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Abstract

We review a study of average-case complexity through the lens of interactive puzzles—
interactive games between a computationally bounded Challenger and computationally-bounded
Solver/Attacker. Most notably, we use this treatment to review a recent result showing that if
NP is hard-on-the-average, then there exists a sampleable distribution over only true statements
of an NP language, for which no probabilistic polynomial time algorithm can find witnesses. We
also discuss connections to the problem of whether average-case hardness in NP implies average-
case hardness in TFNP, or the existence of cryptographic one-way functions.

1 Introduction

The question whether P 6= NP is arguably the most fundamental problem in computer science.
But, even if P 6= NP, it could be that in practice, the NP instances that we encounter in “real
life” come from from some distribution that make them easy to solve. Indeed, this motivated the
complexity-theoretic study of average-case hardness of NP problems [47, 32, 6, 40].

It is worth repeating the following parable due to Impagliazzo from his 1995 essay [39] that
framed the question with a human angle: Impagliazzo tells the story of Professor Grouse, young
Gauss’ teacher, who assigned Gauss’ class the problem of summing up the numbers from 1 to 100.
After Gauss solved this problem, Professor Grouse became obsessed with trying to humiliate Gauss
by asking him questions he could not solve. While the story did not have a pleasant ending (with
Grouse being admitted to a mental asylum), Impagliazzo uses the battle between Professor Grouse
and young Gauss as a way to understand di↵erent possible worlds in average-case complexity.
Consider, for instance, Heuristica—one of Impagliazzo’s five hypothetical worlds—where NP is
intractable in the worst-case, but tractable on the average for any sampleable distribution: In this
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Figure 1: Challenger-Solver Game

world, while there exist instances on which (a computationally-bounded) Gauss will fail, Grouse
does not have any e�cient method of generating them.

Another appealing abstraction of an average-case analog of P 6= NP was provided by Gurevich
in his 1989 essay [31] through his notion of a Challenger-Solver Game. Gurevich outlines several
classes of Challenger-Solver games; we here outline one particular instance of it, focusing on an NP
search problem L. Consider a probabilistic polynomial-time Challenger C (the analog of Professor
Grouse) who samples an instance x and provides it to the Solver S (the analog of Gauss). The
solver S is supposed to find a witness to x 2 L and is said to win if either (1) the statement x

chosen by the challenger is false (and therefore does not have a witness), or (2) S succeeds in finding
a witness w for x 2 L. We refer to the Challenger-Solver game as being hard if no probabilistic
polynomial-time (PPT) solver succeeds in winning in the game with inverse polynomial probability.
(In other words, such a game models a hard-on-average distributional search problem in NP.) In
other words, the existence of a hard Challenger-Solver game means that there exists a way to
e�ciently sample mathematical statements x that no computationally bounded mathematician can
find proofs for.

But How Do We Determine Who Won? An unappealing aspect of a Challenger-Solver game
(which already goes back to the definition of distributional search problems [6]) is that checking
whether the solver wins cannot necessarily be e�ciently done, as it requires determining whether
the sampled instance x is in the language.

This motivates the following fundamental question: Does the Challenger-Solver game become
any easier if we restrict the challenger to always sample true statements x?4 In other words, “Is
it easier to find proofs for e�ciently-sampled mathematical statements that are guaranteed to be
true?” In complexity-theoretic terms:

Does the existence of an hard-on-average distributional search problem in NP imply the
existence of a hard-on-average distributional search problem where the sampler only
samples true statements?

We refer to distributional search problems where the sampler only samples true statements as
promise-true distributional search problems. The above question, and the notion of a promise-
true distributional search problems, actually predates the formal study of average-case complexity:

4Or equivalently, to distributions where one can e�ciently check when the sampler outputs a false instance.



Figure 2: (a) Average-case hardness of TFNP Figure 3: (b) Existence of OWFs

It was noted already by Even, Selman and Yacobi [17] in 1984 that for typical applications of
(average-case) hardness for NP problems—in particular, for cryptographic applications—we need
hardness for instances that are “promised” to be true. As they noted (following [18]5), in the
context of public-key encryption, security is only required for ciphertexts that are sampled as valid
encryptions of some message. (This motivated [17] to introduce the concept of a promise problem;
see also [25] for further discussion on this issue and the connection to average-case complexity.)

1.1 Connections to OWFs and TFNP

Intuitively, restricting to challengers that only sample true statements ought to make the job of the
challenger a lot harder—it now needs to be sure that the sampled instance is true. There are two
natural methods for the challenger to achieve this task:

(a) sampling the statement x together with a witness w (as this clearly enables the challenger to
be sure that x is true); and,

(b) restricting to NP languages where every statement is true.

Connections to OWFs: As noted by Impagliazzo [31, 39], the existence of a Challenger-Solver
game satisfying restriction (a) is equivalent to the existence of one-way functions (OWFs)—that
is, a function f that can be computed in polynomial time but cannot be e�ciently inverted. Such
a function f directly yields the desired sampling method: pick a random string r and let x = f(r)
be the statement and r the witness. Conversely, to see why the existence of such a sampling
method implies a one-way function, consider the function f that takes the random coins used by
the sampling method and outputs the instance generated by it.

But whether the existence of a hard-on-average language in NP implies the existence of one-
way functions is arguably the most important open problem in the foundations of Cryptography:
One-way functions are both necessary [41] and su�cient for many of the central cryptographic
tasks (e.g., pseudorandom generators [35], pseudorandom functions [26], private-key encryption
[28, 3]). As far as we know, there are only two approaches towards demonstrating the existence of
one-way functions from average-case NP hardness: (1) Ostrovsky and Wigderson [56] demonstrate
such an implication assuming that NP has zero-knowledge proofs [27], (2) Komargodski et al. [46]
demonstrate the implication (in fact, an even stronger implication, showing worst-case hardness of
NP implies one-way functions) assuming the existence of indistinguishability obfuscators [4]. Both

5As remarked in [18], these type of “problems with a promise” can be traced back even further: they are closely
related to what was referred to as a “birdy” problem in [22] and a “partial algorithm problem” in [69], in the study
of context-free languages.



of these additional assumptions are not known to imply one-way functions on their own (in fact,
they are unconditionally true if NP ✓ BPP).

Connections to TFNP Hardness: A hard Challenger-Solver game satisfying restriction (b), on
the other hand, is syntactically equivalent to a hard-on-average problem in the class TFNP [51]:
the class TFNP (total function NP) is the search analog of NP with the additional guarantee that
any instance has a solution. In other words, TFNP is the class of search problems in NP \ coNP
(i.e., F (NP \ coNP)). In recent years, TFNP has attracted extensive attention due to its natural
syntactic subclasses that capture the computational complexity of important search problems from
algorithmic game theory, combinatorial optimization and computational topology—perhaps most
notable among those are the classes PPAD [57, 23], which characterizes the hardness of computing
Nash equilibrium [14, 11, 15], and PLS [43], which characterizes the hardness of local search. A
central open problem is whether (average-case) NP hardness implies (average-case) TFNP hardness.
A recent elegant result by Hubacek, Naor, and Yogev [38] shows that under certain “derandomiza-
tion” assumptions [55, 42, 52, 5]—the existence of Nisan-Wigderson (NW) [55] type pseudorandom
generators that fool circuits with oracle gates to languages in the second level of the polynomial hi-
erarchy6—(almost everywhere) average-case hardness of NP implies average-case hardness of TFNP.
[38] also show that average-case hardness of NP implies an average-case hard problem in TFNP/poly
(i.e., TFNP with a non-uniform verifier). On a high level, this follows since non-uniformity enables
unconditional derandomization; we provide more details on this in Section 8.2.

The above-mentioned works thus give complexity-theoretic assumptions (e.g., the existence of
zero-knowledge proofs for NP, or strong derandomization assumptions) under which the above
problem has a positive resolution.

1.2 New Results

In a recent paper [60], we provided a resolution to the above problem without any complexity-
theoretic assumption:7

Theorem 1. The existence of an almost-everywhere hard-on-average language in NP8 implies the
existence of a hard-on-average promise-true distributional search problem in NP.

In fact, an even stronger statement was demonstrated: We showed that without loss of gener-
ality, the sampler/challenger of the distributional search problem needs to satisfy one of the above
two “natural” restrictions:

Theorem 2. The existence of an almost-everywhere hard-on-average language in NP implies either
(a) the existence one-way functions, or (b) a hard-on-average TFNP problem.

6Such PRGs are known under the assumption that E = DTIME[2O(n)] has no 2✏n sized ⇧2-circuits, for all ✏ > 0,
where a ⇧2-circuit is a standard circuit that can additionally perform oracle queries to any language L 2 ⇧2 (i.e.,
any language in the second level of the polynomial hierarchy).

7Pedantically, it is not a fully complete resolution as we start with an almost-everywhere hard problem and only
get an infinitely-often hard problem. But, except for this minor issue, it is a complete resolution. We also note that
earlier results [56, 38] also require starting o↵ with an almost-everywhere hard-on-average language in NP.

8That is, a language in NP such that for every � > 0, no PPT attacker A can decide random instances with
probability greater than 1

2 + � for infinitely many (as opposed to all) n 2 N . Such an “almost-everywhere” notion is
more commonly used in the cryptographic literature.



In other words, in Impagliazzo’s Pessiland [39] (a world where NP is hard-on-average, but
one-way functions do not exist), TFNP is unconditionally hard (on average).

We will here provide a high level overview of the proof techniques involved in showing this
results. Towards proving this result, we will pass through an alternative notion of a Challenger-
Solver game, which we referred to as a Interactive Puzzle. Roughly speaking, interactive puzzles
are Challenger-Solver games where the interactions between the Challenger (Professor Grouse) and
the Solver (Gauss) can proceed in many rounds before determining who succeeded. In contrast
to Challenger-Solver games, we will additionally impose the restriction that the transcript of the
conversation e�ciently determines whether the Solver won. We believe that such a notion of an
interactive puzzle is interesting in its own, and provides a natural generalization of average-case
hardness of NP. As we shall see, lifting the notion of a Challenger-Solver game to a more interactive
setting will allows us to rely on techniques developed for interactive proof systems [29, 3]. Before
introducing this notion, let us briefly recall some standard definitions from average-case complexity,
to see how interactive puzzles generalize them.

2 Preliminaries on Average-case Complexity

We assume familiarity with basic concepts such as Turing machines, interactive Turing ma-
chine, polynomial-time algorithms, probabilistic polynomial-time algorithms (PPT), non-uniform
polynomial-time and non-uniform PPT algorithms. A function µ(·) is said to be negligible if for
every polynomial p(·) there exists some n0 such that for all n > n0, µ(n)  1

p(n) . An interactive

protocol (P, V ) is a pair of interactive Turing machine; we denote by hP1, P2i(x) the output of P2

in an interaction between P1 and P2 on common input x.
We refer to a relation R over pairs (x, y) as being polynomially bounded if there exists a polyno-

mial p(·) such that for every (x, y) 2 R, |y|  p(|x|). We denote by LR the language characterized
by the “witness relation” R—i.e., x 2 LR i↵ there exists some y such that (x, y) 2 R. We say that
a relation R is polynomial-time if R is polynomially-bounded and the language consisting of pairs
(x, y) 2 R is in P. A search problem R is simply a polynomially-bounded relation; an NP search
problem R is a polynomial-time relation. An NP search problem R is total if for every x 2 {0, 1}⇤
there exists some y such that (x, y) 2 R (i.e., every instance has a witness). We refer to FNP
(function NP) as the class of NP search problems and TFNP (total-function NP) as the class of
total NP search problems.

2.1 One-way functions

We recall the definition of one-way functions (see e.g., [24]). Roughly speaking, a function f is
one-way if it is polynomial-time computable, but hard to invert for PPT attackers. The standard
(cryptographic) definition of a one-way function requires every PPT attacker to fail (with high
probability) on all su�ciently large input lengths. We will also consider a weaker notion of an
infinitely-often one-way function [56] which only requires the PPT attacker to fail for infinitely
many inputs length (in other words, there is no PPT attacker that succeeds on all su�ciently large
input lengths, analogously to complexity-theoretic notions of hardness).

Definition 3. Let f : {0, 1}⇤ ! {0, 1}⇤ be a polynomial-time computable function. f is said to be
a one-way function (OWF) if for every PPT algorithm A, there exists a negligible function µ such



that for all n 2 N,

Pr[x {0, 1}n; y = f(x) : A(1n, y) 2 f
�1(f(x))]  µ(n)

f is said to be an infinitely-often one-way function (ioOWF) if the above condition holds for
infinitely many n 2 N (as opposed to all).

2.2 Average-Case Complexity

We recall some basic notions from average-case complexity. A distributional problem is a pair (L,D)
where L ✓ {0, 1}⇤ and D is a PPT; we say that (L,D) is an NP distributional problem if L 2 NP.
Roughly speaking, a distributional problem (L,D) is hard-on-average if there does not exist some
PPT algorithm that can decide instances drawn from D with probability significantly better than
1/2.

Definition 4 (�-hard-on-the-average). We say that a distributional problem (L,D) is �-hard-on-
the-average (�-HOA) if there does not exist some PPT A such that for every su�ciently large
n 2 N,

Pr[x D(1n) : A(1n, x) = L(x)] > 1� �

We say that a distributional problem (L,D) is simply hard-on-the-average (HOA) if it is �-HOA
for some � > 0.

The above notion of average-case hardness (traditionally used in the complexity-theory litera-
ture) is defined analogously to the notion of an infinitely-often one-way function: we simply require
every PPT “decider” to fail for infinitely many n 2 N. For our purposes, we will also rely on an
“almost-everywhere” notion of average-case hardness (similar to standard definitions in the cryp-
tography, and analogously to the definition of a one-way function), where we require that every
decider fails on all (su�ciently large) input lengths.

Definition 5 (almost-everywhere hard-on-the-average (aeHOA)). We say that a distributional
problem (L,D) is almost-everywhere � hard-on-the-average (�-aeHOA) if there does not exist some
PPT A such that for infinitely many n 2 N,

Pr[x D(1n) : A(1n, x) = L(x)] > 1� �

We say (L,D) is almost-everywhere hard-on-the-average (aeHOA) if (L,D) is �-aeHOA for some
� > 0.

We move on to defining hard-on-the-average search problems. A distributional search problem
is a pair (R,D) where R is a search problem and D is a PPT. If R is an NP search problem we
refer to (R,D) as a distributional NP search problem.

Finally, we say that a distributional search problem (R,D) is promise-true if for every n and
every x in the support of D(1n), it holds that x 2 LR. (That is, D only samples true instances.)

Definition 6 (hard-on-the-average search (SearchHOA)). We say that a distributional search prob-
lem (R,D) is �-hard-on-the-average (�-SearchHOA) if there does not exist some PPT A such that
for every su�ciently large n 2 N ,

Pr[x D(1n); (w, x) A(1n, x) :

((LR(x) = 1)) (x,w) 2 R)] > 1� �

(R,D) is simply SearchHOA if there exists � > 0 such that (R,D) is �-SearchHOA.



Figure 4: Interactive Puzzles

3 Interactive Puzzles

Let us introduce the notion of an interactive puzzle [60]: a 2-player interactive game between a
polynomial-time Challenger C and a Solver/Attacker9 satisfying the following properties:

• Computational Soundness: There does not exist a probabilistic polynomial-time (PPT)
attacker A⇤ and polynomial p such that A⇤(1n) succeeds in making C(1n) output 1 with
probability 1

p(n) for all su�ciently large n 2 N .

• Completeness/Non-triviality: There exists a negligible function µ and an ine�cient at-
tacker A that on input 1n succeeds in making C(1n) output 1 with probability 1 � µ(n) for
all n 2 N .

• Public Verifiability: Whether C accepts should just be a deterministic function of the
transcript.

In other words, (a) no polynomial-time attacker, A⇤, can make C output 1 with inverse polyno-
mial probability, yet (b) there exists a computationally unbounded attacker A that makes C output
1 with overwhelming probability. We refer to C as a k(·)-round computational puzzle (or simply a
k(·)-round puzzle) if C satisfies the above completeness and computational soundness conditions,
while restricting C(1n) to communicate with A in k(n) rounds. More formally:

Definition 7 (interactive puzzle). An interactive algorithm C is referred to as a k(·)-round puzzle
if the following conditions hold:

• k(·)-round, publicly-verifiability: C is an (interactive) PPT that on input 1n (a) only
communicates in k(n) communication rounds, and (b) only performs some deterministic com-
putation as a function of the transcript to determine its final verdict.

• Completeness/Non-triviality: There exists a (possibly unbounded) Turing machine A and
a negligible function µ(·) such that for all n 2 N,

Pr[hA, Ci(1n) = 1] � 1� µ(n)
9Following the nomenclature in the cryptographic literature, we use the name Attacker instead of Solver.



• Computational Soundness: There does not exist a PPT machine A⇤ and polynomial p(·)
such that for all su�ciently large n 2 N,

Pr[hA⇤
, Ci(1n) = 1] � 1

p(n)

On Public-coins and Perfect-completeness: We mostly restrict our attention to public-coin
puzzles, where the Challenger’s messages are simply random strings—more formally, C simply sends
the outcomes of its coin tosses. Additionally, we say that a puzzle C has perfect completeness if the
“completeness error”, µ(n), is 0—in other words, the completeness condition holds with probability
1.

As an example of a 2-round public-coin puzzle, let f be a one-way permutation and consider
a game where C(1n) samples a random y 2 {0, 1}n and requires the adversary to output a pre-
image x such that f(x) = y. Since f is a permutation, this puzzle has “perfect” completeness—an
unbounded attackerA can always find a pre-image x. By the one-wayness of f (and the permutation
property of f), we also have that no PPT adversary A⇤ can find such an x (with inverse polynomial
probability), and thus soundness holds. If however, f had only been a one-way function and not a
permutation, then we may no longer be able to sample a uniform y, but rather have C first sample a
random x and next output y = f(x). This 2-round puzzle does not satisfy the public-coin property,
but it still has perfect completeness.

On 2-round Public-coin Puzzles and Average-case hardness of NP: It is not hard to see
that the existence of 2-round (public-coin) puzzles is “essentially” equivalent to the existence of
an average-case hard problem in NP: any 2-round public-coin puzzle trivially implies a hard-on-
average search problem (w.r.t. the uniform distribution) in NP and thus by [40] also a hard-on-
average decision problem in NP. Furthermore, “almost-everywhere” hard-on-average languages in
NP w.r.t. the uniform distribution (which by [40] is implied by the existence of a hard-on-average
language in NP w.r.t. any sampleable distribution) also imply the existence of a 2-round puzzle
(by simply sampling many random instances x and asking the attacker to provide a witness for at
least, say, 1/3 of the instances).10

Proposition 3.1. The existence of an (almost-everywhere) hard-on-average language in NP implies
the existence of a 2-round public-coin puzzle. Furthermore, the existence of a 2-round public-coin
puzzle implies the existence of a hard-on-average language in NP.

Thus, 2-round public-coin puzzles are “morally” (up to the infinitely-often/almost-everywhere
issue) equivalent to the existence of a hard-on-average language in NP. Since 2-round puzzles
capture average-case hardness of NP, k(·)-round public-coin puzzles thus provide a natural gener-
alization thereof.

On Weaker Soundness and Completeness: One can consider a more relaxed notion of a public-
coin (c(·), s(·))-puzzles for c(n) > s(n) + 1

poly(n) , where the completeness condition is required to

hold with probability c(·) for su�ciently large n 2 N, and the soundness condition holds with
probability s(·) for su�ciently large n 2 N. But, by “Cherno↵-type” parallel-repetition theorems
for computationally-sound public-coin protocols [59, 36, 12, 13], the existence of such a k(·)-round
public-coin (c(·), s(·))-puzzle implies the existence of a k(·)-round public-coin puzzle.

10The reason we need the language to be almost-everywhere hard-on-average is to guarantee that YES instances
exists for every su�ciently large input length, or else completeness would not hold.



Capturing TFNP and Promise-True Distributional Search Problems: Towards the goal
of linking puzzles and the questions raised in the introduction, we remark that natural syntactic
restrictions of 2-round puzzles capture natural subclasses of distributional problems in NP:

• the existence of a hard-on-average problem in TFNP is syntactically equivalent to the existence
of a 2-round public-coin puzzle with perfect completeness.

• the existence of a hard-on-average promise-true distributional search problem is syntactically
equivalent to a 2-round (private-coin) puzzle with perfect completeness.

The Complexity of Puzzles: While the game-based modeling in the notion of a puzzle is
common in the cryptographic literature—most notably, it is commonly used to model cryptographic
assumptions [53, 58, 21], complexity-theoretic consequences or properties of puzzles have remained
largely unexplored. We will here initially review such a treatment. Additionally, we will show that
such an interactive treatment of average-case complexity leads to a new tool set also for answering
“classic” questions regarding average-case hardness in NP.

The two main problems that we will consider are (1) round-complexity—to what extent does
adding more round yields more power, and (2) perfect completeness—are interactive puzzles
with perfect completeness easier to solve? Our main theorems (mentioned in the introduction)
will next follow as corollaries from answering these questions about round-complexity and perfect
completeness.

4 The Round-Complexity of Puzzles

Perhaps the most basic question regarding the existence of interactive puzzles is whether the ex-
istence of a k-round puzzle is actually a weaker assumption than the existence of a k � 1 round
puzzle. In particular, do interactive puzzles actually generalize beyond just average-case hardness
in NP:

Does the existence of a k-round puzzle imply the existence of (k � 1)-round puzzle?

We here focus our attention only on public-coin puzzles. At first sight, one would hope the classic
“round-reduction” theorem due to Babai-Moran (BM) [3] can be applied to collapse any O(1)-
round puzzle into a 2-round puzzle (i.e., a hard-on-average NP problem). Unfortunately, while
BM’s round reduction technique indeed works for all information-theoretically sound protocols,
Wee [70] demonstrated that BM’s round reduction fails for computationally sound protocols. In
particular, Wee shows that black-box proofs of security cannot be used to prove that BM’s transfor-
mation preserves soundness even when applied to just 3-round protocols, and demonstrates (under
computational assumptions) a concrete 4-round protocol for which BM’s round-reduction results
in an unsound protocol.

In contrast to this negative result, the central technical result in [60] provides an a�rmative
answer to the above question—we demonstrates a round-reduction theorem for puzzles.

Theorem 8. For every constant c, the existence of a k(·)-round public-coin puzzle is equivalent to
the existence of a (k(·)� c)-round public-coin puzzle.

In particular, as corollary of this result, we get that the assumption that a O(1)-round public-coin
puzzle exists is not weaker than the assumption that average-case hardness in NP exists:



Corollary 9. The existence of a O(1)-round public-coin puzzle implies the existence of a hard-on-
average problem in NP.

Perhaps paradoxically, we strongly rely on BM’s round reduction technique, yet we rely on a
non-black-box security analysis. The main technical lemma shows that if infinitely-often one-way
functions do not exist (i.e., if we can invert any function for all su�ciently large input lengths),
then BM’s round reduction actually works:

Lemma 4.1. Either infinitely-often one-way functions exist, or BM’s round-reduction transforma-
tion turns a k(·)-round public-coin puzzle into a (k(·)� 1)-round public-coin puzzle.

We provide a proof outline of Lemma 4.1 in Section 4.1. The proof of Theorem 8 now easily follows
by considering two cases:

Case 1: (Infinitely-often) one-way functions exists. In such a world, we can rely on
Rompel’s construction of a universal one-way hash function (UOWHFs) [54, 62] from one-
way functions to get a 2-round puzzle. More precisely, a OWHF is a family of functions such
that no PPT attacker can, given a uniformly sampled function h in the family, and a uniform
input x 2 {0, 1}n, find a ”second-preimage” x

0 (a.k.a a collision) such that h(x0) = h(x).
Given such a collection of hash functions, the puzzle challenger simply selects random h, x

and the solver wins if it finds a second-preimage x
0.

Case 2: (Infinitely-often) one-way functions does not exist. In such a world, by Lemma
4.1, BM’s round reduction preserves soundness of the underlying protocol and thus we have
gotten a puzzle with one round less. We can next iterate BM’s round reduction any constant
number of times.

We highlight that the above proof is highly non black-box in nature. In case OWFs do not exists
we do rely on the original puzzle (but require applying a OWF inverter on the code of the original
puzzle), and in case OWF do exist, we simply observe that 2-round puzzles exist.

4.1 Proof Overview of Lemma 4.1

We here provide a proof overview of the round-collapse theorem. As mentioned, we shall show that
if one-way functions do not exist, then Babai-Moran’s round reduction method actually works.

Some Technical Tools: Towards this we will rely on two tools:

• Pre-image sampling. By the result of Impagliazzo and Levin [40], the existence of so-called
“distributional one-way functions” (function for which it is hard to sample a uniform pre-
image) imply the existence of one-way function. So if one-way functions do not exist, we
have that for every e�cient function f , given a sample f(x) for a random input x, we can
e�ciently sample a (close to random) pre-image x

0.

• Raz’s sampling lemma (from the literature on parallel repetition for 2-prover games and
interactive arguments [61, 36, 13]). This lemma states that if we sample ` uniform n-bit
random variables R1, R2, . . . R` conditioned on some event W that happens with su�ciently
large probability ✏, then the conditional distribution Ri of a randomly selected index i will be



Figure 5: (a) Three-round protocol Figure 6: (b) Babai-Moran transformation

close to uniform. More precisely, the statistical distance will be

q
log( 1

✏
)

` , so even if ✏ is tiny,
as long as we have su�ciently many repetitions `, the distance will be small.11

The BM Round-collapse Transformation: To see how we will use these tools, let us first recall
the BM transformation (and its proof for the case of information-theoretically sound protocols).
To simplify our discussion, we here focus on showing how to collapse a 3-round public-coin protocol
between a prover P and a public-coin verifier V into a 2-round protocol. We denote a transcript of
the 3-round protocol (p1, r1, p2) where p1 and p2 are the prover messages and r1 is the randomness of
the verifier; see Figure 5. Let n = |p1| be the length of the prover message. The BM transformation
collapses this protocol into a 2-round protocol in the following two steps:

• Step 1: Reducing soundness error: First, use a form of parallel repetition to make the
soundness error 2�n2

(i.e., extremely small). More precisely, consider a 3-round protocol
where P first still send just p1, next the verifier picks ` = n

2 random strings ~r = (r11, . . . , r
`
1),

and finally P needs to provide accepting answers ~p2 = (p12, . . . , p
`
2) to all of the queries ~r (so

that for every i 2 [`], (p1, ri1, p
i
2) is accepting transcript).

• Step 2: Swap order of messages: Once the soundness error is small, yet the length of the
first message is short, we can simply allow the prover to pick its first message p1 after having
~r. In other words, we now have a 2-round protocol where V first picks ~r, then the prover
responds by sending p1, ~p2; see Figure 6.

This swapping preserves soundness by a simple union bound: since (by soundness) for every
string p1, the probability over ~r that there exists some accepting response ~r is 2�n2

, it follows
that with probability at most 2n ⇥ 2�n2

= 2�n over ~r, there exists some p1 that has an
accepting ~p2 (as the number of possible first messages p1 is 2n). Thus soundness still holds
(with a 2n degradation) if we allow P to choose p1 after seeing ~r.

Analyzing Soundness: For the case of computationally sound protocols, the “logic” behind both
steps fail: (1) it is not known how to use parallel repetition to reduce soundness error beyond
being negligible, (2) the union bound cannot be applied since, for computationally sound protocols,
it is not the case that responses ~p2 do not exist, rather, they are just hard to find. Yet, as we
shall see, using the above tools, we present a di↵erent proof strategy. More precisely, to capture
computational hardness, we show a reduction from any polynomial-time attacker A that breaks
soundness of the collapsed protocol with some inverse polynomial probability ✏, to a polynomial-
time attacker B that breaks soundness of the original 3-round protocol.

11Earlier works [36, 13] always used Raz’s lemma when ✏ was non-negligible. In contrast, we will here use it also
when ✏ is actually negligible.



B starts by sampling a random string ~r0 and computes A’s response given this challenge
(p01,

~p02)  A(~r0). If the response is not an accepting transcript, simply abort; otherwise, take
p
0
1 and forward externally as B’s first message. (Since A is successful in breaking soundness, we

have that B won’t abort with probability ✏.) Next, B gets a verifier challenge r from the external
verifier and needs to figure out how to provide an answer to it. If B is lucky and r is one of the
challenges r

0
i in

~r0, then B could provide the appropriate p2 message, but this unfortunately will
only happen with negligible probability. Rather, B will try to get A to produce another accepting
transcript (p001,

~r00, ~p002) that (1) still contains p
0
1 as the prover’s first message (i.e., p001 = p

0
1), and (2)

contains r in some coordinate i of ~r00. To do this, B will consider the function f(~r, z, i)—which runs
(p1, ~p2) A(~r; z) (i.e., A has its randomness fixed to z) and outputs (p1, ri) if (p1,~r, ~p2) is accepting
and ? otherwise—and runs the pre-image sampler for this function f on (p01, r) to recover some new

verifier challenge, randomness, index tuple (~r00, z, i) which leads A(~r00; z) to produce a transcript

(p01,
~r00, ~p002) of the desired form, and B can subsequently forward externally the i’th coordinate of

~p002 as its response and convince the external verifier.
So, as long as the pre-image sampler indeed succeeds with high enough probability, we have

managed to break soundness of the original 3-round protocol. The problem is that the pre-image
sampler is only required to work given outputs that are correctly distributed over the range of the
function f , and the input (p1, r) that we now feed it may not be so—for instance, perhaps A(~r)
chooses the string p1 as a function of ~r. So, whereas the marginal distribution of both p1 and r

are correct, the joint distribution is not. In particular, the distribution of r conditioned on p1 may
be o↵. We, however, show how to use Raz’s lemma to argue that if the number of repetitions ` is
su�ciently bigger than the length of p1, the conditional distribution of r cannot be too far o↵ from
being uniform (and thus the pre-image sampler will work). On a high-level, we proceed as follows:

• Note that in the one-way function experiment, we can think of the output distribution (p1, r)
of f on a random input, as having been produced by first sampling p1 and next, if p1 6= ?,
sampling ~r conditioned on the event Wp1 that A generates a successful transcript with first-
round prover message p1, and finally sampling a random index i and outputting p1 and ri

(and otherwise output ?).

• Note that by an averaging argument, we have that with probability at least ✏
2 over the choice

of p1, Pr[Wp1 ] � ✏
2n+1 (otherwise, the probability that A succeeds would need to be smaller

than ✏
2 + 2n ⇥ ✏

2n+1 = ✏, which is a contradiction).

• Thus, whenever we pick such a “good” p1 (i.e., a p1 such that Pr[Wp1 ] � ✏
2n+1 ), by Raz’s lemma

the distribution of ri for a random i can be made 1
p(n) close to uniform for any polynomial

p by choosing ` to be su�ciently large (yet polynomial). Note that even though the lower
bound on Pr[Wp1 ] is negligible, the key point is that it is independent of ` and as such we
can still rely on Raz’s lemma by choosing a su�ciently large `. (As we pointed out above,
this usage of Raz’s lemma even on very “rare” events—with negligible probability mass—is
di↵erent from how it was previously applied to argue soundness for computationally sound
protocols [36, 13].)

• It follows that conditioned on picking such a “good” p1, the pre-image sampler will also
successfully generate correctly distributed preimages if we feed him p1, r where r is randomly
sampled. But this is exactly the distribution that B feeds to the pre-image sampler, so we



conclude that with probability ✏
2 over the choice of p1, B will manage to convince the outside

verifier with probability close to 1.

This concludes the proof overview for 3-round protocols. When the protocol has more than 3
rounds, we can apply a similar method to collapse the last rounds of the protocol. The analysis
now needs to be appropriately modified to condition also on the prefix of the partial execution up
until the last rounds.

5 The Complexity of Puzzles with Many Rounds

A natural question is whether we can collapse more than a constant number of rounds. Our next
result—which characterizes the existence of poly(n)-round puzzles—shows that this is unlikely.
(This result is not pertinent to the above-mentioned main problem, but is interesting in its own
right to understand the power of puzzles.)

Theorem 10. For every ✏ > 0, there exists an n
✏-round (public-coin) puzzle if and only if

PSPACE 6✓ BPP.

In particular, if n✏-round public-coin puzzles imply O(1)-round public-coin puzzles, then by com-
bining Theorem 8 and Theorem 10, we have that PSPACE 6✓ BPP implies the existence of a
hard-on-average problem in NP, which seems unlikely. Theorem 10 also shows that the notion of
an interactive puzzle (with a super constant-number of rounds) indeed is a non-trivial generaliza-
tion of average-case hardness in NP. Theorem 10 follows using mostly standard techniques, which
we now outline:

Solving Puzzles using a PSPACE Oracle: Any puzzle C can be broken using a PSPACE oracle
(as the optimal strategy can be found using a PSPACE oracle), so if PSPACE ✓ BPP, it can
also be broken by a probabilistic polynomial-time algorithm.

A Public-coin Puzzle assuming PSPACE 6✓ BPP: For the other direction, recall that worst-
case to average-case reductions are known for PSPACE [19, 2]. In other words, there exists
a language L 2 PSPACE that is hard-on-average assuming PSPACE 6✓ BPP. Additionally,
recall that PSPACE is closed under complement. We then construct a public-coin puzzle
where C first samples a hard instance for L and then asks A to determine whether x 2 L

and next provide an interactive proof—using [65, 50] which is public-coin—for containment
or non containment in L. This puzzle clearly satisfies the completeness condition. Compu-
tational soundness, on the other hand, follows directly from the hard-on-average property of
L (and the unconditional soundness of the interactive proof of [65]). Let us remark that the
worst-case to average-case reduction known for PSPACE only yield a a “weakly” hard-on-the-
average problem with � = 1

poly and thus the resulting soundness error of the puzzle will only

be 1� 1
poly ; however, as we remarked in Section 3, a public-coin puzzle satisfiying this weaker

form of soundness implies the standard form of a public-coin puzzle by relying on parallel
repetition.

6 From Imperfect to Perfect Completeness

We remark that a standard technique from the literature on interactive proofs (namely the result
of [20]) can be used to show that any 2-round public-coin puzzle can be transformed into a 3-



round public-coin puzzle with perfect completeness. In more detail, Furer et al. [20] showed how
to transform any 2-round public-coin proof system into a 3-round public-coin proof system with
perfect completeness. We will rely on the same protocol transformation to transform any 2-round
puzzle into a 3-round puzzle with perfect completeness. The perfect completeness condition will
follow directly from their proof; we simply must argue that the transformation also preserves
computational soundness (as they only showed that it preserves information-theoretic soundness).

Theorem 11. Suppose there exists 2-round public-coin puzzle. Then there exists a 3-round public-
coin puzzle with perfect completeness.

Let us outline the transformation of Furer et al. [20] and explain why it works. Let C be a
2-round public-coin puzzle; see Figure 7. Let `c, `a be polynomials such that the message from
C(1n) is of length `c(n) and the message from A(1n) is of length `a(n); we assume without loss of
generality that `c(n) > 2. When the security parameter n is clear from the context we will omit it
and let `c(n) = `c and `a(n) = `a.

We now apply the Furer et al. [20] transformation to this puzzle to create a 3-round puzzle
eC. The puzzle will proceed by first having the adversary sending `c “pads” z1, . . . , z`c 2 {0, 1}`c
to eC; eC next responds with a random message reC 2 {0, 1}`c , and the adversary is next supposed
to find a response i, p such that (reC � zi, p) is a valid transcript for the original puzzle (i.e., the
adversary needs to win in one of the parallel “padded” instances of the original puzzle); see Figure
8. More formally, eC(1n, (z1, . . . , z`c), (i, p); reC) = 1 if and only if C(1n, p; reC� zi) outputs 1. To show

perfect completeness of eC, we proceed just as in the elegant original proof by [20], which we recall:
From the (imperfect) completeness of C, we have that there exists some adversary A such that
Pr[hA, Ci(1n) = 1] � 1� 1

n for all su�ciently large n; without loss of generality A is deterministic.
Fix some n > 2 for which this holds. Let S ✓ {0, 1}`c be the set of challenges for which A provides
an accepting response; the probability that a random challenge z 2 {0, 1}`c is inside S is thus at
least 1� 1

n . We will show that there exists “pads” z1, . . . , z`c such that for every r 2 {0, 1}`c , there
exists some i such that r � zi 2 S, which concludes that an unbounded attacker eA can succeed
with probability 1 (by selecting those pads and next providing an accepting response). Note that
for every fixed r, for a randomly chosen pad zi, the probability that r � zi /2 S is at most 1

n ; and
thus the probability over randomly chosen pads z1, . . . , z`c that r � zi /2 S for all i is at most 1

n`c
.

We conclude, by a union bound, that the probability over randomly chosen pads z1, . . . , z`c that

there exists some r 2 {0, 1}`c such that r � zi /2 S for all i is at most 2`c
n`c

< 1. Thus, there exists

pads z1, . . . , z`c such that for every r 2 {0, 1}`c there exists some i such that r � zi /2 S, which
concludes perfect completeness.

We now turn to proving computational soundness. Consider some adversary eA⇤ that succeeds
in convincing eC with probability ✏(n) for all n 2 N. We construct an adversary A⇤ that convinces

C with probability ✏(n)
`c

, which is a contradiction. A⇤(1n) picks a random tape r eA⇤ for eA⇤, lets

(z1, . . . , z`c) = eA⇤(1n; r eA⇤), picks a random index i 2 [`c] and outputs zi. Upon receiving a “chal-

lenge” r, it lets (j, p) = eA⇤(1n, r � zi; r eA⇤) outputs p if i = j and ? otherwise. First, note that in

the emulation by A⇤, A⇤ feeds eA⇤ the same distribution of messages as eA⇤ would see in a “real”
interaction with eC; thus, we have that the (j, p) is an accepting message (w.r.t., the challenge r�zi)
with probability ✏. Additionally, since r � zi information-theoretically hides i (as r is completely
random), we have that the probability that i = j is 1

`c
and furthermore, the event that this happens

is independent of whether the message (j, p) is accepting. We conclude that A⇤ convinces C with



Figure 7: (a) Two-round public coin puzzle Figure 8: (b) Furer et al. transformation

probability ✏(n)
`c

, which concludes the soundness proof.

7 Avg-case Hardness of NP implies OWFs or TFNP-Hardness

We now outline how to combine the round-reduction with the perfect-completeness transformation
to prove Theorem 2 (i.e., to show that average-case hardness of NP implies either OWFs or average-
case hardness of TFNP):

• As noted in Proposition 3.1, an almost-everywhere hard-on-average problem in NP yields a
2-round puzzle.

• We next apply the perfect-completeness transformation (using Theorem 11) to turn this puzzle
into a 3-round puzzle with perfect completeness.

• We next observe that the BM transformation preserves perfect completeness of the protocol.
Thus, by Lemma 4.1, either infinitely-often one-way functions exist, or we can get a 2-round
public-coin puzzle with perfect completeness.

• Finally, as observed above, the existence of a 2-round public-coin puzzle with perfect com-
pleteness is syntactically equivalent to the existence of a hard-on-average problem in TFNP
(with respect to the uniform distribution on instances).

The above proof approach actually only concludes a slightly weaker form of Theorem 2—we only
show that either TFNP is hard or infinitely-often one-way functions exist. As infinitely-often one-
way functions directly imply 2-round private-coin puzzles with perfect completeness, which (as
observed above) are syntactically equivalent to hard-on-average promise-true distributional search
problems, this however already su�ces to prove Theorem 1 (that is, average-case hardness of NP
implies the existence of an average-case hard promise-true distributional search problem).

We can get the proof also of the stronger conclusion of Theorem 2 (i.e., conclude the existence
of standard (i.e., “almost-everywhere”) one-way functions), by noting that an almost-everywhere
hard-on-average language in NP actually implies an 2-round puzzle satisfying a “almost-everywhere”
notion of soundness, and for such “almost-everywhere puzzles”, Lemma 4.1 can be strengthened to
show that either one-way functions exist, or BM’s round-reduction works.12

12More precisely, the variant of Lemma 4.1 says that either one-way functions exist, or the existence of a k-round
almost-everywhere puzzle yields the existence of a k � 1-round puzzle (with the standard, infinitely-often, notion of
soundness).



8 Towards Stronger Implications from Avg-case Hardness of NP

Our results (i.e., Theorem 2) show that average-case of NP implies either (1) the existence of OWFs,
or (2) average-case hardness of TFNP. Ideally, we would like to show that average-case hardness
of NP implies OWF and average-case hardness of TFNP. Or at the very least, unconditionally
show one of the implications (1) average-case hardness of NP implies OWF, or (2) average-case
hardness of NP implies average-case hardness of TFNP. As mentioned in the introduction, both
of these are long-standing open problems. In this final section, we recall some recent progress on
these problems.

8.1 Towards OWFs from Avg-case Hardness of NP

As mentioned in the introduction, the question of whether the existence of a hard-on-average
language in NP implies the existence of one-way functions is arguably the most important open
problem in the foundations of Cryptography. This question dates back to the seminal work of Di�e
and Hellman [16] from 1976, but so far most results in the literature have been negative.

Barriers to Basing OWF on NP-Hardness: Notably, starting with the work by Brassard [9] in
1983, a long sequence of works have shown various types of black-box separations between restricted
types of OWF (e.g., one-way permutations) and NP-hardness (see e.g., [9, 8, 1, 30, 49, 33, 7]). We
emphasize, however, that these results only show limited separations: they either consider restricted
types of one-way functions, or restricted classes of black-box reductions.

By Theorem 2, to prove the existence of OWFs from average-case hardness of NP, it su�ces to
prove that average-case hardness of TFNP (rather than NP) implies the existence of OWFs. Thus,
it su�ces to construct a OWF starting from average-case hardness of a structured class of problems
(namely problems in TFNP). We highlight that this di↵erence is quite substantial. Known black-
box separations typically are of the form: “If OWFs (with some additional structure, e.g., being a
permutation) can be based on the hardness of a language L, then L 2 AM\coAM, which is unlikely
for any NP-complete language (in particular it implies the collapse of the Polynomial Hierarchy).
However, if L 2 TFNP, then L is trivially in AM \ coAM, so no unexpected collapse happens!

On OWFs and Time-bounded Kolmogorov-complexity: While the question of whether
OWFs can be based on the average-case hardness of NP is still wide open, a recent result by Liu
and Pass [48] takes us a steps towards it: it demonstrates the first natural NP problem L such that
average-case hardness of L is equivalent to the existence of OWFs. (This problem, however, is not
known to be average-case complete for NP.) The problem, which dates back to the 1960s, is the
so-called the time-bounded Kolmogorov complexity problem.

Let us briefly recall the notion of (time-bounded) Kolmogorov complexity and their result:
What makes the string 12121212121212121 less random than 60484850668340357492? The notion
of Kolmogorov complexity (K-complexity), introduced by Solomono↵ [67], Kolmogorov [45] and
Chaitin [10], provides an elegant method for measuring the amount of “randomness” in individual
strings: The K-complexity of a string is the length of the shortest program (to be run on some
fixed universal Turing machine U) that outputs the string x. From a computational point of view,
however, this notion is unappealing as there is no e�ciency requirement on the program. The notion
of t(·)-time-bounded Kolmogorov Complexity (Kt-complexity) overcomes this issue: Kt(x) is defined
as the length of the shortest program that outputs the string x within time t(|x|). As surveyed
by Trakhtenbrot [68], the problem of e�ciently determining the K

t-complexity for t(n) = poly(n)



predates the theory of NP-completeness and was studied in the Soviet Union since the 60s as a
candidate for a problem that requires “brute-force search” (see Task 5 on page 392 in [68]). The
modern complexity-theoretic study of this problem goes back to Sipser [66], Ko [44] and Hartmanis
[34]. Trakhtenbrot also notes that a “frequential” version of this problem was considered in the
Soviet Union in the 60s: the problem of finding an algorithm that succeeds for a “high” fraction of
strings x—in more modern terms from the theory of average-case complexity [47], whether Kt can
be computed by a heuristic algorithm with inverse polynomial error, over random inputs x. We say
that Kt is mildly hard-on-average (mildly HoA) if there exists some polynomial p(·) > 0 such that
every PPT fails in computing K

t(·) for at least a 1
p(·) fraction of n-bit strings x for all su�ciently

large n, and that K
poly is mildly HoA if there exists some polynomial t(n) > 0 such that K

t is
mildly HoA. Liu and Pass [48] show that mild average-case hardness of Kpoly is equivalent to the
existence of OWFs.

Theorem 12 ([48]). The following are equivalent:

• One-way functions exist.

• K
poly is mildly hard-on-average.

8.2 Towards TFNP-Hardness from Avg-case Hardness of NP

We finally recall some recent results towards showing TFNP-hardness from average-case hardness
of NP.

TFNP/poly-Hardness from Average-case Hardness of NP: As mentioned in the introduction,
Hubacek, Naor, and Yogev [38] show that under certain “derandomization” assumptions [55, 42, 52,
5]—the existence of Nisan-Wigderson (NW) [55] type pseudorandom generators that fool circuits
with oracle gates to languages in the second level of the polynomial hierarchy, (almost everywhere)
average-case hardness of NP implies average-case hardness of TFNP. [38] also show unconditionally
that average-case hardness of NP w.r.t. non-uniform PPT attackers implies an average-case hard
problem in TFNP/poly (i.e,. TFNP with a non-uniform verifier) .

Theorem 13 ([38]). The existence of an almost-everywhere hard-on-average language in NP (where
hardness holds also w.r.t., non-uniform PPT attackers) implies the existence of a hard-on-average
search problem in TFNP/poly.

Let us briefly outline how this can be proved using our language of puzzles. As we have seen (see
Proposition 3.1), the existence of an almost-everywhere hard-on-average language in NP implies
the existence of a 2-round public-coin puzzle, which by the transformation by Fürer et al. [20] (See
Theorem 11) implies a 3-round public coin puzzle with perfect completeness; furthemore, if starting
with a problem in NP that is average-case hard w.r.t. non-uniform PPT attackers, the resulting
3-round puzzle will preserve hardness also w.r.t. non-uniform PPT attackers. Given a first message
z, a second message x and a third message w, let Vz(x,w) denote the challenger’s acceptance
predicate. Let us now argue that this acceptance predicate Vz yields a hard-on-the-average search
problem in TFNP/poly, when appropriately picking z as the non-uniform advice.13

13Let us note that whereas [38] does not explicitly rely on the construction from [20], the final TFNP/poly problem
they consider becomes exactly the same.



• Totality: Note that by perfect completeness of the puzzles, there exist some (first-message)
string z such that for every (second-message) string x, there exists a response w that makes
the Challenger accept; that is, there exists some z such that for every x, there exists a witness
w such that Vz(x,w) = 1. Thus, for such a “good” z, Vz is a total relation.

• Hard-on-average: Additionally, for every sequence {zn}n2N , we claim that {Vzn}n2N is a
hard-on-average search problem. This follows since given any PPT attacker A that succeeds
in breaking the search problem, we can get a non-uniform PPT attacker A

0 (which has
{zn}n2N as non-uniform advice) that succeeds in breaking the 3-round puzzle with the same
probability (by simply sending its non-uniform advice as the first message and next using A).

Barriers Towards Showing TFNP-Hardness: By Theorem 2, to establish average-case TFNP-
Hardness from just average-case hardness of NP, it su�ces to show that OWFs imply TFNP-
hardness of NP. This, intuitively, should make the task quite a bit easier. So far, however, only
negative results have been established:

• Rosen et al. [63] show a black-box separation of TFNP with a small number of witnesses—
bounded TFNP—from OWFs. In fact, they prove a stronger separation, separating bounded-
TFNP from injective trapdoor functions. They accomplish this by generalizing the technique
of Rudich [64] to construct an oracle relative to which injective trapdoor-functions exist, yet
bounded-TFNP are easy to solve. Their result highlights that bounded-TFNP behaves quite
di↵erently from TFNP; indeed, in our construction of a hard-on-average TFNP program, the
problem has a large number of witnesses.

• A very recent result by Hubacek et al. [37] addresses the question of whether TFNP (poten-
tially with a large number of witnesses) can be constructed from OWFs in a black-box way.
They present some limitations on black-box constructions of a worst-case hard TFNP problem
from injective one-way functions. However, their results only applies to quite restrictive forms
of black-box constructions/reductions. In particular, they only rule out reductions that are
non-adaptive and oblivious of the underlying one-way function; we refer the reader to [37] for
further details on these restrictions.

Summarizing, the restrictions in known impossibility results are quite severe. It is an intriguing open
problem to either extend these impossibility results to apply for general black-box constructions, or
to simply overcome the barrier and present an average-case hard TFNP problem from OWFs (which
combined with Theorem 2 gives average-case hardness of TFNP from just average-case hardness
of NP). We are optimistic and believe that a construction of an average-case hard TFNP problem
from OWFs will be found.
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[37] Pavel Hubácek, Chethan Kamath, Karel Král, and Veronika Sĺıvová. On average-case hardness
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