute ey FeR directly from its definition. We also observe
that Algorithm 1 applied to binary classifiers outputs more
accurate approximation of ey Fer than the approximations
produced by using logistic regression, linear SVM, or Naive
Bayes classifier.

To summarize, we conclude that (i) when the underlying
distribution is known, Algorithm 1 can produce the precise
values of el Fer and has convergence guarantees; (i) when
Algorithm 1 is fed with binary classifiers, it produces reliable
approximation of €git, FER; (iii) computing the FER-benefit-of-
splitting empirically by training optimal classifiers could incur
high approximation errors.

B. Real-world Datasets

In Section V, we analyzed the effect of splitting classifiers
when both group-blind and split classifiers are restricted over
the same hypothesis class. The bounds in Theorem 3 reveal
two main factors that could determine this effect: disagreement
between optimal classifiers and similarity between unlabeled
distributions. Here we demonstrate how these two factors
influence the effect of splitting through experiments on 40
real-world datasets, collected from OpenML [22].

a) Setup: We preprocess all 40 datasets by adopting
the procedure described in [13]. All categorical features are
transformed into binary by assigning the most frequent object
to 1 and the rest of the objects to 0. The first binary feature
is selected as the sensitive attribute and, hence, these datasets
are “semi-synthetic”. We truncate the datasets so that each
group contains at most 10k data points. In each dataset, there
are at least 8k data points per group, minimizing the effect of
potential lack of samples per group.

b) Implementation: We obtain optimal split classifiers
via training a logistic regression model with the LIBLINEAR
solver [100], fitting the model by drawing samples from each
group. Since an optimal group-blind classifier is a minimizer
of miny ey maxy,epo,1)wLo(h) + (1 —w)Li(h) where L (h)
is the loss of a classifier & on group s € {0, 1}, we solve this
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Fig. 2: We demonstrate the performance of Algorithm 1 for computing the FER-benefit-of-splitting egii,rer on synthetic datasets. Left:
the ellipses are the level sets of the unlabeled distribution Py and the dash line is the labeling function yo with a arrow indicating the
region where points are labeled as +. Right: egii,rer computed by different approaches along with its true values. As shown, when the
underlying data distribution is known, the approximation of egpiir,Fer produced by Algorithm 1 (orange curve) recovers its true values (blue
dash curve). When the underlying distribution is unknown, we train binary classifiers and feed them into Algorithm 1. The approximation
of €gpiir,Fer produced by Algorithm 1 is depicted as red curve. Finally, we compute €giit,rer €mpirically by training optimal group-blind and
split classifiers via (i) logistic regression (gray curve), (ii) linear SVM (green curve), (iii) Naive Bayes classifier (purple curve). We use
5-fold cross validation for training these optimal classifiers and plot the standard deviation as shaded region. As shown, the approximations
of eglir,Fer produced by Algorithm 1 outperform all three empirical approximations of egpli,FER-

optimization approximately by considering its dual formula
max,e[o,1] Minpen wlo(h) + (1 — w)Li(h) and use 5-fold
cross validation to tune the parameter w therein. Although
this procedure of training group-blind classifier needs access
to data points’ sensitive attribute, it does not violate group-
blindness [85] because the output classifier does not use the
sensitive attribute as an input when deploying on new data. In
addition to logistic regressions, we repeat this experiment by
training decision tree classifiers with depth 7. The disagree-
ment between optimal classifiers is calculated by applying the
optimal split classifiers on each data point and computing the
discrepancy. We estimate the total variation distance between
unlabeled distributions by applying the procedures introduced
in [101] (see Appendix E-B for more details).

c) Result: In Figure 3, we illustrate the taxonomy of
splitting delineated by our bounds in Theorem 3. We restrict
the hypothesis class to be logistic regression (Figure 3 Left)
or to be decision trees with depth 7 (Figure 3 Right). Each dot
in the figures represents a dataset with its corresponding ID
number in the OpenML dataset. The color captures the loss
reduction by using the optimal split classifiers compared to
deploying the optimal group-blind classifier (red means split-
ting has more benefit and blue means splitting does not bring
much benefit). The location of each dot is determined by the
two factors: disagreement between optimal classifiers (y-axis)
and total variation distance between unlabeled distributions
(x-axis).

o The upper bound in Theorem 3 indicates that splitting
does not bring much benefit when the optimal classifiers
are similar. As shown in Figure 3, all datasets which
are below the horizontal dash line have small benefit by
splitting classifiers (i.e., dots are blue).

o The lower bound in Theorem 3 indicates that splitting
benefits model performance when the optimal classifiers
are different and the unlabeled distributions are similar.
As shown in Figure 3, there are two datasets (ID 122 and
1169) which are in the yellow region and they all achieve
large benefit from splitting classifiers.

« When both the optimal classifiers and the unlabeled
distributions are different, the effect of splitting classifiers
can not be determined by the bounds in Theorem 3.
As shown in Figure 3, the datasets in the grey region
could have either large benefit by splitting classifiers or
limited benefit. Furthermore, we have conjectured (see
Section V-A) that in this case a more complex hypothesis
class leads to less benefit from splitting classifiers. This is
further evidenced in the experiments: when both group-
blind and split classifiers are logistic regressions (Figure 3
Left), the datasets which are in the grey region all achieve
non-trivial benefit by splitting classifiers. In contrast,
when decision trees are used (Figure 3 Right), there are
datasets (e.g., ID 1240) in the grey region which achieve
a limited amount of benefit by splitting.

VII. CONCLUSION AND FUTURE WORK

Split classifiers should only be considered when it is fair,
ethical, and legal to do so, and when it does not result in harm
to any underlying group. Eliminating disparate treatment does
not necessarily lead to a group-fair classifier. On the one hand,
a sensitive attribute could correlate with other proxy variables
which are used for decision making [14], [56]. On the other
hand, the sensitive attribute can be an important feature for
the prediction task [86], [89]. In the latter case, using a group-
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Fig. 3: We demonstrate how the effect of splitting classifiers is determined by the two factors: disagreement between optimal classifiers
(y-axis) and total variation distance between unlabeled distributions (x-axis). We restrict both group-blind and split classifiers to logistic
regression classifiers (left) or decision tree classifiers (right). Each dot represents a dataset in OpenML [22] with color indicating the effect
of splitting classifiers compared to using a group-blind classifier and texts indicating dataset ID. Our upper and lower bounds in Theorem 3
reveal a taxonomy of splitting where splitting does not bring much benefit (white region); splitting brings the most benefit (yellow region);

or splitting has undetermined effect (grey region).

blind classifier for achieving treatment parity may lead to an
unfavorable accuracy trade-off.

Motivated by the above discussion, we investigated the
following fundamental question: when disparate treatment is
allowed, is it beneficial to incorporate the sensitive attribute
as an input feature in order to improve a classifier’s per-
formance? Due to the bias-variance trade-off, in practice,
the answer will depend on the number of samples available
for training the model and the complexity of the hypothesis
class. In this paper, we focused on an information-theoretic
regime where the underlying data distribution is known—
or infinitely many data points are available—and the hy-
pothesis class is unrestricted. To evaluate the potential gain
in average performance from allowing a classifier to exhibit
disparate treatment, we compare split classifiers with group-
blind classifiers and characterize precise conditions where
splitting classifiers achieves the most benefit. Our results show
that—in this narrow information-theoretic regime—splitting
classifiers follows the non-maleficence principle and allows
a data scientist to deploy more accurate and suitable models
for each group. However, the use of a sensitive attribute relies
on several factors and may even be illegal and unethical for
certain tasks [2]. The analysis presented here aims at providing
an objective analysis for understanding the benefit (or risk) of
splitting only from a theoretical vantage point.

There are two open questions that deserve further explo-
ration. First, our bounds indicate that the difference in underly-
ing data distributions between groups, the number of samples,
and the hypothesis class can all influence the effect of splitting
classifiers. Nonetheless, we believe that there are more factors
that play an important role in determining such an effect.
For example, a group-blind classifier may perform worse on
minority groups due to unbalanced samples in the training

process and using split classifiers could potentially reconcile
this issue. In a similar vein, the lack of sample diversity (i.e.,
training datasets do not contain enough samples from minority
groups) could affect the performance and generalization of ML
models for minority groups. Hence, it is crucial to characterize
the impact of sample size and diversity on detecting and
reducing discrimination. Second, we introduce the sample-
limited-splitting € for quantifying the effect of splitting
classifiers in the finite sample regime and provide its upper and
lower bounds. It would be interesting to characterize precise
conditions under which € > 0 (or €y < 0).
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APPENDIX A
EXAMPLES OF f-DIVERGENCE

We recall some examples of f-divergence [45] here.

o KL-divergence [102]: f(x) = zlog(x),

D (P|Q) = [ 1og <SQ> aP.

| —1]/2,

L] e

(x=1)% or f(z) =

2
perlo) = [ (§5-1) @
dP\?
- [ (i) wa-+
« Jensen-Shannon divergence [104]: f(z) = zlog(z)/2 —
(1+2)log((1+2)/2)/2,

« Total variation distance: f(z) =
Drv(P[Q) =

 Chi-square divergence [103]: f(z) =
x? —1,

IS(PIQ) = ;D (P|P+Q) + 1w <Q||P+Q> |

Note that the Jensen-Shannon divergence is defined in a
general form in [104] for w € [0, 1]

Su(Pl|Q) =wDki (PllwP + (1 - w)Q)

+ (1 —w)Dk (QlwP + (1 - w)Q) .

o E-divergence (also called hockey-stick divergence) [91],
[92], [105], [106]: f(z) = (& — )4+ for v > 1 where
(a); £ max{a, 0},

51 - [ (55 —7>+dQ-

« DeGroot statistical information [93] of order p: f(z) =
min{p,1 — p} — min{p, 1 — pz} for p € (0,1),

L,(PIQ) = minfp. 1~ p} ~ [min {p1 -0 b ac

o Marton’s divergence [107]: f(z) =

d2(P||Q)?

(x —1)2T[z < 1],

:ﬂMEPdX#Y|Yﬂ

dpP dpP
— —1) I[—= < 1]d
-/ (a0 ) g <@
where the infimum is taken over all couplings, i.e., joint

distributions Px y which have marginals Px = P and
Py = @, respectively.

We refer the readers to [91], [108] for more examples of f-
divergence and their properties.
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APPENDIX B
PROOFS FOR SECTION III

A. Proof of Lemma 2

Proof. We first introduce a (measurable) loss function ¢ :
[0,1] x [0,1] = RT U{oco} and assume that this loss function
satisfies: (i) £(a,a) = 0 for any a € [0,1] and (ii) for any

€ [0,1], ¢(a,-) is convex and continuous. The benefit-of-
splitting in Definition 2 can be written as

s(X), h(X
B [0(ys(X), h(X

inf  max E[{(y
h:X—[0,1] s€{0,1}

) |S=s|

Nis=s.

— max inf
s€{0,1} h:X—[0,1]

By taking the ¢; loss ¢(a,b) = |a — b|, ¢3 loss £(a,b) =
(a — b)?, and KL loss ¢(a,b) = Dk(a||b) = alog(a/b) +
(1 —a)log((1 —a)/(1 — b)), respectively, the above quantity
becomes €t 1, €splic,2> and €gpli kL. These loss functions all
satisfy our above two assumptions. In particular, by our first
assumption, one can choose h(x) = ys(x) which leads to

E [€(ys(X), (X

max inf
s€{0,1} h:X—[0,1]

) |S=s]=0. (14)
Hence, the problem remains providing equivalent expression
for the inf-max term

inf E[0(ys(X), h(X
a1 o, B 6y, (X), A

) |S=s]

= Jnf - sup w-E[f(y(X), (X)) | S =0]
1 X—[0,1] weo,1] (15)
+ (1 —w)-E[l(y(X),MX)) [ S=1].

Next, we use Ky Fan’s min-max theorem [24] (see Lemma 1)
to swap the positions of infimum and supremum in (15).
We start with verifying the assumptions in Ky Fan’s min-
max theorem. We denote the set of all measurable functions
from X to [0,1] by £(X — [0,1]) and introduce a function
F:[0,1]] x L(X —=[0,1]) = R

F(w,h) £ w-E[l(yo(X), h(X)) | § = 0]
+ (1 —w)-Efl(y:(X), h(X)) | § =1].

For every fixed h € L(X — [0,1]), F(-,h) is a linear
function. Consequently, F'(-, h) is upper semicontinuous and
F is concave-like on [0, 1]. Furthermore, for any hi,h; €

L(X — [0,1]), A € [0,1], and w € [0,1], we have
Ahy 4+ (1 = Ahg € L(X — [0,1]) and
F(w, \h1 + (1 — A)ha) < AF(w,h1) + (1 — N)F(w, ha)

by the convexity of {(a,-) for any a € [0,1]. Hence, F is
convex-like on £(X — [0,1]). Therefore, by Ky Fan’s min-
max theorem, (15) is equal to

Yo(X), h(X)) | S =0]
w) - El(y: (X), (X)) | § = 1].

Now we take any probability distribution P over X such that
Py and P; are absolutely continuous with respect to P. For

sup inf
wel0,1] X —[0,1]

+(1-

w-E ¢ 6
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example, one can simply choose dP = (dP, + dP;)/2. Then
(16) can be written as

2Bl ] (o 0O IGG
dP1 (37)

+ (1= w) -y (2), h(2)) 57—~

Next, we prove that the infimum and the integer in (17) can be
interchanged. For a fixed w € [0, 1], we introduce a function
f:Xx][0,1]] - R

and aim at proving

inf /f(m,h(a:))dP(x):/_inf f(z, h)dP(z).

h:X—[0,1] helo,1]
(18)

Since f(-,h) is measurable and f(x,-) is continuous, f is
a Carathéodory function (see Section 4.10 in [109]). Hence,
by the measurable maximum theorem (see Theorem 18.19 in
[109]), the mapping

fx,h)

)

r — inf
hel0,1]

is measurable and the argmin correspondence (i.e., set-valued
function)

H*(z) 2 {71* € [0,1] | f(z,h*) = inf f(x, }_L)}

helo,1]

is also measurable and admits a measurable selector. We
denote this selector by h* : X — [0,1] and, by definition,
it satisfies h*(x) € H*(x) for all x € X'. Now we are ready
to prove (18). One direction LHS > RHS can be obtained
directly since for any h: X — [0, 1]

[t hnare = [
By the definition of h*(x),

RHS = / (@, h*(2))dP(z)
/ f(z,h(z))dP(x) = LHS.

Therefore, the equality in (18) holds and (17) becomes

s [ (o ) b @) G
dP1 (.T)

+ (1) Uy ), 2) g5 AP ).

_inf f(x, h)dP(z).
helo,1]

> inf
h:X—[0,1]

19)

Hence, our last step is to compute the function h* for the
loss functions of interest. If the loss function is ¢;, then
argming¢o 1 f (2, h) is equal to

dPy(z)

ip) P~ W@l - )

argmin {w [h —y1(x)]

helo,1] dP(z)

APy () - } .

15

For a fixed w € [0, 1], the optimal classifier is

. dpy () S 1w
we(e) = {00 T deiy = 7
y1(x)  otherwise.

By substituting the optimal classifier and ¢; loss into (19), we
get the desired equivalent expression of €gpyi,1:

sup (1 w) / 1 (2) — o(@)|dP: (x)

wel0,1] A

o [ (o) - (@),

w

Y dPy(z) 1-w
where A, = {x | Ip

1(x) — W

used, the optimal classifier becomes
() — @A) + (1= ()P ()
wdPy(z) + (1 — w)dP; (z) ’
which leads to the equivalent expression of egpit,o:

/ (y1(x) = yo(2))*dPo(2)dP (2)
wdPy(z) + (1 —w)dPy(z)

}. Similarly, when /5 loss is

(20)

sup w(l —w)
wel0,1]

When the KL-loss is used, the optimal classifier h* has ex-
pression in (20) as well. Consequently, we have the equivalent
expression of €pi¢,KL:

Sel[lopl]w]E Dk (yo(X)[[2*(X)) | S = 0]

+ (1 = W)E D (2 (X)[27(X)) | S = 1] .

This expression can be further simplified by using the chain
rule of KL-divergence:

DL (Qxy || Rx,y)
= DL (Qy x| Ry|x | @x) + DrL(Qx || Rx)-
By taking dQx = dP;, dRx = wdPy, + (1 — w)dP;,
Qy|x(1|z) = ys(z), and Ry |x(1|z) = h*(z), we obtain
E [Dke (ys(X)[[R*(X)) | S = ]
= D (Px,y|s=s/lwPx,y|s=0 + (1 —w)Px,y|s=1)
— Diu (PsllwPo + (1 —w)Pr).

2L

Substituting this into (21) gives

Eqplit, KL = Sl[lp ] JSu(Px y|s=oll Px,y|s=1) — 3Su(Fo| Pr),
wel0,1
where JS,(-||-) is the Jensen-Shannon divergence (see Ap-
pendix A for its definition). O

B. Proof of Theorem 1

We divide the proof of Theorem 1 into three independent
steps. First, we prove the upper bounds for ey, 1, €spiit,2, and
€spli,kL in a unified way. Then we prove the lower bounds
for egpii,1 and el kL using Lemma 2. Finally, we prove the
lower bound for €gy5,2 by leveraging the proof techniques of
Brown-Low’s two-points lower bound [23].

Proof. Note that (14) implies in the information-theoretic
regime, optimal split classifiers can always achieve perfect
performance. Specifically, one can select labeling functions v
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and y; as split classifiers which have zero loss on each group.
Hence, the problem remains upper bounding the performance
of the optimal group-blind classifier. To achieve this goal, we
consider two special group-blind classifiers:

(0) = o) + b m(). (D
(@) = S (yola) + 1 (@), 23)

2

where dP = (dPy+dP;)/2. In what follows, we upper bound
the performance of the group-blind classifiers in (22) and (23)
and these bounds will be naturally translated into the upper
bounds of €gpit,1, €split,2> and €gpiit, kL, TESPEctively.

We upper bound e€gy5,1 by using the group-blind classifier

h* in (22).
it =, jnf | max B[Jh(X) - y.(X)|| S =
< max E[[R*(X) =g, (X)| [ 5= 4]
dP,
= [10(0) = wle)| 5 APl Q4

By the Cauchy-Schwarz inequality, we can further upper
bound (24) by

\/E (0100) ~ 007 [ 5 =01 [ (55 ) du(o)
(25)

Furthermore, we have
dP;(z) \?
/ (2dP< ) e
dP(z) ) dP(z)
o / dPl(l') 9 _ dPl(.’L')
B dP(x) dP(x)
Since 12%(2—z) < 1— |z — 1| holds for any z > 0, the RHS
of (26) can be upper bounded by

/‘dpl —1’dP(ﬂf)—1_;/dP1(z)

=1 —Dyv(B||P).

dP(z)

) dP(z).  (26)

— dPy(z)]

27

Combining (24-27) gives an upper bound of egyjit,1:
VE[(41(X) —50(X))? [ § = 0] - /1 = Drv(Ro[[ ).

By symmetry, we can further tighten this upper bound by
replacing it with

E (41 (X) —
Serr{%nl}\/ (11(X)

yo(X))? | S = s]- /1 —Drv(Po]| Pr).

On the other hand, using the classifier A** in (23) leads to an
alternative upper bound

1
Esplit, 1 < 5 max E[‘yl( ) yO(X)| | S = S} .

2 se{0,1}

16

Similarly, we can upper bound egi,2 by using the classifier
h* in (22)

€Esplit,2 < g%}i}E [(h (X) - ys(X))2 | S = S]

2
< [ - m@)? (5o ) i)

+ fonte) - wie® (S ap

— )~ (@ h

dPy(z), (28)

where the second inequality uses the fact that max{a,b} <
a + b. By the Cauchy-Schwarz inequality and (26), (27), we
can further upper bound (28) by

VE[(5:(X)

By symmetry, we can further tighten this upper bound by
replacing it with

— (X)) [ S =0]- /1 = Drv(Po] P1).

min /E [(y1(X)

XN S =
Jin NS = s

—o( /1 =Drv(Po|| Py).

On the other hand, using the classifier A** in (23) leads to an
alternative upper bound for € 2.

We repeat the same strategy and upper bound egpi kL by
using the classifier A* in (22)

ol < * =
ikt < max B [y (35 (X) 17 (X)) | S = 5

< E [Dr(yo(X)[|h*(X)) | S = 0]
+ E Dye (52 (X)[|(X)) | § = 1].

Recall the chain rule of KL-divergence

Dk (@Qx,v||Rx,y)
= DrL(Qy x| Ry |x | Qx) + Dxi(@x || Rx)-

By taking dQx = dP;, dRx = dP, Qy|x(1]x) = ys(x), and

Ry |x(1|z) = h*(x) and noticing the definition of A* in (22),
we obtain

E Dk (ys(X)[[2*(X)) | § = s]

Px y|s=0 + Px y|s=1
= Dk (PX,Y|S—S| | 5 |
(29)
Py+ P
— DuL <P [ 1) .

Hence,

esplitkL < 2JS(Px v s—ollPx,y|s=1) — 2JS(FPo[| 1),
where JS(-||-) is the Jensen-Shannon divergence. On the other

hand, taking the classifier h** in (23) gives an alternative upper
bound for €gpli KL- ]

We proceed to prove the lower bounds of €gyiir,1 and €gpii,KL-
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Proof. Recall that Ags =2

;(/A [y1(x) — yo(w)[dPr(x)

Jr/A- ly1 () *yo(z”dp()(x))

c
0.5

= 2 (Bl ()~ yo(x
[ @) - w@l@h@ - dh@)
;
X) - p(X)| | S =1

[y ( y
- w3452 ance

(B lI1(X) —5o(X)] | § =1
~ VE[i(X) = 9o (X)? 15 = 1] da(Po|| 1) ).

where do(Ppl||P1) is Marton’s divergence. By symmetry, one
can obtain the desired lower bound of gy 1. Finally, the lower
bound of €pyir, kL follows directly from Lemma 2. O

IS =1]

_1<

>

N |

Before getting to the lower bound of e 2, we prove a
useful lemma.

Lemma 3. For any measurable classifier h : X — [0,1]
and constant 0 < ¢ < E[(y1(X) —yo(X))? | S=0], if
the condition E [(h(X) — yo(X))? | S =0] < € holds, then
2 S = ] (

E [(M(X) = y1(X))? | A — By/e)?, where
AZE[|y1(X) —yo(X)[| S=1], (30a)
B2 ,/Dp(P|Py) + 1. (30b)

Proof. Consider a convex optimization problem
i h(z) — ’dp
i [ (o) - ()2 ),
st [(ba) = so(a) Pane) < e

Computing the Gateaux derivative of the Lagrange multiplier
gives the following optimal conditions (see Theorem 6.6.1 in
(1101),

(h(2) — 11 (2)dPy (&) + Ah(x) - yo(2))dPo(z) = 0, G
3 ([0 = wieare) - ) =0, @
A>0, (33)

which provides the optimal classifier

y1(z)d Py (z) + Ayo(2)dPo(x)
dP, (z) + AdPo(2)

h*(z) =

We denote 7(z) = ggg’r;

optimal classifier

and simplify the expression of the

i (@)r(e) + Ao )

W (@) = r(z)+ A

(34)

17

If A =0, then h*(x) = y1(x) and, consequently,
E[(h*(X) = y0(X))* | S = 0]
=E [(51(X) —(X))* | §=0].

However, this contradicts our assumptions:

E[(R*(X) —yo(X))* | S =0] <,
e <E[(y1(X) —50(X))* | 5=0].

Hence, we have A > 0. In this case, (32) and (34) imply

/ (yl(x)::g; I iyo(x) - yo(l")>2 dPy(z) =€

We simplify the expression and obtain

> (1) ~po()\* _
/r(x) (W) dPy(z) =e. (35)
Now we consider lower bounding the quantity
E[(h*(X) -y (X))*|S=1]. By its definition and
the expression of the optimal classifier (34), we have
E[(h*(X) =y1(X))* | S =1]
_ [ (@@ @) N e
—/( (@) + A Y ( )) dpPi(z)
A = w@))
- [ () e
Alya (@) — yo(@)|
> ([ A ane)
~ ([ 1) - wi@)ieri @)
(36)

r(z)|y1(z) — yo(@)] 2
/ r(x) + A by (m)) ’

where the only inequality is due to the Cauchy-Schwarz
inequality. Furthermore, by the Cauchy-Schwarz inequality
again and (35), we have

()|y1() Yo(w )\
[ ) et

y1(2) — yo(z)
\// r(z) + A ) dPO(x)/T(x)dPl(x)
_ \/eIE | S =1J. a7
Recall that r(z) = g;l)gw; Hence,
015 =1= [ genis
_ dP (z) 2_ i
_/ (dPO(x)) 11 dPy(z) +1
*DXQ(P1||P0)+1. (38)

Combining (36), (37), and (38) together, we conclude that
E [(h*(X) —y1(X))* | S =1]
> Epn(X) —y(X)||S=1] -
= (A - B\/g)zv

VeE[r(X) | S =1])?
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where A and B are defined in (30). O

Now we are in a position to prove the lower bound for
€split,2-

Proof. By Lemma 3, for any classifier 2 : X — [0,1] and
—yo(X))* | §=0],

if E[(h(X)—yo(X))?|S5=0] < € holds, then we have
E[(h(X) = y1(X))? | S =1] > (A — B\/e)?, where

I S=1], B=

0<e<E [(yl(X)

A=E[[y1(X) — yo(X

Now we take € = (4/(B+1))?

D,:(Pi||Py) +1

. This e satisfies our assumption

2
( ) _ Sy (z) — yo(x)|dPy (z)
fﬁ?é? @)
S/ ) = yo(x))*dPy(x)
=E [(11(X) —yo(X))* | §=0],

where the second inequality is due to the Cauchy—Schwarz
inequality. By Lemma 3, if

2
B [000) - w0 15 =0) < ()
then

() - (02 5 =1] > (557 -
Consequently, for any h: X — [0, 1],
max B [(h(X) - ya(X)) | 5 = 5]

se{0,1}
> Efly1(X) —yo(X)| | S = 1]
- VDy2 (Pi||Py) +1+1

By symmetry, one can swap the positions of S =0and S =1
and obtain

E|(h(X) -
Jnax, [(h(X)

> max (
s€{0,1}

ys(X))? | S = s

E [y (X) —5o(X)] | S = 5]\
Dy (Pl Pr) +1+1

C. Extension to Cross Entropy Loss

As discussed in Remark 1, one can define the benefit-of-
splitting under the cross entropy loss. We provide upper and
lower bounds of the corresponding benefit-of-splitting as an
extension of Theorem 1.

18

Proposition 4. The cross-entropy-benefit-of-splitting €gpiirH
can be upper bounded by the minimum of

2JS(Px y|s=ol| Px,y|s=1) — 2JS(Po||P1),

s i (02T s

and lower bounded by

JS(Px y|s=oll Px,y|s=1) — IS(Pol| P1)

— SIEH(o(X)) | 8 = 0] B [H(: (X)) | 5 = 1]].
Proof. Recall that H(p, ¢) = DkL(pl||¢) + H(p). Hence,

E [H(y.(X), h(X)) | S =
— B D (5 (X)|R(X)) | § = 8] + E[H(y, (X

which leads to

) | S =s],

inf
s€{0,1} h:X—[0,1]

max E[H(ys(X), h(X)) | § = 5]

(39
= E[H(ys(X)) | S=s].
Jmax, [H(ys(X)) | S = 3]
Since max{a; + b;} < max{a;} + max{b;},
h:Xlgf[‘O,l] S§%§}E [H(ys(X), h(X)) | S = 5]
< =
Mlgf[o | Sg}gﬁ}E[KL(ys( )A(X)) | S =s] w0
+ max E[H(ys(X)) | S =s].

s€{0,1}

Combining (39) and (40) implies €gpliH < €spiit,kL- Therefore,
the upper bound of €,k in Theorem 1 is an upper bound
of egpiit,n as well. Now we proceed to prove the lower bound.

ol o ax E[H(ya(X), A(X)) | § = ]
1
> — i _
2 5 ety B (X), A(X)) | 5 = 0]
+EH(y1(X), h(X)) | S =1])
1 )
= 3 {Zol}E Dt (s (X)[R(X)) | S = 5]
! (41)
+3 > EMH@m0))[S=4.
s€{0,1}
By the proof of Lemma 2, we have
1
3 o E [Dr(ys(X)||R(X)) | S =
3 o {Z} Dt (35 (X) [A(X)) | S = 5]
= JS(Px,y|s=0l|Px,y|s=1) — JS(Po|| ). 2)

Combining (39), (41), (42) gives the desired lower bound. [J

D. Proof of Proposition 1

Proof. First, note that
inf

hs:X—[0,1]

for s€{0,1}

E[[hs(X) —ys(X)[] =0

0018-9448 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Harvard Library. Downloaded on June 09,2021 at 20:00:39 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1T.2021.3075415, IEEE
Transactions on Information Theory

IEEE TRANSACTIONS ON INFORMATION THEORY

as one can choose h,(x) = ys(z). Hence, et pop i equal to

hlegfm E[h(X) —ys(X)I]
—hxlgf[o " > Pr(S /\h 2)|dPy ().
se{0,1}
(43)

By the proof of Lemma 2, the optimal classifier of (43) is

W () = Yo ()
( {yl(x)

By plugging the optimal classifier into (43), we can write
Esplit,pop €quivalently as

.o Pr(5=0)-dPy(z)
o= AP (a) = 1
otherwise.

Pr(S = 0)- Hm() wo(X)[] S = 0]
/@1 2)|(Pr(S = 0) - dPy ()
—Pr(S=1)-dP(x)),.

The desired upper bound can be obtained by dropping the
negative term. Now we proceed to prove the lower bound.
Since

/|y1 0)dPy(x)

B dPy(z) Pr(S=1)
< Pr(S = 0)/ (dp‘i(x) - PY(S:O)>+dP1(x)
=Pr(S =

0) Epuson (Po]| P1).

x)|(Pr(S = —Pr(S =1)dPi(z))

where Ervs=n (P||P1) is the E,-divergence, we have

Pr(S=0)
0) (E [lyn (X) - yo(X

— Erusey (P0||P1)).
Pr(S=0)

Esplit,pop = PI‘(S = )| | S = O]

APPENDIX C
PROOFS FOR SECTION IV

A. Proof of Theorem 2

Recall that the false error rate is the maximum between
false positive rate and false negative rate

FER,(h) 2 max{E[h(X)|Y =0,5 = 5],
E1-h(X)|Y=105=s]}.
We prove the following lemma which will be used in the proof
of Theorem 2.
Lemma 4. The false error rate has the following equivalent
expressions

FER.(h) :max{E [M(X)(1 —ys(X)) | S = 3]

Pr(Y =0|S=s) '
CEIw00 5=y
Pr(Y =1|S5=5)

ZmauX{E[h(X)(1 — (X)) fs(X)]
Pr(Y =0| S =5s) )

_ E[h<X>ys<X>fs<X>]}
Pr(Y=1|S=s) J°

19
A Pr(S=s|X=x)
where fs(fE) £ (Pr(Ts)
Proof. The proof follows directly from Bayes’s rule,
1—ys(x)
dPx|y—0.5=s = dPx 5=
X|Y=0,S=s PI‘(Y —0 | g — S) X|S=s
1 —ys(x)
= - fs(x)dPx.
Py 0[5 = Jed4Px
O

Now we are in a position to prove Theorem 2.
Proof. By Lemma 4, inf},. x_,[9,1) max,e 0,13 FERs(h) can be
equivalently written as

inf max
h:X—[0,1] s€{0,1}

{ E[2(X)(1 — ys(X)) fs(X)]
Pr(Y =0|S=5s) ’
E [M(X)ys(X) fs(X)]

1= Pr(Y =1|S=5s) }

= f G(p, h
hxlg[o 1 weAs (b h),

(44)

where g £ (10,0, f10.1, 41,0, #1,1) and G(p, h) is defined as

E [A(X)(1 = ys (X)) fs(X)]
2 o (Y =0]S=>s)

)

MSO(]-_ys( ))fs( )
2 “““E{ > (% Pr(Y =05 = s)

s€{0,1} s€{0,1}
Hs, lys( ) ( )
B e1l82 S))h(X)}

s€{0,1}

+ Ms,l

By denoting

(1 ys()) [

s(x
¢s,0(‘r) ( -0 | _
)

)
s)

s)’

ys(@) fs(z
_1|

¢s,1($) é P (

we can write

Z Hs,1 +E

s€{0,1}

> heitei(X)h(X)

s,1€{0,1}

We next use Ky Fan’s min-max theorem [24] (see Lemma 1)
to swap the positions of infimum and maximum. First, Ay is a
compact set and for any h : X — [0,1], G(-, h) is continuous
on Ay. Furthermore, for any h : X — [0,1], G(-, h) is linear
over Ay; for any p € Ay, G(p,-) is convex-like over all
(measurable) classifiers from X" to [0, 1]. Hence, we have

f G = inf  G(u,h). 45
h: xlg[o e (1) = HeRs hiX[0,1] (1. ) (43)
Next, we prove that, for any fixed p € Ay,
inf E ,U/s,i¢s,7,' X)h(X
h:X—0,1] s zg 1 ( ) ( )
o (46)
=F inf si0s i (X)h(X
h:Xlg[O,l] Z Hs.idsi(X)R(X)

s,1€{0,1}
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One direction LHS > RHS can be obtained directly since for
any h: X — [0,1]

E| Y psidei(X)h(X)

s,4€{0,1}
SE| inf v ibei(X)h(X
SB[ Y b CORY)

s,1€{0,1}

Note that the infimum in the RHS of (46) is point-wise. For
any fixed z € X, the following optimization problem

Z ,U's,igbs,i(x)ﬁ

s5,i€{0,1}

_inf
helo,1]
has an optimal solution h* = I3, icqo1y Hs,i®s,i(z) < 0.
Hence, there is a measurable classifier which can achieve
the point-wise infimum inside the expectation of the RHS

in (46): h*(z) = I[3_, ;e 0,1y Hs,i®s,i(z) < 0]. Consequently,
the RHS of (46) can be simplified as

RHS=E || > peitei(X)] |,

s,i€{0,1}

(47)

where for a € R, (a)_ = min{a, 0}. Since the LHS of (46) is
an infimum over all measurable classifiers, using the classifier
h* leads to

LHS <E | > peicsi(X)h"(X)

| s,ie{0,1}
=E

3" psi¢si(X) | | =RHS.

s,1€{0,1}

Combining (44-47) together implies

inf  max FERg(h)
h:X—[0,1] s€{0,1}

Z Hs,1 +E

s€{0,1}

Z ﬂs,i(bs,i(X)

s,4€{0,1}

= max
PEA,

Similarly, one can prove that

max  inf FER(h)
s€{0,1} h:X—[0,1]
= max max 1/?) +E Z l/i(s)fbs,i(X)

s€{0,1} v(s) A, icfo1)

B. Proof of Proposition 2

We start with a useful lemma which will be used in the
proof of Proposition 2.
Lemma 5. Let f : X x R¥ — R be a bounded measurable
function. For a fixed x € X, if v(x,wy) € R¥ is a supergra-
dient of f(z,-) at wo:

f(@,w) = f(z,wo) < vz, wo)" (w —wp),  (48)

20

then E [v(X,wq)] is a supergradient of E [f(X,-)] at wy:
E[(X,w)] = E [f(X, wo)] < E[u(X, wo)]" (w = wp).

The proof of Lemma 5 follows directly by taking ex-
pectation on both sides of (48). We refer the readers to
[111] for a more general result on the interchangeability of
subdifferentiation and (conditional) expectation. Now we are
in a position to prove Proposition 2.

Proof. Consider a function

g(l’,[l,)é Z ,LLS,1+

s€{0,1}

Z ,Ufs,iqss,i (l’)

s,i€{0,1}

For a fixed z, g(z,-) has a supergradient at p =
(10,05 £10,15 111,05 141,1):

i+ 0ui(@)| D prirdr (@) < 0]

s’ i’

Therefore, by Lemma 5, g has a supergradient at p:

i+ E | 00:(X) 1] 3 v .0 (X) < 0]

S,

Now we introduce auxiliary functions

ws,i(x) £ i yS(x)

2 € {0,1}.
Py =ils=s SiEOU

By Bayes’s rule and the definition of ¢, ; (see (5)), we have

%L(l‘) ’ dPX|S:s('r) = ¢sz(x) : dP)((I)

Hence, the supergradient of g given above can be rewritten as

P+ E | 00i(X) 1] it (X) <0 | S =

EX)

Similarly, one can obtain a closed-form supergradient of g;.
O

APPENDIX D
PROOFS FOR SECTION V

A. Proof of Theorem 3

We first recall a useful lemma which can be proved by the
variational representation [112] of total variation distance.

Lemma 6. For any measurable and non-negative function f :
X — R,

IE [f(Xo0)] = E[f(X)] < [ flloDrv (Foll P1),
where Xog ~ Py and X1 ~ P;.

Now we are in a position to prove Theorem 3.
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Proof. We prove the upper bound first. Let h} be an op- Finally, since max{a,b} < a + b and {h}}scf0,1 is the set
timal classifier for the group s € {0,1}, ie., h¥ € of optimal split classifiers, then

argming, ¢4, E[|A(X) — ys(X)| | S = s]. Then max_ inf E [|h(X) — ys(X)| | S = 3]

inf max E[|A(X) —ys(X)|| S =s] s€{0,1} heH
el — max E[R3(X) - u(X)[[S=s] <20 ()
< max{E[|h}(X) —y1(X)| | S =1], s€{0,1}

= u(

E[|hg(X) — yo(X)| | S = 0]} Combining (51) with (52) gives the desired lower bound. [
By the triangle inequality, E [|A§(X) —11(X)|| S =1] can
be upper bounded by

E[[p1(X) = ho(X)| [ S = 1] + E[[p1(X) =92 (X)[ | S = 1].

B. Proof of Proposition 3

Proof. By the triangle inequality, we can upper bound
infpen maxse{o’l}IEHh(X) —ys(X)]|S=s] by T 4+ 1I

Therefore, where
inf max E[|h(X)—ys(X)| | S=s A — h* =
pof, max [1A(X) = ys(X)] | ] 12 inf max E [|M(X) —h*(X)|| S =],
SE[p(X) = ho(X)[ | § =1] 2 max E[[h*(X)—ys(X)|]| S =s],
+ max E[Jh(X) - ys(X)|| S = 3], seton
o eelon and h* is defined in (22). Since max{a,b} < a +b, 1 <
which implies that 2infpey E [|A(X) — h*(X)|] where the random variable X
Ezgm <E[hI(X) = hi(X)]|S=1]. follows the‘probability distribution (Py + P;)/2. By Barron’s
approximation bounds [97],
By symmetry, we obtain the desired upper bound for Ezgm- ]
Now we proceed to prove the lower bound for e:;fht. By the inf E Uh()_() _ h*()_()\] < M7 (53)
triangle inequality, E [|y1(X) — yo(X)| | S = 0] can be lower heH vk

bounded by where the constant C 2 [, |[wl|z|[h*(w)|dw and h*(w) £
E[|hT(X) = hs(X)| | S=0] —E[|hs(X) —yo(X)| | S = 0] @ S () exp(—iwz)dz. Moreover, by the proof of The-
—E[RN(X) =y (X)]| S =0]. orem 1 (see Appendix B-B), we have

By Lemma 6, o< sef?(i)nl} \/E [(y1(X) = yo(X))? [ S = 5]

E[|h3(X) — y(X)| | S = 0] x /1 Dry(Bol Py).
<E[r(X) =1 (X)|| S = 1]+ Drv(B||Pr).
< E[Im(X) —ui(X)] | I+ Drv(PollP1) To summarize, if the hypothesis class contains feedforward

Therefore, neural network models with one layer of sigmoidal functions,
E [Jy1(X) — y0(X)| | S = 0] the H-benefit-of-splitting ezrfm can be upper bounded by
2 E[[h1(X) = hg(X)[[ S = 0] — 22 = Dyv(Fo[| ). min /E[(y1(X) —y0(X))? | § = s] - /1~ Drv(Ro[ P)
where \ 2 > seqo1y EIhE(X) = ys(X)[ | S = s] /2. Hence, se{;J(,ji];m(X)C
max Ellyi (X) ~ o(X)] | 5 =] Vi
> max E(h{(X) ~ Ki(X)| | § = 5] =22 = Drv(R|Py). -

49 ¢ Proof of Corollary 1
By a slight modification of the proof of Theorem 1, we have

inf  max E[h(X)—ys(X)||S = 9]

We approach Corollary 1 by proving a more general result.

h:X>[0,1] s€{0.1} Lemma 7. For any hypothesis H, there exists a probability
1 distribution Qs x y whose H-benefit-of-splitting is at least
> 5 (s Bl (30 = (0] 5 = 5] - Drv(rallP)). 1
TE — sup |hi(x) — ho(x)].
(50) 2h1,h0p€’H| 1( ) 0( )‘

Substituting (49) into (50) leads to vex

. Proof. For any € > 0, there exist two classifiers h], hj € H
inf max E[|h(X)—ys(X)|| S =s]

heH se{0.1} and x* € X such that
> inf E[|hM(X) —ys(X)| | S = *e*) — hE(x* _ _
2 a0 0, 205 EIAQO —ua (XS = 5] hia) =@tz sup (o) ~ho(w)l—e. (54
> 1 E[|h}(X) — hi(X)] | S e
- 7(323}%} [177(X) = ho (X[ | .5 = 5] (51) Now we construct a probability distribution Qg xy Wwith
_ _ QY\Xﬁ(Han) = h3(z), QX\S:s(x) =6(xr —z%), Qs(s) =
2 QDTV(POHPl)) 0.5 for s € {0, 1} where J(-) is the Dirac delta function. Our
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lower bound in Theorem 3 implies that e:;fm > 1|hi(z*) —
hé(x*)| which, due to (54), can be further lower bounded by
3 (supp, noen.wex|hi(®)—ho(x)|—e). Since this lower bound
of ezgm holds for any € > 0, one can let € be sufficiently small
which leads to the desired conclusion. O

D. Proof of Theorem 4

We introduce the empirical benefit-of-splitting and bound its
difference from the sample-limited-splitting (see Definition 7).

Definition 8. For a given hypothesis class H and ng i.i.d.
samples { (25, ys,;) iy from group s € {0, 1}, the empirical-
splitting is defined as

it

h(xsj) - ys,il

A A . f
Esplitemp — INf  max

hEH s {0,1} N
55
Y ) e O
— max inf .
s€{0,1} heH Ng

Lemma 8. Let H be a hypothesis class from X to {0, 1} with
VC dimension D. Then with probability at least 1 — 6,

\/ 2D log(6n) + 210g(16/0)

|€splir - esplit,emp| <4 Sg}[%}i}

)
ns

where n is the number of samples from group s € {0, 1}.

Proof. Corollary 3.8 and Theorem 4.3 in [98] together imply
that with probability at least 1 — §, for any s € {0,1} and
heH,

’Z?il

h(zs,i) — ys’i|
ns

—E[In(X) =y (X)| | S = 5]

s

< 2\/2D log(6ns) + 210g(8/9)

Therefore, for any h, € H with s € {0,1}
Z?;1|hs(xs,i) - ys,i|

max

s€{0,1} Ng

_ E (|7 (X) — 4. (X)| | S = ]

max B[Jh.(X) = 5.(X)[ | S = ]

<9 ma \/2Dlog(6n5)+2log(8/5)' 56
s€{0,1} Ng

Recall that

b = max E [|*(X) —y(X)] | 8 = s]

— E ||h3(X) —ys(X)| | S = 5] .
max B [[3(X) ~y (X)) | § = 5]

Now by (56), we conclude that

2D log(6ns) + 21og(8/9)

|€split - ésplit,emp| < 4 g%)i} \/ n .
S ’ s

O

Since the upper and lower bounds of nglil (see Theorem 3)
hold for any underlying distribution Pg x,y. One can plug in
the empirical distribution and obtain the corresponding bounds
for €gpit,emp- Then we obtain the desired bounds for égy by
using Lemma 8 for bounding the difference between Egyli emp
and gspliv
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APPENDIX E
SUPPORTING RESULTS FOR EXPERIMENTS

A. Closed-form Expression of €gpiir FER

Proof. For the distributions we construct, one can choose
{ys(2)}seqo,1y as the split classifiers which lead to zero false
error rate. Therefore, the problem remains computing the
false error rate of the optimal group-blind classifier. First,
the labeling functions naturally divide R? into four parts:
I2 {2 ] wl@) = Ly = 11 I 2 {z | yola) =
Ly(2) = 0% I 2 (& | yol2) = O,yi(2) = O},
IV £ {z | yo(x) = 0,y1(z) = 1}. Clearly, in order to be
an optimal group-blind classifier, » must satisfy h(x) = 1 on
I and h(z) = 0 on III. We define h|;; and Ay as

h(x if z €1l
M) 2 { ) !
0 otherwise,
h(z) ifxelV
hlv(z) &
v () {O otherwise.

Due to our construction of the labeling functions and
Lemma 4, e, Fer 1S equal to

E [A(X)(1 = yo(X)) | S =0]
Pr(Y =0]5=0) ’
E[h(X)yo(X) | § = 0]

Pr(Y =1|5=0) ’
ERX)(1 -y (X)) | S =1]
Pr(Y =0]|S=1)
E[h(X)y(X) |5 = 1]}

Pr(Y =1|5=1)
max{2E [hhv(X) | S = 0]7

inf max {
h:X—[0,1]

1 —
= inf
h:X—[0,1]
1-2Pr(X €1|S=0)—2E[hnX)|S=0],
2E [hju(X) | S =1],
1—2Pr(X €1] 8 =1)—2E [hliv(X) | S = 1]},

which is equivalent to

max { h|nzgcn—f>[0,1] max{2E [h|;1(X) | S = 1],

1-2Pr(X €I|S=0)—2E[hlu(X)|S=0]},

inf 9 Ay (X) | S =
h|1v:12?e[0’1] HlaX{ [ |IV( ) | S 0]7

1-2Pr(X €l|S=1)—2E[h|(X)]|S= 1]}}

= vt o max{2E [hlrv(X) | § = 0],
1-2Pr(X €l|S=1)—-2E[hiv(X)]|S=1]},

(57)
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where the last step is because of symmetry. Since
2max{a,b} > a + b, egii,Fer can be lower bounded by

1

§—Pr(X€I|S:1)

+ inf E [hhv (X

}LlIv:X—>[O,1]

:%fPr(XGHS:l)

+ inf / h dP _dP
h\lv:gl—ﬂo,l] v v () (dFo () 1(2))

)18 =0]—E[n|v(X) |5 =1]

1
= - PrXel|§=1)- /Iv(dPl(;v) _dPy(x))s

Since Py ~ N (0,%¢) and Py ~ N (0,%;), by comparing
their probability density functions, we have

A& {z €IV |dPi(z) > dPy(z)} = {x € IV | 22 < 0}
={z e R? | y1(x) = 1,20 < 0}.

Therefore, €, FER can be lower bounded by

%(172Pr(X€I|5:1)—2Pr(X€A|S:1)

(58)
+2Pr(XeA\S=0)).

By symmetry, we have
Pr(Xel|S=1)=Pr(Xelll|S=1),
Pr(Xell |S=1)=Pr(X €IV |S=1),

which leads to

1-2Pr(Xel|S=1)-2Pr(XeA|S=1)
=2Pr(X eIV\A| S=1)
=2Pr(X e A| S=0), (59)

where the last step is by symmetry again. Therefore, the lower
bound of ey Fer in (58) is 2Pr(X € A | S = 0). On the
other hand, we can design a classifier h|f,(z) = 1 if ¢ €
A; hljy(z) = 0 otherwise. By (57), egpiit,FEr can be upper
bounded by
max {2E [h[ty (X) | § = 0],
1-2Pr(X €l|S=1)-2E[h|{y(X
=max{2Pr(X € 4| S =0),
1-2Pr(Xel|S=1)-2Pr(XeA|S=1)}

)[S=1]}

The above upper bound is equal to 2Pr(X € A | S =0) due
to (59). Hence, egyirer = 2Pr(X € A| S =0). O

B. Total Variation Distance Estimation

We provide details on how we estimate the total varia-
tion distance Dty (Pp||P1) by using ns i.i.d. unlabeled data
{zs.};2, drawn from each group s € {0,1}. By applying
Baye’s rule, we can write the density ratio equivalently as

dP(z) dPxjs=1(z)

dPy(z)  dPy|s—o(z)
_ Pr(S=1[X=ux) 1-Pr(S=1)
T 1-Pr(S=1[X=x) Pr(S=1)
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which leads to an equivalent expression of D1y (P P1):

Pr(S=1]X =) Pr(S=1)

Pr(S=1|X=x) Pr(S=1)
- [l et * ore 1>]dp0(<2>

This expression gives rise to the following procedure of
estimating the total variation distance

« Compute a constant o = to estimate the marginal
probability Pr(S = 1) and train a classifier s(x) to
approximate the conditional distribution Pr(S =1 | X =
x). In particular, we use a feed-forward neural network
for s(z), which consists of one hidden layer with 100
neurons and ReLU activation, and a soft-max readout
layer. We adopt cross entropy as the loss function, set
learning rate to be 0.001, and use AdamOptimizer
[113] to train the datasets with batch size 200. To avoid
overfitting, we hold 10% of the samples as a validation
set, and terminate training once the validation loss is not
improving by 10~* for the next 10 consecutive epochs
(i.e., early stopping), and the maximum number of epochs
is set to be 200.

o By plugging « and s(x) into (60) and using i.i.d. samples
to estimate the integrals (i.e., expectations), we obtain the
following approximation of Dyy (P || Py):

inl s(x1,) L@

ny 4 1—s(x1i)_1—a

A ey ]
1—53:01) 1—a

We remark that estimating information-theoretic measures has
been studied in e.g., [26], [27], [101], [114], [115].
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