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ABSTRACT: Narragansett Bay (Rhode Island, USA) is an estuary undergoing changes from a
combination of rising water temperatures, nutrient fluxes, and human uses. In this study, we cre-
ated an ecosystem food web model and evaluated its ability to predict functional group biomasses.
Specifically, we used Ecopath to construct 2 mass-balanced models covering different time peri-
ods in Narragansett Bay: a historical model using data from 1994-1998 and a present-day model
that represents 2014-2018. With the historical model as a starting point, we used Ecosim f{it to time
series data and projected forward to present-day values, forcing the model with both phytoplank-
ton biomass and fishing mortality. The biomass of most mid- and upper trophic level groups
increased by 2018, with the exception of carnivorous benthos, which experienced a large decline.
There were changes in the composition of fisheries, with a large increase in recreational benthiv-
orous fish landings and a decrease in commercial landings of planktivorous fish and suspension
feeding benthos. The inclusion of fishing mortality and phytoplankton biomass as forcing func-
tions, as well as adjusting the vulnerability levels of prey, greatly improved our model fits for all
functional groups with the exception of gelatinous zooplankton. Our ecosystem model was able to
correctly predict the direction of change for all fish and fished invertebrate groups with a rela-
tively high degree of precision, particularly for the upper trophic levels. Thus, this ecosystem
model is broadly applicable and suitable to project trends in the Narragansett Bay food web asso-
ciated with localized and adaptive ecosystem-based management.
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1. INTRODUCTION

Altered environmental conditions in marine ecosys-
tems have resulted in widespread changes to commu-
nity structure, species interactions, and dispersal pat-
terns (Hoegh-Guldberg & Bruno 2010, Doney et al.
2012, McCauley et al. 2015). These shifts have been
caused by human pressures such as climate change,
habitat degradation, and exploitation (Johnson &
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Welch 2009, Brander 2010). For example, approxi-
mately one third of global fisheries are harvested at
biologically unsustainable levels (FAO 2020) and
nearly one quarter of them have collapsed (Mullon et
al. 2005, Pinsky et al. 2011). Climate change has
shifted species distributions considerably, altering
predator-prey dynamics and triggering trophic cas-
cades (Hazen et al. 2013, Pinsky et al. 2013). There-
fore, properly managing marine ecosystems and fish-
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eries in a rapidly changing environment remains criti-
cal (Duarte et al. 2020). As such, policy-makers recog-
nize the importance of ecosystem-based management
(EBM) to account for the interdependence among
physical, biological, and socioeconomic components
within and among ecosystems (McLeod et al. 2005).

Ecosystem modeling is becoming an increasingly
powerful tool in support of EBM (Christensen & Wal-
ters 2011). Ecopath with Ecosim (EwE) is a type of
ecosystem food web model that accounts for bio-
masses of species or species groups and energy flows
between them (Polovina 1984, Christensen & Pauly
1992, Walters et al. 1997). EWE is based on principles
of mass-balance, such that for each group in a model,
the energy removed (i.e. predation or fishing) must
be balanced by the energy consumed (Coll et al.
2009). Users can employ a time-dynamic component
(Ecosim) to run simulations and use EwE to investi-
gate how the food web responds to changing species
interactions (Moreau 1995, Haputhantri et al. 2008)
as well as the ecosystem impacts of rising tempera-
tures (Serpetti et al. 2017), invasive species (Lercari &
Bergamino 2011, Langseth et al. 2012), nutrient load-
ing (Kao et al. 2014), fishing pressure (Martell et al.
2002, Shin et al. 2004, Geers et al. 2016), or a combi-
nation of the above (Kao et al. 2014, Tecchio et al.
2015, Corrales et al. 2017). This wide array of uses
makes EwE a valuable modeling tool for EBM (Pla-
ganyi & Butterworth 2004).

Narragansett Bay, Rhode Island (USA), is an
estuarine ecosystem that is experiencing rapid bot-
tom-up changes in the environment as well as top-
down human uses. Anthropogenic factors like vari-
ations in commercial and recreational fishing
pressure, as well as ecological changes such as in-
creasing water temperature, are important drivers
in Narragansett Bay (Nixon et al. 2009). For exam-
ple, rising water temperatures have led to shifts in
the species community composition, with the bay
seeing an increasing abundance of Mid-Atlantic
species and a decreasing abundance of northern,
cold-water species (Oviatt et al. 2003, Collie et al.
2008). In particular, there has been an increase in
striped searobin Prionotus evolans, scup Stenoto-
mus chrysops, alewife Alosa pseudoharengus, blue-
fish Pomatomus saltatrix, butterfish Peprilus triacan-
thus, little skate Leucoraja erinacea, crabs (Cancer
spp.), and lobsters Homarus americanus leading up
to the 1990s (Collie et al. 2008). Concurrently, there
has been an overall decline of northern species like
the northern sea robin Prionotus carolinus and win-
ter flounder Pseudopleuronectes americanus (Oviatt
et al. 2003). In addition to these changes in abun-

dance, the residence periods of warm-water spe-
cies, including scup, butterfish, summer flounder
Paralichthys dentatus, striped searobin, and longfin
squid Doryteuthis pealeii have expanded, while
those of many cold-water species have contracted
(J. Langan unpubl. data). These studies indicate
that due to rising water temperatures and fishing
pressure, Narragansett Bay is experiencing dra-
matic shifts in species assemblage and phenology.
Thus, the bay may begin to resemble a more
warm-water, Mid-Atlantic estuary with weakened
benthic—pelagic coupling in the future. Under-
standing if ecosystem food web models can repre-
sent and predict these dynamics will be important
for policymakers and managers to know as they
plan for these changes.

A previous Ecopath model of Narragansett Bay was
developed by Byron et al. (2011) for the purpose of
calculating the carrying capacity of shellfish aquacul-
ture. They used the data from an ecosystem food web
model of the bay created by Monaco & Ulanowicz
(1997). The model of Byron et al. (2011) was focused
solely on aquaculture and is not applicable to many
EBM questions, particularly those surrounding fish-
eries. For example, Byron et al. (2011) grouped pisci-
vorous and benthivorous fish together as ‘carnivorous
fish," and grouped squid and ctenophores together as
‘invertebrate carnivores.’” Unlike squid, ctenophores
often occur as blooms. Additionally, squid, unlike
ctenophores, are a commercial fishing target, which
was not included in this previous Narragansett Bay
food web model. In the original model of Monaco &
Ulanowicz (1997), production and consumption were
calculated by Ecopath. These values were unchanged
in the model of Byron et al. (2011) and may not be
representative of Narragansett Bay. This model was
also not made temporally dynamic; therefore, it could
not be used to run simulations of how this ecosystem
changes over time and is of limited use for manage-
ment strategy evaluation.

The objective of this study was to use EwE to
describe recent changes in Narragansett Bay, includ-
ing shifts in animal biomasses and external drivers,
and evaluate the precision of our model and its utility
for ecosystem management. To do so, we constructed
2 new Ecopath models representing different periods
in time: a 1994-1998 model (hereafter the ‘1994
model’), and a 2014-2018 model (hereafter the ‘2018
model’). We did not use input values from previous
Narragansett Bay models to parameterize these new
models, with the exception of benthic algae biomass.
We compared input values for the 2 models to
describe notable changes in biomass and fisheries
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landings. Using the 1994 Ecopath model as a starting
point, we used Ecosim to create a temporally dyna-
mic model, and quantified the respective importance
of each external driver (fishing mortality, primary
production [PP], cultured shellfish) on model fit. We
then compared the model-projected 2018 fish and
invertebrate biomasses to the empirically-derived
2018 Ecopath model. We expanded on this technique
by evaluating our Ecosim projection not only against
a biomass time series but also against a distinct Eco-
path model representing the current (2018) food web
of the system.

2. MATERIALS AND METHODS
2.1. Model structure

The ecosystem model for Narragansett Bay was
constructed using the EwWE program (Polovina 1984,
Christensen & Pauly 1992, www.ecopath.org). Our
model-building process began with specifying the
ecosystem compartments and sorting species into
functional groups, i.e. single species, size/age groups,
or ecologically/taxonomically related groups of spe-
cies. To trace energy transfer between these func-
tional groups, EwE uses a diet matrix and 4 main
inputs: biomass (B), production/biomass (P/B), con-
sumption/biomass (Q/B), and ecotrophic efficiency
(EE) (Text S1A, Table S1in Supplement 1 at www.int-
res.com/articles/suppl/m654p017_suppl.pdf). In this
application, we entered B, P/B, Q/B, and let the model
solve for EE using its 2 main equations (Text S1A;
Table S2 in Supplement 1), as recommended by Hey-
mans et al. (2016) because EE is a parameter that can-
not be reliably measured in the field.

To describe changes in Narragansett Bay and test
the ability of Ecosim to predict these changes, we
created 2 separate Ecopath models. The 1994 model
is based on biomass and catch data from 1994-1998,
while the 2018 model is based on biomass and catch
data from 2014-2018. The input values were col-
lected from the same sources and scaled the same
way for both models.

An overview of our methods is given below, and ad-
ditional information can be found in the Supplements:
Supplement 1 details the Ecopath methods and re-
sults, including EwE equations and equation inputs
(Text S1A), establishment of the functional groups
(Text S1B), and pre-balance (PREBAL) diagnostics
(Text S1C). Supplement 2 (www.int-res.com/articles/
suppl/m654p017_supp2.xlsx) contains all of the species
and functional group input values and data sources.

Supplement 3 at www.int-res.com/articles/suppl/m654
p017_supp3.pdf contains the supplementary Ecosim
methods and results referenced in Section 2.8 (Ecosim
methods) and Sections 3.2 and 3.4 (Ecosim results).

2.2. Functional groups

We grouped species into functional groups to cre-
ate the Ecopath models. We chose broad functional
groups as we were not interested in any single spe-
cies, but rather had a broad focus in fisheries, com-
munity dynamics, and EBM. These groupings also
allowed us to smooth over individual species varia-
tion and allow for more reliability in the diet, as
predators can switch prey species without switching
prey functional groups (McPhee et al. 2015). The
mid- and upper trophic level (UTL) functional groups
(carnivorous benthos, squid, suspension feeding
benthos, cultured shellfish, seabirds, piscivorous fish,
planktivorous fish, benthivorous fish) comprised 38
species (Table S3 in Supplement 1). Species were
assigned to their functional groups via hierarchical
clustering, using a Bray Curtis similarity index with
a fourth-root transformation based on detailed diet
data (Fig. S1 in Supplement 1). In the 1994 model,
squid were split into 2 size categories because can-
nibalism made up over 10% of the squid diet. The
use of a multi-stanza group for squid was necessary
to prevent numerical instabilities in the time dynam-
ics of Ecosim (Christensen et al. 2005). The cutoff
size of 12 cm mantle length was chosen, as this is
the length where cannibalism becomes common in
the diet (Vovk & Khvichiya 1980, Vovk 1985). The
stock recruitment dynamics of squid in our model
were linear (Fig. S2 in Supplement 1) as discussed
in Text S1B. In the 2018 model, small and large squid
were represented as 2 distinct functional groups, as
these numerical instabilities do not occur in a static
Ecopath model, and a multi-stanza group does not
account for the migration of squid in and out of the
bay. Given that many of these species in this model
only occupy the bay for part of the year, multi-
stanza dynamics were not ideal for this system. and
thus were only included in Ecosim when necessi-
tated by high levels of cannibalism. Seabirds were
included in the model as a separate functional
group because of their importance as predators (of
planktivorous and benthivorous fish) in the food
web. The lower trophic level functional groups in-
cluded in the model were deposit feeding benthos,
gelatinous zooplankton, zooplankton, phytoplank-
ton, benthic algae, and detritus.
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2.3. Biomass

Biomass values were input into Ecopath in wet
weight (g m™?) for the 2 models (Table 1). Fish and
invertebrate biomass values came from either the
University of Rhode Island Graduate School of
Oceanography (URI GSO) or Rhode Island Depart-
ment of Environmental Management (RI DEM) bot-
tom trawls, both of which sample at stations through-
out the bay (Fig. 1). The RI DEM biomass time series
ran from 1990 to present, while the URI GSO biomass
time series ran from 1994 to present. Biomass (g),
averaged across stations and time points (including
tows where a species was not present), for each spe-
cies per trawl was divided by the swept area (m?) of
the trawl to get a g m~2 value, which was assumed
to represent the biomass throughout the bay, as our
model did not address spatial dynamics. If data
existed in both trawls for the same species, the larger
of the biomass values was chosen to assist in model
balancing and to account for the underestimation of
fish biomass by (some) trawling surveys (Engds &
Godg 1989, Stockwell et al. 2006, Kaartvedt et al.

2012). Initially, our Ecopath model would not balance
using these low biomass values, prompting us to
account for species-specific catchability in the trawl-
ing data. Therefore, each value was divided by a spe-
cies-specific bottom trawl catchability coefficient,
estimated from regional stock assessment documents,
resulting in an upwards adjustment in the biomass
levels of small, pelagic, and/or fast-swimming spe-
cies which trawls have difficulty in catching. Atlantic
menhaden Brevoortia tyrannus biomass was obtai-
ned from the RI DEM aerial menhaden survey.
Functional group biomasses were obtained by sum-
ming the biomasses of all relevant species. When
biomasses were entered into Ecopath, several were
too low to achieve a balanced model (all EEs <1).
Therefore, biomasses for benthivorous fish, planktiv-
orous fish, piscivorous fish, carnivorous benthos, and
squid were scaled to account for young of the year
not captured in the trawls and species not explicitly
included in the model but that appear in the diets of
other species, and to achieve realistic production/
consumption (P/Q) values (Text S1C), as recommen-
ded by Lucey (2019). These scaling factors can be

Table 1. Four main Ecopath inputs and fisheries landings for the 2 models. P: production; B: biomass; Q: consumption; EE: eco-
trophic efficiency (calculated by Ecopath). Some values are rounded

Functional — 1994 Model 2018 Model
Biomass P/B Q/B Commer- Recre- EE Biomass P/B Q/B Commer- Recre- EE
group (gm?) (yr'l) (yrh cial ational (gm? (yrY) (yr') cial ational
landings landings landings landings
(gm? (gm™) gm?  (gm?
Phytoplankton 22.982 225.7 0.355 18.881 274.7 0.409
Benthic algae  30.795 17.01 0.270 30.795 17.01 0.242
Zooplankton 7.125 78.32 215.0 0.498 8.389 78.32 215.0 0.339
Gelatinous 42.357 2.000 5.600 0.072 8.737 2.000 5.600 0.499
zooplankton
Deposit feeding 70.125 4.580 24.36 0.978 70.125 4.580 24.36 0.751
benthos
Susp. feeding  26.760 4.650 12.81 6.142 0.352 26.760 3.715 12.81 3.003 0.161
benthos
Cultured 0.014 0.145 23.15 0.000 0.153 1.145 23.15 0.153 0.873
shellfish
Carnivorous 15.906 0.839 8.386 0.962 0.941 3.368 1.510 8.428 1.197 0.999
benthos
Small squid 0.461 3.950 23.65 0.999 1.201 3.265 13.63 0.845
Large squid 0.643 5.364 12.50 0.196 0.993 1.022 3.425 12.86 0.164 0.967
Planktivorous  12.304 2.376 10.88 13.261 0.997 18.423 1.305 10.57 4.455 0.984
fish
Benthivorous 9.225 0.878 4.527 0.246 0.990 0.800 13.277 1.000 4.659 0.682 3.201 0.958
fish
Piscivorous 2.081 1.494 4.635 0.290 2.144 0.988 3.805 0.962 4.561 0.259 1.976  0.990
fish
Seabirds 0.043 0.141 7.750 0.824 0.040 0.141 7.750 0.824
Detritus 3.866 0.262 4.522 0.258
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Fig. 1. Sampling stations in Narragansett Bay, Rhode Island,

USA. DEM: Rhode Island Department of Environmental

Management; GSO: University of Rhode Island Graduate
School of Oceanography

found in the 'Functional group input' section of Sup-
plement 2. Plankton data came from the URI GSO
plankton survey (Fig. 1). Biomass for gelatinous zoo-
plankton was calculated after square root transform-
ing count data to account for extreme blooms during
the time period of interest and using conversions
between length and wet weight (Kremer & Nixon
1976). Biomasses for cultured shellfish, suspension
feeding benthos, deposit feeding benthos, benthic
algae, birds, and detritus were sourced from the liter-
ature (Supplement 2).

2.4. Other Ecopath parameters

For the majority of species, P/B was calculated as to-
tal mortality (Z), which is equal to the sum of natural
(M) and fishing (F) mortality. This method of calcula-
tion was recommended by Christensen et al. (2005).
Natural mortality (M) was obtained from FishBase
(Froese & Pauly 2019), SealifeBase (Palomares &
Pauly 2019), stock assessments, invertebrate M equa-
tions of Brey (2001), and other literature (Supple-

ment 2). Fishing mortality (F) was calculated as catch
divided by biomass (see Sections 2.5 and 2.3 for
details on the origins of these values). P/B values for
benthivorous fish, planktivorous fish, and carnivorous
benthos were scaled up during model balancing
(‘Functional group input' section in Supplement 2).
Species’ Q/B values were obtained from FishBase
(Froese & Pauly 2019), invertebrate consumption eq-
uations of Brey (2001), and other literature (Supple-
ment 2). To calculate P/B and Q/B values for the func-
tional group level, P/B or Q/B values at the species
level were weighted by their biomass and then aver-
aged. EE was calculated by Ecopath for all groups.

2.5. Fisheries landings

Recreational fisheries landings came from the Na-
tional Oceanographic and Atmospheric Administra-
tion (NOAA) National Marine Fisheries Service query
tool (www.st.nmfs.noaa.gov), selecting 'Inland Rhode
Island' as the area of interest. Species landings were
summed to get landings for each functional group,
and were scaled down slightly to account for some re-
lease (Supplement 2). In the 1994 model, there was no
commercial harvest of cultured shellfish. In the 2018
model, all commercial shellfish was assumed to be
harvested. Commercial landings of other species were
calculated in 1 of 2 ways. For several species, we used
NOAA Vessel Trip Report (VTR) data for species
caught within the latitude/longitude boundaries of
Narragansett Bay (NOAA GARFO APSD Division un-
publ. data). For other species, we used Rhode Island
(RI) landings obtained through a custom data request
from the Atlantic Coastal Cooperative Statistics Pro-
gram (https://www.accsp.org/). RI landings data in-
cluded all catch landed in RI regardless of area
caught. Therefore, this catch was scaled to include
only Narragansett Bay using data from the Northeast
Fisheries Observer Program (National Marine Fish-
eries Service Northeast Fisheries Observer Program
unpubl. data), since many species landed in RI are not
caught locally (Hasbrouck et al. 2011). When using
the landings-based method, the first scaling factor,
determined through fisheries observer data of federal
vessels, was the percentage of catch landed in RI that
was caught in Northeast Fisheries Science Center
Statistical Area 539 (averaged across years, https://
www.fisheries.noaa.gov/resource/map/greater-atlantic-
region-statistical-areas). The second scaling factor
was the ratio of catch from Statistical Area 539 that
was caught within Narragansett Bay (averaged across
years, see Supplement 2 for more details). While these
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scaling factors were based on federally permitted ves-
sel data only, and therefore assume the same propor-
tions for landings from state-permitted vessels, they
represent the best data available to estimate RI land-
ings that were actually caught in the bay. Carnivorous
benthos catch was scaled down additionally to ac-
count for other species, not included in our model,
that were grouped into the reported catch (Supple-
ment 2). Catch data source for each species (landings
vs. VTRs) was determined based on personal commu-
nication and anecdotal evidence about the contribu-
tion of state-permitted only vessels to the landings.
Higher state boat involvement favored the landings-
based data, as only federally permitted vessels re-
quire observers and VTRs. While our methods for
calculating catch require the previously stated as-
sumptions, we believe these adjustments are appro-
priate to ensure that we are able to account for the ac-
tivity of state-permitted vessels while not including
locallandings that were caught in other regions.

2.6. Diet

Diet information was sourced from a variety of lit-
erature, data collection, and data requests for more
localized values (Supplement 2). The data reflect
adult diets from studies conducted primarily in Nar-
ragansett Bay or other nearby estuaries in New Eng-
land. We prioritized the data based on a number of
factors, including date of publication, sample size,
and level of prey identification detail. One consider-
ation was standardizing reporting units across multi-
ple studies. In general, diet studies in the literature
were reported in 1 of 2 ways: percentage weight (pre-
ferred) or counts. We converted the latter to percent-
age weight through volumetric conversion, assuming
spherical planktonic prey. Another important consid-
eration that became apparent in our survey of the
diet literature was how to standardize differences in
life stages or taxonomic classification. Several types
of adjustments were required. For studies that
reported different categorizations of the predator
(i.e. size, sex, sampling year), median prey percent
weight was used. Grouped prey categories such as
‘unknown fish' were assumed to have a consistent
proportion of the identified species in a particular
diet. For some species with a large amount of ‘un-
known remains' in their prey (e.g. menhaden, butter-
fish, squid), diet was adjusted based on the group
most likely to make up those remains (based on qual-
itative or anecdotal evidence in literature). Non-
organic material such as sand or rock was also re-

moved from the diet. After these different adjust-
ments, categories were reapportioned to sum to one
and aggregated at the functional group level. Finally,
we had to consider the origin of each prey species. To
properly account for biomass brought into Narra-
gansett Bay from outside the study system, prey spe-
cies that occur in freshwater, are exclusively found
in southern estuaries, or are found offshore, were
assigned to the 'import’ diet category, meaning the
model will consider this biomass as coming from out-
side the system. Diet was researched for each indi-
vidual species, and a biomass-weighted average was
used for the diet of each functional group (Table 2).
Minor adjustments were made to the diet matrices
during model balancing, following the principle of
parameter adjustment based on our confidence in the
source data. The diet matrices varied slightly be-
tween the 2 models due to differences in biomass
weighting between the time periods and adjustments
to balance the model (Table 2).

2.7. PREBAL

We conducted PREBAL diagnostics following rec-
ommended best practices in EWE models (Ainsworth
& Walters 2015, Heymans et al. 2016). This included
studying trends in biomass, production, consump-
tion, respiration (R), and vital rates (P/B, Q/B, R/B),
which should all decrease with increasing trophic
level (Fig. S3 in Supplement 1) (Link 2010). This
analysis also included examining production/con-
sumption (P/Q) values, which generally fell between
0.1 and 0.3, and production/respiration (P/R) values,
which should be <1 (Fig. S4 in Supplement 1). The
majority of the PREBAL diagnostics for both the 1994
and 2018 models were met, leading us to be confi-
dent that we were using biologically realistic input
values (Tables S4 & S5 in Supplement 1). There were
some values that did not follow the expected patterns
in PREBAL (e.g. seabirds, cultured shellfish), but we
deemed them acceptable for the model based on dif-
ferences in data collection methodologies and vari-
ance; as stated by Heymans et al. (2016), values that
do not follow the expected patterns are acceptable
when justified (see Text S1C for these descriptions).

2.8. Ecosim
The 1994 model was made time-dynamic in Ecosim

by using top-down and bottom-up forcing time series
to fit the model to observed biomass time series. First,



23

Innes-Gold et al.: Modeling the Narragansett Bay food web

6952°0 1£00°0 16100 TTO0'0  TFIT'0 68000  9¥0T°0 10T0°0  ¥000°0 yodury
GETO'0 L6VT 0 61780 snmeq ST
05100 spiqess ¥l
£100°0 9¥¥%0'0 9z00°0 S¥€0°0 USY SNOIOADSd €]
T€8T0 £507°0 Z¥00°0 G700 7600 ysy snoroamjuag gl
T¥8€0 76020 16100 0S10°0  786%'0 0T4T0 TT10°0 ysy snoroansueld  TT
€0L1°0 1100°0 8€10°0 01000 pmbsafrer 01
¥101°0 0500°0 00600 10000  0TO00 pmbs [rewg 6
80%0°0 ¥520°0 00S0°0 z100°0 £000°0 0zZ00°0 SOYIUS(Q SNOIOATUIRD) 8
UsY[[eys paInynd L
6200°0 Z000°0 ¥8€0°0 80T0°0  T000'0 10TO'0  €EST'O 01000  8Z%0°0 soyjuaq Hurpesy uoisuadsng 9
1510°0 60100 6%98°0 8970 98€1°0 94TTO  88IEL0 71600  VLEVO soyjuaq Burpesy ysodeq S
9100'0 S000'0 4 0X0) uopque[dooz snourje[on) i4
T000°0 8000°0 G665°0 09400 SIZF'0 90000 006170 006170 65000 15050 uopjuerdooz €
5000°0 £200°0 GGET'0 0Z£0°0 aebre dryjueyg 4
00180 00180 £610°0 100000  000°T uopjuedoldyd 1
8107

69¥%C°0 S000°0 1000 88TT°'0  0S00°0 85900 0010°0 0 11oduig
G0£0°0 T16T°0 61780 snmed ST
05100 spiqess  ¥1
71000 TT€0°0 1£00°0 S¥20°0 Usy sno1oamsld €1
£€8T°0 785T°0 S¥00°0 S¥20°0 0£10°0 ysy snoroamjjusg gl
TVLE0 180€°0 78200 0ST0'0  Z89%'0  004T0 TT10°0 ysy snoioanueld [T
€92T°0 G800°0 0S€0°0  0T00°0  0£00°0 pmbsobreT 07
0090°0 0900°0 0060°0 0200°0 pmbs [rews 6
8090°0 ¥2£0°0 £G£0°0 TT00°0 0£50°0 1000°0  ¥200°0 SOUJU(Q SNOIOATUIR)) 8
USHI[EYS paInind L
6200°0 T000°0 G£80°0 8010°0 20000  10TO'0  €E£ST0 01000  8T¥0'0 soyjueq Hurpesy uorsuadsng 9
1S10°0 06000 LLLEO 897E'0  98€T'0  94TTO  981€0 71600  FLEVO soyqjuaq Hurpesy ysodeq S
9z00°0 TT00°0 S¥P0°0 uopuedooz snourje[en i4
T000°0 61000 G66G°0  TOOT'0  €94%'0  9000°0 0061°0 0061°0 6£00°0 15050 uoyjuerdooz €
S000°0 T¥00°0 GGe1'0 0T£0°0 aebre oryjueg 4
00180 00180 £610°0 10000 00007 uoypuerdoihyg 1
7661

¥ €1 4 11 01 6 8 L 9 S i4 € dnoib [euonounyg

sooe[d Tewoap § 0} papunoi are pue suonrodoid a1e sanfe  ‘Aaid are smol pue siojepaid are suwnio)) ‘sfpow yyedodqg 8107 PUR F66T oY} Ul POSN S9DLIIRW }91(T g S[qRL




24 Mar Ecol Prog Ser 654: 17-33, 2020

each 1994 Ecopath model input and diet value was
assigned an uncertainty ranking (from 1-6, least to
most certain) through the use of the pedigree func-
tion, based on our evaluation of each data source
(Table S6 in Supplement 3). The forcing function
time series used in our Ecosim model were empiri-
cally derived phytoplankton biomass (g m™2), fishing
mortality (F) for functional groups targeted by the
fisheries, and cultured shellfish biomass (g m™).
Fishing mortality was calculated as catch divided
by biomass. In order to adjust the Ecosim model to
resemble actual observed biomass data, we imported
biomass time series for all available functional
groups (piscivorous fish, planktivorous fish, benthi-
vorous fish, carnivorous benthos, squid, gelatinous
zooplankton). These observed biomass time series
data, as well as the catch and biomass forcing func-
tion values, were collected and scaled in the same
way as the numbers in the initial Ecopath model.
Vulnerabilities, which refer to the extent to which a
change in the predator's biomass will cause changes
in predation mortality for a given prey group, often
play a large role in model fitting (Text S1A, Eq. S4)
(Christensen et al. 2005). To adjust vulnerabilities
(from their default of 2.0), we used the 'Fit to Time
Series' tool, which optimizes each vulnerability para-
meter by attempting to minimize the overall sum of
squares (SS) (Christensen et al. 2005). We then made
manual adjustments to reach the lowest SS in combi-
nation with the best trend matching for the functional
groups of interest (Table S7 in Supplement 3). In
addition, we modified 3 of the ‘Group Info' parame-
ters to improve model fit (Table S8 in Supplement 3).
When tuning this model, we prioritized the piscivo-
rous fish, benthivorous fish, planktivorous fish, and
carnivorous benthos groups because of our confi-
dence in these observed biomass time series data
and interest in fisheries management. We then ran
Monte Carlo simulations to quantify the uncertainty
in biomass predictions, with confidence values im-
ported from the pedigree matrix.

2.9. Analysis

We examined system-level indicators calculated
from the output of the 2 Ecopath models, including
total biomass, catch, production, consumption, respi-
ration, throughput, mean trophic level of catch, and
the primary:secondary production (PP:SP) ratio. Total
biomass, catch, production, consumption, and respi-
ration are sums of the respective values for each
functional group. Total throughput is the sum of all

flows in a system, estimated by summing total con-
sumption, total export, total respiration, and total
flows to detritus (Christensen et al. 2005). We calcu-
lated the PP:SP ratio by dividing the net PP output by
the difference in the total system production and net
PP (SP).

We ran the temporally dynamic Ecosim model both
with and without forcing functions and adjusted vul-
nerabilities to quantify the variance in SS caused
by each of these parameters (Shannon et al. 2004,
Araujo et al. 2006). Using the fitted Ecosim model, we
compared its projected 2018 biomass values to the
empirical biomass input values of the 2018 static
Ecopath model. We reported a scaled difference be-
tween these 2 values, calculated as the difference
between the 2018 projection and the 2018 input,
divided by the 2018 input. We also determined
whether the realized direction of change was cor-
rectly predicted by the model.

3. RESULTS
3.1. System-level indicators

At both time periods, our models depicted func-
tional groups with trophic levels ranging from 1
(phytoplankton, benthic algae) to >4 (seabirds, pis-
civorous fish) (Fig. 2). Of the 12 predatory functional
groups, 9 preyed on 6 or more functional groups. The
benthivorous and piscivorous fish groups had the
most diverse diets, each consuming prey from more
than 11 functional groups. Total consumption, respi-
ration, throughput, biomass, catch, and mean trophic
level of catch differed slightly between the 2 models
(Table 3). Total production and PP:SP ratio were vir-
tually the same in both models. Throughput from PP
was higher than throughput from detritus in both
models, albeit not by a large amount (Table 3).

3.2. Input comparison

Biomass varied between models across nearly all
functional groups. The exceptions were benthic al-
gae, deposit feeding benthos, and suspension feeding
benthos, where only a single data source was avail-
able, not a time series, so the same values were used
for the biomass in both models. Gelatinous zoo-
plankton, consisting of a blooming ctenophore spe-
cies (Mnemiopsis leidyi), had the largest change in
biomass between the 2 models, from 42.357 to 8.737 g
m~? (Fig. 3). The most dramatic difference in the mid-
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A. 1994 Model Recreational Fishery cline. Rock crab biomass peaked in the
Pisci i 1990s and has since decreased (Fig. S5
1SC1VOrous K1s . . .

< Seabirds Gommercial Fishery in Supplement 3). All other mid- and
4 Large Squid UTL groups (with the exception of sea-
Small;Squid Benthivorous Fish birds) had increased biomass in the
: = 2018 model (Fig. 3). Within planktivo-

3 . Planktivorous Fish - Carnivorous Benthos . . . .
Gelatifious Zooplankton rous fishes, there were increasing bio-
Deposit Feedifig Benthos Cultured Shellfish mass trends in all species with the ex-

2 Z(:)plankton Suspension Feeding Benthos

ception of blueback herring Alosa
aestivalis (Fig. S5). The species that
made up the majority of the planktivo-

O o rous fish functional group biomass was

1 Phytoplankton Benthic Al Detritus . .
enthic Algae Atlantic herring Clupea harengus,
which has shown several biomass
B. 2018 Model ° peaks since the mid-2000s (Fig. S5).
. . Recreational Fishery The positive trends in piscivorous and

Piscivorous Fish Seabirds . .
4 o benthivorous fish were largely due to
Somafl Scaid S A Commercial Fishery increasing summer flounder and scup,

mallSqul Planktivorous Fish

respectively (Fig. S95).

3 Gez;tinous Zooplanktor Benthivorous Fish Production rates (P/B) of squid,
. . . .
Suspension Feeding Benthos Carnivorous Benthos planktlvorgus f1§h, and piscivorous
Zooplarikton ! fish were higher in the 1994 model be-
@ . Cultured Shellfish
2 DetosiFeeTi Benth cause both of these groups had lower
cposittreeding Benthos biomass in the earlier model. The P/B
values of carnivorous benthos and ben-
@ . . . .
1 Phytoplankton Benthic Alga Detritus thivorous fish were both higher in the

Fig. 2. Ecopath flow diagrams for the (A) 1994 and (B) 2018 models. Nodes are

scaled to log(biomass) and the width of the line represents the amount of

energy flow. Numbers on the y-axis indicate trophic level and are reflected by
progressively darker colors (1: light grey to 4: black)

Table 3. Comparison of ecosystem indicators in the 1994 and 2018 Ecopath
models. PP: primary production; SP: secondary production

2018 model because of an increase in
fisheries harvest of both species and a
decrease in carnivorous benthos bio-
mass. Cultured shellfish P/B also in-
creased in the 2018 model (from 0.145
to 1.145), due to increased harvest.
Consumption rates (Q/B) of the major-
ity of functional groups were similar
between the 2 models, since the same

Indicator 1994 2018 consumption rates for individual spe-
cies were used, but weighted differ-
Total biomass, excluding detritus (g m~2 yr!) 240.819 204.976 ently in the functional group average
Total catch (g m~2 yr?) 24.23 15.09 . . A
Mean trophic level of catch 2.963 3061 based on the biomass of that time point
Sum of all production (g m™2 yr?) 6859 6860 (Fig. 3). There was an exception to this
Sum of all consumption (g m™2 yr!) 4158 4239 in the 1994 model, for which Ecopath
Sum of all respiration (g m™ yr™) 1559 1564 was required to calculate the Q/B and
Total throughput (g m™2 yr?) 15525 15575 biomass for small squid due to th
Throughput from PP (g m™2 yr!) 8060 8239 . qul. ue to the
Throughput from detritus (g m~2 yr-) 7388 7221 multi-stanza nature of this group.
PP:SP ratio 4.98 4.97 The amount and composition of fish-

eries landings differed between the

and UTL groups was in carnivorous benthos, for
which biomass was almost 5 times larger in the 1994
model than in the 2018 model (Fig. 3). Examining
species trends within each functional group, we
found that Atlantic rock crab Cancer irroratus was
the species responsible for much of this biomass de-

2 models (Fig. 3). The recreational fish-
ery landings increased in the 2018 model, and
the proportions of functional groups in the catch
changed. In both models, the recreational fishery tar-
geted piscivorous and benthivorous fish. However,
the recreational fishery landed mainly piscivorous
fish in the 1994 model compared with landing mainly
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Fig. 3. Comparison of biomass, production/biomass (P/B), consumption/biomass (Q/B), ecotrophic efficiency (EE), and fish-

eries landings between the 1994 and 2018 Ecopath models. The horizontal line connecting the two points highlights the extent

to which the values differ from 1994 to 2018. Phytoplankton, benthic algae, and zooplankton are not included due to their
larger scales, but input values can be found in Table 1
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benthivorous fish in the 2018 model (Fig. 3). There
were no clear trends in piscivorous fish species land-
ings, while landings of all species within the benth-
ivorous fish functional group displayed increasing
trends, with the largest increase seen in scup (Fig. S6
in Supplement 3). In the 1994 model, commercial
landings were more than double what they were in
the 2018 model, with most of this change being attrib-
uted to a decrease in planktivorous fish harvest (Fig. 3).
Landings of both Atlantic herring and Atlantic men-
haden showed declining trends (Fig. S7 in Supplement
3). There was also a noticeable decrease in commercial
suspension feeding benthos harvest (Fig. 3).

3.3. Model sensitivity to external drivers

Using the 1994 Ecopath model as a starting point,
we used time series data to create a time-dynamic
Ecosim model. This model was run both with and
without forcing functions and adjusted vulnerabili-
ties, to determine the effect that these parameters
have on model fit. We found that forced fishing
mortality (F), forced phytoplankton biomass, and
adjusted vulnerabilities all had large impacts on
model fit, while forced cultured shellfish biomass
did not (Table 4). All groups benefitted from the
inclusion of these parameters, except gelatinous
zooplankton, which had a lower SS when no forcing
functions and vulnerability adjustments were used.
When gelatinous zooplankton were excluded, the
total SS decreased by over 50 % through the use of
forcing functions and vulnerability adjustments. The
SS for piscivorous fish showed particular improve-
ment (89% decrease) when forcing functions were
used and vulnerabilities were changed, as did SS
for benthivorous fish (53 % decrease) and carnivo-
rous benthos (48 % decrease).

3.4. Projections

The fitted Ecosim model had the best fits for pisciv-
orous fish and benthivorous fish, with poorer fits for
planktivorous fish, large squid, carnivorous benthos,
and small squid (Fig. 4). The model failed to capture
the dynamics of gelatinous zooplankton (Fig. 4). The
remainder of the functional groups did not have bio-
mass time series data to compare to the model pro-
jections (Fig. S8 in Supplement 3). We projected the
Ecosim model until 2018. The 2018 values predicted
by this Ecosim model were compared to the empiri-
cal 2018 Ecopath model inputs to assess the similarity
of these 2 sets of values. The Ecosim model predicted
the correct direction of change for the biomass for all
mid- and UTL groups (with the exception of seabirds)
and had the best predictions of planktivorous fish
(scaled difference = 0.002) and benthivorous fish bio-
mass (scaled difference = 0.032) (Table 5). The model
did not, however, predict the correct direction of
change for gelatinous zooplankton biomass (Table 5).
The difference between the biomass projections and
2018 input values varied across groups, with the
largest difference seen in gelatinous zooplankton
(scaled difference = 0.886) and carnivorous benthos
(scaled difference = 0.758) (Table 9).

4. DISCUSSION

4.1. Insights into the Narragansett Bay
food web and ecosystem

Our models showed strong benthic-pelagic cou-
pling in Narragansett Bay. In the 2018 model, EE was
lower for zooplankton, deposit feeding benthos, and
suspension feeding benthos, meaning there were
higher levels of other mortality in the model. This

Table 4. Sum of squares values produced for each functional group by the inclusion of each forcing function (FF): phytoplank-
ton (phyto.), fishing mortality (F), and cultured shellfish (CS)

No FF  Phytoplankton F CS Phyto. / Phyto. /F/CS+ % Change from
F/CS vulnerabilties without FF
Benthivorous fish 9.92 5.10 13.33 9.92 5.59 4.66 -53.00
Piscivorous fish 26.56 11.28 6.21 26.56 3.95 2.77 -89.55
Planktivorous fish 8.53 11.16 7.93 8.53 11.75 7.94 —6.97
Carnivorous benthos 18.67 29.75 11.70  18.67 21.10 9.74 -47.83
Small squid 22.05 19.45 16.46  22.06 14.49 12.63 —42.74
Large squid 11.72 11.82 9.57 11.73 9.62 8.05 -31.34
Gelatinous zooplankton 76.39 91.64 74.32 76.39 89.69 100.64 +31.74
Total 173.85 180.21 139.51 173.86 156.21 146.43 -15.77
Total (no gel. zooplankton)  97.46 88.57 65.20 97.47 66.52 45.79 -53.02
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sizable proportion of energy that came from detritus

could denote heightened system resilience in the face
of climate change (Moore et al. 2004). Rising temper-
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could indicate that more energy is being recycled or
exported in the current Narragansett Bay food web

than in 1994. Slightly more energy in the system

came from PP than detritus in both models; however,
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Table 5. Comparison of the Ecosim 2018 biomass (g m2) projections with the biomass inputs to the 2018 model. 2018 Projec-
tion denotes the value predicted by the Ecosim model for the year 2018. Scaled difference was calculated as (Projection—
2018 input) / 2018 input. NA: Not applicable

Functional group 1994 input 2018 projection 2018 input Scaled difference Correct direction
of change?

Detritus 3.866 8.183 4.522 0.447 Yes
Phytoplankton 22.982 Forcing 18.811 NA NA (forcing function)
Benthic algae 30.795 31.871 30.795 0.034 NA (no new data)
Zooplankton 7.125 7.131 8.3891 -0.176 Yes
Gelatinous zooplankton 42.357 76.822 8.737 0.886 No

Deposit feeding benthos 70.125 96.435 70.125 0.273 NA (no new data)
Suspension feeding benthos 26.76 32.847 26.76 0.185 NA (no new data)
Cultured shellfish 0.014 Forcing 0.153 NA NA (forcing function)
Carnivorous benthos 15.906 13.940 3.368 0.758 Yes

Small squid 0.461 0.803 1.201 -0.496 Yes

Large squid 0.643 0.944 1.022 -0.083 Yes
Planktivorous fish 12.304 18.458 18.423 0.002 Yes
Benthivorous fish 9.225 13.716 13.277 0.032 Yes
Piscivorous fish 2.081 6.784 3.805 0.439 Yes
Seabirds 0.043 0.050 0.040 0.200 No

atures and acidification can increase primary pro-
ducer biomass, but this biomass is converted to detri-
tus rather than UTLs (Ullah et al. 2018). This pathway
reduces the energy flow to UTLs and constrains pro-
duction to the base of the food web, contributing to a
reliance on recycling via the microbial loop (Monaco
& Ulanowicz 1997). Thus, Narragansett Bay may be a
more stable food web under changing environmental
conditions than other estuaries with weaker ben-
thic—pelagic coupling (e.g. Great South Bay, NY)
(Nuttall et al. 2011).

By comparing our results to other estuarine mod-
els, we see that the system-level indicators of our
model fall within the range of other estuaries. In
our model, total biomass, production, consumption,
respiration, and throughput are lower than those
found in models of Delaware Bay (Frisk et al. 2011)
and the Vellar Estuary, India (Murugan et al. 2012),
which are larger and warmer systems than Narra-
gansett Bay. These same measures are higher than
those in models of Seine Bay (Tecchio et al. 2015)
and the Bay of Mont Saint Michel, France (Arbach
Leloup et al. 2008). While these 2 estuaries are also
larger than Narragansett Bay, they experience less
fishing pressure, which may result in lower esti-
mated production. The comparability of our sys-
tem-level indicators to other estuaries indicates that
our model is a reasonable snapshot of Narragansett
Bay.

In order to achieve balanced models, the diet matri-
ces were slightly adjusted. For example, predation

pressure from several groups (e.g. benthivorous fish,
piscivorous fish, carnivorous benthos, and squid) was
shifted in small amounts away from carnivorous ben-
thos, planktivorous fish, and squid in the 2018 model
and applied to other groups that had become more
abundant in this time period. These adjustments were
made due to uncertainty surrounding the diets, as
well as potential diet flexibility in predators. Demersal
fishes and crustaceans in the Chesapeake Bay have
been shown to adapt their diets in the face of environ-
mental change (Pihl et al. 1992). Larger piscivorous
fishes, like striped bass and bluefish, have also been
shown to exhibit plasticity in their diet (Nobriga &
Feyrer 2008). Additionally, Szczepanski (2013) sug-
gested that benthivorous fishes in Narragansett Bay
are opportunistic or generalist feeders. It seems plau-
sible that predators in Narragansett Bay have shifted
their diets based on changing prey availability, but
we would require diet studies from different time
points to confirm this hypothesis.

While the biomasses of most mid- and UTL groups
increased over the past 25 yr due to the growing
abundance of warm-water species, this was not the
case for carnivorous benthos. In Narragansett Bay,
the high levels of carnivorous benthos seen in the
1994 model resulted from a documented expansion
of the invertebrate populations after the decline of
cold-water fish (Collie et al. 2008), which pre-dated
our model. The years used for biomass in the 1994
model coincided with the peak of this expansion. The
subsequent decline of carnivorous benthos, primarily
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driven by Atlantic rock crab, could be in part due to
the combination of continued commercial harvest
and increasing water temperature. In Chesapeake
Bay, commercial harvest of the blue crab Callinectes
sapidus, in combination with environmental degra-
dation, has led to a reduction in its spawning stock,
recruitment, larval abundance, and mean size (Abbe
2002, Lipcius & Stockhausen 2002, Zohar et al. 2008).
Blue crabs have also been found to mature at smaller
sizes, and have decreased fecundity, with increasing
water temperature (Fisher 1999, Hines et al. 2010). It
is possible that the carnivorous benthos in Narragan-
sett Bay are also susceptible to these same pressures.

The inclusion of both top-down and bottom-up
forcing functions in our model improved our model
fits, indicating the importance of both processes for
model prediction. Incorporating the top-down
driver, fishing pressure (as fishing mortality, F) led
to more precise model fits, especially for piscivorous
fish and carnivorous benthos, suggesting that these
fisheries are an important driver of ecosystem
dynamics in Narragansett Bay. In addition to the
changes in the fisheries, there was also evidence of
bottom-up forcing. During the fitting of the model,
the trend of forced phytoplankton biomass heavily
influenced the model dynamics of some functional
groups, with benthivorous and piscivorous fishes
being particularly sensitive. This sensitivity indi-
cates that phytoplankton are also an important
driver in our modeled system, and by including
them as a forcing function, we have adequately rep-
resented both top-down and bottom-up drivers of
change. Cultured shellfish did not seem to be a
main driver of biomass trends in our model. Addi-
tionally, adjusting vulnerabilities played an impor-
tant role in improving model fits. Gelatinous zoo-
plankton was the clear exception to this pattern, as
the model was unable to capture its trends under
any combination of forcing functions and vulnera-
bilities. The dynamics of this group are difficult to
capture because of the episodic nature of the
blooms. Historically, the blooms occurred in late
summer and fall, although as temperature has
increased in Narragansett Bay, the blooms have
shifted earlier into the spring (Sullivan et al. 2001).
However, when forced by the 2 main drivers (F and
phytoplankton), the model was able to predict the
correct direction of changes for all fishes and fished
invertebrates. This leads us to believe that our
Ecosim model is a good tool to look at biomass
trends, particularly for those species groups occupy-
ing trophic levels of 3 and above in Narragansett
Bay.

4.2. Future research directions

As stated earlier, although other food web models
of Narragansett Bay have been created, our model
is best suited for future research addressing EBM-
related questions for the following reasons. There are
some similarities between the Ecopath model of
Byron et al. (2011) and ours, such as the use of some
of the same data sources for fish and invertebrate
species biomass (i.e. the RI DEM and URI GSO
bottom trawls). There are also some consistencies in
the chosen functional groups, such as planktivorous
fish, suspension and deposit feeding benthos, and
carnivorous benthos. Our model, however, diverges
from that of Byron et al. (2011) in several ways. We
have updated production by calculating a unique P/B
value for each species, based on natural mortality
from the literature and fishing mortality specific to
Narragansett Bay. Consumption values were also de-
rived from the best available literature rather than
calculated by Ecopath. Unlike the model of Byron et
al. (2011), we kept functional groups like squid and
ctenophores, as well as piscivorous and benthivorous
fish, separate because they consume very different
assemblages of organisms and exhibit different pop-
ulation dynamics. By separating piscivorous and ben-
thivorous fish groups, we have isolated how the
recreational landings have shifted from one to the
other, which is an important dynamic in Narragansett
Bay that has not been published before. Lastly, we
have made our model time-dynamic through the ap-
plication of Ecosim, which had not been previously
done for Narragansett Bay. Employing Ecosim pres-
ents a way to explore a variety of EBM-related ques-
tions that are not possible with a static Ecopath
model, such as quantifying ecosystem change over
time. This has made our model more amenable to a
wide array of applications that simulate changes into
the future.

Evaluating specific management strategies was not
within this scope of this study, which aimed to create
and validate a model that could be useful for man-
agement-focused questions. In the future, one possi-
ble use of this model could be exploring tradeoffs be-
tween the commercial and recreational fishing sectors
of Narragansett Bay. As shown in our model, these
fisheries target species that interact as predator and
prey. Using our Ecosim model, one could change the
amount harvested by a fishery and study the re-
sulting biomass that remains available for the other
fishery. The extent to which the harvest of one fish-
ery influences another could indicate how dependent
these fisheries are on each other, and thus whether
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they should be managed in conjunction. Another
possible use of this model would be to study bottom-
up impacts, such as how increased or decreased phyto-
plankton (as a proxy for nutrients) could change the
ecosystem over time. This may be of interest to man-
agers given the history of hypoxia in Narragansett
Bay (Melrose et al. 2007). Additionally, rising tem-
peratures may alter the physiological rates (i.e. pro-
duction, consumption, and metabolism) of many spe-
cies (McKenzie et al. 2016), which could be explored
in our model if attempting to predict how the system
may evolve under climate change. Simulating these
types of scenarios could be useful for successful
adaptive management in a changing ecosystem like
Narragansett Bay.

A strategic use of ecosystem models is that by
synthesizing available data and revealing important
gaps, they allow researchers to provide direction and
prioritization for future research and ecosystem mon-
itoring activities. For example, a good area of future
fieldwork would be to estimate modern day biomass
values for deposit and suspension feeding benthos in
Narragansett Bay, and to update the 2018 model
accordingly. It is likely that suspension feeding ben-
thos biomass would be higher than it was in the
1990s due to increasing restoration work (Griffin
2016) and decreasing commercial fishing pressure.
These data would enable us to analyze the direction
of change for these groups, for which time series data
are currently not available. Incorporating seasonal
dynamics, rather than our current annual time-step,
could allow the model to capture changing residency
times of migratory species and improve projections,
particularly of the bloom groups like gelatinous
zooplankton. A more recent zooplankton time series
would also be beneficial for our 2018 model, given
that there are several factors in the bay that may
have influenced zooplankton biomass. For example,
both menhaden (Durbin & Durbin 1998) and cteno-
phores (Deason 1982, Deason & Smayda 1982) exert
significant control over zooplankton populations. Fi-
nally, had species-specific biomass data been avail-
able before 1994, it would have been interesting to
create a mid-1900s model containing higher biomas-
ses of cold-water species that are no longer preva-
lent, such as cunner Tautogolabrus adspersus, long-
horn sculpin Myoxocephalus octodecemspinosus,
northern searobin, winter flounder, and silver hake
Merluccius bilinearis (Collie et al. 2008), and explore
if Ecosim could predict the declines that occurred.
Given that this cold-water regime occurring earlier
in the century represented a distinctly different eco-
system state, it would likely have been more difficult

for the model to predict these temperature-driven
biomass trends.

5. CONCLUSIONS

The precision of Ecosim predictions is likely model-
and system-dependent (Christensen & Walters 2004,
Forrest et al. 2015). Our model was enhanced by the
comparison of an Ecosim projection with present-day
values that cover a 25 yr time period in Narragansett
Bay. We have confidence in the trend predictions,
particularly for the UTL groups in our Narragansett
Bay model. However, these values and predictions
should not be assumed to be directly applicable for
models of other estuaries. Time series data were lim-
ited for some lower and mid-trophic levels, which is
true of many coastal and estuarine ecosystems, and
thus increased the variability of prediction in these
groups. Even so, where data were available, such as
for gelatinous zooplankton, the projected dynamics
did not agree well with the data. Despite this, our
model was precise in its prediction of patterns in the
UTLs, including trends that have been quite pro-
nounced in this rapidly changing estuarine ecosys-
tem. Thus, our ecosystem food web model of Nar-
ragansett Bay is general and thorough enough to
address a number of questions in support of EBM,
such as studying food web responses to bottom-up
drivers including nutrients and temperature as well
as top-down impacts such as changing fisheries and
top predator abundance levels through time.
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