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Bridging particle deformability and collective response in soft solids
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Soft, amorphous solids such as tissues, foams, and emulsions are composed of deformable particles. However,
the effect of single-particle deformability on the collective behavior of soft solids is still poorly understood.
We perform numerical simulations of two-dimensional jammed packings of explicitly deformable particles to
study the mechanical response of model soft solids. We find that jammed packings of deformable particles with
excess shape degrees of freedom possess low-frequency quartic vibrational modes that stabilize the packings
even though they possess fewer interparticle contacts than the nominal isostatic value. Adding intraparticle
constraints can rigidify the particles, but these particles undergo a buckling transition and gain an effective
shape degree of freedom when their preferred perimeter is above a threshold value. We find that the mechanical
response of jammed packings of deformable particles with shape degrees of freedom differs significantly from
that of jammed packings of rigid-shape particles, which emphasizes the importance of particle deformability in
modeling soft solids.
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I. INTRODUCTION

All soft, athermal solids deform in response to applied
stress, yet much of our understanding of these systems relies
on computational models using particles with fixed shapes
[1,2]. While extensive work has focused on the effect of
varying soft interparticle interactions, less attention has been
placed on how intraparticle degrees of freedom affect collec-
tive behavior. Foams [3,4], emulsions [5,6], and a wide array
of living tissues [7–23] are composed of deformable objects.
The complexity and variety of the shape degrees of freedom
across these systems emphasizes the importance of inves-
tigating how single-particle deformability affects collective
properties of soft solids, such as rigidity and linear response.

Athermal systems composed of soft particles form rigid
solids at the jamming transition when all nontrivial de-
formations cost energy [24]. If the particles are spherical,
frictionless, and purely repulsive, then it is well known that
jamming occurs at an isostatic point; mechanically stable
configurations at jamming onset in periodic boundary con-
ditions with Ndof degrees of freedom and Nc interparticle
contacts satisfy Ndof − Nc = d − 1 [25]. This observation, a
consequence of Maxwell-Calladine constraint counting [26],
has been used to rationalize the many anomalous mechanical
and vibrational properties of jammed solids [27,28]. However,
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particles with nonspherical shapes typically jam with more de-
grees of freedom than interparticle contacts. These hypostatic
packings gain mechanical stability from higher-order terms in
the Taylor expansion of the potential energy [29–33]. Higher-
order stability has been observed in jammed packings of a
variety of nonspherical particles [32,33] and even in packings
of “breathing” particles that contain size degrees of freedom
[34]. Higher-order constraints directly impact the vibrational
spectrum [31,34], shear response [27], and the glass transition
at finite temperature [35].

Recent work [36] has proposed that such higher-order
rigidity is a generic feature of hypostatic systems with suf-
ficient prestress. This phenomenon has been used to explain
the rigidity transition in Vertex models of confluent tissues
[37,38], which can be viewed as dense packings of deformable
polygonal cells that are constrained to be confluent. These
results suggest that jammed packings of deformable particles
might behave similarly, i.e., possess higher-order stability and
mechanical and vibrational properties that diverge from those
for jammed packings of frictionless, spherical particles. How-
ever, are jammed packings of deformable particles identical
to those of nonspherical particles such as ellipses? Or does
particle deformability lead to fundamentally different me-
chanical and vibrational response? And how do the properties
of jammed packings change as the particles vary from highly
deformable to completely rigid?

In this article, we study the collective vibrational and
mechanical properties of jammed solids composed of par-
ticles with varying degrees of deformability. In Sec. II, we
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introduce a model of deformable particles. We define de-
formability through the single-particle vibrational spectra and
show that the model can describe truly deformable and rigid-
shape particles, as well as quasi-deformable particles with
characteristics between the two extremes. In Sec. III, we in-
vestigate the rigidity, vibrational modes, and shear response
in jammed solids composed of deformable particles. Our
results emphasize that (a) packings of deformable particles
in the rigid-shape-particle limit recover the properties found
for jammed packings of soft spherical particles, but that
(b) packings of truly deformable particles do not possess
the same vibrational and mechanical properties as those for
jammed packings of soft spherical particles. In Sec. IV, we
conclude with a discussion of the applicability of our results to
glassy solids at finite temperature and to several experimental
systems. We also include four appendices, which detail buck-
ling in single particles with bending energy (Appendix A),
counting effective constraints using the dynamical matrix
(Appendix B), system-size dependence of the dynamical
matrix and shear modulus (Appendix C), and identification
of the collective shape degrees of freedom (Appendix D).

II. METHODS

Systems of deformable particles in two dimensions are
modeled by N distinct polygons, each with nμ vertices with
positions �riμ for i = 1, ..., nμ and μ = 1, ...,N . Each polygon
has an area aμ and perimeter pμ = ∑nμ

i=1 liμ, where liμ is the
edge joining vertex i and i + 1 on polygon μ. In previous work
[39], we studied the deformable polygon (DP) energy,

UDP = εa
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where Uint is the potential energy between interacting
particles, and εa and εl are energies controlling area and
perimeter fluctuations about the preferred areas a0μ and edge
lengths l0μ, respectively. Interactions between vertices i and j
on cells μ and ν are governed by the pair potential v, which
we assume depends only on the distance between two vertices,
rμν
i j = |�riμ − �r jν |. We treat each vertex as a repulsive soft

disk, where
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σμν = (l0μ + l0ν )/2, each vertex has diameter l0μ, εc controls
the strength of the interaction, and � is the Heaviside step
function to enforce purely repulsive interactions. The total in-
teraction energy is therefore Uint = ∑

ν,μ

∑nμ

i=1

∑nν

j=1 v(rμν
i j ),

though we do not track overlaps between vertices i and i + 1
and i and i − 1 on the same particle. We measure lengths in
units of the square root of the minimum preferred area,

√
a0,

energies in units of εa, and times in units of τ = √
a0/εa,

where all vertex masses have been set to 1. The dimen-
sionless preferred shape parameter A0μ = (nμl0μ)2/(4πa0μ)
measures the amount of excess perimeter above a regular
polygon with area a0μ and thus controls particle deformabil-
ity [39]. For the DP model, particle shapes depend only on
Kl = εl/εa, Kc = εc/εa, and A0μ.

FIG. 1. Single-particle vibrational spectra describe shape
degrees of freedom. Eigenvalues of the single-particle dynamical
matrix λm for truly deformable particles (DP, top) and deformable
particles with bending constraints (DPb, bottom) with n = 24
vertices. Symbols correspond to values of the preferred shape
parameter A0, and An = n tan(π/n)/π is the shape parameter of
a regular n-gon. The vertical line at index i = 24 (i = 4) in the
top (bottom) panel correspond to the crossover between zero and
nonzero eigenvalues. Energy-minimized shapes are drawn in the
insets, with A0 increasing from left to right, and the curvature
vectors �κi defined in Eq. (3) are drawn on the buckled DPb particle.
In both panels, Kl = 1, and Kb = 10−2 in the bottom panel.

In Eq. (1), we see that the shape of a single DP particle is
constrained by n + 1 terms given n vertices, but each particle
contains 2n degrees of freedom. By constraint counting, we
expect 2n − (n + 1) = n − 1 zero energy modes. While each
particle contains two translational and one rotational degree
of freedom that cannot be constrained by internal forces, DP
particles still contain n − 4 nontrivial zero modes. In this
sense, DP particles are truly deformable and can change shape
with zero energy cost. Example energy-minimized DP parti-
cles are shown in the top inset to Fig. 1.

To rigidify single DP particles, we add n bending
constraints along the particle perimeter [39],

Ub = UDP + kb
2

n∑
i=1

�κ2
i , �κi = �li − �li−1

l2
0

. (3)

Equation (3) has the additional parameter Kb = kb/(εal2
0 ),

which determines the energy cost of bending the particle
perimeter. We refer to particles with this additional bending
energy term as DPb particles.

In addition to single-particle properties, we also study con-
figurations of multiple deformable particles near the onset
of jamming. We prepare jammed packings of N bidisperse
(50:50 by number) deformable particles in square cells with
side length L and periodic boundary conditions. Small (large)
particles are given nμ = nS (nL) vertices with segment lengths
l0μ chosen such that A0μ/An is identical for each particle,
where An is the shape parameter of a regular n-gon. Therefore,
when referring to the shape parameter chosen for a configu-
ration of deformable particles, we will use A0 to mean the
ratio of A0/An for a particle with a given number of vertices.
We choose nL to be the nearest integer to 1.4nS to enforce
an approximate 1.4 large-to-small size ratio to avoid crystal-
lization and phase separation [40]. Likewise, large particles
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are given preferred areas a0μ = (1.4)2a0. To create jammed
packings, we randomly place particles in the simulation cell
at low packing fraction φ and isotropically compress the
system by increasing the particle size. Compression steps
are followed by minimization of the total potential energy
U using FIRE. We take configurations as sufficiently near
an energy minimum when the total root-mean-square force
<10−12. We monitor jamming onset using the virial pressure
P = (�xx + �yy)/2, where the virial stress is

�ξξ ′ = εcL
−2

∑
ν �=μ

nμ∑
i=1

nν∑
j=1

(
1 − rμν

i j

σμν

) rμν
i j,ξ r

μν

i j,ξ ′

rμν
i j σμν

. (4)

rμν
i j,ξ is the ξ component of the vector separating vertex i on

cell μ and vertex j on cell ν and ξ = x or y. We identify
jamming onset, with packing fraction φJ , when the pressure
10−7 < P < 2 × 10−7. We have confirmed that the results
presented below do not depend on the pressure threshold as
long as it is sufficiently small. Throughout this work, we will
use Kl = Kc = 1 unless otherwise stated.

III. RESULTS

A. Rigidity

We first investigate the rigidity of single DP and DPb
particles by normal mode analysis. Single-particle normal
modes are eigenvectors of the dynamical matrix M, with
block elements defined by Mi j = ∂2U/∂�ri�r j . In Fig. 1, we
plot the normal mode eigenvalues λm for DP and DPb particles
with n = 24 vertices and varying preferred shape parame-
ters A0. We find DP particles have n − 1 near-zero modes
(� 10−15) when A0 > 1, as expected from constraint count-
ing. Interestingly, the DP particle with A0 = 1 possess n − 3
low frequency modes significantly above the noise floor. Al-
though the particle shape is underconstrained, particles with
A0 = 1 cannot deform without increasing their perimeter-
to-area ratio. These DP particles therefore are stabilized by
prestress, a phenomenon found in underconstrained tensegrity
structures [26] and disordered spring networks [36].

As DPb particles contain n additional constraints, we
expect them to behave as rigid-shape particles (such as fric-
tionless soft disks or ellipses) where any shape deformation
costs energy. In Fig. 1, we find that there are only 3 near-zero
modes, corresponding to the trivial zero modes, for DPb parti-
cles with sufficiently small preferred shape parameter and that
the particles energy-minimize to regular polygons. However,
when A0 = 1.1, the DP particle is “buckled” with an elliptical
shape and an additional low-frequency mode λm,4 ≈ 10−10.

In Appendix A, we show that the DPb model contains a
buckling transition where energy-minimized shapes elongate
from regular polygons and the first nontrivial normal mode
eigenvalue λm,4 drops from ∼Kb to near zero. The transition
point, A∗

0, varies for different Kb, but the behavior after buck-
ling is similar: λm,4 rises from the noise floor with increasing
A0, and particles increasingly elongate. The small value of
λm,4 after buckling suggests that buckled DPb particles gain
an extra degree of freedom even though the number of con-
straints remains constant, a feature reminiscent of the rigidity

FIG. 2. Deformable particles do not typically jam at isostaticity.
(a) Number of missing contacts per particle m/N in packings of N =
64 DP particles with nS = 16 (inset, nS = 24) vs number of quartic
modes per particle Nq/N . Black solid line gives m = Nq, and colors
represent shape parameter values from A0 = 1.0001 to 1.24, sorted
from low (blue) to high (red) values. (b) Missing contacts per particle
m/N , where now m = 3N ′ − 1 − Nvv for a system with N ′ nonrattler
particles, in packings of DPb particles plotted vs δA0/(A∗

0 − 1).
A∗

0 is the particular buckling shape parameter for a given set of
parameters, and δA0 = A0 − 1. Colors represent Kb (sorted from
blue to green), spanning Kb = 0.005 to 0.05. The filled symbols
are for nS = 16, while white symbols are for nS = 24, and shapes
represent different system sizes: N = 16 (circles), 32 (squares), and
64 (stars). The inset shows m = 4N ′ − 1 − Nvv for jammed packings
of N = 64 buckled DPb particles with N ′ nonrattler particles, and
Ñq is the number of apparent higher-order modes inferred by the
heuristic counting described in the main text. Shape parameters from
A0 = 1.04 to 1.12 are shown, and darker color signifies probability
density as denoted by the colorbar. The black line gives m = Ñq.

transition in vertex models of confluent tissues [36,37] and
topological metamaterials [41,42].

We then investigate rigidity in jammed packings of DP
and DPb particles by calculating the collective vibrational
response. In a jammed packing of N ′ nonrattler DP particles
with n vertices per particle on average, there are 2N ′n degrees
of freedom, N ′(n + 1) shape constraints and Nvv vertex-vertex
contacts to constrain the shape degrees of freedom. Isostatic-
ity would dictate Nvv = N ′(n − 1) − 1, but in Fig. 2(a) we
show that DP particles at jamming onset are hypostatic and
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seemingly missing the requisite number of interparticle con-
tacts for jamming. The number of missing contacts for
jammed DP particles is m = N ′(n − 1) − 1 − Nvv.

Hypostaticity at jamming onset is often observed in pack-
ings of nonspherical particles [32]. Recent work has shown
that these systems are stabilized by higher-order quartic
modes of the potential energy [29,32,34]. In Appendix B, we
show that quartic modes can be identified by decomposing the
dynamical matrix M into the stiffness H and stress S matrices
[30,31]. As shown in Fig. 2(a), we find that the number of
missing contacts in jammed DP packings always matches the
number of quartic modes Nq across a wide range of shape
parameters.

As DPb particles with n vertices contain n additional
constraints, we expect them to behave similarly to packings
of rigid-shape bumpy particles that are known to be iso-
static at jamming [43]. Indeed, when the particles are regular
polygons, i.e., A0 < A∗

0, we show in Fig. 2(b) that these
packings are isostatic and the number of contacts Nvv equals
3N ′ − 1, the total number of contacts expected for an isostatic
packing of N ′ nonrattler particles, each with 3 degrees of
freedom. However, in Fig. 2(b) we show that near the buck-
ling transition A∗

0, packings gain contacts and appear to be
hyperstatic at jamming onset. Hyperstaticity at jamming onset
is extremely rare when using athermal protocols [44,45], so it
seems the “buckling mode” with low eigenvalue effectively
gives the DPb particles an extra degree of freedom, making
these packings actually hypostatic with Nvv < 4N ′ − 1.

One might expect to be able to count missing contacts
for packings of DPb particles by decomposing the dynami-
cal matrix M into H and S as we did for packings of DP
particles. However, we show in Appendix B that all non-
trivial eigenvalues of the stiffness matrix H are nonzero for
DPb packings and several orders of magnitude larger than
the eigenvalues of the dynamical matrix M. As discussed in
Ref. [36], the presence of positive eigenvalues of the stress
matrix S make counting missing constraints via the dynamical
matrix indeterminate. Despite this, we find some evidence of
missing contacts in DPb packings using a heuristic approach
detailed in Appendix B. Briefly, if a packing of DPb particles
is missing m = 4N ′ − 1 − Nvv contacts, we check (i) whether
there is a gap between the mth nontrivial eigenvalue λm of M
and λm+1, or (ii) if there is no apparent gap, wherether the mth
nontrivial mode has a significantly larger participation ratio
than mode m + 1. We show in the inset of Fig. 2(b) that the
heuristic counting largely identifies correctly the Ñq higher-
order modes that stabilize the missing contacts. However,
there are several cases where the counting fails, highlighting
the difficulty in determining rigidity in packings of DPb parti-
cles with negative prestress. Notably, most cases in which the
correct number of missing contacts could not be identified
in the dynamical matrix eigenvalue spectra or mode structure
(i.e., when m �= Ñq) occur at Ñq = 0. That is, whenever there
is a notable gap or change in eigenmode participation ratio, we
correctly count the number of missing contacts. We reserve a
more in-depth analysis of the edge cases where missing con-
tacts were not identified by M, as well as a predictive theory
for the missing contacts as a function of shape parameter, for
future work.

FIG. 3. Quartic modes and buckling strongly influence the
low-frequency behavior of the vibrational response. Vibrational den-
sity of states D(ω) at jamming onset for the DP and DPb models and
a range of shape parameters. (a) D(ω) for N = 64 jammed, bidis-
perse DP particles (nS = 16) with shape parameter 1.0001 � A0 �
1.20. (b) D(ω) for jammed packings of DPb particles (nS = 24)
with Kb = 10−2 and shape parameters 1.001 � A0 � 1.12. In panels
(a) and (b), curves are offset for clarity, the perimeter spring constant
Kl = 1, and the curve colors shown in the colorbar represent δA0 =
A0 − 1. (c, d) Characteristic frequencies ω0 (black), ω1 (blue), and
ω2 (red) as a function of δA0 for DP (left) and DPb particles (right).
The black and blue lines in (c) represent the scalings ∼δA−1/3

0 and
∼δA1/2

0 , respectively. Dots in panels (a) and (b) represent the location
of each characteristic frequency in D(ω).

B. Vibrational response

We next study the density of vibrational states D(ω) for
nontrivial vibrational modes with frequency ωi = √

λm,i. In
packings of DP particles, we observe three distinct bands of
vibrational response in Fig. 3(a) due to quartic modes (with
mean frequency ω0), midfrequency collective modes (consis-
tently the first N − 1 quadratic modes, with mean frequency
ω1), and high-frequency shape modes (with mean frequency
ω2). As shown in Appendix C, D(ω) and the characteristic fre-
quencies do not vary significantly with system size. A similar
three-band structure is found in the vibrational response of
jammed packings of rigid-shape nonspherical particles [32],
although for the DP packings, the second band of modes
corresponds to shape fluctuations at particle-particle inter-
faces rather than particle rotations. Additionally, as shown
in Fig. 3(c), we find the characteristic scaling ω0 ∼ δA−1/3

0 ,
indicating collective motion becomes less costly as parti-
cles become more deformable. We note this behavior differs
from jamming of frictionless nonspherical particles with rigid
shape [31,34], where ω0 ∼ A1/2

0 . We find approximate 1/2
scaling with shape parameter in the midfrequency band ω1,
although this exponent is ∼1 in packings of rigid-shape non-
spherical particles. The stiff shape mode band with mean
frequency ω2 does not vary with particle shape.

Previous studies have argued that driven and jammed amor-
phous solids can be described using spherical particles with
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FIG. 4. Collective shape degrees of freedom are important in
the vibrational response of jammed DP particles. Magnitude of
mode projection onto the shape degrees of freedom (S) versus the
eigenmode frequency ω of the dynamical matrix for N = 256 DP
packings with nS = 16 and A0 = 1.02 (circles), 1.06 (triangles), 1.1
(squares), 1.14 (diamonds), and 1.18 (asterisks). Inset: S(ω) for DP
packings with A0 = 1.02 at several packing fractions from φ = φJ

(blue circles) to 0.98 (red circles) in increments of 2 × 10−2.

soft interparticle potentials [1], where particle deformabil-
ity is modelled by large interparticle overlaps. However, the
deviation in D(ω) for packings of DP particles from that
for soft nonspherical particles suggests that explicit shape
change plays an important role in determining the vibrational
response of soft particles. We further investigate the effect of
shape change in the vibrational response by computing the
projection of each eigenmode onto collective particle transla-
tions (T ), rotations (S), and shape degrees of freedom (S), as
described in Appendix D. In Fig. 4, we show that even the
low-frequency modes of jammed DP particles have a signifi-
cant collective shape projection S across a wide range of shape
parameters (1.02 � A0 � 1.18). We find that S(ω) remains
>0 at the lowest frequencies even when the compression is
increased well above jamming onset. Explicit shape change
is therefore necessary to capture important features of driven
soft materials, such as flows of bubbles [4], droplets [46], and
emulsions [47,48].

We also computed D(ω) for jammed DPb particles as
shown in Fig. 3(b). These systems no longer have a distinct
band structure in D(ω), as there are no obvious quartic modes.
Here, we define ω1 as the mean of the first N − 1 modes after
the trivial zeros in analogy with the DP packings, and ω2 is the
mean of all other modes. For systems with A0 < A∗

0, D(ω)
is relatively unchanged as a function of A0. For packings
with buckled DPb particles (A0 > A∗

0), we observe a higher
density of low-frequency modes near the buckling transition
and a cusp in ω1 at A∗

0 as shown in Fig. 3(d). The abundance of
low-frequency modes is likely due to the sudden decrease in
the magnitude of the single-particle λm,4 mode at the buckling
transition (see Appendix A), and the appearance of modes that
can stabilize more than one degree of freedom.

The large density of low frequency modes at the buckling
transition for DPb particles raises an important question. Is
there a regime where DPb particles will behave as particles
with rigid shapes? Or are DPb particles quasideformable with

FIG. 5. The rigid-shape-particle limit exists for packings of DPb
particles when A0 < A∗

0. (a) Shape degrees of freedom per eigen-
mode, sorted from smallest to largest, in a packing of N = 16
DPb particles (shown in inset) with nS = 24, Kl = 1, Kb = 10−2,
and A0 = 1.04, which is above the buckling transition A∗

0 = 1.03.
Curves show changing the interaction parameter Kc from Kc = 1
(blue circles) to Kc = 10−5 (magenta left triangles) with intermediate
values spaced by a factor of 10. (b) Same as panel (a), but now
A0 = 1 and particles are regular polygons when energy minimized
(as shown in inset). Kc is now varied from Kc = 1 (blue circles) to
Kc = 10−4 (black asterisks). The symbols for intermediate values of
Kc are the same as in panel (a).

persistent non-rigid-shape behavior? To address this question,
we compute the collective shape degrees of freedom S in in-
dividual jammed packings of DPb particles in the rigid-shape
limit (Kc → 0). We show in Fig. 5(b) that nonbuckled DPb
particles (A0 < A∗

0) eventually reach the rigid-shape limit
(Kc � 10−4), where the first 3N eigenmodes correspond to
purely translational and rotational degrees of freedom and the
rest of the spectrum contains only shape degrees of freedom.
However, when particles buckle [i.e., A > A∗

0 in Fig. 5(a)], S
is nonzero for the first 3N eigenmodes for all values of Kc.
We conclude that DPb particles that remain regular polygons
are effectively rigid-shape particles, whereas buckled DPb
particles are quasideformable, and thus the shape degrees of
freedom play a key role in their vibrational response.

C. Shear response

To investigate the effect of particle deformability on bulk
mechanical properties, we computed the static shear mod-
ulus G for jammed packings of DP and DPb particles.
Packings were compressed to a given pressure P, sub-
jected to small, successive simple shear strain steps of size
�γ with Lees-Edwards boundary conditions [49], and the
system was energy-minimized after each step. We measure
G = −d�xy/dγ , where �xy is the virial shear stress. We
report G averaged over an ensemble of at least 500 configura-
tions. In Fig. 6, we show that, although DP packings contain
collective low-frequency quartic modes, they possess G > 0
at low pressure [29,39]. In Appendix C, we also show char-
acteristic N−1 scaling of G in the P → 0 limit [50]. We find
in Fig. 6(a) that G(P) for DP packings over of wide range of
A0 is well-approximated by the double-power-law functional
form [51] used to describe the shear response of packings of
soft frictionless spheres:

G = G0 + aPα

1 + cPα−β
, (5)
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FIG. 6. Shear response differs in particle models with increas-
ing deformability. (a) Static shear modulus G versus pressure P
for N = 256 DP packings (nS = 16) with A0 = 1.02 (circles), 1.06
(triangles), 1.1 (squares), 1.14 (diamonds), and 1.18 (asterisks),
and N = 256 DPb packings (nS = 16) with A0 = 1 (downward
triangles). The dashed lines are best fits to Eq. (5). The dash-dotted
line follows the scaling G ∼ P1/2. (b) Exponents α (triangles) and β

(circles) from Eq. (5) for the DP packings in panel (a) versus shape
parameter A0. Horizontal lines indicate α = 1.0 and β = 0.75.

where a and c are constants. G0 is the value in the P → 0
limit, the exponent α controls the low P response, and the
exponent β controls the high P response.

Values of α ≈ 1 and β ≈ 0.5 have been reported in
previous studies of jammed packings of frictionless spheri-
cal particles [24,50], frictional spherical particles [52], and
bumpy particles [43]. However, in Fig. 6(b), we find that the
large pressure scaling exponent β ≈ 0.75 for DP packings. In
Fig. 6(a), we show that β ≈ 0.5 for unbuckled DPb particles
with Kb = 10−2 and A0 = 1.04, although we do not observe
a plateau at low pressures. This result indicates that the me-
chanical response for regular polygon DPb particles (with
A0 < A∗

0) is similar to that for rigid-shape spherical particles.
Note also that G(P) for packings of DPb particles pos-

sesses an even smaller scaling exponent at high pressures
(P ∼ 10−2). At these pressures, particles are likely starting
to deform from their energy-minimized states to fill in their
surrounding Voronoi cell as the packing approaches conflu-
ence. However, to fully understand the root cause of these
scaling exponents, future work is needed to connect the be-
havior of single packings to the ensemble average. Prior work
on frictionless disks [51] showed that G decreases with P
for individual packings with fixed contact networks. Only
when the contact network changes does the shear modulus
increase, leading to a scaling of P1/2 when averaging over
an ensemble of many configurations with many different

contact changes. Understanding the power-law scaling of the
ensemble-averaged G(P) for deformable particles requires an
analysis of how deformable particles break contacts in re-
sponse to compression, as well as how the shear modulus
varies with pressure when the interparticle contact network
does not change [53].

IV. CONCLUSIONS

In this work, we have studied rigidity, the vibrational
density of states, and the mechanical response in ather-
mal, jammed solids composed of particles that can explicitly
change shape to varying degrees. We can vary particle de-
formability by studying the deformable polygon (DP) model,
where each particle has as many shape degrees of freedom
as it has vertices, and the effectively rigid-shape DPb model,
which includes bending energy. We also showed that DPb
particles can buckle by increasing the preferred shape param-
eter A0 above a characteristic value (A∗

0), which effectively
provides DPb particles with an additional degree of freedom.
When studying the rigidity of jammed packings of these par-
ticles, we find that DP and DPb particles typically do not jam
at a standard isostatic point. Packings of DP particles have
too few contacts for collective rigidity, but we find that there
are higher-order terms in the potential energy expansion (i.e.,
quartic modes) that stabilize the packings. Packings of DPb
particles below the buckling threshold jam at the expected
isostatic point for rigid-shape bumpy particles, but buckled
DPb particles jam with more contacts than expected and seem
to be hyperstatic. If we assume that buckled DPb particles
have an extra degree of freedom, however, these packings are
hypostatic just as in packings of DP particles. Although we
cannot reliably count missing contacts from the vibrational
spectra for buckled DPb packings, we show that a heuris-
tic counting criterion roughly validates the observation that
buckled DPb particles have higher-order rigidity.

Analyzing the vibrational spectra in more detail, we show
that the vibrational density of states D(ω) depends strongly
on particle deformability. In particular, we show that the
characteristic frequency of quartic modes for jammed DP
particles scales inversely with particle shape parameter, i.e.,
ω0 ∼ δA−1/3

0 . This result differs from other systems with three
vibrational bands, in particular jammed packings of ellipsoids
[31] and breathing particles with size degrees of freedom [34].
We also find that collective shape degrees of freedom S play
an important role in the low-frequency vibrational response
of DP particles across different shapes and with increas-
ing compression. We show that packings of regular-polygon
DPb particles in the rigid-shape-particle limit Kc → 0 do not
possess low-frequency collective shape degrees of freedom,
whereas S(ω) > 0 for all Kc for packings with buckled DPb
particles. We further show that G ∼ P3/4 over a wide range of
pressure for packings of DP particles for all shape parameters
studied, which deviates from the power-law scaling for pack-
ings of rigid-shape spherical particles. In contrast, packings of
regular-polygon DPb particles possess G ∼ P1/2 scaling.

In all, our results show that explicit particle deformability
qualitatively changes the linear response of soft solids. The
bulk of these findings can be tested in experiments, either
in noncontractile 2D monoloyers of epithelial cells (i.e., DP
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particles) or in soft, quasi-2D packings of hydrogel par-
ticles (i.e., regular-polygon DPb particles). The buckling
phenomenon observed for DPb particles cannot easily be
tested in an experiment, but we plan to carry out further theo-
retical studies of DPb buckling to gain a deeper understanding
of quasi-deformability. Nevertheless, this work lays the foun-
dation for understanding the vibrational and mechanical re-
sponse in glassy systems of deformable particles, such as hop-
per flows of emulsion droplets [47,48] and motile tissues [54].
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APPENDIX A: PARTICLE BUCKLING
WITH BENDING ENERGY

In this Appendix, we demonstrate buckling of DPb par-
ticles by increasing the preferred shape parameter A0. In
Fig. 7(a), we show that the first nontrivial mode of the single-
particle vibrational spectrum of DPb particles decreases by
several orders of magnitude at A∗

0, which depends on Kb.
In Fig. 7(b), we show that buckled particles transition from
regular polygons with the true shape parameter A = An to
elongated, ellipsoidal particles with A > An when A0 > A∗

0.
Note that occasionally, when sufficiently close to buckling,
λm,4 < 0, but |λm,4| is close to numerical precision. These re-
sults suggest that, sufficiently close to buckling, DPb particles
gain a degree of freedom and λm,4 ≈ 0. However, increas-
ing A0 further causes the eigenvalue to grow in magnitude.
While λm,4 remains significantly smaller than Kb, it is un-
clear whether DPb particles lose this degree of freedom at
higher A0.

APPENDIX B: HIGHER-ORDER CONSTRAINTS

In this Appendix, we discuss how to count effective
constraints in jammed packings of deformable particles by an-
alyzing the vibrational eigenmodes. In general, the vibrational
response of a packing of deformable particles is obtained by
calculating the dynamical matrix M evaluated at a point of
mechanical equilibrium,

Mi jμν = ∂2U

∂�r jν∂�riμ , (B1)

where �riμ = (xiμ, yiμ) is the coordinate vector of vertex i
on particle μ, and we bring the system to force balance
(∂U/∂�riμ = �0) before evaluating the matrix elements. Note
that Mi jμν is a d × d block matrix. Consider the DP energy
in Eq. (1) in the main text, where Ua, Ul , and Uc represent
the area, perimeter, and particle interaction contributions to
the total potential energy, respectively. We can define dy-

FIG. 7. Buckling in single DPb particles. (a) The first nontriv-
ial mode λm,4, scaled by the bending spring constant Kb, for DPb
particles with n = 24 vertices as a function of the deviatoric preferred
shape parameter δA0 = (A0 − An)/An and different Kb. Closed
symbols indicate λm,4 > 0, and open symbols indicate λm,4 < 0. Blue
colors represent smaller Kb, starting at Kb = 10−3, and green colors
represent larger Kb, ending with Kb = 2 × 10−1. In panels (a) and
(b), the x axis is scaled by δA∗

0 = (A∗
0 − An)/An. The inset shows

δA∗
0 vs Kb; A∗

0 is defined as the preferred shape parameter when
λm,4 < 10−8. (b) The true deviatoric shape parameter A = p2/4πa
(i.e., δA = (A − An)/An) of the buckled DPb particles as a function
of δA0. Colors are the same as in panel (a). The inset shows several
representative particle shapes for δA = 0, 0.01, 0.1, 0.3, and 0.6.
These shapes are the same for any Kb regardless of δA.

namical matrices for each term, e.g., Ml is perimeter energy
contribution to the dynamical matrix. Using the chain rule,
first derivatives of Ul with respect to the vertex coordinates
can be written as

∂Ul

∂�riμ =
N∑

α=1

nα∑
k=1

∂Ul

∂lkα

∂lkα
∂�riμ , (B2)

since the perimeter energy depends on vertex coordinates
through the edge length liμ = |�ri+1,μ − �riμ|. Note that this
applies to all terms in Eqs. (1) and (3) (e.g., Ua, Ub, and
Uc) that depend on the degrees of freedom through geometric
factors. The second derivatives have the following form:

∂2Ul

∂�r jν∂�riμ =
N∑

α=1

nα∑
k=1

∂

∂�r jν

(
∂Ul

∂lkα

∂lkα
∂�riμ

)

=
N∑

α=1

nα∑
k=1

(
∂2Ul

∂l2
kα

∂lkα
∂�r jν

∂lkα
∂�riμ + ∂Ul

∂lkα

∂2lkα
∂�r jν∂�riμ

)
.

(B3)
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The perimeter energy contribution to the dynamical matrix
can be decomposed as Ml = Hl − S l , where

Hl
i jμν =

N∑
α=1

nα∑
k=1

∂2Ul

∂l2
kα

∂lkα
∂�r jν

∂lkα
∂�riμ , (B4a)

S l
i jμν = −

N∑
α=1

nα∑
k=1

∂Ul

∂lkα

∂2lkα
∂�r jν∂�riμ (B4b)

are the “stiffness” and “stress” matrices, respectively [30,31].
The matrix Hl depends primarily on first derivatives of
geometric factors (e.g., liμ) with respect to vertex coordinates,
while the matrix S l depends primarily on first derivatives
of the potential energy. Note that the stress and stiffness
matrices of the entire potential energy can be computed by
summing contributions from corresponding matrices defined
by the different contributions to the potential energy, e.g.,
H = Ha + Hl + Hc is the sum of the area, perimeter, and
particle interaction energy contributions to H.

Prior work has shown that hypostatic systems like jammed
nonspherical particles [30,32,33] and underconstrained spring
networks [36] gain rigidity from higher-order terms in the po-
tential energy that can stabilize multiple degrees of freedom.
As noted in prior work [31], these higher-order constraints can
be seen as zero modes of the stiffness matrix H, but nonzero
modes of the dynamical matrix M. In Fig. 8(a), we find that
the number of missing contacts exactly equals the number of
stiffness matrix eigenvalues λh that are significantly smaller
than dynamical matrix eigenvalues λm. Since M = H − S,
we expect that small stiffness contribution means that M is
dominated by the stress matrix for these eigenvalues. Indeed,
in Fig. 8(a) we also show that we can tune the magnitude
of λm by maintaining a fixed contact network but increasing
the pressure. This pressure dependence of the low frequency
eigenvalues of the dynamical matrix is also observed in
packings of frictionless nonspherical particles [32].

In hypostatic DP packings, we find that the extra degrees
of freedom are constrained by so-called “quartic modes.”
Consider an energy-minimized configuration such that the
particle coordinates satisfy �R = �R0. Perturbations of order δ

are then written as �R = �R0 + δ�u, where �u is the direction of
the perturbation. The potential energy expanded about �R0 to
fourth order in the perturbation is

U ( �R) = U ( �R0) + δ
∂U

∂Ri
ui + δ2

2

∂2U

∂Ri∂Rj
uiu j

+ δ3

6

∂3U

∂Ri∂Rj∂Rk
uiu juk

+ δ4

24

∂4U

∂Ri∂Rj∂Rk∂Rl
uiu jukul + · · · , (B5)

where we sum over repeated indices, and all derivatives are
evaluated at �R0. The term linear in δ is 0 when the system
is at a potential energy minimum. If we choose �u to be the
kth orthonormal eigenvector of the dynamical matrix M, the
potential energy to second order in δ is U = U0 + 1

2λm,kδ
2.

However, in Fig. 8(b), we find that the potential energy scales
as U ∼ δ4, which is consistent with the observation that λm,k

are small, but the quartic terms are nonnegligible. Similar

FIG. 8. Missing contacts in jammed packings of DP particles
are stabilized by quartic modes. (a) Eigenvalues of the dynamical
(λm,i, circles) and stiffness (λh,i, crosses) matrices as a function of
eigenvalue index i for a configuration of N = 16 DP particles with
A0 = 1.02. λh,i do not depend on pressure, whereas λm,i do. We show
λm,i for pressures from P = 10−8 (blue) to 10−3 (green) separated by
factors of 10. The vertical line is placed at 2 + m. (b) Change in
potential energy �U = U −U0 for a system starting at an energy
minimum U0 for perturbations of size δ along the eigenmodes of the
dynamical matrix for the systems in panel (a). Color indicates mode
frequency, from blue (lowest) to red (highest). The dot-dashed line
represents �U ∼ δ4, whereas the dashed line represents �U ∼ δ2.
There is a one-to-one correspondence between the number of modes
with quartic δ-dependence in panel (b) and the pressure-dependent
modes that are much larger than the stiffness matrix eigenvalues in
panel (a).

behavior is observed in jammed packings of nonspherical
particles [29,31,32].

While we can easily identify the number of higher-order
contacts from the dynamical matrix eigenspectra for packings
of DP particles, the same is not true for packings of DPb
particles. In Fig. 9, we show that the stiffness matrix eigen-
values λh are larger than the dynamical matrix eigenvalues
λm for packings of buckled DPb particles. Given that buckled
DPb particles have an extra degree of freedom, we investigate
whether there is a signature in the eigenmodes with indices
below m = 4N ′ − 1 − Nvv, which corresponds to the number
of missing contacts in packings of N ′ nonrattler particles.

We develop the following heuristic for packings of DPb
particles: first we check if there is a gap of at least a factor
of 10 between the mth nontrivial eigenmode of the dynamical
matrix and the next mode, since there is a gap between quartic
and quadratic modes for packings of DP particles. If a gap in
the eigenspectra of the dynamical matrix is not present, then
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FIG. 9. Heuristic counting of missing constraints in packings
of buckled DPb particles relies on gaps in the vibrational spectra
and eigenmode participation ratios. (a) The first 50 eigenvalues of
the dynamical matrix (λm, black circles) and stiffness matrix (λh,
blue squares) for the jammed packings of N = 64 DPb particles
(A0 = 1.08 > A∗

0, Kb = 10−2) shown in the inset. In the inset, small
particles with nS = 24 vertices are drawn in red, and large particles
with nL = 34 vertices are drawn in blue. Open blue squares (closed
black circles) represent negative stiffness (dynamical) matrix eigen-
values. The vertical line drawn at index i = 6, which for this system
was 2 + m. Note that all systems considered here have no rattler
particles, so there are only 2 trivial zero modes. (b) The participation
ratio ρi from Eq. (B6) for each eigenmode of the packing in panel (a).
The vertical line is also drawn at i = 6. (c–f) Same as panels (a) and
(b), but for different jammed packings. Throughout, the vertical line
is drawn at 2 + m.

we calculate the participation ratio of each normal mode k,

ρk =
( ∑N

μ=1

∑nμ

i=1 | �Viμ,k|2
)2

N
∑N

μ=1

∑nμ

i=1 | �Viμ,k|4
, (B6)

where �Viμ,k is the displacement direction of the ith vertex on
the μth particle in mode k. If we observe a gap in the partici-
pation ratio of at least a factor of 10 between the mth nontrivial
mode and the next mode, we assume that we have identified
the m higher-order modes correctly. We use the participation
ratio gap because, in general, the participation ratio decreases
with increasing eigenmode frequency. However, for DP parti-
cles, the highest-frequency quartic mode is usually localized
whereas the lowest-frequency quadratic mode is delocalized.
If neither of these two conditions is satisfied, then we assume
that there are no higher-order modes and no missing contacts.
We emphasize that these thresholds are ad hoc, as the root
cause of higher-order stability in jammed packings of buckled
DPb particles is still an active area of research.

FIG. 10. System-size dependence of the density of states and
shear modulus. (a) Vibrational density of states D(ω) versus eigen-
mode frequency ω for jammed packings of bidisperse DP particles
with A0 = 1.08 from N = 16 to N = 512 with nS = 16. (b) Static
shear modulus G versus pressure P for the same systems in panel
(a). The inset shows G0 [i.e., G(P → 0)] versus system-size N . The
black solid line has the form G0 ∼ N−1.

In Fig. 9, we show the outcome of this heuristic counting
for several example configurations of N = 64 buckled DPb
particles at jamming onset. For example, in Figs. 9(a) and
9(b), we find that a gap at the mth nontrivial mode appears,
allowing us to identify these modes as higher-order con-
straints in analogy with packings of DP particles. We also can
correctly identify higher-order constraints using the participa-
tion ratio as shown in Figs. 9(c) and 9(d). However, we show
in Fig. 2(b) and in Figs. 9(e) and 9(f) that there are several
cases with missing contacts m > 0, but we cannot identify
the missing contacts by analyzing the eigenvalue spectra or
participation ratios. The fact that missing contacts cannot be
counted consistently underscores the difficulty in identifying
higher-order constraints in these jammed systems.

APPENDIX C: SYSTEM-SIZE DEPENDENCE OF THE
VIBRATIONAL DENSITY OF STATES

AND SHEAR MODULUS

In this Appendix, we investigate the system-size depen-
dence in the vibrational density of states D(ω) and static
shear modulus G of jammed packings of DP particles. In
Fig. 10(a), we show D(ω) for multiple system sizes spanning
N = 16 to N = 512 with nS = 16 for the preferred shape
parameter A0 = 1.08. We see little change in the structure of
D(ω) except for more low-frequency quartic modes for larger
system sizes, though this does not seem to change the peaks in
D(ω). We do however see system-size dependence in the static
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shear modulus as shown in Fig. 10(b) in the low-pressure
limit. At high pressures, G collapses across all system sizes
studied, but as P → 0 we show in the Fig. 10(b) inset that
G(P → 0) ∼ N−1, which has been observed in previous work
on deformable particles [39].

APPENDIX D: MODE DECOMPOSITION

In this Appendix, we will show in detail how to decompose
the eigenmodes of the dynamical matrix into contributions
from particle translation, rotation, and shape degrees of
freedom. We consider a packing of N deformable particles,
where each particle μ has a center of mass located at �cμ =
n−1

μ

∑nμ

i=1 �riμ. Let �V j be the unit vector corresponding to the
jth eigenmode of the dynamical matrix M in Cartesian coor-
dinates. Individual components of �V j are arranged such that
the components from 2nμ−1 to 2nμ are the nμ x coordinates
followed by the nμ y coordinates for the μth deformable
particle. We can write three unit vectors to describe translation
(ûμ,x, ûμ,y) and rotation (ûμ,r) about the center of mass of the
μth particle as follows:

ûμ,x = �uμ,x

|�uμ,x| , �uμ,x

= (0, . . . , 0︸ ︷︷ ︸
1 to (μ − 1)

, 1, . . . , 1︸ ︷︷ ︸
μth particle x

, 0, . . . , 0︸ ︷︷ ︸
μth particle y

, 0, . . . , 0︸ ︷︷ ︸
(μ+1) to N

), (D1)

ûμ,y = �uμ,y

|�uμ,y| , �uμ,y

= ( 0, . . . , 0︸ ︷︷ ︸
1 to (μ − 1)

, 0, . . . , 0︸ ︷︷ ︸
μth particle x

, 1, . . . , 1︸ ︷︷ ︸
μth particle y

, 0, . . . , 0︸ ︷︷ ︸
(μ + 1) to N

), (D2)

ûμ,r = �uμ,r

|�uμ,r | , �uμ,r

= ( 0, . . . , 0︸ ︷︷ ︸
1 to (μ − 1)

,−(y1μ − cμ,y), . . . ,−(ynμμ − cμ,y)︸ ︷︷ ︸
μth particle x

x1μ − cμ,x, . . . , xnμμ − cμ,x︸ ︷︷ ︸
μth particle y

, 0, . . . , 0︸ ︷︷ ︸
(μ + 1) to N

). (D3)

By defining the coefficients,

pj
μ,x = �V j · ûμ,x, (D4)

pj
μ,y = �V j · ûμ,y, (D5)

pj
μ,r = �V j · ûμ,r, (D6)

we can rewrite the eigenvector �V j as

�V j =
N∑

μ=1

pj
μ,xûμ,x +

N∑
μ=1

pj
μ,yûμ,y +

N∑
μ=1

pj
μ,r ûμ,r + �V j

s ,

(D7)

where �V j
s is the vector that remains after subtracting the

particle translations and rotation out of �Vj . By applying this
decomposition, we can express each eigenmode as the sum
of particle translations, rotation, and shape deformations.
We show an example of an eigenmode decomposition in
Fig. 11(a) for a packing of DP particles.

FIG. 11. Eigenvectors of the dynamical matrix can be decom-
posed into translational, rotational, and shape degrees of freedom.
(a) Example of an eigenmode of the dynamical matrix (upper left)
with frequency ω ≈ 1.2 × 10−4 for a packing of N = 16 DP particles
(nS = 24) with preferred shape parameter A0 = 1.04, and its decom-
position into translation (upper right), rotation (lower left), and shape
(lower right) degrees of freedom. The vectors are rescaled for clarity.
(b) Contributions from translation T (blue circles), rotation R (red
triangles), and shape S (black squares) degrees of freedom for each
eigenmode as a function of the eigenmode frequency ω for the DP
particle packing in panel (a).

With these coefficients, we can define the fraction of
the translational (T j) and rotational (Rj) content in the jth
eigenmode of the dynamical matrix as

T j =
N∑

μ=1

[(
pj

μ,x

)2 + (
pj

μ,y

)2]
, (D8)

Rj =
N∑

μ=1

(
pj

μ,r

)2
. (D9)

Since we obtain pj
μ,x, p

j
μ,y, and pj

μ,r from unit vectors, S j =
1 − T j − Rj gives the contribution of the shape degrees of
freedom to the jth eigenmode. We show T j,Rj , and S j for a
jammed packing of N = 16 DP particles with preferred shape
parameter A0 = 1.04 in Fig. 11(b) as a function of frequency
ω, as well as just the S modes in Figs. 4 and 5. We find
that for the quartic modes (ω < 10−2), the shape contribution
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S increases with ω, while T and R decrease. For the quadratic
modes (ω > 10−2), the contribution from S is large, since

higher frequency modes tend to deform the particle shape
rather than give rise to translation or rotation.
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