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In brief

Logiaco et al. develop a model of the
thalamocortical architecture that
supports learning of an extensible library
of temporally varied motor motifs and
chaining of these in arbitrary orders to
control hierarchical behaviors. This relies
on the surprising power of the relatively
small thalamus to control the dynamics of
the much larger cortex.
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SUMMARY

The neural mechanisms that generate an extensible library of motor motifs and flexibly string them into arbi-
trary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project
to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. We model the
basal ganglia inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and
free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neu-
rons can control cortical dynamics to generate specific motor output in a noise-robust way. Additionally, a
single “preparatory” thalamocortical network can produce fast cortical dynamics that support rapid transi-
tions between any pair of learned motifs. If the thalamic units associated with each sequence component are
segregated, many motor outputs can be learned without interference and then combined in arbitrary orders
for the flexible production of long and complex motor sequences.

INTRODUCTION

Animals have the remarkable ability of flexibly performing long
and complex sequences of movements (Geddes et al., 2018;
Krakauer et al., 2019). In humans, dance illustrates this ability.
A long dance can be decomposed into a sequence of short, ste-
reotyped moves or motifs. These motifs form alibrary that can be
flexibly combined by experienced dancers to create novel se-
quences—new dances—with minimal additional training.
Furthermore, new motifs can be learned to extend the library
without interfering with previously acquired dance moves. These
phenomena raise important questions regarding sequence gen-
eration in the mammalian motor system that have not yet been
addressed with computational models (Figure 1A). First, how is
flexibility achieved? If the motor system could not generate se-
quences with previously unexperienced transitions between
pairs of known motifs, this would severely limit flexibility. Sec-
ond, how can a motif library be extended? New learning brings
the risk of overwriting of prior knowledge, which the motor sys-
tem must be robust to. Third, how can a high-level sequencing
command—instructing which motifs to execute and in which or-
der—be efficiently communicated to a neural network dedicated
to the dynamic elaboration of the corresponding motor pro-
gram? Of note, these are also open issues in machine learning
(Merel et al., 2019b; Belkin et al., 2018; Geirhos et al., 2018; He
and Jaeger, 2018; Riemer et al., 2019). We turn to the anatomy
and physiology of the motor system for clues to and constraints
on the answers to these questions.

We focus on the recurrent system comprising motor cortex,
the basal ganglia, and thalamus, for which much evidence sup-
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ports a role in the learning and execution of skilled motor se-
quences (Beloozerova and Marlinski, 2020; Geddes et al.,
2018; Sauerbrei et al., 2020; Jin et al., 2014; Shenoy et al.,
2013; Penhune and Steele, 2012; Jin and Costa, 2010; Mushiake
and Strick, 1995). Although multiple other structures are impor-
tant in motor control in general, these are particularly implicated
in internally generated behaviors (Mushiake and Strick, 1995;
van Donkelaar et al., 1999, 2000), the target of our investigation.
The motor cortex appears to function as a dynamic pattern
generator that produces neural activities needed to execute
the muscle contractions associated with individual motifs
(Churchland and Cunningham, 2014; Shenoy et al., 2013). The
basal ganglia, on the other hand, have been linked to computa-
tions needed for arranging motifs into sequences. The striatum
may control sequence structure (Geddes et al., 2018), and the
output nuclei—the internal capsule of the globus pallidus (GPi)
and substantia nigra pars reticulata (SNr)—generate sustained
firing patterns that are specific to particular motifs (Jin et al.,
2014). During sequence generation, the motor thalamus is typi-
cally considered to function as a relay, receiving strong inhibitory
input from the basal ganglia (Edgerton and Jaeger, 2014; Deniau
and Chevalier, 1985) and projecting to cortex (Harris et al., 2019).
However, the motor thalamus also receives feedback from mo-
tor cortex (Harris et al., 2019). Thus, in addition to the conven-
tional loop from cortex through the basal ganglia and thalamus
and back to cortex, there is a second loop directly between cor-
tex and thalamus. Although the former has long been studied
(Mannella and Baldassarre, 2015; Alexander and Crutcher,
1990), only recently has the importance of the second loop
been characterized (Rikhye et al., 2018; Schmitt et al., 2017;
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Figure 1. Motif sequencing and the cortex-thalamus circuit

(A) Flexible and extendable motor sequencing.

(B) Cortex-thalamus model schematic.

(C) Motif-specific dynamics. The effective connectivity matrix .]u defines the dynamics of motif u (Equation 1), which can be summarized by an ensemble of basis
functions (right). These basis functions are characterized by (1) exponential and oscillation timescales T and T, which depend on the connectivity Ju, and (2) initial
amplitudes A and phases ¢, which depend on the cortical activities at the start of motif . A sum of these basis functions composes the motor output (pink trace).
(D) (Left) Neural activity space for a 3-neuron network. The neural trajectory is shown in red. The basis functions are the projections of the neural activity onto
specific directions in activity space (i.e., the eigenvectors in purple; STAR Methods section 4.2, with details in section 4.2.2.2). The arrows show the projection of
the neural activity for the 2" basis function. Dark to bright shades are early to late times. (Right) The activity of each neural unit (e.g., here, c3) is a weighted sum of
the basis functions.

(E) Control of the dynamics’ timescale parameters (i.e., the eigenvalues) A —related to 7 and T in (C) through 7=1/(Re 4;—1) and T = 2x/Im 4;—by a thala-
mocortical loop during a motif. The target eigenvalues A,‘fes (for k <20; pink “+” symbols) are included among the eigenvalues of the full cortex-thalamus circuit
(purple circles) as a result of imposing the relationship between the corticothalamic and thalamocortical synaptic weights given by Equation 2. The corresponding
eigenvalues of the unperturbed cortical network are shown for comparison (red dots), and the unit circle (indicating the bounds for an infinite random recurrent
network; Bai, 1997) is shown for reference. Cortical network size: N = 500.

(F) Approximating a target motor motif (here, the sinc function; black curve) by a weighted sum of K basis functions (green dashed curve: K = 20; blue dashed
curve: K = 10). The pink curve is the cortical output when the corresponding timescales (pink crosses in E) are included in the dynamics through tuning a tha-
lamocortical loop (with K = 20).

See Figure S1 for other motifs.

Guo et al., 2017). Lacking, however, is a model of how motor
function is supported by the interaction between these two
loops.

We have developed a model incorporating thalamocortical
loops controlled by basal ganglia outputs that can flexibly and
extensibly generate sequences. Our model allows for a complete
analysis that reveals the relationship between system output and
the synaptic weights of the cortex-thalamus circuit. We find that
the dynamics needed to execute a specific motif in a noise-
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robust manner can be generated solely by adjusting the synap-
ses between cortex and motif-specific thalamic units, while leav-
ing all synapses within cortex and to the motor output un-
changed by learning. Furthermore, our analysis reveals the role
for special purpose “preparatory” thalamocortical loops that
robustly mediate fast transitions between motifs without
requiring motif- or transition-specific synaptic weights.

To generate an arbitrary sequence, the basal ganglia switches
between inhibiting different subsets of thalamic units to prepare
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and execute different motifs. This framework ascribes to the
basal ganglia the roles of sequence selection and transition
timing and to the thalamocortical loop, in conjunction with motor
cortex, the roles of motor preparation and motif execution. Our
framework suggests that the cortex-thalamus architecture is
well suited to flexibly control prolonged and complex sequential
motor behavior.

RESULTS

Our aim is to develop an understanding of how cortical and
subcortical motor areas cooperate to implement flexible motor
sequencing. In particular, we wish to gain insight into how the
structural anatomy of the motor system supports this complex
function. In the development of our model, we are guided by
three sources of evidence: anatomy; physiology; and the
computational requirements of sequencing. These lead us to
construct a model that is faithful to the known biology but simple
enough to be analytically tractable and thus provide insights
about the functioning of the motor system.

Our model comprises motor cortex, motor thalamus, and GPi/
SNr (Figure 1B, left). Motor cortex is a highly recurrent structure
(Kaneko, 2018), a feature of our model that is necessary to
generate the dynamics needed to produce each motif. Further-
more, projection neurons in cortex synapse in the spinal cord
for the control of muscles (Harrison et al., 2012), and thus, we
model motor output as arising from cortical activity. Motor thal-
amus, conversely, has no excitatory recurrence (Arcelli et al.,
1997), and this, as we shall see, is fundamental for the func-
tioning of our model. It does, however, both project to and
receive projections from motor cortex (Harris et al., 2019).
Finally, we assume that GPi/SNr selects behavior via its inhibi-
tory inputs to thalamus.

We rely on two major features of the physiology. First, previous
experimental and theoretical work (Shenoy et al., 2013; Church-
land and Cunningham, 2014; Sussillo et al., 2015) has provided
strong evidence that motor cortex dynamics generates patterns
of activity that form a basis for driving the muscle activity asso-
ciated with movement. Specifically, these studies support the
view, during individual movements, that activity in cortex can
be captured by linear dynamics (Lara et al., 2018a; Sussillo
et al.,, 2015) and that muscle activity can be reconstructed
from a weighted sum of cortical activity (Russo et al., 2018).
These results support using a linear network model during
each motif. Second, activity patterns in GPi/SNr have been
shown to be sustained during motif execution, with switches pre-
dominantly at the transitions between motifs (Jin et al., 2014). In
our model, we assume that the synapses from basal ganglia to
thalamus are strong enough such that, when active, they
completely inhibit their thalamic targets (Edgerton and Jaeger,
2014)—which we assume to be a specific subset of thalamic
neurons involved in learning new motifs. This assumption is
further supported by the presence of recurrent inhibition within
the thalamus (e.g., via the thalamic reticular nucleus; Arcelli
et al., 1997), which—though ignored by our model—would only
facilitate the ability of the basal ganglia to select among different
thalamocortical loops via winner-take-all dynamics (Murray and
Escola, 2017). This is compatible with the classic view that motor
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thalamus is in an inhibited state by default and is disinhibited by
targeted removal of inhibitory input from the basal ganglia, which
gates movement (Deniau and Chevalier, 1985; Edgerton and
Jaeger, 2014; Kim et al., 2017; Aoki et al., 2019; but see Schwab
et al., 2020 and STAR Methods, section 4.2.5). Importantly, this
introduces a critical nonlinearity in our model by allowing
thalamic units to be switched “on” and “off” across motifs. Spe-
cifically, inhibited thalamic units are silent while disinhibited ones
are free to respond to their cortical inputs—in which case they
participate to the motif-specific linear dynamics.

We further constrain our model by considering the computa-
tional requirement that robust motor sequencing must support
the learning of new motifs without concern for interference with
previously acquired ones. The structure of the cortex-thalamus
circuit suggests a two-part solution. First, we restrict learning
to the synapses within the thalamocortical loops and assume
that the intracortical and output synapses are fixed. Second,
we restrict the subsets of thalamic neurons that are active during
different motifs to be non-overlapping. These constraints guar-
antee that motifs do not interfere and offer a procedure for add-
ing new motifs: identify a new subset of thalamic units and set
their synapses to and from cortex such that, when they are
released from basal ganglia inhibition, the cortex-thalamus sys-
tem drives the output to generate some new target movement
(Figure 1B).

We can develop a mathematical description of our model with
a final assumption that the dynamics in thalamus are more rapid
than in cortex—which is expected given the absence of recurrent
excitation in thalamus (Lim and Goldman, 2013; Seung et al,,
2000)—and thus that we can approximate the thalamic response
to cortical activity as instantaneous. (See the table in STAR
Methods, section 4.2.5, for a complete list of the assumptions
in our model and their supporting references and STAR
Methods, section 4.2.6, for a demonstration that our results
remain valid under more biologically plausible conditions.)

Together, the lines of evidence and assumptions above can be
formalized within the standard “firing-rate” model framework
(Gerstner et al., 2009; STAR Methods, section 4.2.5). The cortical
activity, described by a vector ¢, interacts with thalamic activity?
according to the rate equation ¢ = — c+Jcc.C +JC&, where Jcc
and J.; are the fixed intracortical and tunable thalamocortical
synaptic weights, respectively. The cortical input to thalamus is
Jicc, where Jic are the tunable corticothalamic weights. Conse-
quently, the thalamic activity t—which accounts for inhibition
from basal ganglia—is given as t= S,Jicc, where S, is a diago-
nal “selection matrix” whose only nonzero elements are "1"s at
locations along the diagonal corresponding to thalamic units that
are active during some motif u. This selection matrix encodes the
inhibition and disinhibition of thalamus caused by its basal
ganglia inputs: multiplication by S, sets the inhibited thalamic
units to zero but leaves the disinhibited units free to respond to
their cortical inputs. Note that the vector t only models the
thalamic units that are modulated by basal ganglia during
sequence generation; other (non-plastic) thalamocortical loops
may be absorbed into the non-plastic part of the network
(STAR Methods, 4.2.5). Finally, the motor output y is generated
as a weighted sum of the cortical activity with fixed output
weights w: y = w'c.
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The simplicity of this model allows us to combine our cortical
and thalamic descriptions into a single closed equation for the
cortical activity during motif u:

¢= —c+d,c, where J,=Jec+JuSJic.  (Equation 1)

Thus, during a particular motif, the cortical dynamics are gov-
erned by the effective synaptic weights J# given by the sum of
the fixed intracortical connectivity J.c and a corticothalamocort-
ical perturbation JctS,Jic. This perturbation, in turn, is deter-
mined by the pattern of inhibitory input into the thalamus from
the basal ganglia as encoded in the diagonal elements of S,,.
Although we have presented these equations within the context
of motif generation, the same framework can apply more gener-
ally. For instance, below, we will consider the dynamics of motor
preparation as also arising from basal ganglia disinhibition of tha-
lamocortical loops. In this case, Syrep Will indicate the pattern of
basal ganglia activity during preparation and the preparatory dy-
namics will be governed by Jcc + JctSprepdic-

We briefly note major distinctions between our model and prior
approaches. Several studies have modeled the neural and mus-
cle activity of motor motifs with fully linear dynamical systems
(Hennequin et al., 2014; Churchland and Cunningham, 2014;
Lara et al., 2018a). However, these models generate a diversity
of outputs only by setting motif-specific initial neural activities.
Initial conditions also play an important role in defining our motifs
(as discussed below), but by proposing that basal ganglia input
changes the effective synaptic weights in cortex, our model ben-
efits from increased expressivity, which we analytically charac-
terize in the next section. Our proposal for the motor system—
a switching linear model (Linderman et al., 2017)—falls into a
larger category of approaches with nonlinear modulations of dy-
namics. However, by employing motif-specific thalamocortical
loop weights, our model distinguishes itself by benefiting from
rich shared cortical dynamics while still providing a mechanism
for fine-tuning those dynamics per motif and avoiding interfer-
ence between motifs.

We next address several key questions regarding the imple-
mentation of motor sequence generation by our model. First,
what is the relationship between the corticothalamic and thala-
mocortical weights and the dynamics of the model, and what
are the limitations to the dynamics that can be instantiated by
tuning these weights? Second, how should these weights be
set such that a particular motor output is generated? Third,
can motif generation remain robust to noise in the system?
Finally, a major question remains regarding the implementation
of transitions between motifs. If the transitions between all
possible pairs of motifs need to be learned, this would scale
quadratically with the number of motifs. Can the motor system
as represented in our model support efficient transitioning that
avoids this poor scaling property? (We will show that, in fact, it
can.)

Thalamus can act as a powerful modulator of cortical
dynamics

A hypothesis of our model is that control of motif production
arises from basal ganglia disinhibition of motif-specific thalamic
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units. We will show that this disinhibition can switch the dy-
namics of the motor system between a number of different con-
figurations, one per motif, such that the thalamocortical network
can implement a variety of motif-specific dynamics that enables
robust and accurate motor outputs that go beyond the expres-
sivity of the cortical network alone. Our cortical model is a stable
recurrent linear network with fixed connectivity, mirroring previ-
ous models of motor cortical dynamics during reaches (e.g.,
Hennequin et al., 2014; Churchland and Cunningham, 2014;
and Lara et al., 2018a). The dynamics of such a network is
composed of an ensemble of oscillatory “basis functions” (Fig-
ures 1C and 1D; see table at the beginning of the STAR Methods
section 4.2.2), whose temporal characteristics —oscillation fre-
quency and decay rate—are typically limited to a specific range
that depends on the statistics of the recurrent weight matrix (e.g.,
Figure 1E; and see Ahmadian et al., 2015; Bai, 1997; and Girko,
1985). For instance, if the cortical matrix is designed to favor sta-
ble dynamics, the basis functions will all decay much more
rapidly (Hennequin et al., 2014) relative to the slower dynamics
of many typical movements (Russo et al., 2018). In principle,
these basis functions can be combined in different ways to
generate a variety of motifs (Figures 1D and 1F), but—if there
is a mismatch between the temporal characteristics of a desired
motif and the temporal characteristics of the basis functions pre-
sent in the cortical network—accurate motif production will
require extremely large neural activities (such that the output re-
lies on a “fine-tuned” cancellation of the activities; Figures S1F-
S1L). In addition to being biologically implausible, such a solution
would be highly sensitive to noise perturbations (Figures S1K
and S1L). To generate such a motif robustly, the basis function
ensemble must be modified such that basis functions with
appropriate oscillatory and decay timescales are present within
the dynamics (Figures S1A-S1E), and we propose to do this
through thalamocortical loops.

Thalamic control of cortex requires that the activity of the large
cortical network be altered by a much smaller number of
thalamic units. To understand whether this is possible, we use
the fact that our model is linear within each motif, which permits
complete characterization of its dynamics. Specifically, the
effective synaptic connectivity matrix J# determines the basis
functions of the combined thalamus-cortex system: their decay
rates and oscillation frequencies are given by the real and imag-
inary parts of the “eigenvalues” of .]M (Figure 1C, right; Figure 1E;
STAR Methods section 4.2.2.2). Thus, whether or not a motif can
be realistically generated depends on the eigenvalues of :J# be-
ing set such that the motif can be constructed from a weighted
sum of the basis functions (Figures 1C-1F) without requiring
large neural activities. Because the neural activities directly
relate to the weighting (STAR Methods, section 4.2.2.2), a plau-
sible solution is one that constructs a motif by combining basis
functions with relatively small weights. Although, for any motif
u, there is no unique appropriate set of basis functions, we
wish to identify a small nhumber of “desired” basis functions
that, if present together in the basis function ensemble, would
be sufficient for the network to accurately and robustly produce
the motif with reasonable activities. Specifically, we wish to
determine K decay rates and oscillation frequencies (i.e., eigen-
values) such that, when the corresponding basis functions are
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summed, the result both faithfully reproduces the desired motif
and does so under the constraint that the basis function weights
are small (Figures STA-S1E; STAR Methods). These two condi-
tions enable accuracy, robustness, and plausible activities, while
the condition of requiring a small K minimizes the number of ba-
sis functions that need to be introduced into the dynamics
through thalamic control (Figures S1 and S2). Using these
criteria, we can determine such a set of desired basis functions
either numerically or, in some cases, analytically (STAR
Methods, sections 4.2.2.2 and 4.2.7; Figure S1).

Given these considerations, we ask: can we efficiently employ
thalamocortical loops in our model such that this set of desired
basis functions that would enable the network to produce a given
motif is certain to be present in the ensemble? To explore this,
we consider the minimal case in which a single thalamic unit is
left free to interact with cortex during motif u while all others
are inhibited by the basal ganglia. In this case, the effective con-
nectivity matrix in Equation 1 simplifies to JM =Jdec + u,‘vz, where
u, and v, are the thalamocortical and corticothalamic synaptic
weight vectors that are active during motif u. We show, under
light assumptions about the structure of J.c, that a relationship
exists between u, and v, such that the ensemble of basis func-
tions in our model is guaranteed to include the desired set (STAR
Methods, section 4.2.2). Specifically, if the decay rates and oscil-
lation frequencies of K desired basis functions are given by the
real and imaginary parts of % (for i = 1,...,K) and the basis
functions of the unperturbed cortical network J.. are given by
the N eigenvalues 4;, the relationship is

v, = L'diag(L u,) 'P*1, (Equation 2)

where the rows of L describe the directions in the high dimen-
sional space of the neural activity along which the basis func-
tions of the unperturbed cortical network lie (i.e., L is a matrix
of the left eigenvectors of J.c) and P* is the pseudoinverse of
a matrix with elements Pj; = 1/(}?"‘5 — ). For a given motif,
our goal of introducing K desired basis functions into the dy-
namics in principle imposes only K constraints on the 2N pa-
rameters defining u, and v,. A sufficient way to satisfy these
constraints is to impose N relationships between u, and v,
(through the pseudoinverse of P; see Equation 12 in STAR
Methods). The choice of how to make use of these N relation-
ships is arbitrary; one can, for example, choose to completely
define v, in terms of a random u, (as in Equation 2 above and
Figures 2A-2C) or vice versa. In the following section, we will
take advantage of the remaining N degrees of freedom to in-
crease the robustness of the solution.

Figure 1E shows the A% for a set of desired basis functions
and the J; for a random unperturbed cortical network (pink
crosses and red dots, respectively). After setting the corticotha-
lamic weights v, according to Equation 2 (with any random tha-
lamocortical weights u,), the cortex-thalamus system contains
the desired basis functions (i.e., the eigenvalues of the effective
connectivity matrix JM include the A%%%; purple circles).

Equation 2 shows that, in principle, setting only N thalamocort-
ical synaptic weights is sufficient to control all the timescales of
the basis functions of the model cortex, a system with a much
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larger N? synaptic weights. However, there are limits to this con-
trol. If the number of desired basis functions is large or if their
timescales differ too much from those of the unperturbed cortical
network, it may be numerically difficult to satisfy Equation 2
(STAR Methods, section 4.2.2; Figure S2). This could, in princi-
ple, impose an effective constraint on the motifs that can be
generated. Fortunately, a wide variety of motifs —including oscil-
latory signals resembling, for example, the muscle activities seen
during primate behavior (Churchland et al., 2012; Russo et al.,
2018)—can be well described by a relatively small number of ba-
sis functions (i.e., K < N; see Figure S1). In this case, obtaining
the desired basis functions is stable (Figures 1E, S2, and S5) with
synaptic weights within the thalamocortical loop that are similar
in magnitude to the recurrent cortical weights (Figures 2C, 2F,
and S4). Furthermore, the changes in the cortical timescales
induced by individual motif-specific thalamocortical loops are
sufficient to dramatically and qualitatively expand the diversity
of the motifs that the network can produce (Figures S1 and
1E). Thus, despite the obvious challenge of remapping the dy-
namics of the large cortical network with a single thalamocortical
loop, the use of thalamocortical control loops greatly extends the
dynamics that could be achieved by using an unmodulated cor-
tex model.

In summary, our analysis demonstrates that a single thalamo-
cortical loop can powerfully modulate cortex by introducing into
the circuit dynamics a set of useful basis functions for a specific
motif.

Taming sensitivity to initial conditions

Generating the right set of basis functions within the cortical dy-
namics is necessary to produce a desired motif but omits a key
remaining step: setting the initial cortical activities (Churchland
et al., 2006; Shenoy et al., 2013; Churchland and Cunningham,
2014; Elsayed et al., 2016; Lara et al., 2018b; Zimnik and Church-
land, 2021). In our model, these initial activities determine the
amplitude—and, for oscillating functions, phase—of each basis
function in the subsequent dynamics (Figures 1C and 1D).
Because each basis function has its own relative contribution
to the motor output—governed by the geometrical orientation
of the basis functions and the output weights in the space of
the dynamics—setting the amplitudes and phases appropriately
is necessary to ensure that the summed output gives a desired
motif (Equation 15 in STAR Methods, section 4.2.2.2). Here, we
study the robustness of motor output to the presence of noise
in the initial conditions. This is fundamental because any biolog-
ically plausible mechanism for setting the initial conditions must
be able to tolerate the large neural variability observed in
behaving animals (Churchland et al., 2010).

By expressing a desired motif as a weighted sum of basis
functions, we can calculate the initial cortical activities ci[‘”
(STAR Methods, Equation 16) that will produce a given motif if
set exactly. However, if the thalamocortical (u,) and corticotha-
lamic (v,) weights satisfy the constraints given in the previous
section (Equation 2) but are not further constrained (i.e., u, is
random), the system output can be catastrophically affected if
the initial activity pattern is perturbed even slightly (Figure 2A).
This occurs even in the stable regime where all basis functions
in the network undergo decay (Figure 1E).
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Figure 2. Noise-robust motif execution

(A-C) Corticothalamic weights v, adjusted to control the dynamics’ timescales as in Figure 1E (with Equation 2), while the thalamocortical weights u, are random
(as indicated with the dashed line in the schematic on the left).

(A) Desired and actual system outputs in the presence and absence of noise in the initial cortical activities (c‘;“ from Equation 16). Noise is Gaussian i.i.d. with
standard deviation equal to 1% of the root-mean-squared norm of the activities in the noiseless setting.

(B) Amplification of noise due to alignment of the directions of the basis functions. If the output weights w and some directions of large noise amplification overlap,
the output is highly noise sensitive.

(C) Distributions of intracortical and loop weights with u, sampled from a centered Gaussian distribution scaled such that u, and v, have equal norm (STAR
Methods, section 4.2.5).

(D-F) Same as (A)—(C) but with the thalamocortical weights u, optimized to minimize the effect of noise in the initial activity. Noise has a negligible effect on the
output (D) because all directions of large noise amplification and the output vector are no longer aligned (E). Additionally, the distribution of the loop weights
narrows (F).

(G) Distributions of the cosine of the angles between pairs of basis functions’ directions (i.e., eigenvectors). Larger values indicate that a pair of directions are
nearly parallel (STAR Methods, section 4.2.3).

(H) Root-mean-squared error of the output in the presence of 1% noise. Compared to the case of random u, (1), the noise-induced error is substantially
diminished after optimization (2) and is on par with errors observed using matrices with the same timescales as .]# but with basis function directions that match
those of random Gaussian matrices (3) or are orthogonal (4). See STAR Methods, section 4.2.3 for details.

(I) Average root-mean-squared norm of the activity vector ¢ when the initial activity is sampled from a random noise vector of norm one (from Equation 20 in STAR
Methods). Optimizing u,, reduces the length of the activity vector (1 versus 2), but not to lengths observed with random or orthogonal directions of basis functions
(3 and 4), indicating that optimization does not fully eliminate non-normal amplification.

The data in (G)—(I) were generated from 50 random networks (i.e., random samples of J.. and w) with five randomly sampled u,, per network; (H) and (I) used five
matrices with random and orthogonal directions of basis functions per network. N =500 throughout. Boxplots indicate the median (red line), the 25th and 75th
percentiles (edges of the box), the range of the data beyond these percentiles while staying no more than 1.5 times the interquartile interval away (whiskers), and
outliers (crosses).
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We can understand this through our analysis which reveals
that, in order for a motif to be produced in a noise-robust way
with reasonable neural activities, the requirement that the motif
be decomposable into a sum of basis functions with small
weights is incomplete. This requirement would be sufficient to
ensure reasonable magnitude neural activities if the geometry
of the network dynamics was “regular” (i.e., if the directions of
the basis functions were close to orthogonal). If the basis func-
tions are aligned, however, this sets up the potential for the neu-
ral activities—which themselves can be written as sums of basis
functions—to require large weights and thus have large magni-
tudes (Figure 1D; Equations 16, 20, and 21 in STAR Methods).
Then, as the dynamics evolve, large noise-amplifying activity
transients can be observed, a phenomenon known as non-
normal amplification (Ganguli et al., 2008; Murphy and Miller,
2009; Hennequin et al., 2012; Bondanelli and Ostojic, 2020).
Indeed, in our case, we show that, by forcing the dynamics to
include our desired basis functions via Equation 2, the directions
of the basis functions will tend to be aligned with each other.
Thus, it is imperative that the geometry of the cortical dynamics
can be constrained through thalamic influence.

Fortunately, the conditions on the thalamocortical and corti-
cothalamic weights required to generate a set of basis func-
tions with desired decay rates and oscillation frequencies
(Equation 2) do not completely specify both sets of these
weights. This raises the possibility that they can be selected
to make the motor output more robust to deviations in the initial
conditions by controlling the geometry of the dynamics. In fact,
noise robustness is only needed in the directions of the dy-
namics that are aligned with the output weights w. Our model
permits an analytic calculation of the output error in the pres-
ence of initial noise as a function of the thalamocortical weights,
and therefore, we optimized these weights to minimize this er-
ror (STAR Methods, section 4.2.3). Importantly, this optimiza-
tion does not affect the decay rates and oscillation frequencies
of the basis functions but instead exclusively acts on the direc-
tions along which the basis functions lie and thus the properties
of non-normal amplification in the system (STAR Methods, sec-
tions 4.2.2 and 4.2.3). After optimization, we find that produc-
tion of the motor output is robust to initial noise (Figure 2D),
with errors on par with those seen using “control” connectivity
matrices that have the same basis functions as J,, but are con-
structed to have little or no non-normal amplification (Figure 2H).
This is achieved even though the controlled basis functions stay
relatively aligned (Figure 2G), meaning that the remaining non-
normal amplification is restricted to non-output dimensions
(Figures 2E, 2l, S3D, and S3E; STAR Methods, section 4.2.3).
Therefore, after full optimization of the thalamocortical loop,
the activities in the network are of moderate magnitudes (Fig-
ures 3E and 3F), with norms (Figure S3E) that indicate that
the directions of larger activity patterns tend to not fully align
with the readout weights (which themselves have unit norm).
Likewise, moderately large neural activity patterns in move-
ment-irrelevant dimensions have been observed in motor
cortical dynamics (Russo et al.,, 2018; Saxena et al., 2021).
Finally, we find that noise-robust solutions lead to smaller mag-
nitudes of the thalamocortical loop weights compared to unop-
timized networks (Figures 2C and 2F).
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These results show that adjusting both the corticothalamic
and thalamocortical synaptic weights is a mechanism by which
a thalamocortical loop can achieve the dual goals of sculpting
the cortical dynamics to provide the basis functions for motif pro-
duction and stabilizing the motor output with respect to devia-
tions in the neural activity.

Thalamocortical loops can prepare cortex to execute
each motif

We now turn to the question of how the cortex-thalamus system
can prepare the initial activities needed to generate a motif
(Churchland et al., 2006; Shenoy et al., 2013; Churchland and
Cunningham, 2014; Elsayed et al., 2016; Lara et al., 2018b).
This preparation should not depend on the cortical activity at
the start of the preparatory period or else the motor system
would need to explicitly learn the transitions between all pairs
of motifs, producing a quadratic dependence on the number of
motifs and preventing improvisation of new sequences. Addi-
tionally, it should be possible to achieve preparation quickly
(Lara et al., 2018b). Here, we assume that an input that specifies
the upcoming motif can be delivered to the motor system during
motor preparation. This input could arise, for example, from fron-
tal cortex and reflect goals (Russo et al., 2020; Kornysheva and
Diedrichsen, 2014) or from the sensory system to cue a behav-
ioral response to a stimulus (Dacre et al., 2019). We also assume
that the basal ganglia (Jin and Costa, 2010; Jin et al., 2014) can
select preparation-specific thalamocortical loops that are active
only during the preparatory period. Importantly, these prepara-
tory loops can be reused for the transitions between all pairs of
motifs. Thus, we propose that preparation is split computation-
ally into two components: the specificity for the upcoming motif
is determined by a motif-specific input, while the preparation dy-
namics are shaped generically through thalamic modulation of
cortex (Figure 3A).

Turning to our model, the effective connectivity of the cortex-
thalamus system during preparation is given by Jpep =
Jec + JetSprepdic,; Where Sprep determines the thalamic units that
are active during preparation (Figure 3A). Then, if x,, is the input
specific to upcoming motif u, the cortical dynamics are given by
€ = — C+JprepC + X,.. With these dynamics (which we can ensure
are stable) and if x,, is set appropriately, the cortical activity will
converge to the desired initial state for the upcoming motif cl’j”
(Equation 24 in STAR Methods, section 4.2.4).

This “decay to steady state” mechanism is independent of the
cortical activity both at the start of preparation (which is the end
of the previous motif) and throughout the new motif. Thus, a sin-
gle preparatory network can serve all possible motif transitions
despite having no synaptic weights that are trained on specific
transitions.

The speed of preparation depends on how quickly the desired
initial activity state can be reached. Because the dynamics of
convergence to steady state are independent of the input (Equa-
tion 26 in STAR Methods, section 4.2.4), if thalamocortical loops
generate fast decay dynamics, they can be used for quick prep-
aration of any upcoming motif. Tuning of thalamocortical loops is
required because, when the unperturbed cortical network is cho-
sen to include slow dynamics to aid in motif generation, its
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(B) Decay of the magnitude of the difference between the cortical rates and their steady state for an optimized thalamocortical preparatory network (solid purple:
average; dashed purple: individual trials) and for the unperturbed cortical network (red).

(C) Timescale parameters of the optimized preparatory cortex-thalamus network (purple circles), compared to those of the unperturbed cortical network (red
dots). Conventions as in Figure 1E. See also Figures S6D and S6J.

(D) Time for the cortical activity vector to decay by either 95% or 99% of its initial value as a function of the number of thalamic units used in the preparatory
network relative to the number of cortical units. For a fixed proportion of thalamic units, the decay time is similar between different numbers of cortical units. The
arrow indicates the proportion of thalamic neurons used in other panels.

(E) Preparing and executing two motif variations u (which is identical to the output in Figure 2) and u’ when using the same thalamocortical loop during motif
execution. Top: schematic of the thalamocortical circuits involved. Example basis functions are also shown—for each motif variation, the basis functions’
exponential decay rates and oscillation frequencies are fixed, but their initial amplitude A and phase ¢ are set via x. Middle: network output. Bottom: two example
cortical units. Network activities were initialized with random standard normal values.

(F) Three sample motif preparations and executions when systematically varying the neural activities at motif start along a line in neural space. Conventions are as

in (E).

N =500 for (A)-(C), (E), and (F). In all panels except (D), the thalamic population has 10% of the number of cortical units.

intrinsic convergence to steady state is too slow to support effi-
cient preparation (Figure 3B, red).

To find corticothalamic and thalamocortical weights that
encourage rapid preparation, we optimized the relevant weights
of Jet and Jic to minimize the convergence time while ensuring
smoothness in the network output (STAR Methods, section
4.2.4; Figure S6). Using a thalamic population that has 10% of
the number of cortical units, convergence to steady state occurs
in just a few time constants of the cortical rate model (Figure 3B,
purple). This occurs because all basis functions of the prepara-
tory network have fast exponential decay rates (Figures 3C,
S6D, and S6J). Increasing the size of the thalamic preparatory
population leads to faster convergence times (Figure 3D).
Furthermore, after optimization, the thalamocortical loop
weights can have magnitudes that are comparable to the intra-
cortical weights (STAR Methods, section 4.2.4; Figures S6E
and S6K). The size of the thalamic population needed for prepa-
ration is considerably larger than what is needed for the produc-
tion of any single motif. This is because, during production, the
readout is the only constrained direction, whereas during prepa-
ration, all units are constrained.
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This preparatory mechanism suggests that movements can be
divided into two categories. In the previous sections, we have
considered the case where different movements require different
dynamics, corresponding to different basis functions, that are
implemented by different thalamocortical loops. There is also
the case where the same dynamics can be reused to generate
novel movements by exclusively modifying motor preparation.
Different inputs during preparation change the activities at the
start of motif production—and thus the amplitudes and phases
of the basis functions—resulting in different outputs. We can
call these “motif variants” to disambiguate them from different
motifs that require all new dynamics. In Figure 3E, motif variants
wand p' can share the same circuit dynamics during execution
(JM) as long as their initial activities can be prepared with appro-
priate inputs. However, we stress that a distinctly shaped new
movement cannot always be robustly and accurately con-
structed as a variant of some previously learned motif w (or
equivalently constructed from a fixed linear network; Figure S1)
because the fixed dynamics constrain the basis functions’ time-
scales and directions. The concept of motif variants is supported
by results showing that, when primates prepare and reach to
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different targets (Lara et al., 2018a; Churchland and Cunning-
ham, 2014), the cortical activities across these movements can
be well captured by shared linear dynamics. Furthermore, evi-
dence suggests that structured variability at the end of the pre-
paratory period correlates with output variability for similar
movements (Churchland et al., 2006; Vyas et al., 2018), as is
also the case in our model, specifically among motif variants
(Figure 3F). This effect does not hold across different motifs,
consistent with experiments that explored more varied move-
ments (Al Borno et al., 2020; Sun et al., 2020).

In summary, we have shown that thalamocortical loops can
modify the motor system dynamics to quickly drive the cortical
activity toward a particular initial condition needed for an up-
coming behavior. As we shall see in the following section, this
enables near-seamless transitioning between motifs during
sequence generation. Importantly, the same preparatory thala-
mocortical loop can be used to prepare any upcoming motif,
with motif specificity coming from inputs to the system.

Switching between thalamocortical loops robustly and
flexibly generates complex motor sequences

The components of the motor circuit discussed in the preceding
sections can be combined to implement arbitrary motif se-
quences. The basal ganglia are the “selectors” of the system,
dictating which sequence elements to perform and in which or-
der. Via their inputs to thalamus, the basal ganglia alternate be-
tween disinhibiting different thalamocortical loops for the prepa-
ration of motif-specific initial conditions in cortex and the
subsequent execution of those motifs (Figure 4A). The cortex-
thalamus system is the “executor,” implementing the necessary
dynamics needed to prepare and execute each motif. During the
preparatory period, the cortical activities converge toward a
static pattern associated with the upcoming motif, while during
execution, motif-specific activity is generated (Figure 4B).

In our model, basal ganglia act as a critical nonlinearity, turning
on and off different thalamocortical loops and thus changing the
cortical dynamics per motif. In contrast, a naive baseline linear
network that could support similarly rich sequence generation
would effectively require a different subnetwork for each motif
(compare Figure 4C, left and right). The total number of units N,
nits required by our model scales as the sum of the number of mo-
tifs Nmotits and the number of basis functions K required for each
motif (which is a lower bound on the size of the cortical network).
A fully linear solution, on the other hand, would require ~ KNmotits
units. These considerations emphasize how, during motif pro-
duction, the control of many basis functions by a smaller number
of thalamocortical loops —possibly as few as one, as we demon-
strate here—is a key factor for the efficiency of our model. This
makes it clear that the presence of strong nonlinear inhibition
at a specific location in the thalamocortical architecture bal-
ances the goals of keeping Nynits low while maintaining segrega-
tion of motif-specific circuit elements and providing a simple and
plausible solution for adding motifs to the system.

Once a set of motifs is learned, any arbitrary motif sequence
order can be generated by the network (Figure 4D). Just prior
to the onset time for the next motif (here, we use 5 times the
cortical rate model time constant), the active thalamocortical
loop is switched to the preparatory loop and the preparatory
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input for the next motif is supplied to the circuit. During the tran-
sition period, the cortical activity approaches the appropriate
initial condition for the upcoming motif. After this, removal of
X, inhibition of the preparatory loop, and disinhibition of the
appropriate thalamic unit results in the execution of the next
motif. Due to the smoothness constraint mentioned in the previ-
ous section, the motor output smoothly interpolates from the end
of the prior motif to the start of the next one over the course of the
transition period (even when those two output values differ sub-
stantially; STAR Methods, section 4.2.4; Logiaco and Escola,
2020). Notably, the need to invoke motor preparation dynamics
for each motif transition—which arises in our network for purely
computational reasons—argues against the “chunking” theory
of motor sequences (Sakai et al., 2003; Abrahamse et al.,
2013) and mirrors recent experimental results in primates, which
show preparatory activity prior to each component of fast reach
sequences (Zimnik and Churchland, 2021).

DISCUSSION

We have developed a model of the cortex-thalamus system that
can produce sequences composed from an extensible library of
motifs generated in arbitrary order. Mechanistically, this relies on
switching linear dynamics where the switches—which are
aligned to the transitions during sequence production—are trig-
gered by basal ganglia disinhibition of specific thalamocortical
loops with tuned weights.

The linearity of our model during motif execution makes it
analytically tractable, while the nonlinear inactivation of thalamic
units gives it flexibility. Indeed, any nonlinear dynamical system
can be approximated by switching linear dynamics, with
increasing precision (but decreasing tractability) when the
switching frequency increases. In the context of motor
sequencing, switching is useful to quickly stabilize and adjust
the dynamics at each motif transition and to support motif-spe-
cific dynamical regimes. In contrast, although linear dynamical
systems can have fixed points and interesting transient dy-
namics, they cannot modify their dynamics to suit different mo-
tifs. The thalamic modulation of cortical dynamics during
different motifs therefore expands the expressivity of the linear
networks previously used to model motor cortical dynamics
(Hennequin et al., 2014; Churchland and Cunningham, 2014;
Lara et al., 2018a).

Comparison to prior modeling work

We considered the case of a single thalamic unit active during
motif execution that results in a “rank-one” perturbation to the cir-
cuit dynamics. This minimal change, coupled with the within-motif
linearity of our model, allowed us to fully characterize the dy-
namics while accounting for the detailed structure of all the
weights. This revealed that a single unit can robustly shape the ac-
tivity of a recurrent network and expands a body of research using
recurrent networks with dynamics defined by the sum of full-rank
and low-rank matrices (Sussillo and Abbott, 2009; Rivkind and
Barak, 2017; Mastrogiuseppe and Ostojic, 2018, 2019; Landau
and Sompolinsky, 2018; Schuessler et al., 2020; SchiBler et al.,
2020; Susman et al., 2021). Notably, the mathematical analysis
of these networks used to focus on cases where the low-rank
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(A) Schematic of the cortex-thalamus system. The input from the basal ganglia selects thalamic units needed for either motif execution or preparation. During
preparation, the cortical population also receives an input x,, specific to the upcoming motif u.

(B) Preparation and execution of three example motifs. When the preparatory thalamic units interact with cortex, the system output (upper) and cortical units
(lower) converge to the values needed for the upcoming motif. (Here, for visualization purposes, the preparatory period was made much longer than needed.)
Upon disinhibition of the motif-specific execution loops, the target motifs (upper) are composed from thalamic and cortical activities (middle and lower). These
motifs are composed from a linear combination of motif-specific basis functions (top), with different (1) directions in neural space, (2) timescales, and (3) initial
amplitudes and phases.

(C) Comparison of the thalamocortical network with a “baseline” linear network. These two architectures are shown during the production of motif “A,” and active
elements of the circuits are drawn in bright colors while inactive elements are grayed out. In the thalamocortical network (left), the total number of units in the
network Nynits is given as the number of motifs Niyotits added to the fixed sizes of the cortical network and of the preparatory network. As new motifs are added to
the library, this implies a scaling of network size with Notits. In contrast, in a linear network (right), a subnetwork of size K (i.e., the number of basis functions used
for motif construction) is required for each motif giving a total scaling of KN otits-

(D) Generation of sequences of arbitrary orders, using preparatory periods (between vertical dashed lines) before executing each motif.

perturbation dominates the resulting dynamics (Mastrogiuseppe
and Ostojic, 2018; Landau and Sompolinsky, 2018) or on manip-
ulating the timescales (the eigenvalues) of the system (Rivkind and
Barak, 2017; Mastrogiuseppe and Ostojic, 2019; Schuessleretal.,
2020). Instead, our analysis reveals that we can fully tune the low-
rank matrix to match features of the detailed structure of both the
full-rank matrix and the output weights, which enables control of
both the timescales and the directions of the basis functions (their
eigenvectors). By doing so, we can robustly shape high dimen-
sional activity, which can then be used for the flexible production
of complex temporal outputs.

Though flexible motor sequencing is routinely performed by
animals, it remains a challenge in machine learning (Merel
et al.,, 2019b; Merel et al., 2019a; Logiaco and Escola, 2020).
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Sequencing requires both that new motifs can be learned
without destroying previously learned ones (He and Jaeger,
2018; Riemer et al., 2019) and that motif sequences can be
generated in orders never experienced during training (Belkin
et al., 2018; Geirhos et al., 2018; Merel et al., 2019a, 2019b)—
two flexibility requirements that can lead to catastrophic failures
with state-of-the-art methods (Logiaco and Escola, 2020).
Guided by biological and formal principles, our thalamocortical
network overcomes both of these challenges. First, different mo-
tifs can be learned with completely separate sets of parameters,
preventing interference while still benefiting from the rich dy-
namics of the shared cortical network. Specifically, the capacity
of the network for producing large numbers of motifs is only
limited by the number of thalamic units. In addition, by
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segregating the units that control cortical dynamics into their
own non-recurrent brain region where activity cannot spread
laterally —the thalamus—our model avoids the problem of inter-
ference between motifs. Finally, segregating the control units
into thalamus facilitates two biological processes: inputting the
switch commands into the circuit and learning the motif-specific
synapses. Second, our preparatory network, which is motif inde-
pendent, can implement any transition, including novel ones. We
further show that transitions can be fast even under the
constraint that the size of the preparatory thalamic population
is a fraction of the size of cortex. Interestingly, recent results
(Logiaco and Escola, 2020) demonstrate that the insights from
the switching-linear thalamocortical model presented in this
article are relevant to improving both robustness and accuracy
in a continuously nonlinear network solving a hierarchical control
task (Merel et al., 2019a).

Our implementation of motor preparation shares similarities
with an alternative thalamic preparatory circuit that was recently
developed (Kao et al., 2021). The key difference between the two
approaches is that the thalamic preparatory network we propose
is designed to generically handle any upcoming movement dy-
namics, whereas Kao et al. propose a preparatory network
with synaptic weights that are matched to specific upcoming dy-
namics, yielding very efficient motor preparation. From a func-
tional viewpoint, the two approaches have complementary
strengths. The latter approach is clearly advantageous in a
context in which a given dynamics is reused to create different
motif variations (e.g., by changing the initial activities in cortex
as in Figures 3E and 3F). However, in a context with multiple
complex motifs requiring different dynamics (Figure 4), our pre-
paratory network can be used to prepare all motifs while still im-
plementing fast transitions. More generally, during motor prepa-
ration or motor production, our results emphasize that even a
limited number of thalamic units can potently remap cortical dy-
namics, so that the thalamocortical circuit can extensibly learn
and flexibly perform the motor sequencing task while using neu-
ral resources relatively sparingly.

Our model captures key experimental findings

Our model captures several important features of motor cortical
activity, despite the fact that we did not impose biological con-
straints other than the type of dynamical regime and basic anat-
omy. Notably, we observe prominent oscillatory patterns of neu-
ral activity during motif execution (Russo et al., 2018; Churchland
and Cunningham, 2014). We require an obligatory preparatory
period before movement execution (Lara et al., 2018b; Shenoy
et al., 2018). Variability in the cortical activity at the end of the
preparatory period can correlate with variability in the motor
output (Churchland et al., 2006; Vyas et al., 2018). Perhaps
most interestingly, our model stipulates that preparatory periods
are required even within ongoing motor sequences, specifically
at the transition times between motifs. This mechanism is in
contrast to the view that highly repeated motor sequences
become chunks that are executed en bloc following their initia-
tion (Sakai et al., 2003; Abrahamse et al., 2013). Recently, motor
cortex recordings have shown that motor preparation occurs
before starting each sequence element during rapidly executed
sequences (Zimnik and Churchland, 2021), supporting our hy-
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pothesis that—at least in certain settings—chunking does not
occur at the level of motor cortex.

Model limitations and extensions

Certain aspects of our model are considerably simplified
compared to the full complexity of the biological circuit. Notably,
we assumed (1) that, during specific matifs, all cortical units and
all disinhibited thalamic units are in a linear regime and (2) that
thalamus is instantaneous with respect to cortex. In STAR
Methods, sections 4.2.5 and 4.2.6, we explain how it is possible
to relax these two simplifications by using standard rectified
units in place of linear units in both cortex and thalamus and
by setting the thalamic time constant to be ten times faster
than cortex rather than infinitely fast. We have verified that there
exists a dynamical regime under which the model can still
generate motif sequences with dynamics that closely follow
our idealized theoretical framework (Figure S7).

To keep the exposition of our results focused on general
mechanisms by which a motor sequential task can be solved
by a recurrent network, we did not try to optimize the statistics
of the recurrent connectivity matrix or of the motor motifs to fit
a particular dataset. However, the thalamic control mechanisms
proposed in this work could be combined with different putative
types of cortical connectivity matrices, such as those that have
been shown to capture specific statistics of cortical activity re-
corded while primates perform hand reaches (Hennequin et al.,
2014; Kao et al., 2021).

Furthermore, sensory feedback is absent in our model. In
many realistic settings, sensory feedback is likely to be key in
organizing the sequence, as well as in providing error-correcting
information (Penhune and Steele, 2012; Guo et al., 2020; Dacre
et al., 2019). Our thalamocortical model could be extended by
introducing a cerebellar module, which could fine-tune cortical
dynamics in response to sensory feedback and/or contribute
to motif selection and tuning. More generally, in our model, tran-
sitions between motifs are “externally” triggered by altering the
pattern of basal ganglia input to the thalamus. In the brain, it is
likely that the striatum is involved in this process by inhibiting
neurons in the GPi/SNr (the output nuclei of the basal ganglia)
at times determined by its monitoring of cortical activity. In
particular, frontal brain regions, which project back to the basal
ganglia (McFarland and Haber, 2000) and whose firing rates can
reflect the abstract sequential structure of a task (Tanji and
Shima, 1994; Clower and Alexander, 1998; Procyk et al., 2000;
Russo et al., 2020), are good candidates for planning and con-
trolling sequence generation in this way. Alternatively, other
brain structures could participate in the mechanisms for thalamic
disinhibition—the key functional feature of our model. For
example, cerebellar outputs could modulate cortex-thalamus in-
teractions (Nashef et al., 2021) through indirect disinhibitory sig-
nals, e.g., passing through the thalamic reticular nucleus (Arcelli
et al., 1997).

Finally, our work does not address the mechanisms by which a
biologically plausible learning rule could allow the brain to learn
the synaptic weights of thalamocortical loops. The most straight-
forward interpretation of our model would suggest that plasticity
occurs at the level of the synapses of the direct thalamocortical
and corticothalamic projections—for which there is some
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evidence (Pigeat et al., 2015; Oberlaender et al., 2012; Yu et al.,
2012; Hsu et al.,, 2010; Castro-Alamancos and Calcagnotto,
1999). However, plasticity could also occur anywhere within an
effective feedforward subnetwork between the thalamic and
cortical populations involved in the dynamic production of motor
commands. Our model assumes that the synaptic weights be-
tween units can be tuned to an accuracy of up to about 0.1%
of the magnitude of the cortical weights (Figure S5), a similar
constraint as for recurrent networks trained with an online algo-
rithm (Sussillo and Barak, 2013). This fine-tuning requirement
would be somewhat mitigated by mapping each model unit to a
population of biological neurons and matching the model’s syn-
aptic weights to effective weights between populations (Mongillo
etal., 2017). Further work will be needed to investigate whether, in
the context of our model, the level of synaptic fine-tuning required
for generating a complex motor sequence with a realistic number
of units can be within a biologically plausible range.

Experimental predictions

Our model makes experimental predictions that can be tested in
animals engaged in flexible motor sequencing tasks. First, we
predict that changes in the activity patterns either in thalamus
orin the basal ganglia should immediately precede, and be caus-
ally related to, changes in cortical dynamics. Recently developed
data analysis tools (Linderman et al., 2017) can infer switch times
between different dynamical regimes in neural population re-
cordings. Thus, simultaneous recordings in motor cortex and
either thalamus or GPi/SNr could be used to test this prediction.
Similarly, we predict that switch times in thalamic activity pat-
terns, as well as switch times in cortical dynamics, would reflect
points of change in muscle activity delineating reusable behav-
ioral primitives (Zimnik and Churchland, 2021). Further, motor
preparation is predicted to involve the activation of a substantial
thalamic population, considerably larger than for the execution
of any single motif, which appears consistent with recent results
(Nashef et al., 2021). Next, we predict that perturbative experi-
ments in GPi/SNr and thalamus would have differential effects.
A controlled alteration of activity patterns in the basal ganglia
could modify the order of motifs while leaving individual motifs
unchanged. Perturbing thalamocortical interactions during a
motif, on the other hand, would affect cortical dynamics and
would thus disrupt motor execution. This is in line with recent
experimental results demonstrating the need for time-depen-
dent thalamic input to motor cortex during movements (Sauer-
brei et al., 2020) and would additionally suggest a critical role
for the feedback from cortex to thalamus. In addition, our model
posits that thalamocortical interactions can remap cortical dy-
namics to produce the basis functions needed for the execution
of each motif. This is compatible with experimental reports
showing substantial changes in motor cortical activity between
different movements and/or contexts (Miri et al., 2017; Al Borno
et al., 2020; Sun et al., 2020), as well as during prolonged brain
machine interface training (Oby et al., 2019). Further analyses
will be needed to investigate whether these large changes of
cortical activity relate to changes in the effective cortical connec-
tivity (Feulner and Clopath, 2021). Finally, our model also postu-
lates that the thalamic neurons involved in shaping cortical dy-
namics during motif execution are segregated into motif-
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specific subpopulations. This prediction could be tested by
correlating recordings in thalamus with behavior during a flexible
sequencing task, ideally during the acquisition of new motifs.
Interestingly, a study showed that, when training an animal on
two distinct motor tasks, learning for each task is associated
with its own synaptic subpopulation in a thalamic-recipient layer
of motor cortex (Hayashi-Takagi et al., 2015; Kaneko, 2013). Our
interpretation would be that these subpopulations are receiving
inputs from motif-specific neurons in thalamus.

Conclusions

In conclusion, our corticothalamocortical model suggests a
mechanism for flexible and robust sequence generation and
leads to experimental predictions that can further our under-
standing of motor system function. In addition, our model reveals
how complex cognitive processes may rely on neural systems
operating on very different timescales. First, slow learning
through the adjustment of synaptic weights can construct a li-
brary of cognitive building blocks, such as motifs. Then,
assuming the network architecture is appropriately con-
strained—as in the case of motif-specific units in the thal-
amus—the flexible organization of these cognitive building
blocks can be achieved online through a selection process like
the one that we propose is implemented in the basal ganglia.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

thalContCrtx This paper https://github.com/LaurelineLogiaco/
thalContCrtx_seq

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Laureline Logiaco
(laureline.logiaco@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code for simulating the model described in this study is available on github (https://github.com/LaurelineLogiaco/
thalContCrtx_seq).

METHOD DETAILS

Here, we formally define our model and derive several properties that we have illustrated in the main text figures. We then explain how
additional biological constraints — such as finite timescales and firing rate positivity — can be added to the model while staying within
the validity domain of our simplified mathematical framework. In the main text, we have aimed to use intuitive words to describe the
mechanisms by which our model produces output; however here we will use the corresponding technical terms to make the text as
clear as possible for the computationally-oriented reader. We list the equivalencies between the names used in the main text and the
mathematical terminology in the table below.

Correspondence between intuitive and technical terms

Main text phrase Technical term
Basis function of the dynamics eigenmode
Timescale parameter for each basis function eigenvalue A
Direction/axis of basis function eigenvector

4.2.1 Model definition
Here, we give a short derivation of the simplified rate equations we use in the main text (Equation 1). A longer derivation linking these
rate equations to more biologically plausible neuronal dynamics is provided in STAR Methods section 4.2.5.

We consider a rate description of population neural dynamics (Gerstner et al., 2009), where the cortical activities ¢ and thalamic
activities t interact according to:

€= —cC +JecC + Jat [t]" +x (Equation 3)
mt=—t+ Jeoc+b, (Equation4)

where Jcc is the recurrent cortical connectivity matrix, Jct is the thalamocortical weight matrix, Jic is the corticothalamic weight ma-
trix, and x and b are external inputs. Finally, [ ]* is the rectified nonlinearity. Note that these equations assume that cortical dynamics
stays in a quasi-linear regime so that the cortical rates do not need to be passed through rectification. Also, note that the dynamics
are expressed in units of the cortical timescale (that we normalized to one in our figures).

In addition, we analyze the model in the limit in which the thalamic dynamics are fast compared to cortical dynamics — which would
be expected given that positive recurrent feedback, which is present in cortex but not in thalamus (Arcelli et al., 1997; Sherman,
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2016), often results in slower timescales of neuronal population dynamics (Seung et al., 2000; Lim and Goldman, 2013). In this limit,
t = Jic ¢ +b. In addition, we consider that during a particular stage ‘s’ of the task (e.g., during motif execution or preparation), the
thalamic units are separated into two groups indexed by a diagonal ‘selection’ matrix Ss: those who are fully shut off by their basal
ganglia inputs, which correspond to zeros in the diagonal of Sg; and those who are left free to interact linearly with cortex, which corre-
spond to ones in the diagonal of Ss. Then, during the task stage s, we can find a mapping between [t]* and the thalamic activity vector
1=S.dc C (see STAR Methods 4.2.5 for details) such that we can write:

C = —C+dec C+Jgt Sedic ©+Xs (Equation 5)

Depending on the particular stage considered — motif production or motor preparation — the characteristics of the cortical input xs and
of the selection matrix Ss will be different, as we explain below.

Motif execution dynamics

During the execution of a given motif dynamics p, we study the minimal case when a single motif-specific thalamic unit is left free to
interact with cortex, such that the matrix Ss =S, has a single non-zero entry on row . Therefore, Jct t= quJc where u, is the uth
column of J.t and VJ is the u‘h line of Ji. In addition, there is no input needed during motif, so xs = 0, and we get:

€= —c+decCHUv C: = —c+J,cC. (Equation 6)

Hence, the thalamocortical loop involved in the execution of mgtif u effectively implements a rank-one perturbation u,LvMT of the con-
nectivity J¢c to create an effective motif-specific connectivity J,,.

Motor preparation dynamics

We assume that for the preparation of any motif, a specific population of Ny, thalamic neurons interact with cortex such that S¢ =
Sprep Where Sy has Nyrep NON-zero entries that are separate from the entries corresponding to motif execution units. In addition, for
the preparation of a given motif variation which starts with the ideal cortical activity pattern cif“, the input x,, is added to the circuit, so
that the dynamics is:

€= — C+JuSprepdic + X, 1 = — C+JprepC + X, (Equation 7)

If the dynamics are asymptotically stable (which is one of the aims of the design of the connectivity JctSprepdic, as we will explain in
STAR Methods section 4.2.4), then by choosing x, = — (Jprep — )€™, the activities indeed converge toward e,

Now that we have formally defined the dynamics of our model, we will describe how the thalamocortical perturbation weights can
shape the cortical dynamics to support flexible motor sequencing.

4.2.2 Eigenvalue control for motif sculpting
In this section, we focus on the dynamics of the circuit during the production of the motif n, associated with the effective connectivity
matrix .],L. For the sake of equation compactness, in this section we omit the index p for the associated thalamocortical loop vectors u
and v as well as for the eigenvalues [%]; ., and the left and right eigenvector matrices L and R of J,..

The eigenvalues J...4;...Ay of the effective motif-specific connectivity J, obey the characteristic equation:

0=det(Jee — A 1+uv’) = (147 (Joo = 3 1) ') det(Jec — A1),

where we assumed that J¢¢ is an invertible matrix whose eigenvalues are all distinct from all [;1,']1 <i<nSOthatdee — 2 lisinvertible, and
we used the matrix determinant lemma to write the second equality. In addition, these assumptions we make on J¢c imply that
det(Jec — 4 1) #0, so the above equation implies:

1=V (1= Jeo) u. (Equation 8)
We then further assume that J. is diagonalizable and use the eigendecomposition procedure to write Joc = Rdiag(A)L, where we
have concatenated the eigenvalues 14, ..., Ay in the vector 4, and L and R are matrices regrouping the left and right eigenvectors of the
matrix Jec. This allows us to expand (4; 1 — Jcc)’1 = Rdiag( — A)’1 L, where diag(% — A)~"is a diagonal matrix whose element on
the j' row and column is 1/(4; — ;). We can then rewrite Equation 8 to get:

1=v'Rdiag(4 — A)_1 Lu. (Equation 9)

Note that Equation 9 is valid for all eigenvalues ; of JM. As a consequence, in order for the eigenspectrum of JM to include an ensemble
of K <N desired eigenvalues A%, then — with the K x N matrix P defined to have elements P; =1/ (4 — ) - the following system of
equations holds:

1 = Pdiag(R"v) Lu (Equation 10)

=P diag(Lu) R"v, (Equation 11)
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where 1 is a vector of ones. Note that these two expressions are equivalent and that they restate Equation 9 as a linear equation for
either u or v instead of an implicit equation for both. These equations then allow one to get an expression for either the vector u (from
Equation 10) or the vector v (from Equation 11) that imposes the eigenvalues Af’es in the eigenspectrum of :J,L. In the following, without
loss of generality, we will proceed with the latter.

It is interesting to examine the extreme case when all eigenvalues are desired to change (i.e., K = N). It is then easy to see that
under the mild assumptions that (i) P is full-rank — notably requiring that all the eigenvalues %; and A,‘-’es are all distinct from one another;
and (ii) u is not orthogonal to any of the rows of L, then there actually exist a solution for the weights v such that V1 <i <N, = A,‘-jes.
This solution isv = LTdiag(Lu)’1 P~"1. However, although this solution is well-defined analytically, it can suffer from numerical sta-
bility issues (Figures S2A-S2C). Indeed, if several desired eigenvalues /\f’es are way outside of the ensemble of initial eigenvalues 2;,
the statistics of the difference A,-des — A will be on a larger scale compared to the differences among the initial eigenvalues, and there-
fore the matrix P will have correlated rows and will be hard to invert. Indeed, more formally, in this case, we can write A% — A=
A7 — (2 +¢), with g < A —Zand 7 = Y,4;/N. Hence, to zeroth order in ¢, P;=1/(J}; — Z) which is independent of the column
index j, indicating that different rows will be almost constant and therefore correlated to one another. This explains why, numerically,
the control of all eigenvalues succeeds if the target eigenvalues have the same distribution as the initial eigenvalues (Figure S2A) but
not if they are drawn from a very different distribution (Figure S2B). These correlations in the matrix P also relate to the necessity for
the perturbation weights uv T to be large when many desired eigenvalues are different from the ensemble of initial eigenvalues (Figure
S2B; Tao, 2013).

In order for eigenvalue control to be stable enough — both numerically and from the view-point of biological learning — while being
computationally more powerful than linear reservoir computing, we therefore examine how to design a plausible solution of an under-
determined version of Equation 11 where there are 1 < K < N desired eigenvalues outside of the initial ensemble of eigenvalues.
4.2.2.1 Choosing a solution for loop weights implementing eigenvalue control that favors stable dynamics
When the number of desired eigenvalues of the perturbed matrix J# is much less than the dimensionality of the system, then there are
indeed several vectors v that solve Equation 11 and we are interested in choosing a solution that is favorable for the stability of the
dynamical system. To this end, we solved Equation 11 using the pseudoinverse P* of the matrix P. More specifically, our approach is
to fix:

d=P*'1=R"vOLu (Equation 12)

where © is the element-wise product. Though this restricts the ensemble of possible thalamocortical weight solutions verifying the
equality in Equation 11, there are still infinitely many u, v that would lead to the same vector d. We will take advantage of this remaining
freedom in the upcoming section 4.2.3, while here we just remark that for any choice of u (still with the only mild restriction that u is not
orthogonal to any of the rows of L), then we can choose:

v=L"diag(Lu) 'd=L" diag(Lu) 'P*1,

which is Equation 2 from the main text.

As we will now show, the reason why this solution favors the stability of the motif dynamics is that besides imposing the K desired
eigenvalues /\}’es among the eigenvalues 4; of JM, it also indirectly constrains the N — K remaining 4; such that their norm tends to be
small. This consequently discourages the presence of eigenmodes with very slow exponential decay. Indeed, as indicated above,
Equation 2 fixes d, such that the following holds for any pair u, v satisfying Equation 2:

d; _ Z;V:1dlnkqtj(if - Ak)

1= =
A T+ (3 — )

N
j=1 A

which implies

N N
0=>" (d,-H (Z,- - Ak)> -11 (i,- - /lk) . (Equation 13)

j=1 k#j k=1
This equation defines the roots of a polynomial where J; is the variable, and all coefficients are fixed given an initial matrix Joc — which
constrains the initial eigenvalues A1, ..., Ay — and given d, ..., dy which are constrained by d=P* 1. Hence, Equation 13 imposes
exactly the N values that 4; can take. In other words, when fixing d by using the pseudoinverse of P, we constrain the whole eigens-
pectrum of :JM (Figure S2D). Moreover, we choose a very particular solution for d: the Moore—-Penrose pseudoinverse or the minimal
norm solution, which — as can be seen from Equation 13 —in turn tends to minimize the maximum magnitude of the coefficients of the
characteristic polynomial (except for the leading coefficient associated with Z;V whichis fixed to —1). This further tends to minimize the
Lagrange and Cauchy upper bounds on all of the roots of the characteristic polynomial (Hirst and Macey, 1997). As a consequence,
the modulus of the non-controlled eigenvalues tends to be minimized. This is visible in Figure 1E. The purple circles corresponding to
the 4 that are not used to match the desired eigenvalues (i.e., that do not overlap with a pink cross) are indeed closer to the center of
mass of the distribution than the red dots indicating the initial eigenvalues ;. Note-worthily, as a consequence, our method also leads
to smaller eigenvalue norm compared to an alternative eigenvalue control procedure (Schuessler et al., 2020) that, given the initial
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matrix J.c and a loop vector u, chooses instead the vector v that has the smallest possible norm while imposing a number of desired
eigenvalues in the effective matrix :Ju. More specifically, as a consequence of encouraging smaller norm for the N — K eigenvalues
that are not set to the desired targets A;’es, Equation 2 also favors a smaller maximal real part for these eigenvalues (Figure S2E) which
supports the stability of the dynamics. There are also other advantages of using Equation 2 rather than the minimal v norm solution.
Indeed, by fixing the whole eigenspectrum of .NJ,‘, Equation 2 facilitates the analysis of the effect of the connectivity perturbation on the
circuit dynamics as well as the numerical optimization of the weights, as we will explain in the Methods Secs. 4.2.3 and 4.2.7
respectively.

In addition, given that eigenvalue control through Equation 2 requires us to take the pseudoinverse of the matrix P, whether or not
eigenvalue control will be numerically successful can be predicted by the condition number of the matrix P. In line with our analysis in
the above paragraph that clarifies the conditions under which the rows of P are correlated, the condition number of P is larger when K
increases relative to N, or when the distance between the eigenspectrum of J¢c and the desired eigenvalues increases (Figure S2F).
Therefore, eigenvalue control will be successful when the number and relative distance of the desired eigenvalues are not too large for
a given cortical size N.
4.2.2.2 Using eigenvalue control to approximate any desired output
Here we explain how, during motif production, this control of the dynamics’ timescales by a thalamocortical loop can help sculpt the
network output into a desired shape. Under the conditions that the dynamics during a motif are linear, the output is shaped through
characteristics of the eigenmodes which act as basis functions. We will clarify in this section why these characteristics come in two
categories: first, the exponential and oscillation timescales, which are determined by the effective connectivity through its eigen-
values; and second, the initial amplitude and phase, which can be set by the activity pattern at the beginning of the motif dynamics
¢(0) (Figures 1C and 1D).

More specifically, under the very mild assumption that the (left) eigenvectors L of J# form a complete basis, the readout weights w T
can be expressed as a linear combination of these eigenvectors: w™ = (WTL )L = (wTR) L. Therefore, the readout is also a
weighted sum (with weights wT R) of the N eigenmodes whose dynamics are given as:

Le(t) = diag(e® ") L ¢(0), (Equation 14)

where 1 is a vector of eigenvalues of J,,, and for any vector v we use the notation e" for a vector whose elements are the exponentials
of the elements of v. We emphasize that here the time variable is defined such that time 0 corresponds to the beginning of motif
execution.

Notice that given that the activities are real, the eigenvalues A and eigenvectors L are either real or come in complex conjugate
pairs, such that the imaginary parts of the eigenmodes cancel. Therefore, for each eigenvalue 4;, the relevant time course of the eigen-
mode corresponding to L;: the i row of L, Vie[l,...,N], is:

Re (I:,- c(t)) = eRe(GH)t) (A,-cos (Im (;\,) t+ qb,-)),where (Equation 15)

e
Re( L c(0) !

¢; = arctan

This explicitly shows how the dynamics of the network breaks down into the exponentially modulated sinusoids that we show in Fig-
ures 1C and 1D and that we call basis functions.

As we have mentioned at the beginning of the results section, in order for the network to get a chance to accurately and robustly
approximate a given a target trajectory y,, for motif 1, we can find a small number K =4 — 20 of basis functions with appropriate time-
scales [A7°°], _; _ that can be combined with complex weights [a#®s], _; _, whose magnitudes are not very large (i.e., they scale with
the maximum magnitude of the desired output y,) such that )7# = ZLa;’ese(’fes*”t fits y,, very well and robustly. For some well-
defined functions like the sinc function we show in Figures 1 and 2, appropriate timescales and complex weights can be determined
analytically (for the sinc function, we just regularly sampled the frequencies given by the Fourier transform of this function). However,
even when it is not possible to determine appropriate [1?55]1 <i<k and [ades], <i<k analytically, it is easy to do numerically because the
number of basis functions K required to get a good fit is small. More specifically, we choose the minimum K value that results into an
acceptable error in y, compared to y, while making sure that the [af*5], _;, are not too large (see STAR Methods Sec. 4.2.7 for
technical details, and Figures STA-S1E for examples). By choosing an approximation )7# which is composed of basis functions
that combine with weights of reasonable magnitude, we will allow a thalamocortical network whose dynamics includes the corre-
sponding basis functions to produce the corresponding motif in a noise-robust manner (and with reasonable activity norm), as we
will explain below and in the next STAR Methods section 4.2.3.
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Indeed, the previous paragraphs of the STAR Methods section showed how it is possible to adjust the weight vector v to ensure
that the eigenvalues J; of the effective connectivity J, includes the desired eigenvalues [19%], <i<k- The only other requirement that
needs to be met in order for the network to produce the right output is therefore to control the initial amplitudes A; and phases ¢; of the
eigenmodes. We will show below how this can be achieved by adjusting the activity ¢(0) at the beginning of the motif execution.
Indeed, the N real values of ¢(0) are linked through a linear system of N equations with the initial amplitude (and phase, in case of
a complex eigenvalue) of the real part of each eigenmode composing the readout at time 0.

More precisely, we can then collect all the eigenvalues of J,, into the vector 4, with [A wli<k = 8, and define a vector a, such that
la)i<k = des and [a, ).k = O. Taklng care of ordering the columns of the eigenvector matrix R in correspondence with the elements
of 2, we note thaty,(0) = 17 a, = (WTR)Lc(0) =17 diag(w" R) L ¢(0). Therefore, the initial activities ¢(0) need to be set accord-
ing to:

- ~ N\ —1
c(0) = c*=Rdiag(w'R) a. (Equation 16)

Note that as a consequence, even with a fixed effective connectivity JM, different motif variations p, 1’ — corresponding to different
amplitudes and phases of the eigenmodes composing the readout — can be composed with different initial rates c‘;‘H c"[‘/” (Figures 3E
and 3F). Though this strategy works for generating a certain variety of motifs, it has some limitations as (j) the properties of the eigen-
vectors can be responsible for associating some desired phases and amplitudes with unreasonable initial activity norm, and (i) the
timescales of a linear network with a fixed effective connectivity are restricted to a particular set (Figure 1E; Ahmadian et al., 2015;
Hennequin et al., 2014). This constrains how well a fixed linear reservoir can robustly approximate arbitrary target motifs, which also
means that such a model cannot approximate arbitrary motifs under the constraints of reasonable activity norm and of using a bio-
logically plausible mechanism to set the initial activity of the network (Figures S1F-S1L).

Thus, the ability to modify the effective connectivity of the circuit — in order to impose desired eigenvalues in the dynamics as we
described in this section and to control the eigenvector of the dynamics as described in the next section - is critical to plausibly pro-
duce motifs through the circuit dynamics (Figure S1).

4.2.3 Eigenvector control for motif robustness
For the above-proposed low-rank connectivity perturbation mechanism of motif production to be biologically plausible, the network
output should also (i) be robust to noise in the initial activity pattern ci:“ and (ij) be associated with a reasonable activity magnitude.
However, a naive ‘half-random’ rank-one connectivity perturbation approach which is only focused on eigenvalue control (STAR
Methods Sec. 4.2.2) can lead to strong noise sensitivity (Figure 2). In this section, we show why this happens and how to leverage
the remaining freedom in the low-rank perturbation to fix this.
4.2.3.1 Eigenvalue control through a half-random loop induces eigenvector correlations that compromise readout
robustness
As we showed above, our procedure for eigenvalue control — Equation 2 —actually fixes all the eigenvalues of the dynamics, such that
control networks with the same eigenvalues but well-behaved eigenvectors actually show good noise robustness (Figures 2H and 21).
In addition, eigenvector correlations have the potential to create large amplification of initial network activity (Ganguli et al., 2008;
Murphy and Miller, 2009; Hennequin et al., 2012; Bondanelli and Ostojic, 2020). It is therefore natural to ask how our eigenvalue con-
trol procedure affects eigenvectors and how this can in turn affect noise robustness.

Togetan expressmn for the left (L) and right (R) eigenvector matrices of the perturbed connectivity J#, we can start from the basic
property of I, , the it row of L, to write:

i i,T =1 (oo +uvT) — i,Trj = AjiiTrj +i,.T uvr, (Equation 17)

1

where, in the second step, we right-multiplied by r;, the /" column of R.

We will now consider I; which is a particularly scaled version of I; satisfying I° Tr=1, Later we will take care of renormalizing these
arbitrarily scaled eigenvectors li—and ¥ -to get the properly normalized elgenvectors i and¥ r;suchthat Vi, I r; =1 as needed. With
the former scaling, we can rewrite Equation 17 for the case of i=j to get

~ T T A— A
h=k+luvy — | u::lTr,l
Then, substituting this back into Equation 17 for i=#j gives
v, (ii — A

T oT i, A oT
Al = Al i+ Voo I,
1

This relationship is valid for all j, so we can use matrix notation to write
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oT A —Ai . B B
L R= (ITr,-, v Rdiag (A,» - A) ,

or

oT i,‘ — A,‘ . T -
I = T v Rdiag (Ai - A) L.

Following similar steps, we can also write an equation for the right eigenvectors F; that are normalized such that I,” =1

i —

F,' =

2 ~ -1
' Rdiag (A, —A) Lu.

1"u

i

Finally we need to renormalize the eigenvectors such that, Vi, i,T r; = 1. We remark that

R 2
. (/\i - Ai) ~ -2
l r, = ~——-/— vTRdiag <A,- — /1) Lu.

! virlTu
~ 1
Thus, if we define the normalization factor a;= (v" Rdiag(% — A) °Lu) 2, then we can write the normalized eigenvectors as
~T VT r;

1
T . ~
I, :ii X a;l; =a; v Rdiag (A,- — A) L

(Equation 18)
1Tu . -
F,' == a; E‘ =a; Rdlag (A, — A) Lu.
A — A

Note that these eigenvector equations can finally be written compactly in matrix form, to get:

~ 1
R =R diag(u)A diag(a) 2
g(u) 9(@) (Equation 19)

~ 1
L=diag(a) 2A" diag(V)L,

where ti=Lu, V' =vTR, we define A such that A; = 1/(J; — %), and a = [AT diag(u) ©AT diag(V)]1.
Using Equation 18, we can now reflect on the properties of these eigenvectors of J“. More specifically, we can make deductions
about the alignment between eigenvectors — which we assessed in Figure 2G by the cosine of the angle between them ¢, defined as

costj = Re(?f“’fj)/( ri||F;|), where the superscript H denotes conjugate transposition. The value cosdj; approaches 1 (or, equivalently,

the eigenvectors are almost parallel) if the real and imaginary parts of the two eigenvectors have very similar directions, irrespective of
the norm of these vectors. Hence, from Equation 18, we can predict that cosdj; will be large for the vectors r; and r; if the vectors

Rdiag(% — A) 'Lu and Rdiag(%; — A)"'Lu have similar directions. This happens when 7 and J; are much closer to one another
than typical eigenvalues in the initial spectrum are, and/or if these eigenvalues are far from the initial spectrum as this drives both
above-mentioned vectors toward 0 (Figures 1E, 2G, S3A, and S3B). These considerations most notably allow us to conclude that
the eigenvector correlations are likely to be larger in cases when there are many controlled eigenvalues that are sizably different
from the original eigenvalues (Figure 2G versus Figure S3G). In addition, we can similarly understand why relatively large eigenvector
correlations are also seen for ‘uncontrolled’ eigenvalues (that do not match any of the K desired eigenvalues in the matrix P) that
happen to be very close to one another, even at the center of the eigenvalue distribution (for instance among the eigenvectors whose
eigenvalues have very small norm, Figures S3A and S3B).

Why are these eigenvector correlations causing large and amplified activity transients in the network — including in the readout di-
rection, therefore leading to readout noise sensitivity? This can be understood by examining the expression for the expected integral
:orm =R 1
and Lﬁ'orm = I:;;,m where H denotes conjugate transposition and norm stands for ‘normal’: the name of a matrix with ‘uncorrelated’
unitary eigenvectors).

In the latter case, we get:

of the square activity norm with correlated versus ‘control’ non-correlated eigenvectors (i.e., these eigenvectors verify R norm

anorm = E, {/t“ dtc’ C} =E, {/tﬂ at Tr(c cH)] —522% (Equation 20)
norm = ieo 0 T 0 - 7 ZRG(L - 1) )

where &2 is the variance of the initial i.i.d. rates dco and t, is the duration of the motif, and we proceeded from the expression of the
dynamics of ¢(t) as a function of the eigenmode’s dynamics (Equation 14). Notice that the unitary eigenvectors — which we abusively
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refer to as ‘orthogonal’ in the main text to ease interpretability — cancel during the algebraic developments and do not contribute to
the final expression. In addition, notice how the different timescales of eigenmodes (i.e., 1/Re (:K, — 1)) are simply added together and
do not otherwise interact.

In contrast, when the eigenvectors are correlated, the expected squared activity norm deviates from Equation 20 to give:

P [ﬁ((f_ |1”) o K) ﬁ”], (Equation 21)

where we defined the matrix K with elements K = (@W+7 2t _ 1)/ + ;\jH —-2).

When comparing Equations 20 and 21, it is clear that the correlated eigenvectors in Equation 20 lead to magnified interactions be-
tween the dynamics of eigenmodes which combine into the neural activities: pairs of eigenvalues interact in the matrix K, and these
interaction terms can be multiplied by large numbers contained in the matrices L and R arising because these ill-conditioned, corre-
lated matrices are the inverses of one another. Under certain conditions (Bondanelli and Ostojic, 2020), these eigenvector correla-
tions can lead to very large amplified dynamics where the activities will undergo transient growth even though all eigenvalues
generate asymptotically stable dynamics. In addition, it is possible to observe a more ‘moderate’ type of amplification that leads
to a slower decrease of activity compared to what would be expected from a matrix with the same eigenspectrum but orthogonal
eigenvectors, as tends to occur in random Gaussian matrices (Chalker and Mehlig, 1998).

These considerations lead to the definition for our ‘control’ matrices in Figures 2H, 2I, S3E, and S3H: they have the same eigen-
values as our motif production matrix J”, but their eigenvectors are generated either from the eigenvectors of a random Gaussian
matrix or a normal matrix. Therefore, these control matrices are of the form Rcdiag(i)Rc’ ' — where the eigenvector matrices R
were generated according to one of the following procedures:

e Eigenvectors from Gaussian matrices

we created random Gaussian matrices from which we selected those with the same number of real eigenvalues as their matched J,,.
We then extracted their eigenvectors through eigendecomposition, and finally aligned real eigenvectors to real eigenvalues and com-
plex conjugate eigenvector pairs to complex conjugate eigenvalue pairs of A.

@ Eigenvectors from Normal matrices:

we created random normal eigenvectors with appropriate numbers of real and complex conjugate pairs with the help of the method
described in Mezzadri (2007). We first created N random real orthogonal eigenvectors Rf}e using the QR-decomposition based meth-
odology developed in Mezzadri (2007) to uniformly sample the orthogonal group. We then created the appropriate ny,, number of
complementary pairs of complex conjugate eigenvectors F{'C”1 through multiplication of an ny, subset of the columns of R?e, by
the eigenvectors of an nj, dimensional real random orthogonal matrix created with the same methodology and selected to only
have complex conjugate eigenvalues (which was very common). Then, by concatenating the N — ny,, columns of R?e that we had
left aside, with the complementary nj,, columns of R'cm, we could create a complete set of random unitary eigenvectors with the
appropriate number of real and complex conjugate columns.

4.2.3.2 Readout robustness through full control of the loop weights

Our procedure for eigenvalue control fixes all eigenvalues by constraining one vector of the rank-one perturbation — here, v — while
leaving the vector u unconstrained (STAR Methods section 4.2.2; Figure S2D). Here, we will show how we can take advantage of
these remaining degrees of freedom to modify eigenvectors so as to improve the robustness of the readout. More specifically, we
will choose the vector u to optimize a cost function C(u) which we define as the integrated squared deviation in the network output
due to a Gaussian fluctuation 7 in the initial conditions with i.i.d. elements 5, ~ .#"(0,52(u)). Importantly, to get robustness to noise
whose magnitude scales with the ‘signal’, we choose to scale the variance of n with the time-averaged squared norm of the activities
c(t) when the initial conditions are exactly ciﬁ‘“. Therefore, defining }7/“, as the network output when adding noise 7 to the initial con-
ditions ¢, we get:

L O LI P Y L I A B () N T .
C(u)—EE,,/(J at(Vum —V.) —EE,, {/0 dt(w Rdlag<e )Ln) }— ‘. w R((LL )OA)R w (Equation 22)
and:
1 b 1 (& - 3 -2 1 T T S
2 - 2 _ : (A—1)t init — init T init i
)= /0 atle |*= - /0 dt||R diag (e ) L e oL (R'R)oA)Le™, (Equation 23)

where we defined E,, as an expectation value, t, as the duration of the motif, © as the component-wise Hadamard product, and A as
a matrix with components:
e(i,+ij—2)tu 1 )
Aj="——. (Equation 24)
A,‘ + /\/’ -2

Note that C(u) and ¢2(u) depend on u through the eigenvector matrices R and L (both directly and indirectly through ci[‘” in
Equation 16).
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Of note our expressions for the eigenvectors of Ju, Equation 18, make it clear that the cost function C (Equation 22) can be in
general expressed as a ratio of polynomials where the variables are the entries of the weight vector u that we want to optimize.
This implies that there are several local minima in weight space for C (see Mehta et al., 2018 for a similar result in linear feedforward
networks), which justifies the use of a non-local optimization method to minimize C (see STAR Methods section 4.2.7).

After optimizing the vector u to minimize C(u), we indeed observe subtle changes in the eigenvector directions (Figures 2G, S3A,
S3B, and S3G) that succeed at decreasing the network output’s sensitivity to noise in the initial conditions to similar levels as control
matrices with the same eigenvalues but well-behaved eigenvectors (Figures 2H and S3H). This can be achieved even though the
amount of non-normal amplification — as quantified by the average activity norm of the network’s response when initialized with
random uncorrelated values - is somewhat reduced but still large compared to the control matrices (Figure 2I). This implies that
amplification of noise added to the initial conditions can still be present, but is constrained to directions that are quasi-orthogonal
to the readout, which we indeed verified numerically (Figure S3D).

Note that, when optimizing C(u), the scaling of the noise with the norm of the activity during noiseless motif production — as
opposed to a constant scaling — fulfills two different functions:

e First, it prevents the development of a dynamics that would give the illusion of noise robustness by cranking up the activity norm
during noiseless production. Indeed, as mentioned above, in cases when there are many controlled eigenvalues leading to
levels of non-normal amplification that cannot be fully reduced when optimizing the vector u, the optimization can force the
directions of maximal noise amplification to be orthogonal to the output weights w. To achieve this, a naive solution is to
make all the directions along which the activity can become large — which tend to correlate with the eigenvectors — nearly
orthogonal to w. However, this would mean that the eigenvectors corresponding to the controlled eigenvalues would also
be poorly aligned with w and thus that the cortical activities would need to be very large so that the projections of the needed
basis functions onto w would be of sufficient magnitude to construct the output (as is visible from Equation 16). By scaling the
noise term in our cost function with the norm of the activity during noiseless motif production, we prevent this implausible so-
lution and instead create a trade-off between how much noise can be redirected to output null directions and the signal to noise
ratio of the activity during motif production.

® Second, we effectively implement a form of soft-bounding of the activity norm, such that — conversely to the cases when the
eigenvectors are not shaped to favor motif production — the activity norm cannot become extremely large during noiseless motif
production (for instance, compare the maximum norms for fully-tuned loops to some large outlier norms for the half-random
loop and the control matrices in Figure S3E).

However, Equations 22 and 23 do leave some freedom on the activity norm during motif production. Therefore, the activity norm is
still free to be moderately large — especially when adding noise to the dynamics. This indicates that, similarly to what is observed in
motor cortex (Russo et al., 2018), the maximal activity patterns can occur in directions that are not fully aligned with the readout. This
is for instance visible in Figure S3E, as the activity norm for the fully-tuned loop is still larger than the magnitude of the network output.
Indeed, given that the output weights are a Gaussian random vector of expected norm one, this indicates that the angle between the
output vector and the activity vector is relatively large. This phenomenon can be understood as a consequence of leveraging the
relative absence of constraints placed on non-output directions. Indeed, given that the optimization procedure uses a limited number
of parameters to control a much higher-dimensional dynamical system, it takes advantage of any degree of freedom — for instance by
not forcing the alignment of w with the directions along which larger activity patterns lie during noiseless motif production, which may
be difficult to realize while simultaneously orthogonalizing the directions of noise amplification with w.

Remarkably, even though we defined C(u) to only ensure that the activities would be of reasonable magnitude when starting from
the pattern c‘;“ corresponding to a particular set of amplitudes and phases of the controlled eigenmodes, this property of the activ-
ities also appeared to often generalize to other amplitudes and phases of these modes (Figure 3). If needed, to further expand the
ensemble of initial amplitudes and phases of the eigenmodes that correspond to reasonable activity norms, it would be conceivable
to modify the scaling of the noise in C(u) to an average over the mean activity when initializing the network from several initial
conditions.

An interesting additional consequence of our procedure that adjusts the full thalamocortical loop to improve noise robustness is
that it also decreases both the average norm, and the variance of the norm of the perturbation uv ' (given a particular set of desired
eigenvalues but over different instantiations of w and J.¢, Figures S3C and S4).

For motifs that are associated with relatively large changes of the eigenspectrum — and for which the motif’s dynamics is therefore
more non-normal — a final noteworthy consequence of the minimization of C(u) is an improvement of the robustness of the dynamics
with respect to noise in the synaptic weights (Figure S5F). This effect was somewhat expected as a consequence of the relative
decrease of non-normality of the effective connectivity matrix when optimizing u (Figures 2G and 2l), as non-normality is associated
with larger sensitivity of the eigenspectrum to this type of perturbation (Trefethen, 2005). In consequence, though the framework that
we propose in this paper does assume some relatively precise tuning of the weights, the dynamics can still be robust to small levels of
noise in the weights (noise matrix with Frobenius norm 0.1% of J.’s Frobenius norm, Figure S5).

In conclusion, we have shown that it is possible to fully tune a single thalamocortical loop to both (i) modulate the eigenspectrum of
the dynamics to include a small number K of eigenvalues, and (ii) robustly readout a desired linear combination of these desired
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eigenmodes. In this article, we demonstrate this by either pushing the control of the dynamics to K =20 eigenvalues that are pretty
different from those of J.¢ (‘hard’ scenario, Figures 2 and 3); or considering in milder cases with K =4 eigenvalues (‘easier’ scenario,
Figures 4, S3F, and S3G).

4.2.4 Motor preparation through thalamic loops
Previously, we have explained how the successful production of a motif p relies on the activities being initialized by a motif-specific
pattern c‘:“. This brings into question the biological implementation needed to drive the activities toward the right pattern before motif
initiation. We propose to combine the use of a motif-specific cortical input and motif-independent thalamocortical loops for imple-
menting this motif-preparation mechanism. Notice how this implementation will enable motif transitions during sequences without
any network weights being specifically tuned to peculiar transitions between two given motifs, so that motifs can be learned inde-
pendently before stringing them into arbitrary sequence orders.

More specifically, we assume that the corticothalamic circuit during the preparatory period is given as Jprep =
Jee +JctSprepdic =dcc + UVT, where Sprep Selects an ensemble of thalamic units that are specific to the preparatory period (see above
section 4.2.1). When adding a cortical input x,, the effective dynamics reads:

¢= (Jprep - I>c+x#.

If all the eigenvalues of Jprep have real part less than one (which we will be able to enforce as described below), regardless of the initial
activities, the network will then converge toward c‘:” - the steady-state that can be found by setting ¢=0 - if:

X, = — (jprep _ |) ci:it. (Equation 25)

Importantly, the dynamics of decay to steady-state are independent of the input and therefore of the identity of the upcoming motif,
as can be seen by considering the variable éc = ¢ — cij“‘:

sc = (Jp,ep - |> oc — bc(t) =Ryepdiag (e ) Ly, oco, (Equation 26)

where écy is the vector containing the values of éc¢ at the beginning of the preparatory period, Rp,ep and Lyrep are the right and left
eigenvector matrices of Jprep respectively, and Aprep iS @ vector containing the eigenvalues of Jprep

The starting state of the preparatory period dcy depends on the ending state of the previous motif which we assume is unknown,
and to implement a good motor preparation it is desirable that — regardless of this state — 6c goes fast to 0. Therefore, to reach this
goal, we will minimize the average — over random iid values for the entries of écy — of the integrated squared norm of éc.

In addition, ideally, while a motif is being prepared, the readout should smoothly interpolate between the previous and upcoming
motifs, even though the single units may undergo fast and large transients. Therefore, we also include a smoothness contribution to
our cost function, that we design to be the integrated square of the first derivative of the readout.

Our total cost function is therefore:

"0 © 2
C(UN):%EM[/O dt|5c|2}+BE5co{/0 dt(%wwc)]

oc%Tr (Roreo ((Lreo Lrep ) ©Z) R, ) + B W Rorep ((Lprop L) OT ) R W (Equation 27)

where Zj= —1/( 47" + A —2) and T; = (37 — 1) (4" — 1)Z;. Finally, N is the number of cortical units and § is a hyperpara-
meter which trades off the relative importance of transition speed (left part of the cost function) and readout smoothness (right part of
the cost function). Notice that this cost is not impacted by the shape of the initial rates’ distribution. Notice also that while our cost
function relates to the linear-quadratic problem from control theory ((Kao et al., 2021)), using semi-numerical gradient-descent opti-
mization - with an analytically computed gradient through the eigenvalues and eigenvectors, see Methods section 4.2.7 - is fast and
enables direct control of the number of thalamic units involved (Figures 3 and S6C) and direct regularization of the loop weights
(instead of an indirect regularization through the norm of the control input, Figures S6J and S6K). Notably, the ability to control
the number of thalamic units was very important in the context of our article which emphasizes how, even with the biological
constraint that the size of thalamus is much smaller than the size of cortex (Halley and Krubitzer, 2019), thalamus can act as a power-
ful controller of cortex. Finally, we also want to stress that the simple optimization procedure suggested above can be easily extended
to continuously nonlinear dynamics (Logiaco and Escola, 2020).

After optimization, the resulting weights UV indeed lead to a fast decay of the rate dynamics toward steady-state, which is sup-
ported by the fact that all eigenvalues of :Jprep have real part significantly smaller than one (Figures 3C, S6A, S6D, and S6J). The
convergence is faster when increasing the rank of UV T (Figures 3D and S6C). The longer the preparation phase is, the closer the
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network activities get to the appropriate pattern c‘:“ to start the next motif, and therefore the more accurate the upcoming motif will be
(Figures S6G-S6l). In addition, consistently with recent experimental results (Al Borno et al., 2020), if the upcoming motif is ‘hard’ —in
our case, meaning that it requires a larger remapping of the cortical dynamics —a small variation of the activities relative to cif” at the
end of the preparatory period will lead to a larger variation of the output during motif execution. This is because it is more difficult to
optimize the cost C(u) for these movements (Equation 22) which means that their accuracy will be relatively more dependent on the
network activities being closer to c‘:“ at the start of motif execution.

In addition, during motif preparation, the smoothness of the readout arises from a ‘slower’ eigenvalue (with a real part that is a little
larger, Figure S6A) that corresponds to an eigenvector that aligns with the readout (Figure SEB). Larger values of 3 cause this eigen-
value to have larger real part (Figure S6A), and an appropriate value of § creates a readout timescale that monotonically fills the gap
between motifs during motor preparation (Figure 4, 8 = 0.05). Therefore, while the initial state can be prepared quickly through fast
non-monotonic activity transients in single units, the readout can undergo a slightly slower and smoother evolution - more specif-
ically, an approximate exponential relaxation - that interpolates between two motifs (Figure S6F). Note that this interpolation mech-
anism will work regardless of the values at which the previous motif ends or the next motif starts. Also, note that this mechanism does
not enable a precise fit of the desired output during motif transitions -though nonlinear dynamics can mitigate this issue (Logiaco and
Escola, 2020)- which is the reason why we use short transition periods during which our network is prepared to produce the next
motif. Data shows that motor preparation can indeed be short (Lara et al., 2018b). This short preparation of the dynamic generator
circuit is however compatible with the planning of the movement occurring earlier in a separate effective ‘premotor’ circuit (Zimnik
and Churchland, 2021).

Our cost function Equation 22 is only designed for functional purposes, in line with our general approach. Without additional con-
straints, the synaptic weights of the loops UV tend to get large (Figure S6E). However, both terms of the cost function are impacted
surprisingly little by the scale of the resulting matrix UV " such that almost identical performances are observed over a wide range of
norms of this perturbation (Figures S6F-S6I). This scaling of the weights basically leaves unchanged the eigenvalues with larger real
part —which are the limiting factor for the speed of the dynamics — while scaling the norm of an ensemble of very negative eigenvalues
whose number matches the rank of UV T (Figure S6D). As expected given the relative robustness of the loss relative to the norm of the
perturbation, it is also possible to constrain the norm of the perturbation during optimization, which leads to tighter bounds of the
eigenspectrum without sizably affecting the performance (Figures S6J-S6L).

4.2.5 Relation to more realistic neuronal dynamics

We are now going to relate the simplified rate equations that we used in this article (Equations 3 and. 4), to more constrained and
realistic neuronal dynamics including a reasonable timescale in thalamus (ten times faster than cortex, compatible with the absence
of recurrent excitation in thalamus and/or differences in synaptic channels’ timescales) and a rectifying non-linearity ensuring rate
positivity. More specifically, we will show that we can relate the simpler rate equations that we presented in Methods section
4.2.1 to the following model:

ca.bs = - (cabs - E) + Jcc([cabs] - E) + Jift [tact] *

R L (Equation 28)

tact = T_ (_ (tact - tact) + J?cd [cabs] ! )
t

where the subscript ‘abs’ indicates that these variables are (mostly) positive and the subscript ‘act’ indicates the subset of thalamic
units that are interacting with cortex (and not silenced by the basal ganglia). In this section, we will explain how — under certain as-
sumptions — these rate equations can be mathematically related to both the population activity of spiking neurons and the simplified
switching linear dynamics we use in the main text. In the next section (STAR Methods Sec. 4.2.6), we will then describe a method-
ology for extending the main text’s results to the richer dynamics of Equation 28. The results of numerically implementing this method
to demonstrate that our framework can be extended to the more complex dynamics of Equation 28 are shown in Figure S7.

The ensemble of assumptions that we are making along the way, as well as their experimental and theoretical justifications, are
summarized in the table below.

Summary of model assumptions and their justifications

Assumption Source of evidence References

1 linear readout from recurrent motor cortical population anatomy/ Harrison et al., 2012; Kaneko, 2013/Shenoy et al.,
dynamics as an approximate motor output electrophysiology 2013; Churchland et al., 2012; Churchland and

Cunningham, 2014; Russo et al., 2018

2 quasi-linear input-output relation in balanced neural theory/ van Vreeswijk and Sompolinsky, 1996; 1998; Renart
populations; fit of motor cortical population activity electrophysiology et al., 2010/Churchland and Cunningham, 2014; Lara
with linear dynamics during individual behaviors et al, 2018a

3 non-recurrent thalamus bidirectionally connected to anatomy Arcelli et al., 1997; Sherman, 2016; Harris et al., 2019
cortex

(Continued on next page)
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Continued
Assumption Source of evidence References
4 slower cortical dynamics (relative to thalamus) theory/ Seung et al., 2000; Lim and Goldman, 2013/Shenoy
because of cortical excitatory recurrence (absent in the electrophysiology et al., 2013; Churchland and Cunningham, 2014
thalamus)
5 quasi-rectified linear tonic firing in thalamus electrophysiology Sherman, 2001; Devergnas et al., 2016; but see Kim
etal., 2017
6 strong inhibitory connections from basal ganglia to electrophysiology/ Deniau and Chevalier, 1985; but see Schwab et al.,
thalamus optogenetics 2020/Edgerton and Jaeger, 2014; Kim et al., 2017; Aoki
etal., 2019
7 sequence-element-related activity in basal ganglia: (1) electrophysiology/ Jin and Costa, 2010; Jin et al., 2014/Geddes et al.,
sustained during motifs and (2) phasic at switch times optogenetics 2018

To link our tractable switching linear mathematical framework (Sec. 4.2.1) with more biologically plausible neuronal dynamics, we
first note that — under some plausible dynamical regimes — the firing rate in a population of spiking neurons can be well-approximated
using a two-stage process that leads to nonlinear rate equations (Ostojic and Brunel, 2011) that are similar to Equation 28. First, the
synaptic inputs are linearly filtered — for instance, for Leaky-Integrate-and-Fire neurons, with an exponential filter through feeding the
input into a first order linear differential equation — which gives rise to a ‘voltage-like’ variable. Second, this ‘voltage-like’ variable is
passed through a static non-linearity, giving rise to an effective rate variable. The static non-linearity can be qualitatively described as
rectified-linear above a certain threshold value 6 of the voltage-like variable v (symbolized as [v — 6] 7). Directly following this frame-
work, we can write dynamics for cortical populations with ‘voltage-like’ variables v and resting voltage viest; recurrently interacting
through the effective connectivity matrix Jcc; responding to a thalamic input resulting from the projection of the thalamic rates [taps] *
through the thalamocortical weights J.t, and to an input p,, which stays constant during the motif

V= — (V= Vyest) +Jcc [V — 0] +Jct[tans] +P,,. (Equation 29)

This equation directly maps to the nonlinear rate dynamics of Equation 28. Note that the connectivity matrices are ‘effective’ in the
sense that rate units can impact one another both positively and negatively. This effective connectivity may be mapped to a biological
network with separated inhibition and excitation (Gerstner et al., 2009), by assuming that each rate unit actually maps to two sub-
populations: one with excitatory neurons who have slower population dynamics described by Equation 29, and another one with
just inhibitory neurons that have faster dynamics (Mensi et al., 2012). Then, an effective excitatory connection between units naturally
map to a projection from the excitatory neurons of the sending unit to the excitatory neurons of the receiving unit. In addition, an effec-
tive inhibitory connection between populations can be mapped to a disynaptic pathway involving the excitatory neurons of the
sending population projecting toward the fast inhibitory neurons of the receiving population that inhibit their respective excitatory
‘neighbors’ (Gerstner et al., 2009).

We now turn to showing how these nonlinear rate equations relate to the simplified switching linear dynamics we use in the main
text. We will take the example of the dynamics during a particular motif u corresponding to a thalamic selection matrix S, as in Equa-
tion 6, but the derivation directly generalizes to any thalamic selection matrix Ss with an arbitrary number and location of ones on the
diagonal.

We can define caps =V — 6 and assume that the cortical dynamics stay in the linear regime to get:

Cabs = — (Cabs — C) +Joc(Cabs — C) + Jet[tans] (Equation 30)

wherec = (I — Jcc)’1 (Vrest — 0 +p,,). Following a similar model for the population firing rate of spiking neurons in the thalamus as for
cortex, we write the thalamic rates [taps] ™ = [Vinal — Owhal] © as the rectification of a voltage-like variable taps itself undergoing linear
dynamics which, in absence of input, revolve around a baseline t:

Tt taps = — (tabs - i) +Jic Cabs + qa, (Equation 31)

The inputs to thalamus include cortical projections through the effective weights Ji. Positive cortico-thalamic connections can occur
through direct projections from cortex, while inhibitory effective connections can correspond to an indirect cortical projection relayed
by the thalamic reticular nucleus (Arcelli et al., 1997). In addition, thalamus receives an input from the basal ganglia q,,.

We consider the case for which q,, consists of either sustained strong inhibition during a motif, or a complete release from inhibition
(zero drive) in a small subset of thalamic neurons which we will index as rows with the value 1 in the diagonal of an otherwise zero
matrix S,,. In addition, we consider the limit in which thalamus is very fast relative to cortex (1 —0). Indeed, thalamus lacks recurrent
excitation, making it react at the relatively fast timescales that are intrinsic to a single-neuron, while the recurrently connected cortical
populations can be much slower (Seung et al., 2000; Lim and Goldman, 2013). Hence, we assume that thalamus almost instantly
follows its input, so Equation 31 becomes:
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su tabs = su f+S# Jic Cabs (Equation 32)

Finally, we assume that these released thalamic neurons indexed by 1’s in the diagonal of S, then interact with cortex within the linear
regime, which allows us to write:

[tans] = S, tabs (Equation 33)
We can then finally write, from Equations 30, 32, and 33:
€ = —C+(Jee + JotS,udic) € (Equation 1)

where we defined ¢ = Caps — @, Witha, = (1 — Jec — Jot S,LJm)’1 ((1 = Jee) © +Jet S, 1). Note that ¢ is ‘centered’ around zero and thus
not (mostly) positive, unlike caps. Note also that a,, is a motif-specific input that stays constant during the duration of the motif (or
alternatively during a phase of motif preparation, see the next section 4.2.6 for more details).

This is the equation for the cortical rates ¢ that we used throughout the main text. We stress that this means that the target readout
patterns that we are displaying in the main text are deviations from a motif-specific baseline readout value w™ a,,. We also emphasize
that, for each cortical loop associated with the corticothalamic weight vector v and the thalamocortical weight vector u, our main text
theory only constrains the matrix uv ", leaving some freedom for the norm of the individual weight vectors. When displaying or using
individual loop weights, we therefore make the choice to scale these vectors such that the thalamocortical and corticothalamic
weight vectors have the same norm (i.e., we multiply u by /|ju|| |[v]| /||u] and v by \/|ju]| [IV] /IIV])-

Note that our framework can be generalized in several ways. First, there can be additional, non-plastic thalamic loops that interact
with cortex — either for the whole duration of some motif(s) or constantly — and that would simply take part, along with cortex, in an
effective ‘fixed’ recurrent network that the plastic thalamic loop would have to modulate during a motif. Second, even though we only
considered here that all the ‘plastic’ thalamic loops that are not involved in producing the current motif are shut off by basal ganglia,
this assumption might be relaxed to some degree. For instance, the same framework could be applied to any scenario where the
thalamic neurons who are not involved in shaping the currently produced motifs have dynamics that are dominated by strong approx-
imately constant external inputs that dwarf the feedback from cortex. Indeed, these driven thalamic neurons would then act as an
external constant input added to the effective cortical dynamics, whose effect could therefore easily be canceled by simple substrac-
tion of an ‘effective copy’ of this signal on the readout.

4.2.6 Implementing the more realistic dynamics
In this section, we will show that it is possible to find a dynamical regime of the more biologically constrained equations Equation 28
under which our simplified theoretically tractable framework is still valid to understand how thalamocortical loops support motor
sequencing. Importantly, the result of this approach gives a lower-bound on the performance of a more biologically plausible
network, under the strong constraints that our equations derived for centered linear dynamics still hold such that there is a clear map-
ping between the dynamics shown in the main text and the more complex dynamics studied here. In all likelihood, better performance
would occur if using an online learning rule that would account for the additional complexity of the dynamics (Logiaco and Escola,
2020). We however focus on preserving our theoretical framework to show that it can also give the right intuitions and explanations
when the dynamics includes more biological details.

More specifically, we will constrain our dynamics such that for a particular motif, our theory — which assumes an instantaneous
thalamus - is still used to set both the effective eigenspectrum (through the tuning of the corticothalamic weights v in Equation 2)
and the initial centered cortical rates cjf“ (as a function of the desired amplitudes «, for the eigenmodes; Equation 16):

v=L"diag(Lu)"'P*1 (Equation 2)
[ - -1
c(0)=c}"=Rdiag (RTW> @, , (Equation 16)

where u is the thalamocortical weight vector from the single thalamic unit interacting with cortex during a motif, and v is the corre-
sponding corticothalamic weight vector. However, we will now describe how other variables of the network are going to be adjusted
to account for the reasonable thalamic timescale in Equation 28 (10 times faster than cortex, see the table at the beginning of the
STAR Methods section 4.2.5). This means that the timescale in thalamus induces deviations that we are able to treat as a correlated
and biased noise introduced in our ideal model (Equation 1). In addition, we will adjust the biases in Equation 28 to ensure that the
added rectification of the rates only minimally impact the dynamics.

To achieve this, we will first work with the linearized version of Equation 28, writing:

ca.bs = - (cabs - E) +dce (cabs - 6) + Jztd tact
(Equation 34)

. 1 J—
tact= ; [* (tact - tact) + Ji?t cabs]

Cell Reports 35, 109090, June 1, 2021 e12




¢? CellP’ress Cell Reports

OPEN ACCESS

where we remind the reader that the index ‘act’ indicates the subset of the thalamic units that are interacting with cortex at some time
during a sequence (instead of being shut off by basal ganglia). Note that, in line with Sec. 4.2.5, the vectors € and tae actually include a
motif-specific external input.

We can then express the dynamics using a single vector z,ps to concatenate both the cortical and non-silent thalamic rates: fori <
N, [Zabs); = [Cabs);, @and fori> N, [Zaps); = [tact);- Similarly, we define a concatenated vector of biases Z regrouping € and taet. Hence, we
can write:

Zabs = Mett Zaps + Vet Z, (Equation 35)
where we defined the matrices Megs and Ve such that:
o fori<Nandj<N, [Me];;=[Jocl;; — 65 and [Ves;; = 65 — [Jocl;;
o fori<Nandj>N, [Mex;=[3"; ; n and [Ves; = 0

o fori>Nandj<N, [Mes];;=1 [J5']; n) ; and [Ves;; = 0

e fori>Nandj>N, [Met];;= —2% and [Vex];; = %

Tt Tt
Finally, we get:
z2=Mx2z (Equation 36)

wherez=2z,,s +band b= M;f} Vs Z is a bias that is fixed during a particular motif or during the preparatory period. We will refer to z
as the ‘centered rates’ (representing deviations of the rates above or below some average value). Finally, we define effective readout
weights wes for this effective z dynamics, such that Vi< N, wes; =w; and else wei; = 0. We will now examine how to derive appro-
priate thalamocortical weight vectors and constant biases, first tackling the question of the motif dynamics and then addressing the
case of the preparatory period.

4.2.6.1 Motif dynamics

We will start by defining, for a given motif, a full vector of ideal initial conditions for the centered rates z,, of the network as a natural
extension of the ideal initial centered rates derived in the instantaneous thalamus framework: for i <N, [z,]; = [¢I'™];, and [z,]y, ¢ =
v’ cif”. (Note that the exact value of the initial thalamic rates has little impact on the circuit’s dynamics as thalamic units have a faster
timescale ensuring that they quickly follow their synaptic inputs.) Then, we can express the dynamics of z as a function of the eigen-
vectors and the eigenvalues of Meg such that z(t) = Reg diag(e Aett ) Legt z,.

Tuning u to minimize the thalamic timescale effects while enforcing instantaneous-loop eigenvalue control with v
Now that we expressed centered z dynamics, we can write an equation to ensure that, during motif production, the readout is robust
to both noise in the initial conditions and network response deviations that accumulate over the course of motif production due to the
fact that the thalamus is not instantaneous. More precisely, while the idealized eigenspectrum is constrained by setting the thalamo-
cortical weight vectors v through Equation 2, the corticothalamic weight vector u is adjusted to minimize the following cost
function Cp,:

t=t, N
Cm = Es, {/ || (Wi Rerr diag(e % *) Legs (2, + 820)) — e, e“‘"“H2 dt|, (Equation 37)
t=0

where t, is the motif duration, a; e-Nt= y (t) is the weighted eigenmode sum which would form the readout in the idealized instan-
taneous thalamic network governed by the matrix Joc +uv ", and 8z, is a zero-centered and uncorrelated noise in the initial conditions
with a standard deviation o;,, scaling as 5% of the square root of the mean squared activity norm during the motif (similarly to Equa-
tion 23).

After a few algebraic developments, we find:

T
Wegt

t

_2((Leﬁ z, (cf) (L) T) OB) (rR") T}weﬁ+ ":—Tﬁ [(L cicl L) @A} R'w

n

Crn=—2R 4 {((Le,f (diag (a§201]> +2,2] ) L;f) o) Aeﬁ) RY,

J§ZO =0.05° 2] Log[(Rogs Rett © Acrr) | Letr 2

t, N,

where the twiddled letters relate to the eigendecomposition of Joc + uv ™, and the upper E index indicates an extension of arrays with a

last additional zero row (initial rates vector) or last additional zero row and column (left and right eigenvector matrix). Also, we intro-
ol + [ -2 tu_y

duced [Aef];; = e(“e“[]/’\e;]fﬁ:i = (A= A2 (Equation 23) where 2 is the vector containing the eigenvalues of Joc + uv’
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;E
(note that Z is independent of u)’ and [BL‘] — % where fOerN, {EE]] = [i]l —1and [EE}N+1 =0. FinaIIy, we also defined Nz
et i
as the number of elements in z, i.e., here N+ 1.

Hence, by optimizing the vector u to minimize the cost C, while fixing the vectors v and c‘:“ according to Equations 2 and 16, we
ensure that the effective network governing the motif dynamics is designed to ensure eigenvalue control in the limit of an infinitely fast
thalamus while correcting for the deviations due to the finite thalamic timescale.

Designing biases added to the rate equations to impose positive rates during motif production

Now that we have found thalamocortical weight vectors u and v which still perform a similar effective cortical eigenvalue control as in
the main text while accounting for the thalamus’ internal dynamics, we can consider the question of the biases in the rate dynamics
that impose positive rates zaps =2z — M;Jf Vet Z in the circuit. Then, for a vector e containing the desired positive lower bound of the
rates, we can write:

Vi, Zaps(t) > e & — Mgt Ve Z — > m?x( — R diag(e ™ ') L 2,,) =b,

where the maximum is taken element-wise. We therefore set

—~ Mg VerZ=(b, + £)<

Z= —V i Mg (b, + g), (Equation 38)

where we chose £=0.1 in our simulations.

This ensures that the non-centered rate variables zaps stay positive while undergoing the dynamics in Equation 35 if, at the begin-
ning of motif 1, these rates are exactly set to zaps , = 2, — M;Qf Vs Z. However, a deviation from the right initial conditions can cause
the linear rate trajectories to go beneath zero. Having a good preparatory period will therefore prove critical to ensuring that the linear
dynamics solution during a motif stays close to the solution of a rectified linear dynamical system. Fortunately, as we will now show,
we can design an efficient thalamic preparatory network obeying the constraints of positive rates and non-instantaneous thalamus.
4.2.6.2 Preparatory period dynamics
We again first consider the centered rates z with linear dynamics (Equation 36) to find thalamocortical connections accommodating a
non-instantaneous thalamus and then find the biases needed to maintain positivity of the non-centered rates.

Optimizing thalamocortical connectivity for motif preparation with a non-instantaneous thalamus

We optimize the loop weights J2* and J2' — where we remind the reader that the index ‘act’ indicates that these matrices are
restricted to the subset of thalamic neurons engaged in motor preparation — such that z(t) from Equation 36 converges fast to its
steady-state (which is zero in the absence of an input). In addition, in keeping with the cost function in the case of an instantaneous
thalamus (Equation 27), we add a term to favor smoothness of the readout, to get the cost function:

~ 1 @ ) w d . 2
Cp —mEzo |:/O Z(T) dt:| + 5 EZO [A at (Eweﬁéz)

1
N + Nipal

o

Tr (Retr((Lett Letr) O A)Rgtr) + 8 WeigRert((Lest Leig) © G) R Wer

where Ajj = ;=] mE

initial conditions which are assumed to be centered and i.i.d. Note that Met = Retr diag(Aetr) Lett NOw relates to the preparatory

circuit.

Biases able to enforce rate positivity in the effective preparatory network despite initial rates variability

We then consider which biases Zprep to add to the preparatory dynamics (Equation 35) to get positive rates zaps = z —
M;f1f Vest Zprep-

We should note that at the beginning of the preparatory period, the cortical and thalamic rates will be non-negative if the just-
completed motif was started at its correct initial condition and driven by the input defined in Equation 38. Similarly, we can posit
that the cortical rates at the start of the upcoming motif will be positive as they too will be defined by Equation 38. Additionally, to
guarantee that, during the preparatory period, the cortical rates converge to the necessary initial configuration for the upcoming
motif, we will need to set their inputs to explicit values. This therefore leaves the inputs to the thalamic units as our only degrees
of freedom for ensuring rate positivity during the preparatory period. Here we describe a process for determining those thalamic
biases in a way that is agnostic to either the rates at the end of the prior motif or at the beginning of the upcoming motif. These
thalamic biases can then be used for all preparatory periods independent of the upcoming motif. We will proceed in two steps.

Gij = [Aeft]{Aett]Ajj, Ninal is the number of thalamic units in the preparatory network, and zo are the random
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1. To find biases for the thalamic units, first we proceed in this step by finding biases for both the cortical and thalamic units that

would ensure positivity on average. In step 2, we will then save the thalamic biases we find and replace the cortical biases with
the specific values needed for the upcoming motif.

Hence, we here treat the non-centered rates at the beginning of the preparatory period 25", as an i.i.d. random vector with
mean pf’P and standard deviation ¢5'*P . For the cortical units, we can simply estimate these statistics from the mean and
standard deviation of z,,s over all units and all motifs at the end of six example motifs (the sinc function as in Figure 2 and
slow oscillating motifs as in Figure 4). In addition, we assume that the rates of the thalamic units are close to zero at the
beginning of the preparatory period, which would happen if, for example, at the end of the previous motif, the basal ganglia
signals just compensate for the cortical inputs. (Note again that the exact value of the initial thalamic rates is not critical for
the circuit’s dynamics as thalamic units have a faster timescale ensuring that they quickly follow their synaptic inputs.) We

then design a cost function Cj, to find bias terms b2 = — Mg Verr PP such that the random variable:

H Aefi t
252 (1) = Re diag (e ') Loy 25°P + bE®

prep prep

is likely to be positive at all times. The stochasticity of 25" (t) emerges because z§"P =25 °F — bSFP is a random vector with
mean preP = uf "

= b, —bbiP and standard deviation o5 = 65" . As a step to define the cost function C,, we can express the

statistics of zop=F (t) at all times to find the vector of trajectories hiow(t) which we define as the values taken at three standard

deviations below the mean for each unit:

prep
K Zabs0

Epree [2°P(t)] = Rerr diag (€ ™" *) Lerr (uErer — bEE™) =f(1)

2
Eges [0 (t) — Eym[2™®(1)] =

prep
a.zabs 0

Ren diag(e %' *) Ly diag((o2"P 1) Ly, diag(e %' ') R}y =g(t)

hiow(t) =b%P +f(t) — 3% \/g(t)

To ensure that, under linear dynamics during the preparatory period, the rates stay as positive as possible, we therefore opti-
mize bgf'fp to minimize the sum of the square of the negative values of the vector of element-wise minima min; (hjow (t)) = hjpw:

> ()’

i st [hmn] <o

min
I'.|Iow

Cpo=

where the dynamics of hyoy (t) were computed over a duration of five cortical timescales.

In this second step, we will now use the thalamic biases we just found (the elements [b2®]; for i > N) and combine them with the
cortical biases needed to ensure that the preparatory period converges to the correct rates for the upcoming motif.

We require that the cortical rates converge toward the following positive pattern to start upcoming motif u: [z, + by, + €],y (@s
defined in Equation 38 and above). Similarly to the methods used in the main text, it is easy to see that this relies on designing an
additive input i, specific to the dynamics leading to a particular motif j:(Equation 39)

_prep _

prep
zabs

abs

= Moy 252 +Ven 2P < lim 2820 (1) = — Mt Vet 22 = Zaps (Equation 39)

We then match the cortical steady-state rates expressed in Equation 36 to the next motif’s ideal initial pattern: we set, fori < N,
[Zabs u); = [cu]);+ [by + €];. Adding the thalamic biases that favor positive dynamics across motif transitions, we therefore set, for
Norep 2i>N, [Zabs u); =[BT ;» Where Nprep is the number of units in the preparatory network.

Hence, for each transition toward a particular motif i, we determined a vector zE™*P = — V4 Mett Zaps ,, such that we can write

an efficient and mostly positive preparatory dynamics according to Equation 39.

4.2.6.3 Numerical implementation

The methodology developed above can be used to show that two major simplifications made in Equation 1: infinitely fast thalamus

and linear centered dynamics, can be relaxed while preserving the insig
text.

hts from the theoretical analysis that we present in the main

More specifically, we can produce sequential dynamics using a reasonable dynamic timescale and positive rectified rates accord-
ing to Equation 28, by applying the non-linearity on top of the mostly positive linear rate dynamics described above in Equation 34 that
is designed to approximately match the readout of a network with an infinitely fast thalamus. Note that we did not explicitly model the

details of the basal ganglia input to thalamus: instead, we simply assume

d that thalamic units can be turned off very fast by their basal

ganglia inputs, while when these units start interacting with cortex their initial rates are assumed to be close to zero.
In addition, when simulating Equations 28 and 34, we have to think about the effect of the biases on the readout. For any motif,
adding the biases € and tact — regrouped into the vector Z —to the differential equations transforms the centered dynamics z into offset
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dynamics. In order to recover the desired motifs, we simply remove the offset from the cortical readout at each time (Figures S7A and
S7B). By inducing a minimal modification of our theoretical framework, this strategy is in line with our aim to show that our simplified
centered dynamics — which we designed for the production of desired motifs — can be well-approximated in a particular regime of the
more biologically plausible dynamics. Other strategies involving more modifications of the dynamics would however be possible to
recover the desired network output, as we will discuss at the end of this section.

In Figure S7B, top, we show that adding the above-mentioned constraints: linear offset simulations with a plausible thalamic time-
scale (just 10 times faster than the cortical timescale in Equation 34), induces very small deviations (gray curves) compared to the
case of instantaneous thalamus (black curves) when starting motifs from their ideal initial rate patterns (Equation 16). Also, the finite
response timescale of thalamus does not prevent fast convergence to appropriate cortical initial conditions during the motifs’ pre-
paratory period using a small preparatory network (10% of the cortical network’s size with plausible synaptic weight magnitudes set
as for the green line of Figure S6E; Figure S7C, green curve).

We now turn to examining the effect of the nonlinear rectification of the rates (Equation 28). We show in the top panel of Figure S7C
that introducing a rectification in the positively biased linear rate dynamics of Equation 34 leads to minimal deviations during motifs
(cyan curve versus green line). Finally, in of Figures S7C and S7D, we show how introducing the rectifying non-linearity in the dy-
namics usually speeds the preparatory process.

These results successfully show that more plausible neural dynamics with rectified rates and a finite timescale in thalamus have a
dynamical regime that is successfully described by our simplified theoretical framework.

Note that the need for the readout offset correction may be avoided if, during motif production, the eigenvalue control would
include — in addition to eigenmodes for fitting the desired ‘centered’ motifs — an additional eigenvalue close to zero real and imag-
inary part (after accounting for the leak — i.e., this eigenvalue would be on the same vertical line as the desired eigenvalues of Fig-
ure 1E). This would permit the intrinsic production of a constant value added to the readout (controlled by the initial rates of the
motif, which would need to be optimized along with the biases as defined in Equation 38). This would also make the motif tran-
sitions smoother, as the change of the readout offset when preparing a new moitif introduces a discontinuity in the readout. In
addition, the rectifying non-linearity does introduce some additional sways during transition times (compare the green and
cyan lines in the top panel of Figure S7B). These limitations are likely to resolve — or at least to become much less visible - if ad-
justing the synaptic weights with an online learning rule that would account for the constraints of the more plausible dynamics
(indeed smooth transitions have been shown in a nonlinear network constrained to have similar dynamics as described here
but trained with gradient descent (Logiaco and Escola, 2020)). The design of a biologically plausible learning rule for this circuit
is however beyond the scope of this article.

4.2.7 Numerics
The simulations were performed using MATLAB and Python. We numerically optimized Equation 22 and Equation 27 (we have ex-
perimented with either the square roots of these cost functions or the cost functions themselves, both versions give good results). As
discussed in STAR Methods Sec. 4.2.3, these equations can have multiple local minima. Thus, starting from different random initial-
izations for the optimization, we selected the best among the solutions we found to present in our figures.

These optimization procedures are relatively efficient:

® The cost function C(u) given by Equation 22 requires the eigenvalues Aand eigenvectors R and L of J,, As we will clarify below,
these can be computed efficiently avoiding explicit eigendecomposition on each iteration of optimization.

First, because d = P* 1, d s fully determined by P which depends on the eigenvalues of J.. and the target eigenvalues, but not on

u. As we explained in STAR Methods Sec. 4.2.2 (Equation 13), this implies that all N eigenvalues of J# are also fully determined and

independent of u. Thus A can be computed once prior to optimization of Equation 22.

Second, we are able to explicitly express the eigenvectors of the dynamics (Equation 19). These expressions depend on R, L, and

A, all of which can be computed prior to optimization, and on U and v which can be computed from u (and L and d) on each iter-

ation of optimization. Implementing the formulae given in Equation 18 requires one matrix multiplication each per iteration (in addi-

tion to other much cheaper operations). With R, L, and A in hand, the remaining operations to compute C are dominated by two

additional matrix multiplications (in Equations 22 and 23). Without the need for more computationally intensive operations (e.g.,

eigendecomposition or matrix inversion), the cost function C is efficient to optimize.

e For Equation 27, though we do not have explicit expressions for the eigenvalues or the eigenvectors, it is then possible to
compute the gradient of these expressions through the loop weight vectors analytically (Boeddeker et al., 2017). This consid-
erably speeds up the optimization.

When matching the target trajectory y, for one motif nu to its approximation with a small number of eigenmodes )7# =

Zf(ﬂaf’ese("fjes*”t, we tried a few different numbers of non-zero eigenmodes K (typically between four and twenty, see Figures
S1A-S1E). For each value of K, we used MATLAB'’s fmincon function with 50 different random starts to optimize the real and imag-
inary part of each amplitude «; and each eigenvalue A?es to minimize the mean square difference between y, and }7“. Constraints were
added to discourage very large amplitudes o (here, we impose [|a% 2 || < 18 because this bound approximately corresponds to
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the square of the maximum desired magnitude of the readout), very large real or imaginary parts of the eigenvalues Af’es (here, by
imposing that the maximal distance between these eigenvalues would be 2) or to find very similar eigenvalues which would tend
to lead to high eigenvector correlations (Sec. 4.2.3; here we imposed a conservative minimum distance of about 0.05 between
eigenvalues).

Unless otherwise stated, we used cortical matrices J¢¢ of size N = 500, and we made sure that J.c — | was stable. More specif-
ically, we discarded the matrix if Joc — | had positive eigenvalues, and we added a small positive ¢ to the leak during numerical sim-
ulations of the dynamics to ensure that no instability would arise due to numerical approximations during eigenvalue control with
target eigenvalues very close to, or on, the line ReA = 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB. Sample sizes and p values are indicated.
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