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ABSTRACT

Aims. We perform a simulation using the Astrophysical Multipurpose Software Environment of the Orion Trapezium star cluster in
which the evolution of the stars and the dynamics of planetary systems are taken into account.

Methods. The initial conditions from earlier simulations were selected in which the size and mass distributions of the observed
circumstellar disks in this cluster are satisfactorily reproduced. Four, five, or size planets per star were introduced in orbit around the
500 solar-like stars with a maximum orbital separation of 400 au.

Results.  Our study focuses on the production of free-floating planets. A total of 357 become unbound from a total of 2522 planets
in the initial conditions of the simulation. Of these, 281 leave the cluster within the crossing timescale of the star cluster; the others
remain bound to the cluster as free-floating intra-cluster planets. Five of these free-floating intra-cluster planets are captured at a later
time by another star.

Conclusions. The two main mechanisms by which planets are lost from their host star, ejection upon a strong encounter with another
star or internal planetary scattering, drive the evaporation independent of planet mass of orbital separation at birth. The effect of
small perturbations due to slow changes in the cluster potential are important for the evolution of planetary systems. In addition, the
probability of a star to lose a planet is independent of the planet mass and independent of its initial orbital separation. As a consequence,

the mass distribution of free-floating planets is indistinguishable from the mass distribution of planets bound to their host star.

Key words. methods: numerical — planets and satellites: dynamical evolution and stability — planet-star interactions — gravitation

1. Introduction

In recent years several free-floating planets, i.e., planets not
orbiting a star, have been discovered by direct infrared imaging
(Pacucci et al. 2013) and by catch in gravitational microlensing
surveys (Sumi et al. 2011; Gaudi 2012; Gould & Yee 2013). Fol-
lowing star formation theory planets could in principle form in
isolation (Gahm et al. 2007; Liu et al. 2013; Haworth et al. 2015),
but it seems more likely that they form according to the canoni-
cal coagulation process in a disk orbiting a host star (Kant 1755).
If planets are not formed in isolation, there are three major mech-
anisms by which planets can be liberated. A planet may become
unbound as a result of (i) dynamical interaction with another star
(Hurley & Shara 2002; Vorobyov et al. 2017; Cai et al. 2017,
2018; Zheng et al. 2015), (ii) scattering interactions among the
planets in a multi-planet system (Veras & Raymond 2012; Cai
et al. 2017, 2018), (iii) copious mass loss in a post-AGB phase
(Veras et al. 2015; Veras 2016) or supernova explosion of the host
star (Blaauw 1961), and (iv) the ejection of fragments when the
protoplanetary disk is perturbed (Vorobyov et al. 2017). The rel-
ative importance of each of these and other possible processes
are hard to assess, but the four listed here are probably most
common.

A total of 20 free-floating planet candidates have been iden-
tified (Udalski et al. 2008; Wright et al. 2010; Winn & Fabrycky
2015; Mroz et al. 2019). Two of these orbit each other in the
binary-planet 2MASS J11193254-1137466 (Best et al. 2017),
but all others are single. Weak micro-lensing searches indicate
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that the number of free-floating planets with masses exceeding
that of Jupiter is about one-quarter of the number of main-
sequence stars in the Milky Way Galaxy, whereas Jupiter-mass
planets appear to be twice as common as main-sequence stars
(Sumi et al. 2011). Interestingly, Earth-mass free floaters are esti-
mated to be only comparable in number to main-sequence stars
(Cassan et al. 2012); there appears to be a peak in the number of
free-floating planets around the mass of Jupiter.

If rogue planets are liberated upon a strong encounter with
another star in a cluster, this process is likely to take place
during its early evolution after circumstellar disks have coagu-
lated into planets and most of the primordial gas has been lost.
By this time, the stellar density is still sufficiently high that
strong encounters between stars are common (Portegies Zwart &
Jilkova 2015). Young star clusters may, therefore, make an
important contribution to the production of free-floating plan-
ets. However, this is at odds with the low number of free-floating
planets seen in star clusters. Only one rogue planet was found in
the TW Hydra association (Schneider et al. 2016) and a dozen
candidates were found in the sigma Orionis cluster (Zapatero
Osorio et al. 2013), but no planets were found in the Pleiades
cluster despite active searches (Zapatero Osorio et al. 2014).
These estimates are in sharp contrast to the number of aster-
oids and other solf lapides' expected from the star formation
processes (Portegies Zwart et al. 2018a).

! solus lapis, means “lonely rock™ in Latin.
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The majority of free-floating planets appear as part of the
field population, but this may be a selection effect of the meth-
ods used to find them (Winn & Fabrycky 2015). To some degree,
however, their relatively high abundance in the field does not
come as a surprise. If every star that turns into a white dwarf
liberates its planets (and other debris), the number of isolated
free floaters should exceed the number of white dwarfs at least
by the average number of planets per star. Many of these stars
are then already part of the field population once they turn into
white dwarfs, giving a natural reduction of free-floating planets
in clusters compared to the field population. However, this would
mean that dynamical interactions and internal planetary instabil-
ities have a minor contribution to the formation of free-floating
planets.

In order to investigate the consequences of stellar evolution
and dynamical interactions on the production of free-floating
planets, we perform a series of calculations in which we take the
relevant processes into account. The main question we address
is to what degree the dynamics of a star cluster contribute to the
formation and variety of free-floating planets, and what is the
relative importance of the various channels for producing these
planets.

Planetary systems in our simulation are born stable in the
sense that allowing the systems to evolve in isolation would not
result in dynamical interactions among the planets. This enables
us to study specifically the relative contribution of dynamical
interactions on the production of free-floating planets. The stars
in our simulations that receive a planetary system are selected
such that they remain on the main sequence for the entire dura-
tion of the simulation. Stellar mass loss, therefore, does not
specifically affect these planetary systems. As a result, in the
absence of dynamical interactions these planetary systems are
not expected to be affected by either internal planetary dynamics
nor by stellar mass loss.

We include, in our simulations, the gravitational interactions
between the stars, the interactions inside the planetary systems,
and the mass loss due to stellar evolution. In principle, all the
three main processes mentioned above are included, although,
as mentioned earlier, the effect of stellar evolution is limited
by the duration of our simulations. We take all these effects
into account as accurately as our computer resources permit,
which is particularly important for the long-term dynamical pro-
cesses among planets orbiting a single star. The simulations are
performed using the Astrophysical Multipurpose Software Envi-
ronment (AMUSE; Portegies Zwart et al. 2009, 2013; Pelupessy
et al. 2013). We perform our calculations using a dedicated
script, which we call Nemesis, that enables us to integrate the
equations of motion of stars with planetary systems and includes
the effects of mass loss due to stellar evolution and collisions
between stars and planets. Our calculations ignore the primordial
gas in the star cluster, but our initial conditions are selected to
mimic the initial stellar and planet distribution functions shortly
after the primordial gas was expelled and the disks turned into
planetary systems. Several example scripts of how AMUSE oper-
ates and a more detailed description of the framework is provided
in Portegies Zwart & McMillan (2018).

In this work, we focus on the liberation processes and their
consequences in a dense star cluster with characteristics com-
parable to the Orion Trapezium cluster. The majority of the
observed field stars and rogue planets may originate from bound
clusters, loosely bound associations, and only a minority from
isolated stars. Our adopted initial conditions originate from a
previous study (Portegies Zwart 2016) in which the size dis-
tribution of circumstellar disks in the Orion Trapezium cluster
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were reproduced. We considered these conditions suitable for
our follow-up study assuming that some of the surviving disks
would produce a planetary system. The cluster in the study of
Portegies Zwart (2016) was born in virial equilibrium with a
fractal density distribution with dimension F = 1.6. The clus-
ter initially contained 1500 stars with a virial radius of 0.5 pc.
At an age of 1 Myr the size distribution of the disks in this clus-
ter is indistinguishable from the observed size distribution of 95
ionized protoplanetary disks larger than 100 au in the Trapezium
cluster (Vicente & Alves 2005).

We adopt the earlier reconstructed initial parameters for the
Trapezium cluster and populate the stars that have a surviving
disk with a planetary system. The 500 stars with a disk size of
at least 10 au at the end of their simulation received either four,
five, or six planets with a mean mass of ~0.3 Mjypicer. The planets
are assumed to have circular orbits in a randomly oriented plane.
The correlation between orbital separation and planet mass was
selected from the oligarchic growth model for planetary systems
by Hansen & Murray (2013) and Kokubo & Ida (2002).

After the initialization, we continue the evolution of the star
cluster including its planetary systems for 10 Myr to an age of
11 Myr. At that time about half the cluster stars are unbound.

In the following Sect. 2 we describe the setup of our numeri-
cal experiment, followed by a description of the initial conditions
in Sect. 3. We report on the results in Sect. 4, discuss the
results in Sect. 5 and eventually, in Sect. 6, we summarize our
findings. In Appendix A we validate the adopted Nemesis
method for integrating planetary systems in stellar clusters.

2. Methods

Integrating planetary systems in star clusters is complicated by
the wide range in timescales, ranging from days to millions of
years, and the wide range of masses, ranging from Earth-mass
up to about 100 M. The first complication directly indicates that
many planetary systems have to be integrated over many orbits,
which have to be realized without a secular growth of the error in
the energy. The wide range in masses hinders such integrations
by introducing round-off and integration errors (Boekholt &
Portegies Zwart 2015). The effect of stellar mass loss compli-
cates the numerical problem. In this section, we describe the
methods developed to address these issues.

We use AMUSE for all the calculations presented in this
work. This framework is a component library with methods
for coupling multi-scale and multi-physics numerical solvers
for stellar evolution, gravitational dynamics, hydrodynamics,
and radiative transfer. In this paper we incorporate stellar
evolution of all the stars in the simulation via the SeBa
parametrized stellar evolution code (Portegies Zwart & Verbunt
1996, 2012; Portegies Zwart & Yungelson 1998; Toonen et al.
2012). Gravitational interactions between planets are addressed
using Huayno, which is a class of a large variety of N-body codes
based on various kick-drift-kick algorithms via the Hamiltonian
splitting strategy of tunable order (Pelupessy et al. 2012). For this
work, we adopted the fourth and eighth order shared time-step
solvers (Makino & Aarseth 1992; Nitadori & Makino 2008). In
our case, we adopted the fourth order method for integrating the
equations of motion for the stars and the symplectic higher order
method for planetary systems.

The computing time for integrating Newtons’ equations of
motion of N stars in a cluster scale cc N2, In a relatively small
star cluster such as the Trapezium cluster studied in this paper,
the integration time step for the top-level parent particles peaks
at a fraction of the mean cluster’s crossing timescale, whereas
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Fig. 1. Diagram of Nemesis method. (A) A particle is an individual object or a subsystem consisting of multiple individual objects. In this study,
the individual objects are either stars or planets. (B) The gravitational force on a particle is the sum of the force from other particles [1] and the
forces from the individual objects in the subsystems. (C) The gravitational force on individual objects is the sum of the force from the particles [1]
and the forces from the other individual objects in the containing subsystem [2], but not from those individual objects in other subsystems [3]. The
forces from A.1 and B.2 are each in a self-contained system and can be calculated in an N-body code; the forces in A.2 and B.2 are connected to

the self-contained systems and are evolved with a leapfrog algorithm.

the planetary time step is typically on the order of a few per-
cent of the orbital period around the host star. A multi-time-step
approach consequently saves enormously in terms of computer
time (see also Aarseth 1985).

Adding planets to stars increases the number of particles in
the system. A more severe performance bottleneck is introduced
by the generally tight orbits in which these planets are intro-
duced; i.e., years for planets compared to millions of years for the
free-floating stars in the cluster. If all the new objects were intro-
duced in a regular N-body code the computation would come to
a grinding halt. To prevent this from happening and to reduce
the effect of integration errors and round off, we developed the
Nemesis package within the AMUSE framework.

The principles that make Nemesis efficient is based on
the wide range of scales, which are used as an advantage by
separately solving systems that are well separated in terms of
temporal or spatial scales. In addition, we introduce the sim-
plification that a planet orbiting one star has a negligible effect
on the orbit of a planet around another star in the cluster. This
strict separation subsequently allows us to choose different inte-
grators for stars and planetary systems. The latter flexibility
allows us to tailor the integration method to the topology of
the system. As a consequence, our calculations are naturally
parallelized over the many well-separated systems. This results
in an enormous acceleration when running on multiple cores
because each of the N-body integrators can run in parallel for
the global intersystem communication timescale. At the same
time, energy is conserved per individual system and separately
for the global N-body system to machine precision. This combi-
nation of excellent performance and energy conservation makes
Nemesis an ideal tool for integrating planetary systems in star
clusters.

2.1. Nemesis module

In Nemesis, planetary systems and stars are integrated together.
The underlying assumption is that the entire cluster can be
separated into groups. We call these groups “subsystems” or
“children” and they can be composed of stars as well as plan-
ets that are relatively close together with respect to the size of
the cluster. The dynamics in these subsystems is not resolved in
the global integrator, which we call the “parent”, but is integrated
separately. In many cases, a planetary system is a subsystem, but

children may also be composed of several planetary systems that
happen to be spatially in close proximity. In this approach, we
integrate subsystems separately from the rest of the cluster, but
the components of the subsystems and the other cluster objects
feel each other’s forces.

2.1.1. Calculating forces

In this section, we explain how the forces in the Nemesis module
are calculated. To ease the discussion, we define the term parti-
cle. Particles represent the center of masses of a subsystem or
of individual objects, such as single stars or free-floating plan-
ets. Particles represent the parents in the N-body system and are
integrated together in one N-body code. In practice, the particles
are integrated with a fourth- or sixth-order Hermite predictor-
corrector method (Makino & Aarseth 1992; Nitadori & Makino
2008).

The internal dynamics of each child (the subsystem) is inte-
grated with a separate N-body code. The latter can be a different
code, for example, a simple Kepler solver or some high-order
symplectic N-body solver. We call this the local subsystem for a
particular particle, or the parent’s child. The entire simulation is
then composed of as many N-body codes as there are subsystems
and one additional code for all the particles that are not part of a
subsystem including the center of masses of all the subsystems.
The parent system is then composed of subsystems, single stars,
or planets.

The gravitational force exerted on each particle is composed
of three parts: the forces from all the other objects in the local
subsystem, the forces of all the single particles in the global
system, and the force of the stars and planets in the other subsys-
tems. In Nemesis we ignore the forces of the individual objects
(planets and stars) in the other subsystems. Instead, we take the
force from the center of mass of the subsystem into account.
As a consequence the stars and planets in a subsystem feel the
total force from other subsystems as exerted from the center of
mass of that subsystem, but not the individual forces from all
the individual components from within that subsystem. Particles
in other subsystems, therefore, do not feel the forces of individ-
ual planets orbiting a star in the other subsystem. Local particles
feel the forces of the other planets and stars in the same sys-
tem. This procedure, outlined in Fig. 1, results in a slight error in
magnitude and direction of the force on any particle due to the
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assumption that all objects in another subsystem exert a force
from the center-of-mass of that subsystem. As long as a subsys-
tem is composed of a star with some planets, this error remains
small, but the error grows when a subsystem is composed of
multiple stars. We reduce this error by assuring that subsystems
remain small compared to the interparticle distance and that they
are not composed of many stars.

2.1.2. Integrating the system

The force calculation in Nemesis is implemented in multiple
bridge operations (Fujii et al. 2007; Portegies Zwart & McMillan
2018). These bridges integrate the equations of motion of the
individual components (particles and the subsystems) via a
second-order Verlet kick-drift-kick method (see Hut et al. 1995;
Jdnes et al. 2014).

In the initial kick phase, we accumulate the forces between
the single particles and the particles in each of the subsystems.
These forces are used to update the velocities of the particles and
the objects in each of the subsystems over half a bridge time step,
dtbridge/ 2.

In the drift phase, the particles and subsystems are inte-
grated using the forces between the particles in each individual
subsystem. Since this is an uncoupled problem, each individual
subsystem is integrated in parallel. In this phase, we ignore the
forces between the single particles and those that are in sub-
systems. In the final kick phase, we again calculate the forces
between the single particles and the particles in the subsystems
based on the new positions after the drift phase, and again update
the velocities.

This procedure allows us to integrate particles and subsys-
tems independently. This strict separation of integrating sub-
systems enables us to adopt a different N-body code for each
subsystem, although this is not a requirement. In addition, it
makes the concurrent integration of each subsystem possible,
which enormously speeds up the procedure for a sufficiently
large number of subsystems.

2.1.3. Subsystem dynamics

Subsystems may change their composition at runtime. This can
happen when a star or planet is ejected, planets or stars collide,
when two or more subsystems merge, or when a single object
enters the subsystem. To simplify this process, we recognize two
changes to a subsystem:

— Merger. Two subsystems are merged to one as soon as their
center of masses approaches each other to within the sum
of their radii. In this case the radius of each subsystem is
the maximum of two radii: it is (1) 5% larger than the dis-
tance from the center-of-mass to the outer-most object and
(2) the size that corresponds to a likely encounter. The lat-
ter is a function of the bridge time step (fnemesis), the number
of objects in a subsystem, the mass of the subsystem, and a
dimensionless factor 77: fene = 1.0/Ntnemesis- We adopt a value
of n = 0.2. Upon the merger of two subsystems, one of the
N-body integrators assimilate the other subsystem and the
other integrator is terminated. Since both integrators may
be different, we assume that the integrator with the largest
number of particle survives.

— Dissolution. A subsystem can dissolve into individual
objects or multiple body parts can split off to form their own
separate subsystem. The procedure to decide on the disso-
lution of a subsystem follows the inverse criteria as for the
merger of two or more subsystems. This procedure may lead
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to the starting of one or more new integrators to take care
of the various newly introduced subsystems. Single objects
(stars or planets) are incorporated in the global integrator
when they escape from a subsystem.
From an astronomical point of view, this procedure looks some-
what arcane, but numerically it has many advantages because it
allows us to optimize for efficiency, performance, and accuracy.

2.1.4. Planet and stellar collisions

Apart from the dissolution and merging of dynamical subsys-
tems, we also allow stars and planets to experience physical
collisions. Collision can only occur within a subsystem. If two
stars in the parent system were to collide, they would first for a
separate subsystem within which the collision is handled. Two
stars or planets are considered to collide as soon as their mutual
distance is smaller than the sum of their radii. A collision always
results in a single object, while conserving the mass, volume,
and angular momentum in the collision. In principle, it would
be relatively easy to perform a hydrodynamics simulation upon
each collision, but that is beyond the scope of our current study.
A more extensive discussion on such more rewarding events is
provided in Portegies Zwart & McMillan (2018).

Isolated stars have a size according to the stellar evolution
code, which runs concurrently with the dynamics. The sizes of
planets are calculated by assuming a mean planet density of
3 gem™3. For improved efficiency, we adopt a special treatment
for collisions between planets and the central star of a planetary
system. Planets are assumed to collide with their orbiting star
as soon as they approach it to within 1 au. This relatively large
distance was adopted in order to reduce the computational cost
of integrating tight planetary orbits and to minimize the errors
associated with their numerical integration. We can easily relax
this assumption, but it would result in a considerable increase in
computer time.

The new mass of a merged object is the sum of the two indi-
vidual masses and the new position and velocity are determined
by conserving linear momentum and angular momentum. The
radius of the collision product of two planets is calculated by
conserving the density. A stellar collision acquires its new radius
on the stellar evolution track as described in Portegies Zwart &
Verbunt (1996).

2.2. Selecting the N-body codes in Nemesis

Each subsystem is integrated with a separate N-body code. In
principle, each of these codes could be different. In practice,
however, we use two different techniques to integrate the equa-
tions of motion of the stars and planets. The choice of code is
based on the requirements for the physics.

For two-body encounters, we adopt a semi-analytic Kepler
solver as implemented by Pelupessy & Portegies Zwart (2013).
For a typical planetary system in which one particle is much
more massive (at least more than 100 times) than the other
particles, we use Rebound (Rein & Liu 2012) with an implemen-
tation of a symplectic Wisdom-Holman integrator (WHFAST
Rein & Tamayo 2015). For all other subsystems, we adopt
the eighth-order method available in the symplectic integra-
tor Huayno (Pelupessy et al. 2012). The center-of-masses of
the subsystems, the single stars, and the free-floating planets
are integrated via the Hermite fourth-order predictor-corrector
integrator (Makino & Aarseth 1992; Nitadori & Makino 2008).

All calculations are executed on a central processing unit
(CPU) because the number of particle in each N-body code is
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relatively small and a graphics processing unit (GPU) would not
provide many benefits in terms of speed (Belleman et al. 2008).

2.3. Validation and verification

The performance and accuracy of the Nemesis integrator mod-
ule is controlled with two parameters: one controls the distance
for which individual objects (planets and stars) and subsys-
tems merge or dissolved, and the another controls the time step
of the bridge operator. This so-called bridge time step con-
trols the numerical timescale for the interactions between the
subsystems and the particles. Both parameters are tuned inde-
pendently but we choose to express the bridge time step in terms
of the encounter distance and the mass of the objects. This
adopted scaling leaves only the Nemesis time step, dfyemesis, aS
a free parameter for integrating the entire N-body system. This
timescale depends on the topology of the N-body system, and
we tune its value by performing scaling and validation tests. A
detailed analysis of the dependency of the model on the time step
in presented in Appendix A. For our choice of initial conditions
and integrators we found that an interaction time step of 100 yr
gives the most satisfactory results in terms of reproducibility,
consistency, energy conservation, and speed.

3. Initial conditions

After developing and validating the numerical framework we can
start generating the initial realization for our star cluster with
planetary systems. We start the calculations with a cluster of
stars, some of which have a planetary system. The initial real-
ization is motivated by Portegies Zwart (2016), who studied the
dynamical evolution of the star cluster with 500 to 2500 stars
taken from a broken power-law mass function between 0.1 M
and 100 M (Kroupa 2001). These calculations were performed
with a fourth order Hermite N-body method including a heuris-
tic description for the size and mass evolution of circumstellar
disks. At the start of these calculations each star received a disk
with a mass of 1% of the stellar mass and a size of 400 au.
During the N-body integration the sizes and masses of these
disks were affected by close stellar encounters (Jilkova et al.
2016). During these simulations the disk size distributions were
compared with the protoplanetary disks observed using Hubble
Space Telescope WFPC2 of the Trapezium cluster (Vicente &
Alves 2005). In this way Portegies Zwart (2016) was able to
constrain the initial cluster parameters. Clusters for which the
stars were initially distributed according to a Plummer (1911)
distribution did not satisfactorily reproduce the observed disk-
size distribution, irrespective of the other parameters, but when
the stars were initially distributed according to a fractal with
a dimension F = 1.6 and in virial equilibrium (Q = 0.5) the
simulations satisfactorily reproduced the observed disk size dis-
tribution in the Trapezium cluster (KS probability of ~0.8) in the
age range from 0.3 to 1.0 Myr. For our simulations, we adopted
the final stellar masses, positions, and velocities for one of these
simulations that matched the observed distribution of disk sizes
and disk masses best. As a consequence, our initial conditions
had already evolved dynamically for 1 Myr before we started our
calculation.

In Table 1 we present the initial parameters as adopted by
Portegies Zwart (2016) in the left column (indicated by ¢ =
0Myr). The third column gives the global cluster parameters
at an age of 1 Myr, which are the final conditions for the study
performed by Portegies Zwart (2016). We adopted these param-
eters and in fact, the precise realization of these calculations as

Table 1. Initial cluster model adopted by Portegies Zwart (2016); the
final conditions for the disk-size analysis in Portegies Zwart (2016),
which we adopted as the initial realization for the simulations presented
here; and the final conditions.

Parameter t=0Myr ¢=1Myr ¢=11Myr
Cluster characteristics

Niotal 1500 1500 1482
Myna/ Mg 627 618 545
Ryi/pc 0.5 0.36 0.32
0 1.0 0.6 1.0
F 1.6 1.26 0.6
Stellar characteristics

Nond 1500 977 508
Nond,w/p 0 512 166
Nunbnd,w/p 0 0 323
Ny /planets 0 500 517
Ny>100au 1500 78

Ni>10au 1500 578

Planets characteristics

Npnd - 2522 2165
ng - 0 357
Munbnd - 0 282
Mpng/ Myup - 3527 2915
meg/Myyp - 0 502
munbnd/MJup - 0 395

Notes. The parameter Ny, indicates the total number of stars in the
simulation; Ny,q, the bound mass of the cluster in solar masses; R,;, the
virial radius of the cluster; Q, the virial equilibrium; F, the fractal
dimension of the cluster; Ny,g, the number of bound stars; Ny, the
number of bound stars with planets; Nyng, the number of unbound stars
with planets; Ny /planeis> the number of stars with planets; Ny»j00au the
number of stars with disks or planets equal or larger than 100 au;
N,>100a0 the number of stars with disks or planets equal or larger than
10 au; npnq, the number of planets bound to a star; ng, the number of
free-floating planets; 7,,pnq, the number of planets unbound from the
cluster; myyq, the total planetary mass in Jupiter masses, bound to a star;
mg, the total planetary mass in free-floating planets; and m1,,pnq, the total
planetary mass unbound from the cluster.

initial conditions for our follow-up calculations. The last (fourth)
column presents the global cluster parameters at the end of
our simulations, at an age of 11 Myr, which is 10 Myr after the
introduction of the planetary systems.

During the first 1 Myr of evolution, starting from a frac-
tal spatial distribution (see the leftmost panel in Fig.2) most
of the structure in the initial cluster is lost. The cluster seems
to have expanded considerably, as is evidenced by the zoom-
out in Fig. 2, but when considering the virial radius has in fact
decreased from the initial 0.5 pc to R,i; =~ 0.36 pc at an age of
1 Myr. At this moment, we randomly select 500 stars for which
the circumstellar disk has survived with a radius of at least
100 au. We subsequently assign a planetary system to 500 of
the stars with a surviving disk. The total mass of the planets
is identical to the disk mass. The masses and orbital separa-
tion of planets are generated using the oligarchic growth model
(Kokubo & Ida 1998) between a distance of 10 to 400 au from the
host star.

There is no particular reason why we adopted a minimum
separation of 10au, but adopting a smaller minimum separa-
tion would have resulted in many more planets with a low mass
in very tight orbits. This would have resulted in an enormous
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Fig. 2. Projected view of the simulated star cluster at t = O Myr (initial conditions adopted by Portegies Zwart 2016; left panel), at t = 1 Myr
(middle panel and the adopted initial conditions), and at t = 11 Myr (right panel, our final conditions). Stars are red bullets, single free floating

planets black triangles.

increase in computing time. All planets have initially circular
orbits with inclination randomly selected from a Gaussian dis-
tribution with a dispersion of 1° around a plane. This plane is
defined as the orbital plane of the planet closest to the star. After
the planetary systems are initialized they are rotated to a random
isotropic orientation. Each star acquires between 4 and 6 planets
with a mass of 0.01 to 130 Jupiter masses (see Figs. 4 and 6). The
total number of planets in the simulation was 2522.

4. Results

When starting the simulation the stars are already 1 Myr old
and the stellar density and velocity distribution are the result of
the previous calculations reported in Portegies Zwart (2016). We
continue to evolve this cluster including its planets for 10 Myr to
an age of 11 Myr.

We performed one simulation in which all interactions
between stars and planet are taken into account using Nemesis.
Snapshots are produced every 1000 yr, but most of the analysis
aims at the final snapshot at an age of 11 Myr. A second simula-
tion was performed in which the planetary systems are evolved
in isolation without any interactions from other stars. This sec-
ond run is used for validation purposes only. Even though not
explicitly discussed, no free-floating planets were formed in
this second run because the initial planetary configurations are
intrinsically stable.

4.1. Global evolution of the star cluster

In Fig. 2 we present a projected view of the stars and planets of
our simulated cluster at birth (left), at an age of 1 Myr (middle)
and at the end of the simulation, at an age of 11 Myr. During the
first 1 Myr in which the stars still have circumstellar disks the
cluster loses most of its initial fractal structure. During this early
phase, the cluster is most dynamically active and the majority of
stars experience one or more close encounters with other stars.
These encounters cause the truncation of circumstellar disks. By
the time we introduce the planetary systems, at an age of 1 Myr,
most dynamical interactions have subsided and the cluster has
expanded by about an order of magnitude, although the cluster
core remains rather compact (see also Table 1). The reduction
in density has profound consequences for the survivability of
our planetary systems. During the subsequent 10 Myr of evolu-
tion the outer parts of the cluster expand by another order of
magnitude, but the cluster core remains rather small and bound.
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In the overview presented in Table 1 we demonstrate that the
cluster hardly loses any mass during its evolution. Mass loss
due to stellar winds is rather moderate, reducing the total clus-
ter mass from 618 M, to 545 My in 10 Myr. The majority of
this mass loss is caused by the two most massive stars of 73 M,
and 64 M. These stars experience copious mass loss in the
Wolf-Rayet phase followed by a supernova explosion. Such evo-
lution may enrich most of the disk in the cluster by r-processed
elements (Portegies Zwart et al. 2018b). The expansion of the
cluster by about an order of magnitude and the global mass loss
in bound stars cannot be attributed to the stellar mass loss alone.
In total, the cluster loses about two-thirds of its stars, one-third
in the first Myr, and another third in the following 10 Myr. The
structure of the cluster also changes from an initial fractal dimen-
sionof F = 1.6to F = 1.26 at 1 Myr and to F =~ (.6 at the end of
the simulation. The eventual cluster, at an age of 11 Myr, can be
well described with a Plummer distribution (Plummer 1911) with
a characteristic radius of 0.32 pc. Although, in Fig. 2 the cluster
appears to expand by two orders of magnitude, the cluster central
portion remains rather confined within a parsec.

4.2. Characteristics of the surviving planetary systems

During our calculations, planetary orbits are affected in a num-
ber of ways. We start by describing the characteristics of the
surviving planetary systems. Later, in Sects. 4.4 and 4.5 we dis-
cuss the planets that are lost due to collisions or ejection from
their host star.

In Fig. 3 we present the distribution in eccentricity and semi-
major axis of the planets that remain bound up to an age of
11 Myr. About 10% (213 in total) of the planets have experienced
considerable orbital variations (Ae > 0.1 or Aa > 10%) due to a
combination of encounters with other stars and internal plane-
tary scattering. We note that in the absence of stellar encounters
the planetary systems are not affected by internal scattering.
Any changes in the planetary systems in our simulation is there-
fore the result of interactions with external perturbators (stellar
encounters and cluster topology). These interactions put the
planets in orbits where internal scattering causes further changes
in the orbital parameters.

Some planets acquire eccentricities close to unity, indicating
that they may be subject to tidal interactions or even collisions
with the host star. Although we ignore tidal effects in our calcu-
lations, collisions are taken into account. A total of 75 (~3.0% of
the total) planets collided with their parent star and 14 (~0.6%)
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Fig. 3. Eccentricity as a function of the semimajor axis the planets that
survive up to an age of r = 11 Myr.
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Fig. 4. Histogram for the number of systems with a certain number of
planets. The dotted curve gives the initial distribution with either 4, 5, or
6 planets per star. The final conditions for the simulation without stellar
dynamics are identical to this initial distribution. The distribution of
the simulation in which we included the stellar encounters at an age of
11 Myr is presented as the solid curve with slanting lines.

planets experienced a collision with another planet. We discuss
planetary collisions more extensively in Sect. 4.4.

In Fig. 4 we compare the distributions of the number of plan-
ets per star in our simulation and compare the distribution with
the simulation in which we ignored any stellar encounters. In
the latter simulations, the planetary systems are not affected by
dynamics and their conditions remain very close to the initial
conditions. This indicates that the initial configuration of our
planetary systems is stable against internal dynamical evolution.

All stars with planetary systems have either four, five, or six
planets initially. In Fig. 4 we subsequently observe that in partic-
ular systems with five planets tend to be reduced, whereas only
a few stars with four planets or six planets seem to lose any. In
addition, by the end of the calculations, the number of systems
with three planets seem to be rather small compared to the num-
ber of systems with one or two planets. To further quantify the
results we also present Table 2, in which we present the number
of planets for a star initially (columns) versus the final number
of planets (rows).

From Table 2 we see that the systems with three planets by
the end of the simulation tend to originate from systems with
initially four or five planets. But we find that most systems that

Table 2. Comparison of the distribution of planets at the beginning and
at the end of the simulation.

Np

01 2 3 4 5 6 3
> 5 0 0 0 109 332 71
0O 0 0 O 0 3 25 0 28
1 30 0 0 o 35 10 54
2 2 0 0 0 5 17 6 30
3 0 0 0 0 2 4 0 6
4 0 0 0 0 93 11 0 104
5 0O 0 0 0 O 240 2 242
6 0 0 0 0 O 0 53 53

Notes. In each cell, the count of the number systems with a certain
number of planets is given. This count is given per number of planets
in the original system. The original distribution 1 Myr is given in the
top summation row; the final distribution at 11 Myr is given in the last
column. For the final distribution of the 6 systems with 3 planets, 2
of these systems originally had 4 planets, 4 originally had 5 planets,
and none originally had 6 planets. A total of 5 new planetary systems
have been created during the evolution of the cluster, in these systems
originally the star had no planets. Of these 5 new planetary system, 3
systems have 1 planet and 2 have gained 2 planets.

initially have five planets reduce directly to one or no plan-
ets at all. Curiously enough though, systems that initially have
six planets do not lose as many planets, but when they do, they
tend to reduce to a single planet, whereas for systems that ini-
tially have four planets tend to be rather agnostic about how many
planets they lose. Statistically, these changes are significant but
much can be attributed to the initial conditions. According to
our initial conditions, large disks with a relatively high mass are
prone to receiving more planets than small low-mass disks. The
large disks tend to be hosted by relatively low-mass stars, and
those stars tend to avoid the cluster center, whereas relatively
high-mass stars tend to be more abundant in the cluster core.
These differences propagate in the distribution of planets and
therefore cause an imprint on their future scattering history.

In Fig. 5 we plot the number of planets in a planetary system
at the end of our simulations. The majority of stars keep all their
planets throughout the calculations, but if a star loses planets, it
tends to lose a larger number like three to five rather than just one
or two. The lost planets become free-floating or rogue planets,
which we discuss in Sect. 4.5.

The redistribution of planets among the stars may also be
affected by the masses of the planets. To quantify this we present
in Fig. 6 the mean planet-mass as a function of their semimajor
axis. The oligarchic-growth model, used to generate the initial
planetary systems, leads to more massive planets at larger orbital
separation (visible in Fig. 6). To see if there is a mass preference
for ejecting planets we also show, in Fig. 6, the final distribution
(at an age of 11 Myr). Although the differences between both
distributions appear small, the differences at small separation are
statistically significant.

To further quantify these findings we present in Fig.7 the
difference in the cumulative distribution of planet mass for the
cluster at an age of 1 Myr with respect to 11 Myr. The difference
between the two cumulative distributions are small and the fluc-
tuations rather large, but in the final systems, low-mass planets
are more abundant than high-mass planets. The turnover occurs
near the mean-planet mass in our simulation which is around
1.4 Myypiter (indicated with the vertical line in Fig. 7). Based on
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Fig. 5. Histogram of the number of systems with a certain number of
lost planets. Of the original 500 planetary systems the majority (386)
do not lose any planets. Only 25 systems lose 1 or 2 planets and 102
systems lose 3 or more planets.
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Fig. 6. Mean planet mass as a function of semi major axis (in a moving
bin of 50 planets). The initial (at 1 Myr, in black) and the final (at 11 Myr
in red) mean mass only differ slightly. The mean mass, 1.4 Myyicr, is
depicted with a green horizontal line.

the lack of a correlation between planet mass and orbital separa-
tion we argue that the majority of ejections is driven by external
perturbations (mostly with other stars) rather than by internal
scattering among the planets.

4.3. Migrating and abducted planets

Two rather extreme processes that affect the orbits of planets are
their abduction from another star or when a planet is scattered
during a close encounter with other planets. In both cases the
resulting planet is expected to be parked in a wide orbit with high
eccentricity. However, planets that are scattered close to the host
star into a parking orbit are expected to have higher eccentricity,
on average, than planets abducted from another star (see Jilkova
et al. 2016).

In our simulations, only a few planets were abducted, and a
comparable number of planets were kicked out to the outskirts
of their own planetary system by internal scattering. In Fig. 8
we compare the orbital separation and eccentricity of these sys-
tems. Although the distributions are rather broad in semimajor
axis and in eccentricity, captured planets have on average lower
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Fig. 7. Relative difference between the cumulative distributes of the
masses of the bound planets initially and at 11 Myr. Positive values indi-
cate an overabundance at the end of the simulation. Initially, the mean
planet mass is 1.398 + 1.05 My, at 11 Myr the mean mass is only frac-
tionally different at 1.404 + 4.191 M,,; the latter value is indicated by
the vertical green line.
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Fig. 8. Eccentricity as a function of the semimajor axis for captured
planets (black diamonds) and migrated planets with semimajor axis
larger than 800 au (red dots) at an age of ¢+ = 11 Myr. The mean and
standard deviation for both sets are also plotted. The mean orbital ele-
ments for the captured planets is a. = 1539 + 824 au and e, = 0.6 + 0.2,
and a. = 1141 + 258 au and e, = 0.8 + 0.2 for the migrated planets.

eccentricity and somewhat larger orbital separation compared to
ejected planets.

In Table3 we list the migrated planets, and the abducted
planets are presented in Table4. Apart from slight differences
in the orbital parameters, the mass of the host star for captured
planets tends to be considerably higher than for the migrated
planets. This trend is not unexpected because of the stronger
gravitational influence of more massive stars whereas low-mass
stars are more prone to lose planets.

The abducted planets in Table 4 appear to have large semi-
major axes and a broad range in eccentricities. Such abduction
explains the observed orbital parameters of the dwarf planet
Sedna in the solar system (see Jilkovd et al. 2015). As an alter-
native to abduction, a free-floating planet could in principle be
captured by a star or planetary system. Capturing free-floating
planets was also studied in Goulinski & Ribak (2018), who
argued that these systems may not be uncommon, but that they
would have a wide range in eccentricities and typically large
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Table 3. Parameters for planetary systems in which one planet was
ejected to a larger distance (>800 au) from its host star.

System  Planet M (Mg,) m (Mjp) a(au) e
0 a 0.33 1.27 983.2 0.93
1 a 0.16 2.23 900.1 0.89
2 a 0.37 0.85 1107 0.39
3 b 0.37 6.05 1311 0.71
4 a 0.25 1.39 933.6 0.94
5 a 0.20 243 1062  0.94
6 a 0.72 6.85 1693  0.90

Notes. The second column identified which planet was ejected, fol-
lowed by the mass of the host, planet mass, and its eventual orbital
parameters.

Table 4. Listing of systems that formed by the abduction of a planet
from another star.

System  Planet M (My,) m (M) a(au) e
7 a 9.16 0.28 1544 0.68
7 b 9.16 0.50 1161 0.22
8 a 6.70 14.69 3332 0.50
9 a 3.61 095 8915 0.77
10 a 0.47 0.03 1100 0.66
10 b 0.47 0.12 1208 0.71
11 a 0.55 0.38 1925 0.60

Notes. Each of these stars was initially without any planets, but one or
two planets were captured from another system. In two cases (#7 and
#10) two planets were captured.

semimajor axes (Perets & Kouwenhoven 2012). In our simu-
lations no free-floating planets were captured, and we do not
expect this to be a common process because 80% of the ejected
planets escape promptly from the cluster (see Sect. 4.5).

4.4. Characteristics of colliding planets

One important aspect of planets is their finite size, which makes
them prone to collisions. A total of 75 planets in our simulations
collide with another planet or with the parent star. In our simula-
tions, collision with the parent star is not treated realistically in
the sense that we ignored tidal effects. We compensate for this
by adopting a size of 1 au for planetary-hosting stars. As a result,
we overestimate the number of collisions with the host star and
we do not acquire hot Jupiter planets. We, therefore, focus on the
collisions that occur between planets.

In Tables5 and 6 we list the mergers that occurred in our
simulations sorted in the moment of the collision. In Table 5 we
show the pre-collision parameters of the two planets that par-
ticipate in the collision, whereas in Table 6 we list the orbital
parameters of the merger product.

The orbital parameters for the pre-merger planets are derived
from the last snapshot before the merger occurred, which can be
up to 1000 yr before the actual event. The mean mass of the pri-
mary in a colliding planet pair is 1.14 My, and a secondary of
0.36 My,p. The resulting merger product is 1.5 My,,. During the
calculation, 34 planets collided in a total of 19 events. Several
planets experienced multiple collisions, causing the planet mass
to increase very effectively and causing the planet to migrate

closer toward the host star. These multiple mergers all tend to
occur in relatively short succession.

Most mergers tend to occur between neighboring planets, but
there are seven occasions where one or more intermittent planets
are skipped. In particular the event at t = 5.91 Myr is interesting
because in this case, the outermost planet collides with the inner-
most planet. Although not taken into account in our calculations,
such close encounters among planets could lead to the capture
of one planet by the other, giving rise to a binary planet as was
observed in Kepler 1625 (Hamers & Portegies Zwart 2018).

4.5. Production of free-floating planets

By the time the cluster has reached an age of 11 Myr the
total mass in bound planets was reduced from ~3527 My, to
~2915 Mjyp (see Table 1). Planets have been lost by their par-
ent star via encounters with other stars (see Sect.4.5) , internal
planet-scattering (~60), by the mass loss of their host stars,
and through collisions with the star (75; see Sect.4.4) of col-
lided with another planet (14). Once liberated, free floaters may
remain bound to the cluster (75 planets) or escape its gravita-
tional potential (282, see Table 1). In total 357 planets (out of
2522) were liberated from the gravitational pull of their par-
ent star. In Sect.4.3 we discussed the possibility of captured
planets, but this was not the fate of any of the free-floating plan-
ets, because all captured planets were exchanged during a close
encounter and always bound to at least one star.

In Fig.9 we present the number of free-floating planets as
a function of time. The majority of free floaters (67%) leave
the cluster within a crossing time (~1 Myr) after being liberated
from their host star. The other ~33% remain bound to the cluster
for an extended period of time and leave the cluster on a much
longer timescale, at a typical escape rate of ~8 planets per Myr.

In Fig. 10 we present the cumulative distributions of the
velocity of bound and unbound stars and planets; for the planets
we make a distinction between free-floating planets that remain
bound to the cluster and those that escape. The distributions for
the stars and planets at an age of 11 Myr that are still bound
to the cluster show only slight differences (thin lines). Both
velocity distributions are statistically indistinguishable (with a
KS-statistic of 0.23). The population of unbound planets, how-
ever, tend to have much higher velocities (of ~3f?:g kms™!) than

the stars (~1f(1):g kms™!). This is not unexpected because plan-
ets tend to be launched from the stars with their orbital speed,
which gives rise to higher mean escape velocity, whereas most
stars escape by dynamical evaporation (Fukushige & Heggie
1995; Portegies Zwart & Takahashi 1999). This relatively high
space motion of the rogue planets is also reflected in the large
percentage of liberated planets that escape the cluster.

In Fig. 11 we present the mass distribution of free-floating
planets. Those that remain bound to the cluster have statistically
the same mass function as those that escape (KS-statistics of
0.14) and as the global initial planet mass function (KS = 0.11;
see also Fig. 6). Signifying what we already discussed in relation
to Figs. 6 and 7: the ejection of planets is independent of their
mass (see also Malmberg et al. 2011; Veras & Moeckel 2012).

The mass distributions of free-floating planets in the simu-
lation differ considerably from the observed mass distribution.
Observational selection effects probably play an important role
here because low-mass free-floating planets tend to be very hard
to discover. We, therefore, introduce a lower limit of 2.5 My, to
the mass distribution the simulated distribution of free floaters
becomes statistically indistinguishable from the observed sample
(KS-statistic is 0.06).
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Table 5. Orbital elements of the merging planets.
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Time
(Myr)

3.10
3.14
3.28
3.85
4.24
4.96
5.13
5.31

5.36
5.49
5.83
5.85
5.91
5.98
6.09
6.20
7.55
7.71

8.25

id M a(au) e i(°) id M  a(au) e i(°)
(]Mjup) (Mjup)
le 0.30 213.7 0.68 144 1d 0.15 105.5 0.18 125.0
le 0.46 78.3 0.70 31.8 1c 0.08 334 0.38 100.2
le 0.54 374 0.39 1552 1b 0.05 13.5 0.29 87.5
2e 1.30 150.5 0.31 324 2d 0.62 118.2 0.21 37.2
2e 1.93 129.0 0.18 =311 2b 0.19 92.1 0.36 373
3e 1.03 234.0 0.50 4.0 3d 0.51 90.9 0.22 7.3
4f 0.76 401.5 0.51 -38.3 4c 0.13 130.5 0.35 —-6.1
5d 0.58 130.3 0.66 -4.5 Sc 0.25 115.6 0.20 -94
6e 0.49 160.6 0.57 73 6d 0.24 87.7 0.29 18.9
Te 1.12 222.3 0.69 3877 7d 0.56 161.0 0.54 -5.0
8d 3.93 2954 0.54 0.0 8a 0.39 96.8 0.99 7.1
8d 4.31 255.7 0.56 6.1 8c 1.61 296.1 0.52 5.2
9% 0.37 2234 0.38 0.0 9a 0.04 215.0 0.84 -10.2
10e 0.30 101.7 0.39 18.2 10d 0.17 133.3 042 -105
5d 0.82 121.9 0.57 -26.1 5b 0.12 44.8 0.63 5.9
1le 0.81 111.1 0.62 -12.6 11d 0.39 44.4 0.44 -13.9
12d 0.13 128.1 0.19 -89 12b 0.04 98.4 0.60 5.1
13f 0.17 214.9 0.61 46.2 13e 0.09 42.6 0.92 24.9
14f 2.29 301.0 0.15 1.1 l4e 1.20 127.8 0.01 -1.9

Notes. For each merger the time of the snapshot saved just before the merger is given. For every planet the index of the planetary system is given

with a letter denoting the position of the planet in the system (from the innermost planet “a

[IPRL]

to the outermost planet “f””). We define the inclination

of a planet with respect to the initial orbital plane of the closest planet to the star.

Table 6. Orbital elements of the planets resulting from a merger.

Time (Myr) ida idb M a e i(°)
(]Wjup) (au)
3.10 le 1Id 046 788 0.70 100.5
3.14 le lc 054 372 040 93.6
3.28 le Ib 059 190 014 927
3.85 2e 2d 193 1299 023 346
4.24 2e 2b 212 1029 0.08 326
4.96 3e 3d 154 1375 0.21 5.7
5.13 4f 4c  0.89 2562 026 -9.5
5.31 5d 5¢c 0.82 1051 055 -73
5.36 6e 6d 0.73 1057 027 13.0
5.49 Te 7d 1.69 1724 0.64 144
5.83 8d 8a 431 2363 040 5.4
5.85 8d 8 592 2209 0.50 5.4
5.91 9¢ 9a 041 1666 0.24 -10.1
5.98 10e 10d 046 98.7 0.31 1.4
6.10 5d 5b 094 948 054 -8.0
6.20 11e 11d 121 632 048 -54
7.55 12d 12b 016 1074 006 -6.3
771 13f 13¢ 026 73.0 014 270
8.25 14f 14e 350 2557 010 -13

In relation to Fig.7, we argued that the lack of a mass-
dependency of the production of free-floating planets is mainly
caused by the importance of strong encounters with other stars
rather than internal scattering among planets. To quantify this
hypothesis we present in Fig. 12 the cumulative distributions
of the number of strong and weak encounters. In this figure
strong indicates an encounter within 1500 au. In this analysis, a
planet that becomes free floating within 0.5 Myr of such a strong
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Fig. 9. Number of free-floating planets (Ny,) as a function of time. The
solid curve (black) indicates all free planets; the red curve indicates the
subset of free floaters that also escape the cluster.

encounter is considered to be liberated as a result of this, oth-
erwise, we consider the planet to be lost as a result of a weak
encounter or the internal reorganization of the planetary system.

To further understand the importance of strong encounters
we present in Fig. 13 the delay time distribution of liberated
planets. The majority of those escape promptly upon a strong
encounter with another planetary system or a single star. A con-
siderable number (~24%) require more time (up to about a mil-
lion years) before they escape from their host star. In this latter
population, planetary escape is initiated by the close encounter,
but it requires the planetary system to become dynamically
unstable before the planet is actually ejected. The timescale for
these planetary systems to become unstable appears to be on the
order of a million years.
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Fig. 10. Cumulative distribution (normalized) of the velocity of planets
(black curves) and stars (red curves) at an age of 11 Myr. Planets and
stars bound to the cluster are plotted with a thin line; the thick curves
indicate the unbound objects.
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Fig. 11. Cumulative distribution of the masses of all planets (red), the
free-floating planets that are bound to the cluster (green), and those
unbound from the cluster (blue). These three curves are statistically
indistinguishable. The dotted curve indicates the mass distribution of
16 observed potential free-floating planets from Luhman et al. (2005);
Marsh et al. (2010); Zapatero Osorio et al. (2000); Delorme et al. (2012);
Liu et al. (2013); Gagné et al. (2014a,b,c, 2015); Schneider et al. (2014,
2016); Luhman (2014); Liu et al. (2016); Kellogg et al. (2016). For a
different comparison, we introduce a lower mass cutoff to the initial
sample of planets of 2 My, and compare this with the observed sample
(black).

The number of Jupiter-mass free-floating planets have been
estimated to about 0.25 of the number of main-sequence stars
(Cassan et al. 2012; Mréz et al. 2017). This number is consis-
tent with our findings, even though we adopted that only about
one-third of the stars had planets initially. If each star would
have a planetary system, our estimates would rise to about ~0.72
free-floating planets per main-sequence star, which would be on
the high side but not inconsistent with the observed estimate of
1.84_’(1); (Sumi et al. 2011). Although not taken into account in
this work, the number of free-floating planets produced per star
depends on the moment circumstellar disks start forming plan-
etary systems, their distribution in mass and orbital parameters,
and on the density and velocity distribution of the youngs cluster.

5. Discussion

We simulated the evolution of a cluster of 1500 stars of which
500 are orbited by a total of 2522 planets (4, 5, or 6 planets of
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Fig. 12. Number of planets that became unbound from their host star
as a function of time. The number of planets that escaped their host
within 0.5 Myr following a strong encounter (within 1500 au, red curve)
is about twice as large as the planets that escape without evidence of
having experienced a strong encounter (black curve). The dotted black
curves indicate the dependency on the timescale within which a strong
encounter is supposed to lead to ejected planets; the lower curves indi-
cate the cumulative distribution for planets that are liberated within
1 Myr of a close encounter, whereas the upper curve is for 0.2525 Myr).
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Fig. 13. Number of planets that escape from their host star as a func-
tion of the time between a close encounter (within 1500 au) and the
moment of escape. The majority of the planets escape promptly upon an
encounter, but a considerable number require more time, up to about a
million years.

0.008 My,p—130 My, per star in circular planar orbits between 10
and 400 au). The calculations were performed via the Nemesis
script in the Astrophysical Multipurpose Software Environ-
ment (Portegies Zwart 2011; Portegies Zwart et al. 2018c;
Portegies Zwart & McMillan 2018) and include the effects of
stellar mass loss and the interactions between all objects. We
took the initial conditions from earlier calculations that mimic
the mass and size distributions of the Orion trapezium star
cluster (Portegies Zwart 2016). We stopped the calculations at
an age of 11 Myr, after which we analyzed the population of
planets.

In our calculations, we ignored the effect of tidal energy
dissipation between stars and planets. When we started this
study we argued that this effect had minor consequences, but
it turned out that 75 of the planets (3.0%) have a strong interac-
tion with their host star and 34 planets collide with other planets.
Tidal interactions are clearly important and we will improve this
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in a future version of Nemesis. Considering these systems as
resulting either in a collision with the parent star or the forma-
tion of a hot Jupiter, we derive a hot-Jupiter formation efficiency
of 75 per 500 planetary systems per 10 Myr, or 15% of the plane-
tary systems produce a hot Jupiter, which is not inconsistent with
the rate derived by Heller (2018).

Our study mainly focuses on the production of free-floating
planets. The planet-ejection probabilities in our simulations are
independent of the mass of the planet, which contradicts earlier
results of Malmberg et al. (2011); Davies et al. (2014). Part of this
result probably depends sensitively on our initial distributions
of planet mass and orbital topology. The choice of oligarchic
growth causes the more massive planets to be further away from
the host star, where they are more vulnerable to perturbations by
passing stars. This makes the inner planets more prone to being
ejected in the subsequent unstable planetary system that results
from an external perturbation.

Our finding that the probability of escaping the parent star is
independent of planet mass and the birth distance from the star is
a direct consequence of the way in which planets are freed, i.e.,
in most cases this is the result of a strong encounter between
the planetary system and another star or planetary system. In
our simulations, interactions between planets and stars lead to
a total of 357 free-floating planets from an initial population of
2522 bound planets. This results in 0.24-0.70 free-floating plan-
ets per main-sequence star, which is consistent with estimates of
the number of free-floating planets in the Galaxy by Cassan et al.
(2012) and Mréz et al. (2017).

An important reason for the relatively small number of free
floaters is their relatively late formation. Most interactions occur
in the first 1 Myr of the evolution of the cluster, and strong
dynamical encounters drive the size evolution of the circumstel-
lar disks in this phase. By the time we introduced the planets the
stellar density had already dropped considerably and the number
of strong interactions had subsided. The absence of planets in
the first million years enables them to survive to a later epoch.
If these disks were already rich in debris or planets they would
have been much more vulnerable to external perturbations. The
mutual interactions between stars in the earliest cluster evolution
<1 Myr would have been sufficient for ionizing most planetary
systems, leading to a larger population of free-floating objects.
Such a sola lapis has recently been found traversing the solar
system (Portegies Zwart et al. 2018a).

The distribution of the masses of free-floating planets in
our simulation is indistinguishable from the mass distribution
of planets bound to their host star. This may have interesting
consequences for observations. This comparison may also be
made for observed planets. Our cluster is not old enough to pro-
duce free-floating planets by the copious stellar mass loss in the
post-asymptotic giant branch phase, and it is not a priori clear
what effect this would have on the distribution and ejection of
multi-planet systems. But to first order we argue that the dis-
tribution of free-floating planets is the same as that of bound
planets.

6. Conclusions

We simulated the evolution of the Orion Trapezium star cluster
including planets. The calculations start with initial conditions
taken from earlier calculations at an age of 1 Myr from Portegies
Zwart (2016) by converting circumstellar disks into planetary
systems and were continued to an age of 11 Myr. Our calcu-
lations, performed with AMUSE, include the effects of stellar
mass loss, collisions, and the dynamics of the stars and planets.
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The orbits of the planets are integrated using a symplectic direct
N-body code whereas the stellar dynamics is resolved using a
direct Hermite N-body code.

Realizing that we study a chaotic system based on the result
of only two simulations, one without stellar interactions and one
that included interactions between the planets and the stars, we
nevertheless feel sufficiently bolstered by our results to report a
number of conclusions. Each of these conclusions is based on
the results obtained from the simulation in which all interactions
between stars and planets are taken into account. The results
enumerated below are therefore rather empirical, although, as
argued in the main text, some of these conclusions may be funda-
mental. All conclusions, however, are a result of the complicated
interplay between initial conditions and simulations, and it is
sometimes hard to disentangle the two.

Conclusions regarding planet stability

— The majority of planets (~70%) experience a change in their
orbits (in eccentricity or semimajor axis) of less than 5%.

— A small number of ~10% planets acquire a high (20.8)
eccentricity. This is not necessarily caused by stars passing
closely, but in the majority of cases repeated small pertur-
bations within the cluster and subsequent secular evolution
within the planetary system drives these high eccentricities.

— High eccentricities are also induced by collisions between
planets and in the orbits of captured planets.

— The innermost planets (at 10au) experience a compara-
ble relative variation in their final orbital parameters (in
particular the eccentricity and inclination) due to encoun-
ters, perturbations, and internal secular evolution as wider
systems.

— The probability for a planet to escape is independent of its
mass or semimajor axis. Low-mass planets that are born rela-
tively close to the parent star are only marginally more prone
to ejection than more massive planets born further out (see
also, Malmberg et al. 2011; Veras & Moeckel 2012). This
result, however, probably depends sensitively on the initial
orbital distributions and masses of the planets. Comparing
observed planet-mass distributions and those that survived in
a planetary systems may then provide interesting constraints
on the initial planet mass function.

— Seventy-five planets (3.0%) collide with their host star. This
number, however, strongly depends on our adopted stellar
collision radius and will change when tidal evolution is
properly taken into account, but we still expect that colli-
sions between a planet and its host star are rather frequent.
Although our collisions are not taken into account realis-
tically because of the large stellar size we adopted, these
systems would be eligible to the formation of hot Jupiter
planets at a rate of ~0.015 per star per Myr.

— The widest planetary systems in our simulations tend to be
formed either by ejecting planets on very wide and highly
eccentric orbits or by capturing a planet from another star.
Both methods seem to be equally important, but the captured
planets tend to have somewhat lower eccentricity.

Conclusions regarding planetary escapers

— A total of 357 planets (out of 2522 or ~16.5%) become
unbound from their parent star.

— Out of 357, 282 (~80%) of the free floating planets promptly
escape the cluster upon being unbound from their parent
stars.

— The probability for a planet to escape is independent of
its mass. As a consequence, the mass function of free-
floating planets and the mass function of bound planets



A. van Elteren et al.: Survivability of planetary systems in young and dense star clusters

are indistinguishable from the initial distribution of planet
masses.

— At the end of our simulations systems with 3 planets were
rare compared to systems with 1 or 2 planets, or systems
with 4 or more planets. Once a star loses planets, it tends to
lose 3 or more (consistent with Table 9 of Cai et al. 2017).

Conclusions regarding planet collisions

— Thirty-four planets (1.3%) experienced a collision with
another planet.

— The collision probability between two planets is independent
of planet mass.

— The orbits of planet-planet collisions have a mean eccen-
tricity of 0.33 + 0.19 and a relative inclination of 20° +
35°.

— Instead of colliding, some of those events may lead to the
tidal capture of one planet by another. This would lead to the
formation of a binary planet, or moon, as was observed in
Kepler 1625B Teachey et al. (2018).

— It is generally the outermost planet that collides with a planet
closer to the parent star. This inner planet is not necessarily
the next nearest planet.

— Planets regularly engage in a cascade of collisions. These
chain-collisions are initiated by a dynamical encounter with
another star.

Conclusions regarding the host star clusters

— The host star ejects 240 (67% of the ejected planets, 10% of
all planets) planets with a delay of 0.1-0.5 Myr after the last
strong encounter with another cluster member.

— Young ~10Mpyr old star clusters harbor a rich population
of free-floating planets. About one-third of the free-floating
planets remain in the cluster for more than a dynamical
timescale, up to the end of the simulation. The number of
free floaters in these clusters can be as high as 40 planets
for stars between 0.9 M and 1.1 Mg, or 25% of the main-
sequence stars (consistent with estimates by Cassan et al.
2012).

A large number (30%) of planetary systems are affected by the
presence of the other stars in the cluster, but only ~10% of those
will leave a recognizable trace that allows us to reconstruct the
dynamical history based on the topology of the inner planets. For
the majority of planetary systems observed today, current instru-
ments are unable to discern the dynamical history because we
only observe the inner most planets, rather than the outer parts
where dynamical effects are most pronounced. It would require
observation of a exo-Kuiper belt to be able to establish the past
dynamical history of the planetary system. Possibly the easiest
way to perceive the dynamical history of a planetary system is
preserved in collision products between planets. We argue that in
more than 3% of the planetary systems collisions between plan-
ets are initiated by external dynamical perturbations. From the
~4000 planetary systems known today we then expect more than
one hundred to host a collision product.

About 16% of planets eventually become dissociated from
their parent star due to interactions with other cluster members
or internal reorganization of the planetary system. These ejected
planets become free floaters. The majority of those (>80%) leave
the cluster within a crossing time scale, the rest lingers around
the cluster potential and are subject to a slower evaporation pro-
cess driven by mass segregation. We therefor expect star clusters
to be relatively poor in free floating planets. The Galactic field,
on the other hand, is contains about 1/4-th of the number of free
floating planets as there are main-sequence stars. The Galaxy is

then composed of some 5 x 10'° free floating planets, of which
only a dozen are observed.
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Appendix A: Validation

We analyze the accuracy of the hybrid Nemesis strategy as a
function of the interaction time step dfyemesis-

A.1. Determining the optimal Nemesis time step

This Nemesis time step (dfyemesis) Numerically associates two
important factors: how often forces between subsystems are
calculated and a measure for the interaction distance between
individual particles (dyemesis)- If two particles are separated by
less than this interaction distance (dyemesis) @ New subsystem is
created within which the interaction between particles is resolved
with a separate N-body integrator. In principle we create a new
subsystem with its own individual N-body solver. In practice,
however, many of these individual subsystem N-body solvers are
the same code.

If one particle is spatially separated from several other par-
ticles in a subsystem by a distance larger than the interaction
distance, dyenesis, this particle is removed from the subsystem
and incorporated in the global cluster integration code. For the
physics it makes no difference if a particle is part of the global
system or of a subsystem. However, the integrator used for any
of the subsystems is symplectic and generally more accurate by
adopting higher order and a smaller time step, whereas the global
N-body code adopts larger time steps and is not symplectic.

There is no specific requirement for any particle to be inte-
grated either by the integrator of a subsystem or by the global
integrator. The choice of the domain to which the particle
belongs is purely based on geometry and the adopted demands
for accuracy and precision. In practice, the entire cluster includ-
ing all the planets could either be integrated by the single global
fourth order Hermite code or by one of the symplectic N-body
codes of the subsystem. The choice of which particle is inte-
grated by what integrator is then only decided on terms of
accuracy, precision, and performance.

As a general note, however, the global N-body code
tends to be less accurate because of larger time stepping and
non-symplectic, whereas the subsystem codes adopt rather
small shared time steps with a symplectic integrator. As a
consequence, we prefer to keep particles that belong to a single
planetary system in the same integrator.

The number of stars and planets that are embedded within
a single subsystem depends on dfyemesis (and therefore on
dyemesis)- In Fig. A.1 we show how this number varies as a func-
tion of dfyenesis- For very small values of dfyepesis, all the stars
and planets are integrated by the global N-body integrator, and
the number of subsystems n drops to 1, in the extreme. On
the other hand, if dfyegesis = 200yr all initial planetary sys-
tems are recognized as individual subsystems and assigned their
own integrator. In that case, the number of subsystems grows to
the actual number of planetary systems we initialized plus one
for the global N-body system, and n approaches to a value of
501. We draw a vertical line at dtyegesis = 100 yr, which corre-
sponds to our adopted Nemesis time step. For this value, a total
of about 400 N-body integrators are being initialized and run
concurrently.

A.2. Subsystem size criterion in Nemesis

The analysis performed in the previous section is calculated on a
static initial realization without evolving the cluster dynamically.
In Sect. A.1 we demonstrated that at a larger time step individ-
ual planetary systems are consistently captured in a subsystem.
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Fig. A.1. Number of the initial intact planetary systems as a function
of the Nemesis time step. The chosen time step of 100 yr is shown as
a green vertical line. The time step is not optimal for this criterion, but
was chosen as it gives better accuracy and a higher computational speed.

250 300

A larger time step is also preferred because this requires fewer
interaction steps between the subsystems and the other particles.
The evolution of the cluster, however, is dynamic and as a con-
sequence, the value of dfyepesis should be dynamics to warrant
the accuracy and efficiency of the Nemesis method. We tested
this hypothesis by integrating the cluster for 0.1 Myr with vari-
ous values of diyemesis. After this time we measured the radius
of the largest resolved subsystem. These largest resolved subsys-
tems tend to slow down the integration because they are likely
to be composed of a larger number of particles (stars and plan-
ets). Such large subsystems may cause the entire calculation to
wait for the integration of the large subsystem. the calculation
becomes progressively slower when more particles are incorpo-
rated in the subsystem. Eventually, this may continue until all the
particles are embedded in a single subsystem, which is beyond
the purpose of the Nemesis module.

In Fig. A.2 we present the measured size of subsystems as a
function of dfyepesis- The optimum is reached for a dfyepesis =
100 yr, which results in a maximum radius for subsystems of
~1738 au. The choice of a time of dfyemesis = 100 yr results in
the most efficient calculation of the entire stellar system while
at the same time it results in the lowest energy error. With this
time step our calculations conserve energy better than one part
in 10* per planetary system per million years, which is suf-
ficient to preserve the phase space characteristics of N-body
systems for the 10 Myr over which we performed the simulation
(Portegies Zwart & Boekholt 2014).

The two criteria, i.e., (1) keep each initial planetary system
in a single subsystem and (2) prevent subsystems from bound-
less growth, suggest opposing optimal values for the Nemesis
time step dfyemesis- Both criteria appear to match for dtyegesis =
100 yr, which is the value we adopt for all further calculations.

A.3. Validation of Nemesis on individual planetary systems

Apart from tuning the performance and accuracy of the com-
pound Nemesis integrator, we also validated this code in a more
practical application. For this we opted to study the evolution of
a system of five planets that is orbited by another second star
of 1M, with a semimajor axis of 1500 au, an eccentricity of
0.5, and an inclination of 90°. The planetary system is generated
using the oligarchic growth model for a 1 M, star with a 400 au
disk of 0.1 M. The simulations were performed via two distinct
methods: (1) using Nemesis and (2) integrating all objects in a
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Fig. A.2. Size of the largest subsystem as a function of dfyeyesis- after

0.1 Myr of evolution. The vertical green line indicates the adopted value
of 100 yr.
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Fig. A.3. Eccentricity as a function of semimajor axis for a planetary
system orbited by a secondary star of 1 M, after 0.5 Myr of integration
using Nemesis (big black bullets) and the single 8th order symplec-
tic integrator in Huayno (smaller white bullets). The final eccentricity
of the planets in the direct integration and the component method are
indistinguishable in the figure, with an absolute mean error <2 x 10~
for each of the planets.

single N-body code. The Nemesis method requires two codes:
one for the planetary system and one for the center of mass of
the planetary system and the orbiting secondary star.

For both integrators, we selected the eighth order symplec-
tic integrator in Huayno. The two codes communicate using a
Nemesis time step of dfyemesis = 100 yr. For comparison, we also
integrated these planetary systems with the same integrator, but
all the objects stars and planets are in the same computational
domain. In Fig. A.3 we present the eccentricities of the planets
as a function of the semimajor axis at an age of 0.5 Myr.

Based on the integration of these planetary systems and the
earlier tests regarding the migration of planets across integra-
tors, we decided that a Nemesis time step of dfyepesis = 100 yr
gives satisfactory results in terms of accuracy, precision, and
performance.

A.4. Energy errors in the composite model

To determine the reliability of the Nemesis for planetary sys-
tem evolution, we also investigated the evolution of the energy
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Fig. A.4. Total energy error as a function of time for a validation sim-
ulation consisting of a single star orbiting a system of 5 planets. The
energy error of our method (in red) is compared to the results obtained
using a 4th order Hermite code for all particles (green). The time evolu-
tion of the energy error is more erratic in the Nemesis method because
of the close interactions of the orbiting star. The overall error, how-
ever, remains rather constant over a long timescale, whereas for the
Hermite method the energy error is smoother but clearly grows with
time.

error. We performed this test for the same model as in the previ-
ous section, using an isolated planetary system composed of five
planets and one perturbing star in a wide orbit. We simulated this
system using our method and a fourth order Hermite integrator
using a time step of dtyepesis = 100yr. The resulting evolution
of the energy error is presented in Fig. A 4.

In Fig. A.4 we show the results of the two calculations, one
with a fourth order Hermite integrator (green), which is not sym-
plectic. The other calculation (red curve) is performed using
Nemesis in which we combine an eighth-order symplectic inte-
grator for the planetary system with the fourth-order Hermite
integrator for the binary system. The energy error in the Hermite
(green curve) grows monotonically, which is the typical response
for a non-symplectic integrator, such as the adopted Hermite
scheme. The evolution of the energy error in the hybrid inte-
grator does not grow on a secular timescale. The evolution of
the energy error is rather erratic with sharp peaks to low val-
ues as well as high values but stays stable overall. The secular
growth of Nemesis is much smaller than the single Hermite
integrator. This is mainly caused by the fact that the largest
energy errors are generated while integrating the planetary sys-
tem, which, in the Hermite integration (green curve) drives the
energy error. An additional advantage is that the calculation
with the hybrid Nemesis method took about ten minutes on a
workstation, whereas the Hermite scheme (green curve) took
18 hours.

Based on the results presented in Fig. A.4, we conclude that
in our method the energy error does not grow with time, but
remains constant for the duration of the calculation. The Hermite
part of the integration does show a monotonic increase of the
energy error, but this error remains below the mean error pro-
duced in the subsystem code, which is symplectic. The overall
energy error, therefore, appears well behaved, but eventually, in
the long run, the non-symplectic part of the energy error may
start to dominate.
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