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In inertial-range turbulence, structure functions can diagnose transfer or dissipation rates
of energy and enstrophy, which are difficult to calculate directly in flows with complex
geometry or sparse sampling. However, existing relations between third-order structure
functions and these rates only apply under isotropic conditions. We propose new relations
to diagnose energy and enstrophy dissipation rates in anisotropic two-dimensional (2-D)
turbulence. These relations use second-order advective structure functions that depend
on spatial increments of vorticity, velocity, and their advection. Numerical simulations
of forced-dissipative anisotropic 2-D turbulence are used to compare new and existing
relations against model-diagnosed dissipation rates of energy and enstrophy. These
simulations permit a dual cascade where forcing is applied at an intermediate scale, energy
is dissipated at large scales, and enstrophy is dissipated at small scales. New relations to
estimate energy and enstrophy dissipation rates show improvement over existing methods
through increased accuracy, insensitivity to sampling direction, and lower temporal and
spatial variability. These benefits of advective structure functions are present under weakly
anisotropic conditions, and increase with the flow anisotropy as third-order structure
functions become increasingly inappropriate. Several of the structure functions also show
promise for diagnosing the forcing scale of 2-D turbulence. Velocity-based advective
structure functions show particular promise as they can diagnose both enstrophy and
energy cascade rates, and are robust to changes in the effective resolution of local
derivatives. Some existing and future datasets that are amenable to advective structure
function analysis are discussed.
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

1. Introduction

One of the few exact laws of turbulence was derived for the inertial kinetic energy
cascade of homogeneous, isotropic, incompressible three-dimensional (3-D) turbulence
(Kolmogorov 1991). This law is,

(δuL)3 = −4
5ενr, (1.1)

where εν is the dissipation rate of kinetic energy by viscosity (ν), δφ = [φ(x0 +
r) − φ(x0)] is the difference in a variable φ between two locations separated by the
vector r = rr̂, and uL = u · r̂ is the longitudinal component of the velocity vector u.
The overline denotes an averaging operation, which could be over positions, time or
a repeated experiment ensemble. The term on the left-hand side is the third-order
longitudinal velocity structure function. Directly measuring εν (or equivalently the
downscale cascade rate under stationary cascade assumptions) is challenging because it
requires measurements at viscous scales or regularly gridded data that can be spectrally
transformed, however (1.1) provides a method to infer εν from the more easily observed
structure function.
Equation (1.1) was proposed for isotropic turbulence, but a more general relation suitable

for anisotropic (but still homogeneous and stationary) turbulence can be derived from
the Kármán–Howarth–Monin equations that govern the temporal evolution of the spatial
auto-correlation of velocity components (Frisch 1995),

∇r ·
[
δu(δu · δu)

]
= −4εν, (1.2)

where ∇r· is the divergence in r-space (Podesta 2008). Equation (1.1) can be recovered
by assuming isotropy and integrating (1.2) over a sphere of radius r using the divergence
theorem. However, under anisotropic conditions (1.2) cannot be integrated without detailed
knowledge of the anisotropy to construct an appropriate volume of integration (Galtier
2009a). Several analytical studies have integrated (1.2) in anisotropic 3-D turbulence
affected by rotation (Galtier 2009b), stratification (Augier, Galtier & Billant 2012) and
magnetism (Galtier 2009a, 2011), but all these studies assumed axisymmetry to define a
volume of integration. However, even in cases where the appropriate volume is known,
the resulting laws cannot be represented purely in terms of uL (Augier et al. 2012),
in contrast to (1.1). Recent studies using anisotropic small-scale laboratory experiments
have calculated δu(δu · δu), or similar terms, and their spatial variations with enough
accuracy to directly diagnose the divergence in (1.2) and the associated anisotropic
energy flux density. These laboratory experiments have demonstrated that structure
functions can diagnose anisotropic energy transfers in axisymmetric 3-D turbulence
under grid-generated (Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015; Valente
& Vassilicos 2015) or rotating (Lamriben, Cortet & Moisy 2011; Campagne et al.
2014) conditions. However, these kinds of detailed measurements are out of reach for
many turbulent physical systems, particularly large-scale geophysical and astrophysical
dynamics where the full velocity fields are sub-sampled and data collection is often sparse.
A recent study (Banerjee & Galtier 2016) found that an alternative exact relationship

exists for anisotropic, homogeneous 3-D turbulence,

δu · δ (u × ω) = 2εν, (1.3)

where ω = ∇ × u is the vorticity. Equation (1.3) provides a relationship between εν and
a second-order blended structure function. That is, it is the product of two increments of
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Structure functions in 2-D turbulence

differing fields. Equation (1.3) has two benefits over (1.1) and (1.2). First, it applies under
anisotropic conditions without requiring integration, and second, accurately estimating
second-order structure functions typically requires less data than estimating third-order
structure functions (see Podesta et al. (2009) and § 5).
In contrast to 3-D turbulence, two-dimensional (2-D) turbulence can have two different

inertial cascades (Kraichnan 1967); a cascade of enstrophy [(ω · ω)/2; the factor of half
is included for parity with kinetic energy] to small scales where it is dissipated at rate ην ,
and an upscale cascade of kinetic energy [(u · u)/2] at rate εμ, where subscript μ denotes
a large-scale sink of energy (e.g. linear drag or hypo-viscosity) in contrast to subscript
ν in (1.1)–(1.3), which denotes a small-scale sink. The domain-integrated enstrophy and
kinetic energy are conserved in inviscid 2-D flows. In 2-D turbulence small-scale energy
dissipation is effectively zero for deep cascades (Duchon & Robert 2000). The large- and
small-scale energy dissipation rates (εμ and εν) are positive-definite but they appear with
opposing signs in structure function relations, due to their different cascade directions
in wavenumber space. In the upscale kinetic energy cascade of 2-D turbulence equation

(1.2) applies with −εμ replacing εν . For isotropic and homogeneous 2-D turbulence δu3L is
proportional to εμr, as in (1.2) but with a different constant of proportionality (Lindborg
1999; Falkovich, Gawedzki & Vergassola 2001). In the enstrophy cascade of isotropic
homogeneous 2-D turbulence, the following laws apply (Lindborg 1996, 1999),

δu3L = 1
8ηνr3, and δuLδωδω = −2ηνr. (1.4a,b)

The third-order velocity structure functions have been used to diagnose enstrophy and
energy cascade rates in isotropic 2-D turbulence using the relations of (1.4a,b) (Boffetta
& Musacchio 2010).
While these equations do not apply in the enstrophy cascade of anisotropic 2-D

turbulence, a divergence law can still be formulated (Lindborg 1996),

∇r · [
δuδωδω

] = −4ην. (1.5)

The evaluation of (1.5) in anisotropic flows is challenging for the same reasons as discussed
for (1.2). One set of physical systems where anisotropic 2-D flow is relevant are large-scale
geophysical dynamics, where motion is approximately barotropic and directional gradients
in the Coriolis parameter can impact vorticity dynamics (Charney 1971; Rhines 1979).
As a result, accurately quantifying the dissipation rates and cascades of anisotropic 2-D
turbulence is important for terrestrial and planetary studies (Provenzale 1999; Galperin
et al. 2006; Kong & Jansen 2017; Young & Read 2017).
These 2-D relationships were originally developed to study large-scale geophysical

systems (e.g. Cho & Lindborg 2001; Lindborg & Cho 2001; Deusebio, Augier & Lindborg
2014), where often data are sparse and flows are anisotropic (Rhines 1975). Therefore it
would be useful to have an analogue of (1.3) for 2-D turbulence, which depends on a
second-order, rather than third-order, structure function and is in principle insensitive to
anisotropy. The enstrophy cascade relations of (1.4a,b) and (1.5) are analogous to the 3-D
turbulence relations that can only be evaluated under isotropic conditions (1.1) and (1.2).
However, there are currently no relations for anisotropic 2-D turbulence (analogous to
(1.3)) for either the enstrophy or inverse kinetic energy cascades.
In the present paper relationships are proposed for 2-D turbulence that apply under

anisotropic conditions, and relate blended second-order advective structure functions to the
small-scale enstrophy dissipation rate (in the enstrophy cascade), and large-scale energy
dissipation (in the inverse energy cascade). The new and existing relations are summarised
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

Structure Enstrophy Inverse energy Reference
function cascade ην cascade εμ > 0

Vorticity-based δωδAω −2ην N/A New
δuLδωδω −2ηνr N/A Lindborg (1996)

∇r · [δuδωδω] −4ην N/A Lindborg (1996)

Velocity-based δu · δAu
1
2ηνr2 2εμ New

δuLδuLδuL 1
8ηνr3 3

2 εμr Lindborg (1999)

δuL(δu · δu) 1
4ηνr3 2εμr Lindborg (1999)

∇r · [δu(δu · δu)] ηνr2 4εμ Lindborg (1999)

Table 1. A summary of relations between structure functions and spectral flux rates in an inertial cascade
of either enstrophy to small scales, or energy to large scales. These relations are a function of the separation
distance r and the spectral flux rates of enstrophy and energy, which we have assumed to be equivalent to
the small-scale enstrophy dissipation rate (Πη = ην ) and the large-scale energy removal (Πε = −εμ where
the negative sign denotes upscale transfer). Grey boxes denote relations which also apply to anisotropic flows.
Note that the calculation of divergence structure functions requires assumed isotropy [∇r · () → ∂(r̂·)/∂r] or a
detailed knowledge of flow anisotropy, even if the derivation of their cascade relation does not assume isotropy
(Podesta 2008; Galtier 2009b).

in table 1. A suite of numerical simulations of anisotropic 2-D turbulence are used to
diagnose the accuracy of energy and enstrophy dissipation rates estimated from different
structure function relations. In § 2 we propose new advective structure function relations
within the enstrophy and inverse energy cascades. In § 3 the numerical simulations of
anisotropic 2-D turbulence are described. In § 4 the advective and third-order structure
functions are diagnosed from a numerical simulation and compared with their expected
profiles. Estimates of energy and enstrophy dissipation rates from these different structure
functions are compared in § 5. The results are discussed in § 6 and summarised in § 7.

2. Advective structure functions in 2-D turbulence

2.1. Relations in the enstrophy cascade
Two-dimensional, incompressible flows are governed by the vorticity equation,

∂ω

∂t
+ u · ∇ω = ν∇2ω, (2.1)

where u = (u, v) is velocity, ω = ∂xv − ∂yu is vorticity (a scalar in 2-D flows), ν is
viscosity, and ∇ denotes derivatives with respect to position x. For simplicity we shall
initially consider a flow that consists only of turbulence, that is, there is no mean flow
(ū = 0), however the results are unaffected by the presence of a constant mean flow
(ū = U0), as we shall discuss in § 2.2.
An equation for the spatial autocorrelation of vorticity ω′ω, where ω = ω(x) and ω′ =

ω(x + r) = ω(x′) can be derived by multiplying (2.1) by ω′, and the analogous budget for
ω′ by ω. Summing the resulting equations together and averaging gives,

∂ωω′

∂t
+ ω′ (u · ∇ω) + ω

(
u′ · ∇′ω′) = Dω(r), (2.2)
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Structure functions in 2-D turbulence

where

Dω(r) = ω′ (ν∇2ω
) + ω

(
ν∇′2ω′) = 2ν∇2

r (ωω′), (2.3)

∇′ denotes derivatives with respect to position x′ = x0 + r, and we have used homogeneity
and the fact that ∇ → ∇x0 − ∇r and ∇ → ∇r under the change of variables x = x0 and
x′ = x0 + r (Lindborg & Cho 2001; Lindborg 2015) (see Appendix A).
It is then convenient to define a variable which is equivalent to the advection of vorticity,

Aω = u · ∇ω. In 2-D dynamics, Aω can also be written in several other forms. For
example using vector identities it can be shown that,

Aω = −u × (∇ × ωẑ) = u × ∇2u = u · ∇ω = J(ψ, ω), (2.4)

where J denotes the 2-D Jacobian, ψ is the streamfunction of the flow where u =
(∂yψ, −∂xψ), and ẑ is a vector out of the 2-D plane of motion. The utility of each of
these formulations could vary for differing experimental set-ups, datasets or numerical
convenience, and the first formulation is similar to the Lamb vector (u × ω; using the
3-D vector vorticity ωẑ) in (1.3). With this variable, (2.2) and its single-point limit can
respectively be written,

∂ωω′

∂t
= −ω′Aω − ωA′

ω + Dω(r), (2.5)

and

∂ωω

∂t
= ∂ω′ω′

∂t
= −2ωAω − 2ην, (2.6)

where ην = ν(∂ω/∂xj)(∂ω/∂xj) is the enstrophy cascade rate (Einstein notation with
repeated index summation implied) and we have used homogeneity (ωω = ω′ω′ and
ωAω = ω′A′

ω). Subtracting (2.5) from (2.6) and re-arranging we find,

∂δωδω

∂t
= −2δωδAω − 4ην − 2Dω(r). (2.7)

Assuming that there is a range of inertial cascade scales where turbulent statistics are
stationary and Dω(r) ≈ 0 (Lindborg 1996), we arrive at the following equation for the
inertial enstrophy cascade of 2-D turbulence,

δωδAω = −2ην. (2.8)

This is the first key result of this paper. This equation applies under anisotropic conditions,
and does not require integration over a specific surface. It is analogous to (1.3) for 3-D
turbulence (Banerjee & Galtier 2016). Note that the averaging, denoted by overlines, could
be across multiple could be over positions (x0), time or repeated experiment ensemble.
Comparing (2.8) and (1.5) it is apparent that the second- and third-order structure

functions must be related by δωδAω = (1/2)∇r · (δuδωδω). This relationship can be
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

validated by noting that,

∇r · (δuδωδω) = ∇r · (u′ω′ω′ − 2u′ωω′ − uω′ω′ + u′ωω + 2uω′ω − uωω)

= −2∇′ · (u′ωω′) + ∇ · (uω′ω′) + ∇′ · (u′ωω) − 2∇ · (uω′ω)

= −2ωu′ · ∇′(ω′) − 2ω′u · ∇(ω) = 2δωδ(u∂xω + v∂yω)

= 2δωδAω, (2.9)

where we have used coordinate transforms (Appendix A), incompressibility and
homogeneity (i.e.2∇ · (uωω) = ωu · ∇ω = ω′u′ · ∇′ω′ = 0), but isotropy is not assumed
or required.

2.2. Effects of rotation (β-effect) and mean flow
If a 2-D turbulent system is rotating at rate Ω(x), fluid parcels are affected by a Coriolis
acceleration and the turbulence can become strongly anisotropic. With rotation, the
vorticity budget (2.1) includes a Coriolis term ∇ × [u × 2Ω] and can be rearranged into
a budget for the absolute vorticity oriented out of the plane of motion (ζ = ω + 2Ω · ẑ).
Such systems obey governing equations identical to (2.1) except with ω → ζ and with
conservation of absolute enstrophy (ζ 2/2) rather than enstrophy (ω2/2). The rotating
system’s equivalent to (2.8) then follows from the ∂tζ equation,

δζ δAζ = −2ην, Aζ = u · ∇ζ. (2.10a,b)

where the dissipation of enstrophy (ην), rather than absolute enstrophy, appears because
viscosity acts on the relative vorticity only. If the system rotation is known then the
effects of this rotation can be diagnosed; for example, for constant frame rotation (f -plane,
ζ = (ω + f0)ẑ) the rotation does not affect the structure function relations presented in
(2.10a,b). However, on a β-plane [ζ = (ω + f0 + βy)ẑ] the advective structure function
relation is

δωδAω + βδvδω = −2ην, (2.11)

where homogeneity has been used to eliminate δy terms (δyδφ = 0 for all flow variables
φ). In the following sections, numerical models that are strongly anisotropic due to the
β-effect terms are analysed. However, we shall neglect the β-containing structure functions
in plots because, even under these strongly β-affected conditions, the terms are small (e.g.
|βδvδω/δωδAω| < 10−10 for all r).
In more complex rotating systems the structure function relations can be derived in a

manner similar to (2.11). For 2-D motions on the surface of a rotating sphere [ζ = (ω +
2Ω sin θ)ẑ, θ is latitude] to use the structure functions above, the scales of interest would
need to be small enough that δζ and δAζ are dominated by turbulent fluctuations rather
than spatial variation of the local vertical direction (ẑ).
It was stated at the start of the above derivation that (2.8) is valid in turbulent flows

with a constant background velocity. The presence of a constant background mean flow
U0, where u = ut + U0 and ut = 0 is the turbulent velocity field, would lead to a term,
U0 · ∇ω, on the left-hand side of (2.1) (note that ω̄ is still zero). As a result, (2.8) would
have an additional term that, for a constant background flow, is zero;

δωδ (U0 · ∇ω) = −U0 · ∇x0

(
ω′ω

)
= 0, (2.12)

where we have applied a coordinate transformation and then assumed homogeneity.
Equation (2.8) is therefore not affected by a constant background flow. Equivalently it
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Structure functions in 2-D turbulence

is Galilean invariant, that is, unaffected by the relative velocities of the fluid and
observational platforms. This is an important property for the interpretation of remotely
sensed data (e.g. satellite observations of the Earth).

2.3. Velocity-based advective structure functions in the enstrophy cascade
In isotropic, homogeneous 2-D turbulence, there are two relationships for the third-order
structure functions in the enstrophy cascade (1.4a,b). By analogy with this, another
second-order structure function relationship can be derived in addition to (2.8). The
second-order vorticity structure function budget (2.7) in homogeneous 2-D turbulence
can be written in several different forms, and comparing these different forms it is seen
that δωδAω = (1/2)∇r · [δu(δωδω)] (2.9), and δωδAω = −(1/2)∇2

r [∇r · (δu(δu · δu))]
(Lindborg 1999, their equation (12)). For homogeneous (3-D or 2-D) turbulence it has also
been demonstrated that 2δu · δ(u × ω) = −∇r · δu(δu · δu) (Banerjee & Galtier 2016).
Equation (2.8) can then be written in an alternative form (using vector vorticity ω = ωẑ),

∇2
r
[
δu · δ (u × ω)

] = −2ην. (2.13)

Together, (2.8) and (2.13) provide relationships between second-order structure functions
and the enstrophy cascade rate in the enstrophy cascade of 2-D turbulence. These equations
apply under anisotropic conditions, with the important benefit that (2.8) does not require
integration, unlike existing relations (1.5). Although (2.13) does require integration, in the
limit of isotropic turbulence it can be integrated over a disc to find

δu · δAu = 1
2ηνr2, where Au = (u · ∇)u. (2.14)

The left-hand side of (2.14) can alternatively be written as −δu · δ(u × ω). System
rotation may affect these relations for velocity-based advective structure functions.
Following from § 2.2, rotation can be incorporated through an additional term in (2.14)
that is ∝ βr2δvδω. In the following simulations this additional term is small compared
with the advective structure function and is neglected (|r2βδvδω/δu · δAu| < 10−9 for
all r under the largest β).

2.4. Relations in the inverse kinetic energy cascade
In addition to an enstrophy cascade, 2-D turbulence can also produce an inverse cascade
of kinetic energy, where ‘inverse’ refers to the fact that kinetic energy moves from
intermediate (forcing) scales to larger scales, rather than smaller scales. Relations have
been derived which connect the rate of this inverse energy cascade (εμ) to the third-order
velocity structure functions and their divergence; ∇r · [δu(δu · δu)] = 4εμ (table 1 and
Lindborg 1999). Note that this equation is opposite in sign to the 3-D turbulence relation
in (1.2), a result of the opposite direction of this cascade (both εμ and εν are positive
definite). Using the relation between advective structure functions and the divergence of
the third-order structure function, it follows that

δu · δAu = 2εμ, (2.15)

in the inverse energy cascade of 2-D turbulence. This is analogous to the relation
previously derived for the direct energy cascade ((1.3), Banerjee & Galtier 2016), except
with an opposite sign. In contrast to the third-order structure function relations for energy
cascades in 3-D turbulence [(δuL)3 = −4

5ενr; (1.1)] and in 2-D turbulence [(δuL)3 =
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

3εμr/2; Lindborg (1999)], the advective structure function relations for these systems have
the same coefficients. This is because the coefficient differences for third-order structure
function relations arise from integrating divergence laws in a different number of isotropic
directions (e.g. Xie & Bühler 2018). Extensions of these relations to non-inertial cascades
will be discussed in § 6.
As discussed recently (Banerjee & Galtier 2016), in a rotating system ω → ω + Ω in

(2.15), which has no effect under solid body rotation. They also found that if there is
a mean velocity (U0) then there is an additional term on the left of (1.3) which takes the
form δu · δ(U0 × ω). In 2-D turbulence this term must be zero as the velocity and vorticity
vectors are perpendicular. Therefore (2.15) (and similarly (2.13)) is applicable even if there
is a constant mean velocity. It is also intriguing to note that (2.13) and (2.14) both resemble
the work being done by acceleration, and thereby contacts the flight-crash paradigm that
indicates a loss of detailed balance (Xu et al. 2014). Although not explored here, these
connections underpin the directionality of the enstrophy and inverse energy cascades and,
thus, their irreversibility via the tools of statistical mechanics.

3. Numerical simulations

To evaluate the utility of the advective structure functions discussed previously, we
diagnosed the structure function relations of table 1 from numerical simulations of 2-D
turbulence. These simulations use GeophysicalFlows.jl (Constantinou et al. 2020), a
Julia-based pseudo-spectral code that solves an evolution equation for vorticity (written
here in real-space),

∂ω

∂t
+ u · ∇ω + u · β = μ∇−2ω − ν∇8ω + F, (3.1)

where β is a beta effect term with arbitrary direction that can induce anisotropy in the
system analogous to a geophysical β-plane (Rhines 1975). The model vorticity equation is
analogous to (2.1) used to derive the above structure function relations, with the addition
of a beta-effect, hypo- and hyper-viscosity, and stochastic forcing. It was assumed in the
above derivations that viscous terms Dω(r) are negligible at scales within the inertial
cascade. Similarly, in the numerical simulations the forcing term is localised to a narrow
band of wavenumbers and the hypo- and hyper-viscosity only damp the dynamics at scales
far from the forcing scale (see § 4). Alternative types of dissipation, such as linear drag
at large scales or Fickian diffusion at small scales, are often considered in 2-D turbulent
flows (Boffetta & Ecke 2012). The dissipation operators in (3.1) were chosen to allow the
development of inertial cascades where the direct effect of forcing and dissipative terms
on structure function relations are assumed to be negligible. Recently this inertial cascade
assumption has been relaxed to find structure function relations that include dissipative and
forcing effects in isotropic 2-D turbulence (Xie & Bühler 2018, 2019), which can be used
to diagnose properties of the dissipative operators from structure functions (Xie 2020).
The structure function relations can be modified to account for the β effect, as discussed
in § 2.2. In the present simulations, these modifications are not included as they are many
(�9) orders of magnitude smaller than the other terms in the relations (not shown).
Energy and enstrophy are supplied to this system through stochastic forcing (F) confined

to a band of wavenumbers centred on a forcing wavenumber kinj. This energy/enstrophy
is removed at large scales by a hypo-viscosity and at small scales by a hyper-viscosity
with coefficients μ = 0.044 m−2 s−1 and ν = 10−21 m8 s−1 respectively. This allows the
development of a statistically stationary forced-dissipative system with the potential for
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Structure functions in 2-D turbulence

Name Description (βx, βy) kf
εμ

εinj

ην

ηinj

SA Strong Anisotropy (0, 10) 100 0.89 0.99
WA Weak Anisotropy (0, 1) 100 0.91 0.99
SAd Strong (diagonal) anisotropy ( 10√

2
, 10√

2
) 100 0.89 0.99

SAη Extended enstrophy cascade (0, 10) 40 0.89 0.99

Table 2. Description of important model parameters for each numerical experiment; the experiment name,
a brief experiment description, the beta parameter in the x- and y-directions, the forcing wavenumber kf ,
the fraction of input energy being removed by large-scale hypo-viscosity (εμ/εinj) and the fraction of input
enstrophy being removed by small-scale hyper-viscosity (ην/ηinj). All simulations have N = 2048 grid-points
in each direction, and are 3000 s long with 60 evenly spaced snapshots.

upscale and downscale inertial cascades centered on a forcing wavenumber kf . This system
is solved for an N × N domain with width L = 2πm. The forcing term in the vorticity
budget is isotropic, δ-correlated in time, applied through Stratonovich calculus, and has
the spectral form F(K) ∝ exp[−(K − kinj)2/(2Δk)

2] where K = √
k2 + l2, the bandwidth

of the forcing is Δk = 1.5 rad m−1, and the forcing is normalised to provide energy to the
domain at an average rate of input εinj = 10−5 m2 s−3.
The parameters for the simulations are summarised in table 2. The simulations

encompass varying anisotropy (through changing β) and forcing scales (kinj). The use
of hypo-viscosity, rather than linear drag, allows the development of an inverse energy
cascade that spans a significant range of scales, but it increases the spin-up time for
the simulations as the more energetic large scales take longer to reach equilibrium. To
counter the long spin-up times, simulations are initially spun up at a lower resolution (N =
512) until the large-scale energetics reach equilibrium. The higher-resolution (N = 2048)
simulations are initialised with the vorticity field of the N = 512 simulations, linearly
interpolated on to the appropriate grid, which preserves both the large-scale energetics
and the vorticity at the grid scale of the N = 512 model. The domain-integrated energy
and enstrophy of the high-resolution simulations rapidly converges, and these simulations
are run for 3000 s. In the strongly anisotropic simulations the large-eddy turnover time
Te = E/εμ ≈ 600 meaning the statistics span approximately 5 large-eddy turnover times
(E is the domain-averaged energy). In the weak anisotropy simulations Te is shorter, but
sensitivity tests (not shown) demonstrated that the results shown below are independent of
whether the number and frequency of snapshots are adjusted based on Te.
Snapshots of the vorticity at the end of each simulation are shown in figure 1 for one

quarter of each domain. In the strongly anisotropic experiments (SA, SAd and SAη), jets
form in the direction perpendicular to the β-direction, consistent with previous studies of
anisotropic 2-D turbulence (Danilov & Gryanik 2004; Kong & Jansen 2017). In contrast,
the weakly anisotropic experiment (WA) does not develop jets and instead consists of
seemingly isotropic vortices. The extended enstrophy cascade experiment (SAη) has a
smoother vorticity field, consistent with larger-scale enstrophy driven by an increase in
the energy/enstrophy injection scale Linj.
The external forces (beta effect, viscosity, etc.) acting on a fluid parcel are homogeneous

in these simulations, but the presence of jets in the strong anisotropy simulations
indicate that flow heterogeneity develops from the initially homogeneous flow (Bakas,
Constantinou & Ioannou 2019). All the structure function relations in table 1 require an
assumption of flow homogeneity in their derivation. These relations should still apply for
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Strong  anisotropy

0
x (m)

0
(a) (b) (c) (d )

π/2

π/2
π

π 0

x (m)
π/2 π

y (m)

 Weak anisotropy

–5 0 5

Vorticity (s–1)

Strong diagonal β Extended η  cascade

Figure 1. Vorticity fields diagnosed from the final snapshot of each simulation. (a) SA experiment with a
strong, y-aligned, β term. (b) WA experiment with a weak y-aligned β term. (c) SAd experiment with a strong
diagonally aligned β term. (d) SAη experiment with an extended enstrophy cascade and a larger forcing scale.
Vorticity values have been capped at±5 s−1 and are shown for one quarter of the domain for easier visualisation
of small-scale features.
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Figure 2. Spectral fluxes of enstrophy Πη (a,b) and of energy Πε (c,d) for experiments with strong anisotropy
(SA; a,c) and weak anisotropy (WA; b,d). Black lines show the mean fluxes, and shading shows the quartile
range of these fluxes across the snapshots. Red dotted lines show (a,b) the mean rate of enstrophy dissipation by
small-scale viscosity ην , and (c,d) the mean rate of energy removal by large-scale hypo-viscosity εμ. Negative
flux values imply a cascade to large scales (small-K), and positive values imply a cascade to small scales
(large-K). Note that εμ is positive definite, so negative εμ is shown in the inverse energy cascade. Vertical
blue lines denote the forcing wavenumber (kinj = 2π/Linj) and the diagnosed end of the inverse energy cascade
(2π/Lmax).

the homogeneous scales smaller than the jets, that is r < Wjet where Wjet is the along-β
width of jets. There are roughly 20 jets in the domain of each strong anisotropy simulation,
with a jet width Wjet ≈ π/10. This width is at the end of the inverse energy cascade (see
next Section and figure 2), so we shall assume that the relations in table 1 are appropriate
for the enstrophy and inverse energy cascades of the present simulations. It is possible that
inhomogeneity affects these relations at the largest scales of the inverse energy cascade.
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Structure functions in 2-D turbulence

3.1. Diagnostic tools
Structure functions, spectral fluxes, and dissipation rates are diagnosed from sixty evenly
spaced snapshots of the flow field for each simulation. These statistics are then averaged
across all snapshots, and their temporal variability is quantified by comparing the
variations between the mean statistics diagnosed from each snapshot. The model velocity
fields are used to calculate vorticity using a centred-difference estimate of gradients at the
grid scale, and the advective derivatives are diagnosed using the same centred-difference
method. These derivative estimates use a stencil width of one grid cell in either direction.
The sensitivity of results to this stencil width are assessed in § 5.5. These are not exactly
the derivatives used to solve prognostic equations, as the model uses spectral methods for
advection.
Structure functions are calculated using separation vectors in specific directions; aligned

with β (along-β), perpendicular to β (across-β), and two diagonal directions (±π/4
relative to the β-axis). Using these different directional separations, the sensitivity of
structure functions to sampling direction in anisotropic flows can be assessed. This
directional dependence is important for observational analyses, which often utilise datasets
with specific sampling patterns/directionality. Calculating structure functions in specific
directions also reduces the computational cost of structure function calculations. Nie &
Tanveer (1999) found that third-order structure functions are highly dependent on the
sampling direction in anisotropic 3-D turbulence. Since the experiments use a doubly
periodic domain, structure functions are diagnosed using only separations less than half
the domain width, including separation vectors that ‘wrap around’ (through the periodic
boundary). The sampling directions are chosen as they are with the eigenvectors of
maximum and minimum anisotropy in the system (along and across β), and in directions
in between these eigenvectors. Any anisotropy in structure function statistics would be
captured by this set of sampling directions.
Spectral fluxes and dissipation rates are often challenging to calculate for observations

and experiments, and for numerical simulations of complex domains, because they require
spectrally transformable information about the full flow field (for fluxes), and about the
smallest scales of the turbulent flow (for dissipation rates). The numerical simulations
presented here provide an opportunity to calculate spectral fluxes, dissipation rates and
structure functions from complete information about snapshots of the flow field, and to
use these results to inform the analysis of situations where fluxes and dissipation results
cannot be calculated.
The spectral fluxes of energy and enstrophy (Πε and Πη respectively) are diagnosed

for comparison. The spectral flux of enstrophy follows from the budget for the spectral
enstrophy distribution [ηk = ηk(k) = |ω̂|2/2 where k = (k, l) is the 2-D wavenumber
vector]. To get to this budget we manipulate the Fourier transform of the vorticity budget
((2.1); transform denoted by a caret) and the budget for the complex conjugate of the
transformed vorticity [ω̂ = ω̂(k)],

∂ηk

∂t
= ω̂∗ ∂ω̂

∂t
+ ω̂

∂ω̂∗

∂t
= Tη − D(k, ηk), (3.2)

where Tη(k) = −Re[ω̂∗
̂u · ∇ω] is the (spectral) divergence of the spectral flux of

enstrophy between wavenumbers and D(k, ηk) represents the removal of enstrophy by
hypo- and hyper-viscosity. This enstrophy dissipation D is assumed to occur at localised
scales far from the forcing scale.
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

It then follows that the spectral flux of enstrophy into a specific region of k-space (Sk)
is

Πη(k, l) =
�

Sk(k,l)

Tη dk dl. (3.3)

In the present numerical simulations, this integral is evaluated in the region outside a
circle of radius K, that is Sk(k2 + l2 � K2). This results in the following spectral fluxes of
enstrophy and energy respectively (Capet et al. 2008),

Πη(K) = −
�

k2+l2�K2

Re
[
ω̂∗

̂u · ∇ω
]
dk dl (3.4)

Πε(K) = −
�

k2+l2�K2

Re
[
û∗ · ̂u · ∇u

]
dk dl. (3.5)

Positive fluxes indicate a transfer of energy/enstrophy to small scales (wavenumbers larger
than K), while negative values indicate transfer to large scales (wavenumbers smaller than
K). While the present work uses these spectral fluxes between wavenumbers, it is also
possible to diagnose real-space fluxes between different r values for energy (Boffetta &
Musacchio 2010) and enstrophy (Chen et al. 2003).
Dissipation rates of energy and enstrophy are diagnosed in spectral space. The two

dissipation rates of interest here, small-scale enstrophy (ην) and large-scale energy εμ

dissipation, were diagnosed as

ην =
∑

νK8|ω̂|2 (3.6)

εμ =
∑

μK−4|ω̂|2, (3.7)

where the summations are over all wavenumbers using Parseval’s theorem (see
Constantinou et al. 2020 for details). The other dissipation rates were calculated in an
analogous manner.
The tools above diagnose the small- and large-scale dissipation rates and the presence

of inertial cascades in isotropic wavenumber space. This is useful for applications where
the transfer of properties by turbulence from one scale to another is of interest, but details
of the mechanism of transfer are not relevant. In anisotropic flows where the full dynamic
fields are measurable, it is possible to diagnose the anisotropic energy (or enstrophy) flux
density using structure functions (Lamriben et al. 2011) or spectral analysis (Yokoyama &
Takaoka 2021). These anisotropic fluxes can provide information about the separate radial
and angular transfers in these flows (e.g. Gomes-Fernandes et al. 2015).

4. Fluxes and structure functions in anisotropic turbulence

4.1. Spectral fluxes of enstrophy and energy
Figure 2 shows the spectral fluxes of energy and enstrophy diagnosed from SA and
WA experiments (strong and weak anisotropy respectively). Positive fluxes indicate a
transfer of energy/enstrophy to wavenumbers larger than K (smaller scales), while negative
values indicates transfer to smaller wavenumbers (larger scales). In both experiments the
simulated turbulence develops a direct cascade of enstrophy to small scales and an inverse
cascade of energy that spans almost an order of magnitude in scale, both originating at the
forcing wavenumber.
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Structure functions in 2-D turbulence

The enstrophy fluxes Πη to large wavenumbers agree with the rate of enstrophy
dissipation at small scales ην , and both Πη and ην have relatively small variations
between snapshots. The enstrophy transfer to small wavenumbers is negligible [Πη(K <

kinj) ≈ −ημ ≈ 0]. Less than 1% of injected enstrophy is dissipated by hypo-viscosity
(table 2). The enstrophy cascade is estimated to end at a wavenumber associated with a
minimum enstrophy cascade length scale Lmin = 2π/kmin (note kmin is a maximum value,
but is sub-scripted for consistency with Lmin). This is estimated to be at a wavenumber
bisecting the roll-off of the enstrophy cascade (figure 2). The transfer of energy to small
wavenumbers, where it is removed by hypo-viscosity, is maintained by a negative energy
flux Πε at wavenumbers smaller than the injection wavenumber kinj. The spectral flux of
energy is constant between the kinj and a wavenumber associated the maximum inverse
cascade scale Lmax = 2π/kmax. The energy flux does not vary significantly between
snapshots (denoted by the shading). This is indicative of a well-developed inverse kinetic
energy cascade. The energy flux to small wavenumbers is approximated well by the rate
of energy removal by hypo-viscosity (εμ). There is a small flux of energy to wavenumbers
larger than K. This downscale energy flux is an order of magnitude smaller than the inverse
cascade flux, and it agrees with the viscous dissipation rate of energy (εν). Note that the
fluxes should theoretically go to zero at the largest and smallest scales, but the enstrophy
flux is non-zero at small scales. This is because the advective gradients in the spectral
fluxes (i.e. (3.4)) are diagnosed in real-space using centered differences, rather than in the
model’s native spectral space, introducing truncation errors. The consistency of both fluxes
with the dissipation rates εμ and ην demonstrates that this noise does not significantly
affect the fluxes in the inertial cascades.
The presence of a clear dual cascade in these simulations provides the opportunity to

identify which structure functions are able to diagnose the dissipation rates of energy
and enstrophy, and whether different types of structure functions have systematic biases
or distinctions in their cascade estimates. We will first compare each of the structure
functions against their expected behaviour based on theoretical considerations. Then, in
§ 5, the ability of different structure functions to predict the dissipation rates of energy and
enstrophy will be assessed.

4.2. Vorticity-based structure functions
The vorticity-based structure functions in table 1 can theoretically diagnose the rate of
enstrophy dissipation at small scales. Figure 3 shows the three vorticity-based structure
functions from the WA experiment; the vorticity–advection structure function (2.8), the
third-order vorticity/longitudinal velocity structure function (1.4a,b), and the divergence
of this third-order structure function (1.5). The predictions for these structure functions,
based upon these equations and the model-diagnosed rate of enstrophy dissipation ην ,
are shown as red lines. These predictions span from the smallest scales of the enstrophy
cascade Lmin to the energy injection scale Linj. The advective structure function peaks at
a value which is in good agreement with the enstrophy dissipation rate, while the other
structure functions are always smaller than predicted. However, the region where each
structure function is closest to its prediction occurs at scales just below Lmin rather than
in the enstrophy cascade (note that the structure functions should be negative, that is,
dots in the enstrophy cascade region). It will be shown in § 5.6 that the disagreement
between these structure functions and their predictions within the enstrophy cascade are
due to the finite width of the cascade. This suggests that the vorticity–advection structure
function could be used to predict the enstrophy cascade rate provided these statistics are
measured over a wide range of scales within, and smaller than, the enstrophy cascade
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Figure 3. Vorticity-based structure functions plotted against separation distance for a simulation with weak
anisotropy (WA), and theoretical estimates of the structure functions diagnosed from the small-scale enstrophy
dissipation rate (see legend and table 1). (a) shows the new vorticity-based advective structure function,
(b) shows the third-order vorticity/longitudinal velocity structure function, and (c) shows the divergence of
this third-order structure function. The sign of the along-β structure functions are denoted by symbol type,
and the magnitude of the across-β structure functions are shown by the solid line to demonstrate anisotropic
effects. The light solid line shows the magnitude of the structure functions diagnosed in the cross-β direction.
Dashed blue lines show the energy injection scale (Linj) and the maximum extent of the inverse energy cascade
(Lmax).

region (see § 5). However, none of the structure functions follow the expected shape across
the entire enstrophy cascade, and they all show a sign change at the largest scales of the
enstrophy cascade. The divergence-based structure function in particular poorly captures
the expected profile. The vorticity-based structure functions do not depend significantly on
sampling direction, shown by the close agreement between symbols (along-β separations)
and lines (across-β separations) across all r.

4.3. Velocity-based structure functions
The velocity-based structure functions are theoretically related to both the enstrophy
cascade rate at small scales (r 	 Linj) and the inverse energy cascade rate at large scales
(r 
 Linj) as summarised in table 1. Figure 4 shows the structure functions based on
the velocity–advection (δu · δAu), the third-order longitudinal velocity (δuLδuLδuL), the
third-order total velocity (δuL[δu · δu]) and the divergence of the third-order total velocity
for the WA experiment.
Across most of the inverse energy cascade (Linj < r < Lmax), the advective structure

functions shows good agreement with the εμ-based prediction (red solid line), and is
not sensitive to the sampling direction. There is also clear oscillatory behaviour, which
is related to the forcing scale and will be discussed in detail later (§ 5.6). Despite the
experiment only having weak anisotropy, all the third-order structure functions depend
significantly on sampling direction in the inverse cascade range. In the along-β direction,
they do not follow the inverse cascade prediction, but in the cross-β direction they agree
with the shape of the prediction but slightly overestimate its magnitude. The divergence
of the third-order structure function has strong oscillations and typically lies below the
predicted profile.
In the enstrophy cascade (r < Linj) all the structure functions approach, but

underestimate, their predicted slopes for some scales r < Linj. However, all of the structure
functions steepen and move away from the predicted slope at the smallest scales. This
steepening is most noticeable for the advective structure function. All of the velocity-based
structure functions are relatively insensitive to sampling direction in the enstrophy cascade,
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Figure 4. Velocity-based structure functions plotted against separation distance for a simulation with weak
anisotropy (WA), and theoretical estimates of the structure functions diagnosed from small-scale enstrophy
and large-scale energy dissipation rates (see legend and table 1). (a) shows the new velocity-based advective
structure function δu · δAu, (b) shows third-order longitudinal velocity structure function (δuLδuLδuL),
(c) shows the third-order total velocity structure function (δuLδu · δu) and (d) shows the divergence of the
third-order total velocity structure function. Other lines and symbols are as described in figure 3.

and they all show a transition around r = Linj, consistent with the discontinuous transition
between εμ- and ην-based predictions at this scale.

5. Estimating cascade rates in anisotropic 2-D turbulence

In this section the advective and third-order structure functions are used to estimate
the dissipation rates of enstrophy and energy under strong anisotropy (SA) and weak
anisotropy (WA). The accuracy of these dissipation diagnostics is assessed, along with
their sensitivity to the flow anisotropy and forcing scale, and the effects of the direction,
frequency, and effective resolution of data sampling. For this section estimates from
the divergent structure functions will not be considered, as the divergence calculation
requires knowledge of flow anisotropy. In addition, the third-order total velocity structure
function (δuL[δu · δu]) will not be used for diagnostics, as the results are similar to
the more commonly used longitudinal-velocity structure function (figure 4). Estimates
of dissipation rate are found by re-arranging each of the relations in table 1 to get an
expression for the dissipation rates of enstrophy (ην) or energy (εμ). These diagnostic
expressions contain a structure function, a constant of proportionality, and, in some cases,
a polynomial dependence on separation direction r.

5.1. Vorticity-based enstrophy cascade (ην) estimates
Figure 5 shows estimates of the enstrophy dissipation rate from vorticity-based structure
functions (blue and black lines) along with the model-diagnosed ην (red line). All the
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Figure 5. Small-scale enstrophy dissipation rate and estimates of this rate from vorticity-based structure
functions for the strongly anisotropic (SA; a,c) and weakly anisotropic (WA; b,d) simulations. The top panels
shows estimates using the new vorticity–advection structure function δωδAω and the diagnosed dissipation
rate (ην ; red dashed line). These ην estimates are diagnosed from structure functions calculated in specific
directions denoted by line colour and style. Shading denotes the quartile spread across snapshots of the along-β
estimate. The bottom panels are analogous to the top panels but use the third-order blended vorticity structure
function δuLδωδω. Blue dashed lines denote the energy/enstrophy injection scale (Linj) and the largest scale of
the inverse energy inertial cascade (Lmax).

estimates show little variability between snapshots (shading shows the quartiles of the
along-β estimate). The vorticity–advection structure function peaks close to ην , regardless
of the sampling direction, even under conditions of strong anisotropy. In contrast, the
vorticity-based third-order structure function is extremely sensitive to the sampling
direction under strongly anisotropic conditions. In experiment SA the along- and across-β
directions significantly underestimate ην , while the intermediate directions peak close to
ην . While some of the vorticity-based structure functions peak close to ην , none of the
structure functions stay near ην across all the enstrophy cascade, and this difference is most
noticeable just below the forcing scale Linj. All the structure functions oscillate, although
these oscillations are less noticeable at large scales for third-order structure functions
diagnostics due to their inverse r dependence. In § 5.6 it is shown that the oscillations
and the peaking rather than plateauing nature of the structure function ην estimates,
are coupled to the forcing scale and the limited width of the inertial enstrophy cascade
respectively. Note that the discretised grid means that the smallest separation distance in
the diagonal directions is

√
2 larger than the smallest separation distance in the along-β

and across-β directions.

5.2. Velocity-based enstrophy cascade (ην) estimates
Figure 6 shows estimates of the enstrophy dissipation rate from velocity-based structure
functions (blue and black lines) along with the model-diagnosed ην (red line). The
variability of ην estimates between snapshots is reduced as the anisotropy increases,
perhaps due to the reduced dimensionality of the system. The velocity–advection structure
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Figure 6. Small-scale enstrophy dissipation rate (ην ) and estimates of this rate from velocity-based structure
functions. This is analogous to figure 5 but using velocity-based advective and third-order structure functions
(δu · δAu and δuLδuLδuL respectively) rather than vorticity-based structure functions.

function underestimates ην by approximately 30% at its peak. The advective structure
function also shows little sensitivity to sampling direction, even under strongly anisotropic
conditions. In contrast, the third-order structure function estimate depends greatly on
sampling direction; the across-β sampling produces estimates that are an order of
magnitude smaller than ην for all Lmin < r < Linj, while the along-β and intermediate
sampling directions produce peaks close to ην . Under weakly anisotropic conditions, all
the third-order structure function estimates peak within the same order as ην , although
there is substantial variability between snapshots. The variability of the advective structure
functions is smaller, and hence the statistical convergence is faster, than for the third-order
structure functions. The underestimation of ην under strong anisotropy is likely due to the
forcing scale and limited width of the enstrophy cascade, as discussed in § 5.6.

5.3. Velocity-based energy cascade (εμ) estimates
Figure 7 shows estimates of the large-scale energy dissipation rate (εμ) from
velocity-based structure functions (blue and black lines) along with the model-diagnosed
εμ (red line). The energy dissipation estimates should apply at large scales
(Lmax > r > Linj; between the vertical dashed lines). The variability of estimates between
snapshots are large and plotted separately in figure 8.
The estimates based on velocity–advection structure functions closely follow, albeit

oscillate about, εμ near the forcing scale Linj. At larger scales it underestimates εμ in
both weak and strong anisotropy, except in the direction of jets for the strong anisotropy
(SA) experiment, where the dissipation estimate is fairly accurate to the end of the inverse
cascade at Lmax. This sampling anisotropy is a real signal, because the variability of
estimates between snapshots (top left panel of figure 8) is also distinct and relatively
narrow for each direction. These structure functions have clear oscillatory behaviour,
which is discussed further in § 5.6.
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Figure 7. Large-scale energy dissipation rate (red line) and estimates of this rate from velocity-based structure
functions. This is analogous to the previous two figures except the focus is now on separation distances in the
inverse energy cascade (Linj < r < Lmax), and the associated rate of energy removal by hypo-viscosity (εμ; red
dashed line).
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Figure 8. A zoomed-out version of figure 7 that includes the temporal variability of the estimates of large-scale
energy dissipation rate. Shading shows the quartile spread across snapshots for each sampling direction. Note
that only one diagonal direction is shown for clarity.

The εμ estimates based on third-order structure functions are highly sensitive to
sampling direction. In the strong anisotropy (SA) experiment, the along- and across-β
estimates persistently underestimate the energy dissipation with little variability between
snapshots, while the diagonal estimates have large variability and go from overestimating
εμ near Linj to underestimating it near Lmax. The temporal variability of the diagonal
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Structure functions in 2-D turbulence

estimates increases with separation distance, even with the inverse r dependence of the
estimate. In the weak anisotropy case, the third-order structure functions estimates also
vary with sampling direction. All the estimates, except along-β, plateau through the energy
cascade, but they all predict different magnitudes for εμ. Unlike the strong anisotropy case,
under weakly anisotropic conditions the inter-snapshot variability of third-order-based
estimates are similar in all directions.
The results suggest that velocity–advection structure functions can provide estimates

of large-scale energy dissipation rates in 2-D turbulence, even under strong anisotropy.
These estimates are particularly accurate just above the forcing scale, regardless of
sampling direction or flow anisotropy. The forcing scale could potentially be diagnosed
from oscillations in structure functions (see § 5.6). In contrast, estimates based on the
third-order longitudinal structure function are less useful for predicting εμ as they have
larger variability between snapshots, are more sensitive to the sampling direction, and do
not generally align with εμ. These drawbacks are amplified as flow anisotropy increases.

5.4. Intermittency of velocity-based structure functions
It was shown previously that the velocity-based advective structure function has less
temporal variability than the third-order structure function (figures 6 and 8). At first glance
this may seem counter-intuitive as the advective structure function contains local gradients
of velocity, which are typically noisier than the raw velocity field used for the third-order
structure function. However, there are two properties of the advective structure function
that could explain its lower variability relative to the third-order structure function. First,
the gradients of turbulent velocities are constrained by the 2-D dynamics of the system
through the vorticity budget and incompressibility. This could provide a mechanism for
intermittency in any of the four derivatives of the advective structure function to be
compensated by intermittency in the other derivatives (∂xu, ∂xv, ∂yu and ∂yv). Second,
the advective structure function contains one less increment than the third-order structure
function. These increments could introduce variability due to flow intermittency (i.e.
δuL ∼ [∂ruL]δr). The present simulations provide an ideal test bed to compare these
mechanisms because the velocity fields used to diagnose structure functions are exact,
while the velocity gradients contain noise relative to what the model ‘sees’. This is because
we directly use the model’s velocity field but estimate gradients and vorticity by applying
finite-difference methods to this velocity field, rather than using the model’s native spectral
derivatives, resulting in truncation errors (see § 3).
Figure 9 shows p.d.f.s of the velocity-based structure functions from a snapshot of

experiment WA for three x-separations spanning the enstrophy cascade, the forcing scale,
and the inverse energy cascade. These figures are analogous to velocity-increment p.d.f.s
(i.e. Boffetta & Musacchio 2010; Poje et al. 2017), except that the present figures
show p.d.f.s of increment products in order to compare the advective and third-order
structure functions. The structure functions are normalised by their standard deviation
across this snapshot at that separation, so that the relative contribution of their tails
can be compared. Wider-tailed distributions indicate increased spatial intermittency of
the increment-products, which suggests more data would be required for an accurate
estimate of its average (for the relations in table 1). At all scales, the advective structure
function has narrower tails (lower spatial variability/intermittency) than the third-order
structure function. This suggests that advective structure functions require less data to get
an accurate estimate of their mean value than third-order structure functions require.
Figure 9 also shows p.d.f.s of the x- and y-components of the advective structure function

(δuδAu and δvδAv) to test whether the small spatial intermittency of δu · δAu, relative
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Figure 9. Probability distribution functions (p.d.f.s) of velocity-based third-order (red) and advective (black)
structure functions in the weak anisotropy (WA) simulation. Probability distribution functions are shown for
x-aligned separation vectors (a) in the enstrophy cascade, (b) at the forcing scale, and (c) in the inverse energy
cascade. The structure functions are calculated at all points in the domain and normalised by their respective
standard deviation [δu · δAu/std(δu · δAu), δu3L/std(δu

3
L), etc.]. Also shown are the components of the

advective structure function arising from x- and y-oriented increments (dotted and dashed lines respectively).
Probability distribution functions were diagnosed from the final snapshot of the WA simulation.

to δuLδuLδuL, is due to compensation between advective gradients or the reduced number
of increments. The two components of the advective structure function have large tails,
similar to the third-order structure function. This demonstrates that the lower variability
of the advective structure function relative to the third-order structure function is a result
of compensation between gradients in the δuδAu and δvδAv components of the structure
function.

5.5. Impact of effective resolution of derivatives
Many of the structure functions discussed above require gradients of flow properties
because they contain advective operators (δu · δAu), vorticity (δuLδωδω) or both
(δω · δAω). These gradients were estimated using a centred-difference approximation and
the adjacent grid points, with a ‘stencil width’ of 2 grid points. This is the smallest centred
stencil that can be used to estimate gradients at a grid point, which means the derivative
is calculated at the smallest scales of the simulated turbulence. In general, data from
turbulent flows are not at the smallest scales of turbulence so any derivative calculations
using this data could be affected by the presence of sub-stencil turbulence.
To assess the impact of stencil width and the presence of sub-stencil turbulence on the

structure functions, the advective and vorticity-based structure functions were recalculated
from a snapshot of the SA experiment where derivatives (vorticity and advection) were
diagnosed using centred-differences with varying stencil widths (2, 4, 6 and 8 grid
points). These derivatives all use two data points, for example the 8 grid cell stencil
only uses the two grid points that are ±4 adjacent to the derivative location. Figure 10
shows the structure functions diagnosed with different stencil widths. At large scales
the structure functions are relatively unaffected by stencil width, but at small scales the
vorticity-containing structure functions the maximum/minimum values are sensitive to
stencil width, suggesting that their estimates of enstrophy dissipation (figure 5) will vary
with the effective resolution of data and the properties of turbulence at scales smaller than
this resolution. The velocity–advection structure function is not significantly affected by
stencil width at the scales used to estimate enstrophy and energy dissipation rates, and is
only changed at small scales where the increased stencil width increases the magnitude of
the structure function at the smallest scales.
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Figure 10. Comparison of structure functions using different stencil widths for derivative calculations:
(a) velocity–advection structure function, (b) velocity–advection structure function scaled by r2, (c)
vorticity–advection structure function and (d) third-order vorticity structure function scaled by r, for
centred-difference stencil widths of 2, 4, 6 and 8 grid cells. The left-most panel is an inverse energy cascade
diagnostic, while the other three panels are enstrophy cascade diagnostics (table 1). The vertical dashed lines
denote the energy/enstrophy injection scale Linj and the end of the enstrophy cascade Lmin.
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Figure 11. Normalised spectral fluxes of enstrophyΠη/ην for experiments with an extended enstrophy cascade
(SAη; solid line) or a short enstrophy cascade (SA; dashed line). Both simulations have strong anisotropy. From
left to right the vertical blue lines denote the forcing wavenumbers of the SAη and SA simulations, and the
maximum wavenumber of the enstrophy cascade 2π/Lmin and shading denotes the temporal variability of the
fluxes across snapshots (see figure 2 for details).

5.6. Effect of forcing scale and enstrophy cascade width
The structure function relations presented in table 1 are derived for the inertial cascades
of 2-D turbulence. The experiments presented above (SA and WA) have inverse energy
cascades that span an order of magnitude in scale, but their enstrophy inertial cascades
are narrower. To investigate the importance of the enstrophy cascade width an experiment
was conducted under strong anisotropic conditions like experiment SA, but with forcing
at a larger scale (kinj = 40). A second motivation for this experiment is that several of
the dissipation estimates and structure functions show oscillatory or peaked behaviour,
implying that an external length scale is affecting the statistics. As the only imposed length
scales are the forcing scale Linj and the numerical grid properties, this experiment can
be used to diagnose whether these structure function features are driven by the physical
parameters this system or the numerics/resolution.
Figure 11 shows the spectral enstrophy flux in this extended enstrophy cascade

experiment (SAη) alongside the flux from the SA experiment. The fluxes are normalised by
the enstrophy injection rate at their respective forcing scales. Experiment SAη produces an
well-developed and wide enstrophy cascade, where the enstrophy flux is flat across a much
wider range of scales than the other experiments. The variability of the spectral fluxes
between snapshots is small indicating that the inertial cascades are statistically stationary.
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Figure 12. Vorticity structure function-based estimates of small-scale enstrophy dissipation rate (normalised
by actual rate ην ) from an anisotropic 2-D simulation with an extended enstrophy cascade (SAη; a,c) and
from a simulation with a short enstrophy cascade (SA; b,d). Note that the forcing scale Linj denoted by the
blue dashed line differs between the simulations. Linestyles denote sampling direction and shading denotes
temporal variability (see figure 5).

The impacts that changing the forcing scale has on enstrophy dissipation estimates are
shown in figures 12 and 13, which compare vorticity-based and velocity-based estimates
of ην , respectively, between experiments SAη and SA. These estimates are scaled by
the model-diagnosed ην which varies between the simulations. The vorticity-based ην

estimates (figure 12) are comparable in both simulations.
In a wider enstrophy cascade, the velocity-based advective structure function becomes

an even better estimator of ην . It plateaus close to the model-diagnosed ην throughout
most of the enstrophy cascade region (Lmin < r < Linj). Below the enstrophy cascade
(r < Lmin) and near the forcing scale the velocity-based structure function becomes
smaller than ην . In contrast, the third-order velocity-based estimates become even
more sensitive to the sampling direction as Linj increases and the enstrophy cascade
becomes wider. The velocity–advection structure functions are a useful tool for diagnosing
dissipation rates for several reasons discussed previously, and these SAη experiment
results suggest that the accuracy of its estimates increases with the width of the inertial
cascade.
Another important result of the SAη experiment is that the oscillations and peaked

behaviour of the dissipation estimates are governed by the forcing length scale Linj
rather than the numerical properties of the experiments. For example, the wavelength
of oscillations in δωδAω (figure 12a,b) become wider as Linj increases. In fact, the
oscillations appear to have a wavelength that is approximately Linj, as the second
zero-crossing lies close to Linj in both experiments. This could provide a method to
estimate the forcing scale of 2-D flows using structure function measurements across a
range of scales. This wavenumber is independent of the sampling direction even under
the strong anisotropy of this system. Similar behaviour is seen in the oscillations and
humps of δuLδωδω and δu · δAu respectively, although this is less noticeable owing
to the inverse dependence of these estimates on separation distance. This oscillatory
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Figure 13. Velocity structure function-based estimates of small-scale enstrophy dissipation rate (normalised
by actual rate ην ) from an anisotropic 2-D simulation with an extended enstrophy cascade (SAη; a,c) and from a
simulation with a short enstrophy cascade (SA; b,d). Linestyles denote sampling direction and shading denotes
temporal variability as in figure 5.
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Figure 14. Comparison of dissipation estimates between the strongly anisotropic simulations with
meridionally and diagonally aligned β terms (experiments SA and SAd respectively). Dissipation estimates
from all advective and third-order structure functions are shown. The top panels show the meridionally aligned
β experiment whereas the bottom panels show the diagonally aligned β experiment. Line styles are based on
sampling orientation relative to β so that the same lines are comparable between the top and bottom panels.
Note the structure functions and their anisotropy are essentially independent of the numerical grid orientation.

behaviour could be related to the finite width of the inertial cascade, and the presence of
a dual cascade in this system. Xie & Bühler (2018) propose relations between third-order
structure function and energy dissipation rates in dual-cascading isotropic 2-D turbulence
that contain Bessel functions with wavenumber kinj. Their relations were validated in
an isotropic magneto-hydrodynamic system with dual cascades of energy, and could
be a fruitful direction for extending advective structure function theory to explain this

916 A49-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f R

ho
de

 Is
la

nd
 L

ib
ra

ry
, o

n 
09

 Ju
n 

20
21

 a
t 1

6:
37

:4
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.



B.C. Pearson, J.L. Pearson and B. Fox-Kemper

oscillatory behaviour. Taking inspiration from Xie & Bühler (2018), the oscillations of
δu · δAu seen in the inverse energy cascade of figures 7 and 13 (the oscillations are
scaled by r2 in the latter) can be better approximated by modifying the dissipation
in the relations of table 1 by εμ → εμ[1 − 0.5(Linj/r) cos(Ar/Linj)] where A ≈ 7
(not shown).

5.7. Effect of anisotropy direction
In the experiments used to find the above results (SA, WA and SAη), the anisotropy
vector (β) is aligned with numerical grid. To demonstrate that the variations in structure
function-based dissipation estimates with the sampling direction is driven by physics,
rather than the numerical grid orientation, an additional experiment (SAd) was carried
out where β is aligned with the diagonal direction (specifically it is rotated π/4 from
the numerical grid orientation). In figure 14, all the estimates of enstrophy and energy
dissipation from experiment SAd are contrasted against those from experiment SA. Line
styles are chosen so that the same lines in the top panels (SA) and bottom panels (SAd)
have the same orientation relative to β. From this figure it is clear that the estimates of
dissipation rates, and therefore the structure functions and their directional dependency,
are driven by the β orientation rather than the numerical grid orientation.

6. Utility of new relations

The results were derived from the vorticity budget with only viscous damping (2.1),
assuming that the scales of interest are in an inertial cascade. The ability of structure
functions to diagnose dissipation rates in more complex 2-D flows, as demonstrated
previously, is encouraging. In particular, the success of advective structure functions
to diagnose energy and enstrophy cascade rates, in anisotropic, forced 2-D turbulence
with large- and small-scale dissipation expands the breadth of practical scenarios where
these relations could be applied. Our results extend beyond previous studies which have
shown that, in isotropic 2-D turbulence, external forcing at a specific scale does not affect
third-order structure function relations within the inertial cascades (Lindborg 1999; Cerbus
& Chakraborty 2017), and similar results for 3-D turbulence (Banerjee & Galtier 2016).
Cerbus & Chakraborty (2017) suggested that large-scale dissipation would reduce the
down-scale enstrophy cascade rate εω as some enstrophy will be removed by large-scale
drag or hypo-viscosity. In the present simulations, approximately 99% of enstrophy is
dissipated at small scales, and approximately 90% of energy is dissipated at large scales
(table 2).
Despite the success of advective structure functions as diagnostics for dissipation rates

in the above experiments, there are differences that likely arise from the complexity
of the flow and the simplifying assumptions in the derivations. In forced-dissipative
2-D turbulence, the accuracy of the new relations in table 1 could be increased if
additional physical properties are considered. For example, the structure functions at a
given separation r within an inertial range could be affected by non-local dynamics at other
r, such as forcing and the other inertial cascade (in a dual cascading system). Third-order
structure function laws have been proposed for isotropic 2-D turbulence that apply outside
idealised inertial cascades (Xie & Bühler 2018, 2019). It is possible that the derivations
presented here could also be modified to extend outside of inertial ranges, such as near
the forcing scale or in regions of overlapping energy and enstrophy cascades (Lindborg
1999; Thompson & Young 2006; Cerbus & Chakraborty 2017). The relationship shown
in (2.9) means that any extant laws containing ∇r · (δuδωδω) can be converted into laws
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in terms of δωδAω, and similarly the relation δu · δ(u × ω) = −(1/2)∇r · (δu[δu · δu])
allows the conversion of extant laws with third-order velocity structure functions into laws
with second-order structure functions. Together these relations can convert the previously
referenced results into second-order structure function laws in isotropic 2-D turbulence,
but their extension to anisotropy would require more considered derivations.

6.1. Potential for practical applications of advective structure functions
Third-order structure functions have previously been used to study the dynamics of the
atmosphere and ocean (Cho & Lindborg 2001; Deusebio et al. 2014; Balwada, LaCasce
& Speer 2016; Poje et al. 2017; Pearson et al. 2020) as well as other planets (Young
& Read 2017). However, making appropriate measurements of flow properties can be
challenging owing to the nature and uncertainty of both in situ and remote data collection
(LaCasce 2008; Chang et al. 2019; Pearson et al. 2019). The predictions of dissipation
rates from advective structure functions have less variability between snapshots, and
are relatively insensitive to sampling direction, when compared with predictions from
third-order structure functions. These are both important considerations when analyzing
real datasets which have specific sampling patterns and finite measurements. The caveat
of the advective structure functions is that they require the calculation of the derivatives
of flow properties, as do the vorticity-based structure functions. For some geophysical
measurement techniques, such as aircraft-track data (Lindborg 1999; Deusebio et al.
2014), this information is not available and the advective structure functions may not
be diagnosed. However, there are many current and future datasets where sufficient
information is available to diagnose the new structure functions. For example in the ocean,
platforms that can diagnose vorticity and gradients include surface drifter deployments
(Ohlmann et al. 2017), radar observations (Pearson et al. 2020), gridded satellite
observations (Khatri et al. 2018), and satellites that observe 2-D swaths of the ocean,
including upcoming satellite campaigns (Zaron & Rocha 2018). Numerical simulations
also provide the necessary variables to diagnose the new structure functions. Global-scale
numerical simulations can presently resolve large-scale turbulence in both the atmosphere
and ocean (Pearson et al. 2017), and analyses of cascade rate statistics in these simulations,
which could be inferred from structure functions, can improve our physical understanding
of these systems (e.g. Pearson & Fox-Kemper 2018). The velocity-based advective
structure function shows the greatest potential for these practical applications, as it is not
sensitive to the details of the derivative calculation, or the presence of turbulence at scales
smaller than the derivative calculation (which exists in observations).

7. Conclusions

New relations were derived between advective structure functions (δu · δAu and δωδAω;
see table 1), and the cascade rates of energy and enstrophy in 2-D turbulence. Numerical
simulations of anisotropic 2-D turbulence demonstrated that different structure function
methods to estimate cascade rates have varying levels of accuracy. The new advective
structure functions were shown to be powerful tools for estimating cascade rates, as they
are not significantly affected by flow anisotropy, background currents and vorticity, or
sampling direction. The advective structure functions also have lower temporal and spatial
variability relative to third-order structure functions, leading to more accurate structure
function estimates with finite sampling. In contrast, traditional third-order structure
function methods are poor estimators for cascade rates in anisotropic 2-D turbulence
as they are affected by the details of flow anisotropy and sampling. The velocity-based
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B.C. Pearson, J.L. Pearson and B. Fox-Kemper

advective structure functions show particular promise for diagnosing both enstrophy and
inverse energy cascade rates in 2-D turbulence, when compared with vorticity-based
advective structure functions and third-order structure functions. An extended enstrophy
cascade simulation and rotated anisotropy simulation are used to demonstrate that the
results are robust to the numerics of the simulations and the finite width of the inertial
cascades, although the accuracy of dissipation rate estimates from structure functions
increases with the width of the inertial cascade. The velocity-based advective structure
functions are even more useful if the forcing scale of the system is already known.
Preliminary results suggest that this scale could also be diagnosed from the structure
functions. Advective structure functions depend on local gradients of velocity. As a
result, they can be calculated in numerical models and many existing/future observations.
However, the advective structure functions cannot be applied to observations where
information is only known in one direction, with the exception of δu · δAu which could
be diagnosed in the special case where the 1D track is in the same direction as the flow
velocity.
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Appendix A. Coordinate transformations

The derivation of the correlation equations and structure function relationships requires
a coordinate transformation to relative coordinates, r and x0, from the Navier–Stokes
equation coordinates, x = x0 and x′ = x0 + r. This transformation can be derived from the
total derivative of a function f = f (x, x′) = f (x0, r) (for simplicity we assume differences
in an arbitrary direction and drop vector notation)

df =
(

∂f
∂x

)
x′
dx +

(
∂f
∂x′

)
x
dx′ =

(
∂f
∂x0

)
r
dx0 +

(
∂f
∂r

)
x0

dr, (A1)

where subscripts on parentheses denote variables that are held constant and df denotes the
total differential of f . It then follows that, if x is varied while x′ is held constant (dx′ = 0 =
dx0 + dr and dx = dx0) then,(

∂f
∂x

)
x′

=
(

∂f
∂x0

)
r
−

(
∂f
∂r

)
x0

. (A2)

Similarly, if instead x′ is varied while x is held constant (dx = 0 = dx0 and dx′ = dx0 +
dr = dr) then, (

∂f
∂x′

)
x
=

(
∂f
∂r

)
x0

. (A3)

The above two equations demonstrate the coordinate transformation of (Lindborg & Cho
2001); ∂/∂x → ∂/∂x0 − ∂/∂r and ∂/∂x′ → ∂/∂r. The same method can be applied to
demonstrate other transformation choices (Lindborg 2015). For example the transform
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from r and x0 to x and x′ is ∂/∂r → ∂/∂x′ and ∂/∂x0 → ∂/∂x + ∂/∂x′. In this
transformation, if the flow is homogeneous ∂ f̄ /∂x0 = 0 for any averaged variable f̄ ,
resulting in the additional relations ∂ f̄ /∂x = −∂ f̄ /∂x′ and ∂ f̄ /∂r = −∂ f̄ /∂x. Note that f
in this case can be a function of both primed and unprimed variables.
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