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A B S T R A C T

This article presents novel applications of unsupervised machine learning methods to the problem of event
separation in an active target detector, the Active-Target Time Projection Chamber (AT-TPC) (Bradt, 2017). The
overarching goal is to group similar events in the early stages of the data analysis, thereby improving efficiency
by limiting the computationally expensive processing of unnecessary events. The application of unsupervised
clustering algorithms to the analysis of two-dimensional projections of particle tracks from a resonant proton
scattering experiment on 46Ar is introduced. We explore the performance of autoencoder neural networks
and a pre-trained VGG16 (Simonyan and Zisserman, 2015) convolutional neural network. We study clustering
performance on both data from a simulated 46Ar experiment, and real events from the AT-TPC detector. We find
that a 𝑘-means algorithm applied to simulated data in the VGG16 latent space forms almost perfect clusters.
Additionally, the VGG16+𝑘-means approach finds high purity clusters of proton events for real experimental
data. We also explore the application of clustering the latent space of autoencoder neural networks for event
separation. While these networks show strong performance, they suffer from high variability in their results.

1. Introduction

The Active-Target Time Projection Chamber (AT-TPC) [1] is a novel
type of detector designed specifically for nuclear physics experiments
where the energies of the recoiling particles are very low compared
to the energy required to escape the target material. The luminosity
of nuclear physics experiments performed with fixed targets is directly
proportional to the amount of material encountered by the beam. On
the other hand, for several classes of experiments the detection of
recoil particles is paramount, therefore limiting the target thickness.
In addition, the properties of the recoil particles are modified while
traversing the target material, affecting the resolutions that can be
achieved. This necessary balance between luminosity and resolution is
particularly difficult when performing experiments with rare isotope
beams, chiefly because of the low intensities available.

The concept of active targets aims at mitigating this compromise, by
turning the target itself into a detector [2]. Most active target detectors
such as the AT-TPC are composed of a time projection chamber (TPC)
where the detector gas is at the same time the target material. Recoil
particles that originate from a nuclear reaction between a beam nucleus
and a gas nucleus can be tracked from the vertex of the reaction to their

∗ Corresponding author at: Expert Analytics AS, Møllergata 8, N-0179, Oslo, Norway.
E-mail address: robert@xal.no (R. Solli).

final position inside the active volume of the target. Their properties
can therefore be measured without any loss of resolution regardless of
the amount of material traversed by the beam. At the same time, the
detection efficiency is dramatically increased by the very large solid
angle covered in this geometry. A direct consequence of this concept
is the inclusiveness of the experimental data recorded by this type of
detector: any nuclear reaction happening within the target is recorded.
Although this sounds like an advantage from the scientific point of
view, it poses great challenges during the analysis phase that are rem-
iniscent of bubble-chamber times and on par with event classification
challenges in particle physics today, see for example the recent review
of Mehta et al. [3]. More often than not, the reaction channel of interest
has one of the lowest cross sections. When analyzing the data one is
therefore faced with the task of sorting out the corresponding events
from the background of other reaction channels.

Because TPCs produce three-dimensional images of charged particle
tracks, the event identification task is often akin to a visual inspection
(comparable to the analyses made in the bubble-chamber era [4]),
which is not practical nowadays because of the large quantities of data.
Machine learning techniques then appear as a promising prospect, in
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particular in the image recognition domain where much progress has
been made recently [3]. In addition, machine learning (ML) algorithms
offer new possibilities such as the potential discovery of unforeseen
phenomena that would have been missed by more traditional analysis
methods. Prior work has demonstrated the ability to apply supervised
classification machine learning methods to AT-TPC data when a la-
beled training set is available, whether through hand-labeled data or
labeled simulated data (a transfer learning application) [5]. In some
experiments, a labeled data set is unavailable. This could be due to the
inability to hand-label events, or the case where one does not know a
priori the types and behaviors of the reactions present in the detector
in order to generate a labeled and simulated data set. In the latter case,
there must also exist a validation data set of real data, still requiring the
ability to label a subset of the real data. The unsupervised separation
of event types, or clustering, based on a set of ML algorithms is hereby
examined, using experimental data recorded by the AT-TPC during its
commissioning experiment from a radioactive 46Ar beam reacting on
an isobutane target composed of proton and carbon nuclei.

Within the context of machine learning methods applied to the
analysis of nuclear physics experiments, the purpose of this work is thus
to explore the application of unsupervised learning algorithms to event
identification from an active target detector. The necessity to identify
events from raw data prior to full processing is becoming a major issue
in the data analysis of detectors with complex responses such as the
AT-TPC. After these introductory words, we review the experimental
information in the next section. In Section 3 we describe the set up
of the data while Sections 4 and 5 present the methods applied and
our results and discussions, respectively. Finally, our conclusions and
perspectives for future work are presented in Section 6.

2. Experimental details

The goal of the experiment was to measure the evolution of the
elastic and inelastic cross sections between 46Ar and protons as a func-
tion of energy (the excitation function), and observe resonances in the
composite system 47K that correspond to analog states in the nucleus
47Ar. Spectroscopic information can then be obtained from the shape
and amplitude of the observed resonances [6]. The experiment was
performed at the National Superconducting Cyclotron Facility (NSCL)
where a 46Ar beam was produced via fragmentation of a 48Ca beam
on a 9Be target at about 140 MeV/u. The 46Ar isotopes were then
filtered, thermalized, and finally re-accelerated to 4.6 MeV/u by a
linear accelerator. This scheme was used to produce a low-emittance
beam, which is necessary to guarantee a good energy resolution in the
excitation function. Because the 46Ar beam particles lose energy as they
traverse the target gas volume, the position of the reaction vertex along
the beam axis is directly related to the energy at which the reaction
occurs. This allows the AT-TPC to measure the excitation function over
a wide range of energies from a single beam energy.

The detector was placed inside the bore of an MRI solenoid en-
ergized to ∼2 Tesla. This axial magnetic field served the purpose of
bending the trajectories of the recoil particles in order to (i) increase
their length and (ii) provide a measurement of their bending radius,
directly related to their magnetic rigidity. Because the recoil particles
travel in gas, they slow down and eventually stop, therefore their
trajectories are described by three-dimensional spirals (see [1]). One
of the difficulties encountered in the analysis is that the shape of these
spirals does not have an analytical form because it follows the energy-
loss profile of the particles. It therefore needs to be simulated via an
integration, which is numerically costly. Standard integration methods
have normally a computational cost typically one order of magnitude
larger than an analytical calculation. Other difficulties are related to
several experimental effects that deteriorate the quality of the data,
namely saturation and cross-talk effects, as well as random noise.

The method used in [6] to analyze the data followed a three-phase
sequence: cleaning, filtering and fitting. Traditional methods were used

to perform each of these tasks, and ultimately extract the scientific
information, but there were severe limitations and high computational
costs that become prohibitive in data sets larger by an order of magni-
tude. In particular, as for the data presented and analyzed here, with
data sets in the terabyte region or larger, these more traditional meth-
ods become prohibitively expensive from a computational stand. This
is particularly the case when using the Monte Carlo fitting procedure
(explained later in text), because of the thousands of calculated tracks
that are required for each individual event. For instance, the analysis of
the 46Ar(p,p) data required several seconds per event on a CPU cluster
composed of about 100 nodes.

The cleaning was performed using a combination of linear and cir-
cular Hough transforms on a 2-dimensional projection of the tracks [1].
The following filtering and fitting phases were performed simultane-
ously, by defining the cost function to the fitting algorithm as a sum
of three 𝜒2 components based on (i) the position of the track in space,
(ii) the energy deposited on each pixel of the sensor plane, and (iii) the
location of the vertex of the reaction. While various fitting algorithms
were tested, the most accurate was a Monte Carlo algorithm that
explored the six-dimensional phase space of the particle’s kinematics
parameters, reducing it progressively at each iteration step until the
desired accuracy was reached [1]. Although this algorithm ended up
being the most accurate, it is extremely costly computationally because
of the very large number of simulated tracks needed for each event.
The filtering was performed by setting limits to the 𝜒2 distributions,
below which the events were assigned as proton scattering. This is a
very inefficient method because it requires performing the fitting for
all events, including those that are not of interest. Pioneering work on
event identification using machine learning methods, namely the use
of a pre-trained convolutional neural networks (CNN), later showed
that the filtering phase would better be performed using this type of
technique [5]. In addition, the authors of Ref. [5] demonstrated that the
purity and statistics of the data are improved with the use of machine
learning methods.

From the experimenter’s point of view, it is clear that the method
used in [6] to identify and filter events is not the most efficient
computationally. The machine learning methods explored in [5] are
a step forward, but they still rely on supervised learning methods
that require data labeling, a time-consuming and error-prone process.
The aim of the present study is to investigate unsupervised learning
methods that bypass the labeling step, and form classes of events
independently from the experimenter’s input. The task of labeling the
different classes is then much less time-consuming and can potentially
lead to the discovery of unforeseen types of events. Furthermore, it
allows us to process larger amounts of data in a much shorter time.

3. Data preparation

In this section we give a brief overview of the data, for a more
in-depth consideration we refer the reader to Refs. [7–9].

The AT-TPC data we studied for this work was recorded as charge
time-series for each of the ∼ 104 detector pads. In this representation,
an event is a record of 512 time-buckets for each of the 104 detector
pads. In our analysis, we represent each event as a down-sampled
two-dimensional projection. We chose to represent the data in two
dimensions to facilitate the use of advanced image-recognition machine
learning models, and this data representation was shown to successfully
classify the events of this experiment in a supervised setting [5].
First, the time-series data was represented as a three-dimensional point
cloud, where each point contains the maximum charge in the time-
series trace. We log-transform the data and perform a min–max scaling
in order to map the data to the interval [0, 1]. The data is projected
onto a two-dimensional space by summing over the time-axis. The two-
dimensional data is then down-sampled into a 128 × 128 pixel image by
discretizing the space in the 𝑥–𝑦 plane and summing all charge values
that fall within the bounds for each element location.
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Fig. 1. Two- and three-dimensional representations of two events from the 46Ar
experiment. Each row is one event in two projections, where the color intensity of each
point indicates higher charge values recorded by the detector. The top row illustrates
a proton event with a distinctive spiral-shaped track, while the bottom row shows
a carbon event with a large fraction of noise. The beam direction is oriented along
the 𝑧-axis (from positive to negative), close to the (𝑥, 𝑦) origin. The magnetic field is
oriented on the same axis as the beam, causing the bending of the charged particle’s
trajectories. The spiral shape is caused by the slowing down of the particles inside the
gas volume. The bending radius of the tracks depends not only on the energy, but also
on the mass-to-charge ratio of the particles, hence the large difference between proton
and carbon events (see also Section 2).

One of the significant considerations for the analysis of AT-TPC data
is to inject machine learning methods for track identification at the
best point in the analysis pipeline. Using raw data is advantageous
as it provides an unbiased view of the event, but the data volume
and noise levels might be prohibitive for the analysis. Therefore, we
incrementally add bias to the analysis by applying the algorithm further
down the analysis pipeline, with the benefit being that more prepro-
cessing improves the signal-to-noise ratio, possibly improving model
performance. To explore this trade-off between model performance and
preprocessing bias, we performed our analysis on simulated, raw and
cleaned events as discussed below.

3.1. Simulated 46Ar events

A set of 𝑁 = 8000 simulated AT-TPC events per class was generated
from the pytpc package developed by Bradt et al. [9] for the analysis
of the 46Ar(𝑝, 𝑝) experiment.

For validation, we select a subset of the simulated data to be labeled
and treat the rest as unlabeled data. We chose this partition to consist
of 15% of the data. We denote this subset and its associated labels as
𝛾𝐿 = (𝑿𝐿, 𝒚𝐿), while the entire data set is identified as 𝑿𝐹 . Note that
𝑿𝐿 ⊂ 𝑿𝐹 . As this data set is generated via simulation, the true labels
are known for this data set.

3.2. Raw 46Ar events

The events analyzed in this section were retrieved from the 46Ar res-
onant proton scattering experiment recorded with the AT-TPC. While
we denote these events as raw, it is important to note that what
we intend is a raw two-dimensional projection of events without any
post-processing done to clean the data.

We display two different events from the 46Ar experiment in Fig. 1.
The top row illustrates a proton event with a distinctive spiral-shaped

Fig. 2. Two- and three-dimensional representations of two events from the 46Ar
experiment. Each row is one event in two projections, where the lightness of each
point indicates higher charge values. These events have been filtered with a nearest
neighbors algorithm and an algorithm based on the Hough transform [11].

track, while the bottom row shows a carbon event with a large fraction
of noise. A subset of this data was hand-labeled for validation, as
discussed in [5].

3.3. Filtered 46Ar events

As we saw in the previous section, the detector picks up a significant
amount of noise. We split the noise broadly in two categories, one being
randomly uncorrelated noise and the second one being structured noise.
The former can be quite trivially removed with a nearest-neighbor
algorithm, see for example [10], that checks if a point in the event
is close to any other. To remove the correlated noise, researchers
at the National Superconducting Cyclotron Laboratory of Michigan
State University, developed an algorithm based on the Hough trans-
form [11]. This transformation is a common technique in computer
vision, used to identify common geometric shapes like lines and circles,
and has been used extensively in high-energy particle physics since the
bubble-chamber era [4].

We illustrate two filtered events in Fig. 2. These are the same events
as shown in Fig. 1, but with the Hough transform and nearest-neighbor
filtering applied. The same subset of hand-labeled data from Section 3.2
was used for validation.

4. Methods

4.1. Classifying events

The traditional Monte Carlo event selection process, described in
Section 2, does not have a well-defined method to quantify the effec-
tiveness of the event selection. In addition, the selection task produced
a binary, cut-based result: either a good or bad fit to the event of
interest. A bad fit is then assumed to be a different event type, and is
removed from the analysis. In a broader perspective, an unsupervised
classification algorithm would offer the possibility to discover rare
events which may not be expected or are overlooked. These events
would likely be filtered out using the traditional methods. From a
practical point of view, compared to supervised learning, it also avoids
the necessary labeling task of the learning set events, which is error
prone and time consuming.
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4.2. Why machine learning

The 𝜒2 approach used in the traditional analysis performed on the
46Ar data is extremely expensive computationally because it requires
the simulation of thousands of tracks for each recorded event. These
events are in turn simulated for each iteration of the Monte Carlo fitting
sequence. Even though the reaction of interest in the 46Ar experiment
had the largest cross section (elastic scattering), the time spent on
Monte Carlo fitting of all of the events produced in the experiment was
the largest computational bottleneck in the analysis. In the case of an
experiment where the reaction of interest would represent less than a
few percent of the total cross section, this procedure would become
highly inefficient and prohibitive. Adding to this the large amount of
data produced in this experiment (with even larger data sets expected
in future experiments), the analysis simply begs for more efficient
analysis tools. The computationally expensive fitting procedure would
be applied to every event, instead of the few percent of the events
that are of interest for the analysis. An unsupervised machine learning
algorithm able to separate the data without a priori knowledge of
the different types of events increases the efficiency of the analysis
tremendously, and allows the downstream analysis to concentrate on
the fitting efforts only on events of interest. In addition, the clustering
algorithm allows for more exploration of the data, potentially enabling
the discovery of new and unexpected reaction types.

4.3. Pre-trained neural networks

Training high-performing neural networks from scratch often re-
quires enormous data sets and computation time. However, it has been
found that models which are trained at large scale will learn general
features that are applicable to a variety of tasks. For example, large
neural networks which are trained on the ImageNet data set [12] – a
diverse image classification task – learn how to identify lines, edges,
and other common shapes that are useful for numerous problems.
Thus, it is common practice to initialize the convolutional layers of
a network with the pre-trained weights learned from ImageNet (or
some other large data set). The training process then only has to fine-
tune the network for the specific task. Since we are building on prior
knowledge in this case, learning becomes far more efficient, and better
performance can often be achieved. Kuchera et al. [5] used machine
learning methods to classify the products of 46Ar reactions in the AT-
TPC, and they found that a CNN initialized with weights trained on
ImageNet data resulted in the most successful classification.

4.4. Clustering on latent spaces

In contrast with the classification work of Kuchera et al. [5], we do
not assume access to ground truth labels and we are trying to solve a
fundamentally different learning problem. Thus, rather than fine-tuning
a pre-trained network under the supervised learning regime, we extract
the output of the pre-trained network’s last convolutional layer as a
latent representation of the events, where each event is represented as
a vector in R

8192. We then cluster events based on this representation
using the scikit-learn implementation of the 𝑘-means algorithm
with default parameters [13].

4.5. Deep clustering: Mixture of autoencoders

As an alternative to relying on a pre-trained model, we also consider
the MIXAE algorithm [14], which is an end-to-end clustering model
specifically trained on the AT-TPC data.

The MIXAE model comprises several autoencoders, each of which
corresponds to a cluster. Each autoencoder constructs a latent repre-
sentation of a given example. Those representations are used as inputs
to an auxiliary network which assigns scores to the clusters, indicating
the likelihood that the given example belongs to each cluster. Examples

Fig. 3. Schematic layout of a MIXAE model. A sample �̂� is compressed to a set of
lower-dimensional representations {𝒛(𝑖)} by 𝑁 autoencoders [14]. These samples are
concatenated and passed through an auxiliary assignment network that predicts a
confidence of clusters belonging to each autoencoder.

are then assigned to the cluster with the highest score. The number of
autoencoders, and thus the number of clusters, has to be determined
beforehand.

The MIXAE algorithm relies on a few simple assumptions which are
necessary, but not sufficient, for producing a high-quality model. The
assumptions can be stated as:

1. If an example is assigned to a particular cluster, the correspond-
ing autoencoder’s reconstruction should be accurate.

2. Within a batch of examples presented to the model, assignments
should spread across all clusters.

3. Each clustering prediction should be as strong as possible, i.e. as-
signing high probabilities is preferable to weak assignments.

The learning objective encourages these assumptions to be met. For
a more formal consideration of the model objective and the assump-
tions made on the data by this model see Zhang et al. [14].

The architecture is portrayed in Fig. 3, wherein tapered boxes
denote a direction of compression in the network components. In the
figure each encoder and decoder pair makes up an autoencoder. The
assignment of the cluster for a sample 𝑥− 𝑦 event image, �̂� ∈ 

128×128,
is taken to be the index of the maximal element in the vector 𝐩 as
shown in the right-most part of the figure. Finally, the model is trained
end-to-end with back propagation [15], as implemented in the machine
learning package TensorFlow [16].

4.6. Measuring performance

Unsupervised machine learning is often accompanied with a lack of
ground-truth labeled data. In the face of such missing data, a model
is ordinarily assessed by measures that do not depend on knowing the
ground truth for any samples. However, as our work aims to explore the
application of unsupervised methods to track identification, we chose
the 46Ar data since we have some ground truth labels to evaluate our
models. The measures we use to evaluate the models we then chose to
be those which measure the similarities between two arbitrary sets of
clustering assignments, while holding one to be the ground truth.

We measure the performance of the clustering algorithms by two
functions: the clustering accuracy and the adjusted rand index (ARI)
[17]. Both of these measurements fall in the range [0, 1], where 0

denotes a complete disagreement and 1 a complete agreement between
the ground truth and predicted labels.

To compute the metrics we have to solve problems introduced
by the arbitrary labels of a clustering algorithm. That is, we do not
know which predicted assignment should correspond to a proton or
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Table 1
General form of a contingency table. Here 𝑦𝑛 and �̂�𝑛 are the ground truth
labels and clustering assignments, respectively. The 𝑤𝑖𝑗 ’s then describe
how many samples are in clusters 𝑦𝑖 and simultaneously in �̂�𝑗 .

𝑦1 𝑦2 ⋯ Sums

�̂�1 𝑤11 𝑤12 ⋯ 𝑒1
�̂�2 𝑤21 𝑤22 ⋯ 𝑒2
⋮ ⋮ ⋮ ⋱ ⋮

Sums 𝑓1 𝑓2 …

carbon event. In short, we want to find the most reasonable cor-
respondence between the clusters and the ground truth classes. To
solve this problem we first define two sets; the ground truth labels
𝐲 = [𝑦𝑖, 𝑦𝑖+1,…] as determined in Section 3, and the corresponding
predictions �̂� = [�̂�𝑖, �̂�𝑖+1,…]. Furthermore, we let both 𝑦𝑖 and �̂�𝑖 be
integer representations of an event’s ground truth, and predicted class,
respectively.

To compute both the ARI and the clustering accuracy we also
have to construct the contingency table between two sets of clustering
assignments. A contingency matrix defines the overlaps between classes
in these sets, and its general form is shown in Table 1.

The algorithm for finding the clustering accuracy can then be de-
scribed in these steps:

• Compute the matrix𝐖 from the contingency table between 𝐲 and
�̂�

• Subtract 𝐖 from its maximum value to find the bipartite graph
representation of the assignment problem.
• Use an algorithm, like the Hungarian algorithm [18], to solve the
assignment problem, and take the average of the values in𝐖 this
solution indicates. This average is the clustering accuracy.

To compute the ARI we use the elements from the contingency table
to evaluate the function introduced by Hubert and Arabic [17]

ARI =

∑
(𝑤𝑖𝑗

2

)

−
[

∑
(𝑒𝑖
2

)
∑

(𝑓𝑗

2

)

]

∕
(𝑛

2

)

1

2

[

∑
(𝑒𝑖
2

)

+
∑

(𝑓𝑗

2

)

]

−
[

∑
(𝑒𝑖
2

)
∑

(𝑓𝑗

2

)

]

∕
(𝑛

2

)

. (1)

The quantities 𝑓𝑖 and 𝑒𝑖 are defined in Table 1. The important distinc-
tion to make between the clustering accuracy and the ARI is that the
clustering accuracy is a simple comparison that does not account for
chance assignments, while the ARI does. In effect, this means that the
accuracy is a good heuristic for the performance, tempered by the ARI.

Lastly, we introduce two terms to describe cluster quality: purity
and quality. Purity is inferred by how much spread there is in the
column between the ground truth labels in the matrix𝐖. A high-quality
cluster will, in addition to being pure, also capture most entries the
class represented by the cluster.

The performance is measured by comparing model predictions on
the labeled subset of data (see Table C.7 in appendix C for more
details).

5. Results and discussions

The principal challenge in the AT-TPC experiments that we are
trying to address is the reliance on labeled samples in the analysis,
as future experiments may not have as visually dissimilar reaction
products as we observe in the 46Ar experiment. The ability to label data
in the 46Ar experiment does, however, provide a useful example where
we can then explore unsupervised techniques.

We first explore the results of applying a 𝑘-means approach on the
latent space of a pre-trained network. Subsequently, we investigate the
performance of the MIXAE algorithm as outlined in Section 4.5.

Table 2
𝑘-means clustering results on AT-TPC event data in the VGG-16 latent space, for
𝑁 = 100 runs of the 𝑘-means algorithm with 𝑀 = 10 initializations. We observe that
the performance predictably decreases with the amount of noise in the data.

Accuracy ARI

Top 1 𝜇 ± 𝜎 Top 1 𝜇 ± 𝜎

Simulated 0.97 0.97 ± 0.0 0.89 0.89 ± 0.0

Filtered 0.75 0.75 ± 0.0 0.40 0.40 ± 0.0

Raw 0.59 0.59 ± 0.0 0.17 0.17 ± 0.0

Table 3
𝑘-means clustering results on AT-TPC event data in the VGG-16 latent space, for
𝑁 = 1000 runs of the 𝑘-means algorithm with 𝑀 = 1 initializations. We observe
that there is significant variability in the results, which is ordinarily masked by 𝑀

re-initializations that avoid local minima.

Accuracy ARI

Top 1 𝜇 ± 𝜎 Top 1 𝜇 ± 𝜎

Simulated 0.97 0.86 ± 0.18 0.89 0.63 ± 0.39

Filtered 0.75 0.75 ± 0.0 0.40 0.40 ± 0.0

Raw 0.71 0.59 ± 0.019 0.29 0.18 ± 0.018

5.1. 𝑘-means clustering on the VGG16 latent space

The results of the clustering runs are included in Table 3. We ran
the 𝑘-means algorithm 𝑁 = 100 times with 𝑀 = 10 initializations per
run, of the cluster centroids to assess the variability in the performance.
The 𝑘-means algorithm returns the best performing model of the 𝑀

initializations on the unsupervised objective. We report performance
on the labeled subset of data, using the labels to identify the top-
performing model (Top 1). Additionally, we report the mean and
standard deviation of the algorithm on the 𝑁 trials, which indicate
unsupervised performance.

We observe that the clustering on simulated data attains the highest
performance, and that there is a decline in performance as we add noise
by moving to the filtered and raw data sets. The results are shown in
Table 2.

The lack of variability is explained by the number of initializations.
As can be seen from Table 3 where we run the 𝑘-means algorithm
𝑁 = 1000 times with 𝑀 = 1 initializations of the centroids.

In addition to the performance measures reported in Table 3, it is
interesting to observe which samples are wrongly assigned. To inves-
tigate this problem, we compute the matrices 𝐖 as shown in Table 1.
From these tables, we can infer which classes are more or less entangled
with others. The results for each data set is shown in Figs. D.6–D.8. We
observe that the proton class is consistently assigned in a pure cluster.
For example, consider the row corresponding to the proton class in
Fig. D.7. The column corresponding to the largest entry in the proton
row has zero other predicted classes in it.

This high-quality cluster also appears in the clustering of raw data.
From Fig. D.8, we observe that there is a high purity proton cluster.
In contrast to the filtered data we observe that the deterioration in
performance can largely be ascribed to the algorithm creating a proton
plus another cluster and a carbon plus another cluster.

We repeat this analysis using a Principle Component Analysis (PCA)
dimensionality reduction[10]1 on the latent space of the VGG16 model.
This is done to estimate to what degree the class separating information
is encoded in the entirety of the latent space, or in some select regions.
The results from the PCA analysis, using the top 100 principal com-
ponents, were virtually identical to our previous results not containing
the PCA analysis. This in an interesting observation which indicates
that the class-encoding information is contained in a minority of the
axes of variation in the data.

1 PCA is a common technique to find the significant variations in data by
projecting the data along a subset of its covariance matrix eigenvectors [19,
20].
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Fig. 4. A sample of proton events from different 𝑘-means clusters from the filtered data set. The bottom row shows proton samples that are intermingled with noise events in
the models’ predictions, and the top row belongs to a cluster that contains proton events almost exclusively. Each row belongs to a single cluster corresponding to the filtered
confusion matrix in Fig. D.7. While the events in the pure proton cluster are visually distinct from the impure cluster, the difference is less pronounced than what we observe for
the full data-set in Fig. 5.

Fig. 5. A random sample of proton events from different 𝑘-means clusters from the raw data set. Each row belongs to a single cluster corresponding to the full confusion matrix
in Fig. D.8. The proton events in the cluster corresponding to the first row appear more visually distinct from other reaction types while the proton events corresponding to the
cluster in the bottom row appear visually more similar to other reaction types in our data set.

To further investigate the clusters presented in the matrix in
Figs. D.7 and D.8, we visualize a random subset of examples from the
proton events belonging to different clusters for the filtered and full
data in Figs. 4 and 5, respectively. We look at random samples of proton
events in two clusters to infer an intuition on the track properties
that are considered similar. The figures indicate that shorter tracks,
therefore low-energy or small scattering angle protons, are more likely
to appear similar to other event types.

5.2. MIXAE clustering results

In the previous section we demonstrated a powerful, but rather
naive, clustering technique for AT-TPC track identification. To build
on this result we will in this section explore the application of the
mixture of autoencoders (MIXAE) algorithm introduced in Section 4.5.
For details on hyper-parameter tuning and the experimental procedure
for training the MIXAE algorithm see Appendix B.

With the best set of hyperparameters, each highest performing
model is thereafter run 10 times.2 The results are listed in Table 4.
We observe that, while the algorithm can achieve a very strong per-
formance, the performance varies. In some cases the MIXAE model
converges to a seemingly good configuration, based on its unsupervised
training goals. However, when inspecting its clustering performance
against labeled data, the seemingly good model does no better than a
model based on random selection. This happens more frequently with
the raw data, indicating an interaction with the noise levels present in
the events.

2 The MIXAE model is significantly more computationally expensive to train
than a 𝑘-means mode, resulting in the skew in number of runs in the two cases.

Table 4
MIXAE clustering performance on the 46𝐴𝑟 experimental data with 𝑁 = 10 runs of the
algorithm. To quantify the results we report the best performing model (Top 1), and
the mean and standard deviation for the result (𝜇 ± 𝜎). In contrast with the VGG-16
+ 𝑘-means approach we observe significant variations in performance.

Accuracy ARI

Top 1 𝜇 ± 𝜎 Top 1 𝜇 ± 𝜎

Simulated 0.96 0.74 ± 0.16 0.84 0.33 ± 0.32

Filtered 0.75 0.71 ± 0.04 0.52 0.38 ± 0.14

Raw 0.71 0.61 ± 0.07 0.32 0.09 ± 0.10

As with the VGG16 plus the 𝑘-means approach we wish to further
investigate the clustering results. Taking the best performing MIXAE
model on filtered and raw data we tabulate the clusters against their
labels. These tables are presented in Figs. D.9 and D.10 for filtered and
raw data, respectively.

Applied to raw data the MIXAE captures a proton cluster in a similar
vein to the 𝑘-means approach. The MIXAE forms a proton-majority
cluster, but with a significant portion of the more noisy proton events
being clustered with the other class. Additionally, we do not observe
the carbon events being separated from either the amorphous noise
events or from the proton cluster.

On filtered data the highest performing MIXAE model achieves
strong separation of the other class, but curiously creates two proton-
majority clusters.

The most striking result we present in this work is the success of the
𝑘-means approach. As noted by [21], distance measures become less
informative in higher dimensional spaces, but the 𝑘-means algorithm
clusters events well in our fairly high-dimensional VGG latent spaces.
Another surprise is the stability of the 𝑘-means algorithm. We attribute
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Fig. D.6. Confusion matrix for the 𝑘-means clustering of simulated AT-TPC events. The
true labels indicate samples belonging to the p (proton), or the carbon (C) class. We
observe very high quality separation between the proton and carbon classes.

Fig. D.7. Confusion matrix for the 𝑘-means clustering of filtered AT-TPC events. The
true labels indicate samples belonging to the p (proton), carbon (C), or other classes.
Each column denotes a cluster, with each cell in the column denoting the count of
that rows’ class in the cluster. We observe that cluster 2 is a high quality proton event
cluster.

this stability to the quality of the VGG16 latent space in creating
class-separating sub-spaces. While the separations are not perfect, the
stability and quality of the proton track identification create solid
empirical grounding for applying this approach to other active target
experiments.

It is also interesting to compare and contrast the clustering results
from the MIXAE model with those of the VGG16 with the 𝑘-means ap-
proach. In particular, the discrepancy in stability is worth noting. While
the top performing MIXAE runs outperform the 𝑘-means approach, its
reliability suffers. However, the high performance achieved indicates
that this may represent a valuable potential research path into more
tailored models for unsupervised track identification.

5.3. Alternative approaches

In addition to the results presented in this section, we performed
clustering with a number of different algorithms included in the

Fig. D.8. Confusion matrix for the 𝑘-means clustering of raw AT-TPC events. The true
labels indicate samples belonging to the p (proton), carbon (C), or other classes. Each
column denotes a cluster, with each cell in the column denoting the count of that rows’
class in the cluster. We observe that cluster 2 is a high quality proton event cluster.

Fig. D.9. Confusion matrix for the MIXAE clustering algorithm on filtered AT-TPC
events. The true labels indicate samples belonging to the p (proton), C (Carbon), or
other classes. We observe that the algorithm forms two proton-majority clusters, and
one clearly defined cluster of the other events.

scikit-learn package of Pedregosa et al. [13]. None of them
provided any notable differences from the 𝑘-means results or were
significantly worse. Notably, the DBSCAN algorithm [22,23] failed to
provide any useful clustering results. We find this important as one
of the significant drawbacks of the 𝑘-means algorithm, and the deep
clustering algorithm presented in Section 4.5, is that they depend
on pre-determining the number of clusters. This is not the case for
DBSCAN.

Additionally, we considered the deep convolutional embedded clus-
tering (DCEC) approach by Guo et al. [24] as well as the MIXAE method
introduced by Zhang et al. [14]. While we were able to reproduce the
authors’ results on their data, the DCEC algorithm proved unable to
cluster AT-TPC data in our implementation. Further details on these
experiments are presented in the thesis by Solli [25].

However, this provides valuable insight as the seeds of the clusters
are constructed by a 𝑘-means algorithm. This insight contrasts with our
positive results from applying a pre-trained classification model with

7
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Fig. D.10. Confusion matrices for the MIXAE clustering algorithm on raw AT-TPC
events. The true labels indicate samples belonging to the p (proton), carbon (C), or
other classes. We observe that the algorithm correctly captures a majority proton-
event cluster in cluster 0. However, in contrast with the 𝑘-means approach this cluster
is contaminated to some extent with both carbon events and other events.

𝑘-means and highlights potentially significant differences in models
trained on a supervised or unsupervised objective for clustering tasks
in nuclear physics.

6. Conclusions and perspectives

The purpose of this study has been to explore the application of
unsupervised learning algorithms to event identification from an active
target detector. The necessity to identify events from raw data prior
to full processing is becoming a major issue in the data analysis of
detectors with complex responses such as the AT-TPC. As shown by
both avenues explored in this work, it is clear that there is signif-
icant potential to eventually achieve event classification using fully
automated unsupervised methods.

In particular, the ability of the 𝑘-means algorithm in picking out
clear proton clusters from the VGG16 latent space lends itself well
to an exploratory phase of analysis, where clusters of events corre-
sponding to different reaction channels could be later identified by the
experimenter. Another interesting property of the 𝑘-means clustering is
its consistent performance. As shown in Table 2, the variance is zero
for the performance metrics. This result indicates that the clusters are
very clearly defined in the VGG16 latent space. However, as can be
seen from the non-proton clusters in Figs. D.7 and D.8, this does not
necessarily imply that the physical signals are correspondingly clear.
Furthermore, the unsupervised metric that decides which of the 𝑀 𝑘-
means initializations perform the best does not necessarily coincide
perfectly with separating the event classes. This is evidenced by the
highest performing model measured on labeled data (Top 1) for the
raw data showing up in Table 3, and being filtered out from Table 2.

A caveat to the 𝑘-means method is that the number of clusters has
to be specified in advance. Each experiment then has to be considered
in light of possible reaction channels to determine a sensible number
of clusters for this approach.

The same caveat is present in the MIXAE implementation. While it
shows better optimal performance than the 𝑘-means method, some in-
consistencies were observed that were notably not evident from the un-
supervised training-objectives of the model. These two factors currently
conspire to limit its immediate applicability, and more developments
are needed for this approach.

In summary, our study shows that unsupervised track classification
with an implementation of the VGG16 and the 𝑘-means approach is

a viable solution. For future work, it is worth investigating whether
the adaptation of models like the MIXAE algorithm will allow better
performance at no significant cost to consistency. The two examples
of unsupervised machine learning methods studied in this work are a
first encouraging step towards automated selection of similar events
that could greatly reduce the resource cost of analysis. Selection and
classification algorithms have the potential to eventually boost the
efficiency of the experiment by allowing post-trigger decisions based
on such algorithm implemented in hardware.
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Appendix A. VGG16

The VGGNet models are a family of high-performing image classi-
fication, and object localization networks. In the VGGNet architecture
a small kernel size is leveraged to increase expressive power in a very
deep convolutional network. A tabulated view of the VGG models can
be seen in [26].

The choice of the kernel size is based on the fact that a stacked 3 × 3
kernel is equivalent to larger kernels in terms of the receptive field of
the output. Three 3 × 3 kernels with stride 1 have a 7 × 7 receptive
field, but the larger kernel has 81% more parameters and only one non-
linearity [26]. Stacking the smaller kernels then contributes to a lower
computational cost. Additionally, there is a regularizing effect from the
lowered number of parameters and increased explanatory power from
the additional non-linearities.

VGGnet models are distributed freely with weights trained on the
ImageNet [12] image classification task. For the results in Section 5.1
we used a VGG16 model pre trained on ImageNet data.
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Table B.5
Hyperparameter grid for the MIXAE loss weighting terms. The grid is
given as exponents for logarithmic scales.

Parameter Grid Scale

𝜃 [−1, 5] Logarithmic
𝛼 [−5, −1] Logarithmic
𝛾 [3, 5] Logarithmic

Table B.6
Hyperparameters selected for the autoencoder components of the MIXAE
algorithm.

Hyperparameter Value

Convolutional parameters:

Number of layers 4
Kernels [3, 3, 3, 3]

Strides [2, 2, 2, 2]

Filters [64, 32, 16, 8, ]

Network parameters:

Activation LReLu
Latent dimension 20
Batchnorm False

Optimizer parameters:

𝜂 10−3

𝛽1 0.9
𝛽2 0.99

Appendix B. MIXAE hyper-parameter tuning

In the MIXAE algorithm the hyper-parameters to adjust are all the
ordinary parameters associated with a neural network. We chose to
base our neural network parameter choices on the VGG16 architec-
ture. The parameters chosen for the autoencoders are listed in full in
Table B.6.

In addition to those parameters we have the weighting of the
loss terms: 𝜃, 𝛼 and 𝛾. These weighting parameters are attached to
the reconstruction loss, sample entropy and batch-wise entropy re-
spectively [14]. We focused on the tuning of the clustering hyper-
parameters, and defined the autoencoder hyper-parameters to be a
shallow 3 × 3 convolutional network as detailed in the previous para-
graph.

To train the MIXAE clustering algorithm, we use a large simulated
data set with 𝑀 = 80 000 points, evenly distributed between proton-
and carbon-events. The algorithm is trained on a subset of 60 000 of
these samples, and we track performance on the remaining 20 000

events. On real data the algorithm is trained on an unlabeled set of
data, and evaluated on a labeled subset.3 Since there are then only three
remaining hyperparameters we choose to perform a coarse grid-search
for the optimal configuration. Finally, for the best parameters we re-ran
the algorithm 𝑁 = 10 times to investigate the stability of the algorithm.

The grids selected for the search are listed in Table B.5. The search
yielded an optimal configuration with

𝜃 = 10−1, (B.1)

𝛼 = 10−2, (B.2)

𝛾 = 105. (B.3)

For the full data set the MIXAE hyperparameters converge to the
same values as for the clean data:

𝜃 = 101, (B.4)

𝛼 = 10−1, (B.5)

𝛾 = 3.162 × 103. (B.6)

3 See Table C.7 for details.

Table C.7
Descriptions of number of events in the data.

Simulated Full Filtered

Total 8000 51891 49169
Labeled 2400 1774 1582

Lastly we supply the configuration used for the individual convolu-
tional autoencoder networks in Table B.6

Appendix C. Data

The data used for the analysis in this work were partitioned as
shown in Table C.7.

Appendix D. Clustering confusion tables

To elucidate the results presented in Tables 3 and 4 we computed
clustering confusion-matrices. These matrices show a more detailed pic-
ture of intermingled classes in a clustering or classification task where
ground truth labels are available. In the figures below we tabulate the
clusters, as predicted by the algorithm, along the 𝑥-axis. Each cluster is
decomposed in its ground-truth members along the 𝑦-axis.

In this view, a perfect clustering algorithm will produce a confusion
matrix which only has nonzero elements in the primary diagonal under
free permutation of its columns.
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