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Abstract—Age of information, as a metric measuring the data
freshness, has drawn increasing attention due to its importance
in many data update applications. Most existing studies have
assumed that there is one single channel in the system. In this
work, we are motivated by the plethora of multi-channel systems
that are being developed, and investigate the following question:
how can one exploit multi-channel resources to improve the age
performance? We first derive a policy-independent lower bound
of the expected long-term average age in a multi-channel system.
The lower bound is jointly characterized by the external arrival
process and the channel statistics. Since direct analysis of age in
multi-channel systems is very difficult, we focus on the asymptotic
regime, when the number of users and number of channels both
go to infinity. In the many-channel asymptotic regime, we propose
a class of Maximum Weighted Matching policies that converge
to the lower bound near exponentially fast. In the many-user
asymptotic regime, we design a class of Randomized Maximum
Weighted Matching policies that achieve a constant competitive
ratio compared to the lower bound. Finally, we use simulations
to validate the aforementioned results.

Index Terms—Age of information, Multi-channel, Scheduling

I. INTRODUCTION

Age of information is a new performance metric that has
attracted significant recent attention [1—17]. This concept is
motivated by various data update applications that deal with
time-sensitive data, such as stock price, traffic information and
news updates. In such applications, the data with the latest
generation time is usually the most valuable one to users, and
thus, users want to keep their data as fresh as possible. Age of
information, defined as the the elapsed time of the last served
packet since it was generated, is a good measure of the data
freshness from the user side. In an age minimization problem,
the goal is to minimize the user’s age to keep data fresh.

Age of information and delay share the same feature that
measures the elapsed time of a packet since its generation.
However, they are fundamentally different in that delay is
defined for a certain packet whereas age of information
captures the data freshness from the user (flow) side. To see
this, consider an M /M /1 queue with low arrival rate and high
service rate [7]. The queue is often empty and the packet
delay is very low. However, high age of information is still
observed due to the long inter-arrival time. In general, good
delay performance does not necessarily guarantee good age
performance which requires that packets with low delay are
served regularly. Compared to the extensively-studied delay
metric, age of information is a new performance metric that
calls for new designs of scheduling policies to minimize age.

Multi-channel communications have become commonplace
in modern cellular systems, e.g., WiMax [18], 4G/LTE [19]
and 5G NR [20]. In these systems, the wide bandwidth at
the Base Station is divided into hundreds or thousands of
orthogonal sub-carriers (channels), which can be dynamically
allocated to serve users. The availability of multiple channels
introduces flexible user-channel allocation and thus, provides
diversity and multiplexing gain compared to the single-channel
system. In the literature [21-23], it has been shown that
near optimal delay performance can be achieved in a multi-
channel system. Given the close relationship between age of
information and delay, we can ask and answer the following
natural question in this paper: Can we exploit the flexibility
Jfrom multi-channel systems to improve the age performance?
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Fig. 1. A multi-user multi-channel information update system.

We focus on the age minimization problem over a multi-
channel system. An example network is shown in Fig. 1. The
Base Station keeps track of the most updated information
of each user’s interested flow (such as news or stock price
updates). Users are able to use a channel to download a packet
from the Base Station and update its information and age at the
user terminal. Due to channel fading, the channel conditions
are time-varying across both users and channels. A scheduling
policy decides the allocation of multi-channel resources to
serve the time-sensitive data flows. Now the following im-
portant question remains: How fo design a scheduling policy
that achieves provably good age performance for a multi-
channel time-sensitive information update system with time-
varying channels?

In this paper, we answer this question by proposing two
classes of scheduling policies. The key contributions of this
paper are summarized as follows:

o We first derive a policy-independent lower bound of ex-
pected age in multi-channel systems. The lower bound is
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jointly characterized by the arrival process of applications
and the channel statistics.

o In the many-channel asymptotic regime, we propose a
class of Maximum Weighted Matching (MWM) policies
that converge to the lower bound near exponentially.

o In the many-user asymptotic regime, we design a class
of Randomized Maximum Weighted Matching (RMWM)
policies that achieve a constant competitive ratio com-
pared to the lower bound.

To the best of our knowledge, this is the first work that de-
velops scheduling policies whose age performance is provably
near-optimal for time-varying multi-channel systems.

The rest of the paper is organized as follows. In Section II,
we summarize the results of related works. In Section III,
we introduce the system model and formulate the age mini-
mization problem. In Section IV, a fundamental lower bound
is derived with respect to inter-arrival and inter-service time.
In Section V, we propose a class of MWM policies whose
age performance converges to the lower bound in the many-
channel asymptotic regime. In Section VI, we design a class
of randomized RMWM policies which achieve a constant
competitive ratio compared to the lower bound in the many-
user asymptotics. We use numerical simulations to validate
our theoretical results in Section VII and make concluding
remarks in Section VIIL

II. RELATED WORK

Recently, the optimization of age performance for multiple
sources has become a hot topic, e.g., [1-17]. In [7], the authors
considered the problem of minimizing weighted expectation of
long term average age in broadcast networks with an unreliable
ON/OFF channel and periodic arrivals. Randomized policy,
Maximum Age First policy and Whittle’s index policy have
been shown to achieve a constant competitive ratio. Time-
sensitive information update system is considered in [3, 4]
where no queue is used or the buffer only stores the latest
information and any outdated packets will be discarded. An
MDP-based online scheduling algorithm and an index-based
online scheduling algorithm are proposed in [4] to minimize
the average age. Most of the existing works assume that there
is one single channel which is shared by all the users/sources.
It is not clear how to extend these results to the case when
multiple channels are available. The paper [12] considered
multi-server systems and proposed two near-optimal policies
following the maximum age first and last generated first served
disciplines. Nevertheless, in multi-channel wireless networks,
the channel conditions are time-varying across both channels
and users, which marks a fundamental difference from the
multi-server systems.

III. SYSTEM MODEL

We consider a time-sensitive information update system
which consists of one Base Station and n users. For ease of
presentation, we assume each user has one flow that takes new
data from one of the information sources'. Assume that time

I'This assumption can be generalized to arbitrary number of flows per user.

is slotted, and all arrivals occur at the beginning of each time-
slot. New packets are generated from time to time and arrive
in the system based on the arrival process A(t). Since time is
slotted, the update data packets in each time-slot for the same
user flow is considered identical. Therefore, for each time-slot
t, there is at most one packet arrival for each user flow i, i.e.,
A;(t) < 1. We consider Bernoulli arrival processes for any
1< <n:

Ay(t) = 1, . with pr(?b.ablhty Dis 0

0, with probability 1 — p;.

The Base Station maintains a separate buffer (); to store the
latest generated packet for each user i. Let D;(t) denote the
delay of the packet in @); at the beginning of time-slot , i.e.,
the time difference between the packet generation time® and
current time ¢. D;(t) is updated by A;(t) as follows:

Dy =" A0 =1, 2)
D;(t—1)+1, otherwise.
Note that each buffer ); cannot have more than one packet.
If there is a new arrival in time-slot ¢, i.e., A;(t) = 1, then
any existing packet in @; will be replaced by the new packet.
If there is no new arrival, the delay of the packet in the buffer
grows linearly with 3.

We consider the downlink phase of a single-cell OFDM
system. There are m = an sub-carriers (linear number of
channels) that can be used to download new packets and
update information, where a £ m/n denotes the ratio between
the number of channels and the number of users. As shown in
Fig. 2, each wireless channel between a user and a subcarrier
(channel) has unit capacity and varies from time to time due
to channel fading.

n users m channels

Fig. 2. Stochastic connectivity in wireless multi-channel systems. The
connectivity between user ¢ and channel j is “ON” if they are connected
by a solid line, and “OFF” otherwise (connected by a dashed line).

In time-slot ¢, the user-channel connectivity is given by the
n X m binary matrix C(t), where C; ;(t) = 1 means user ¢ is
connected to channel j with rate 1 in time-slot ¢. We assume
the channel process is given by:

Coa(t) 1, with probability ¢, 3)
“Y710,  with probability 1 — g.

2 Assume packets arrive at the Base Station immediately after they are gen-
erated. The technique in this paper can also be applied when the propagation
delay before reaching the Base Station is not negligible.

3Packets will remain in the buffer until the next arrival comes in (replace-
ment), even if they are served.
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forall 1 <7 <mnand 1< j < m. We assume the scheduler
knows the perfect channel state information (CSI), i.e., binary
matrix C(¢) is known to the Base Station in each time-slot ¢.
Let S(t) denote the decision matrix in time-slot ¢, where:
1, channel j serves user ¢ in time-slot %,
S;i(t) = ) 4
0, otherwise.

Due to the interference constraint, a single channel cannot
serve two or more users at the same time, i.e.,

> St <1 (5)
=1

forall 1 < j < m. Let S denote the set of all feasible decision
matrix S(¢). For each feasible decision matrix S(¢) € S, define
X;(t) to be the service indicator for user ¢ in time-slot ¢:

Xi(t) = Si;()Ci;(1). (6)
j=1

since there is at most one packet in buffer (); in time-slot ¢,
we have

Xi(t) <1. @)

X;(t) is a binary variable and X;(¢) = 1 indicates that user 4
is updated in time-slot ¢.

ol Ixi X2 T 1 X3 ¢t
Ay Ay Az Ay As

Fig. 3. Age evolution for user 7. For the example shown in the figure, we have
two arrivals A; and Ao before the first service X1. Packet A is replaced by
Ao since Az becomes the latest arrival. The age grows linearly before X7,
and drops to D;(X1)+ 1= X1 — Az + 1 after serving packet A>. The age
again grows linearly until the next service X2, which happens in the same
time-slot as the third arrival A3, so the age reduces to 1 after Xo.

Next, we introduce age of information from user’s perspec-
tive. In this information update system, age of information
measures the time difference between the current time and the
generation time of the packet from the last service (update).
Once a new packet p has been downloaded by user 7, user 7’s
age of information will be updated by the current packet delay
of p. If there is no such packet delivery, age of information
grows linearly in time. Consider the example shown in Fig. 3,
the age of user 7 between X7 + 1 and A3 — 1 is equal to the
packet delay of A,. Let H;(t) denote the age of information
of user ¢ at the beginning of time-slot ¢, it evolves as follows:

Hit+1) = 2 " (1) = Halt),
H;(t)+ 1, otherwise.
Note that H;(t+ 1) depends on the state in time-slot ¢. For a
given time-slot ¢, let X'(t) = {A(¢), C(¢), D(¢), H(t)} denote
the system state.

Define U;(t) = 1{p,#)<H, ()} to be the update indicator of
user i. H;(t+ 1) can be reduced only if U;(¢t) = 1. Assume
the last service of user ¢ before ¢ happens in time-slot %,
ie., tog = max,¢{7|X;(7) = 1}. According to Equation (2),
Ui(t) = 1 if and only if there exists at least one packet arrival
of user ¢ during time interval [ty + 1,¢] and the packet delay
D, (t) has been updated to a smaller number. If there is no such
arrival, then the age and packet delay are always the same as
they both continue to grow with the same rate of 1.

For each time-slot ¢, a scheduling policy 7 needs to deter-
mine a feasible decision matrix S™(¢) € S based on the system
state X'(¢). In this paper, we aim to minimize the expectation
of long-term average of the user’s age:

. ﬂ— . 1 n T-—1 Tr
]E[J”]:E[TIEEOJT]:ElTl%M;;HZ- ®1]. ©

We use II to denote the set of all feasible policies such that
the limit in (9) exists. Define J* to be the minimum value of
E[J7] for all © € 1L, i.e., J* = min e E[J7].

IV. A FUNDAMENTAL LOWER BOUND

In this section, we derive a policy-independent lower bound
L < E[J7] for any scheduling policy 7 € II. The lower bound
could be intuitively interpreted from two extreme cases. In the
case of less-frequent arrivals, the inter-arrival time could be the
dominating factor regardless of the channel condition. On the
other hand, in the case of bursty arrivals, the inter-service time
dominates since there is always a new arrival coming in. In
the next two subsections, we derive two lower bounds based
on inter-arrival and inter-service time respectively.

A. Inter-arrival Based Lower Bound

We consider the lower bound determined by the inter-arrival
time. Note that a service can happen only if a new packet
arrival has arrived. As a result, the age performance is closely
related to the inter-arrival time. If the arrivals are not frequent,
then the age performance of any scheduling policy will suffer
from the long inter-arrival time. We first consider a virtual-
perfect policy 7"P that relies purely on the inter-arrival time.

Definition 1: w"P is a virtual-perfect policy if it is able to
instantly serve any new packet within its arrival time-slot.

Lemma I: Let E[J™"] denote the expectation of the long-
term average of the user’s age under virtual-perfect policy
w"P (assume full-connectivity virtual channels), then we have
E[J™""] < E[J™] for any feasible policy 7 € IL.

Proof: We use a per-user sample path dominance argu-
ment to prove Lemma 1. Due to the space limit, we provide a
proof sketch using Fig. 4. Assume system S is using virtual-
perfect policy and S5 is using an arbitrary policy. In addition,
assume in system .So, user ¢ has received NiT services before
T. We can divide the timeline [0,7 — 1] into NI + 1 inter-
service intervals based on the service timestamps. For instance,
in Fig. 4, we have intervals [0, X1],[X7 + 1, Xo],- -+, [ X4 +
1, T —1]. We then show that for each interval, the starting age
is the same for both systems, while the growing rate in system
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Fig. 4. The age comparison of a certain user between the virtual-perfect
policy w"P (system S7) and an arbitrary policy 7 (system S2). Within each
inter-service interval [X; + 1, X;41] of policy 7, the age under policy 77 is
always smaller than or equal to that under policy 7. The starting age for each
interval is the same (green markers) for two policies, and the growing rate
under policy vP is smaller than or equal to the growing rate under policy 7.

1 (at most linear, may have services in between) is no more
than that in system 2 (linear between consecutive services). W
Remark 1: Since the channels are not always perfect, 7°7 is
usually not feasible. However, it is still an important baseline
policy to derive the lower bound based on inter-arrival.
Lemma 2: There exists a lower bound L 4 such that L <
J*, where

Ly =

1 2—-p; 1
2n;; St (10)

Proof: From Lemma 1 we know E[J™ "] < E[J™] for
any feasible policy m € II. Hence, there must exist a lower
bound for the optimal value J*. Next, we focus on deriving a
lower bound for E[J™""].

Consider the stochastic process X (t) under policy 7*% and a
finite horizon T, where X' (t) = {A(t), C(t), D(t), H(t)}. To
make sure channels are always perfect, we use the following
channel process C(t):

C,;(t) =1, an

Let A% be the total number of arrivals from time-slot 0
to time-slot 7" — 1 for user 7. In this case, a service event
happens immediately after each arrival event, thus, we do not
differentiate these two events within this proof. Let I;(7) be
the number of time-slots between (7 — 1) and 7 service
(arrival) event to user i (0™ service happens right before time-
slot 0). Let R; denote the number of remaining time-slots after
the last service (arrival) event before 7. We have the following
equation for any user ¢ € {1,2,--- ,n}:

Ar
T=1

Note that the inter-service time {I;(7) fil is a series of
i.i.d. random variables and the arrival (service) process A ()

Vi, j,t.

12)

is a renewal process. Similar to the proof of Theorem 6 in [7],
we have with probability one,

Ai

v I o= 1
Tz oy Y )+ (13)

i=1 T=1

and with probability one,
v 1 < E[2(1)] 1

JET > N T 14
7’—m;Emm+ (14

Furthermore, from (1) we know I;(1) is geometric dis-
tributed with support {1,2,---}, (14) can be rewritten as:

n
g > LZZ—I% _’_1
Pi 2

wp.1. (15)

i=1
Taking the expectation of (15), we have E[Jﬂw] >
2177. 7 1 b + = L4. L4 is a lower bound for the optimal

value J* based on the inter-arrival time. |

B. Inter-service Based Lower Bound

We consider the lower bound determined by the inter-
service time. This lower bound is non-trivial especially when
the number of users is greater than the number of channels, i.e.,
n > m. In this case, it is not possible to find a perfect matching
that covers all users regardless of the channel condition. A
scheduling policy has to select a subset of users to serve,
hence, the inter-service time is not negligible when the number
of users becomes large. Even when arrivals are very frequent
(pi — 1), the age performance is still bounded by the inter-
service time due to user-selection, especially when o = m/n
becomes small. We have the following lemma:

Lemma 3: There exists a lower bound Lg such that Lg <
J*, where

1 1

Lsg=—+—-.

ST 5 2

Proof: Consider an arbitrary policy 7 and a sample path

w € €2, assume user i has N} services before T'. For each user

i, let I;(7) be the inter-service time between (7 — 1)*" service
. NF

and 7" service. We use R; =T — > .*, I;(7) to denote the

remaining time before 7'. The age evolves as 1,2, --- , within

each inter-service interval and we can bound the objective

function as follows:

(16)

n NT
T)+1) Ri(R;+1)

1
> 1 7§: }: 2 2 -
*Th—rgéoZnT Li(r) + R +2 an

The set of intervals {I;(1), [;(2),--- , ;(NT), R;} is a parti-
tion of interval [0, T—1]. Applying Cauchy-Schwarz inequality
to (17), we have for all sample path w € Q2

(18)
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Note that there are at most m services in each time-slot, we
have Y7 | N < mT. Applying Cauchy-Schwarz inequality
again to (18), we have for all w € Q:

n 1
JT > — 4 - 19
@) 2 5+ 3 (19)
Therefore, we have
1 1
E[J] > —+ -. 20
[J7] > 52 13 (20)
for any feasible policy 7 € 11, and the result holds. [ |

Finally, combining the inter-arrival based lower bound L 4
and the inter-service based lower bound Lg leads to a lower
bound of age which is jointly characterized by the external
arrival process and the channel statistics.

Theorem 1: There exists a lower bound L such that L < J*,
where L is given by:

1l ~—2—-p; 1 1
L= — — -
maX{QnZ D 7204}_'—2

i=1

21

Proof: Applying Lemma 2, Lemma 3 and taking L =
max {L 4, Lg}, the result follows. [ |
Theorem 1 provides a benchmark for evaluating the age
performance of scheduling policies. Next, we consider two
asymptotic regimes and propose scheduling policies that
achieve near-optimal age performance.

V. MANY-CHANNEL ASYMPTOTIC REGIME

In this regime, we assume that the number of channels m is
greater than or equal to the number of users n and fix a > 1.
The inter-service based bound becomes trivial as Ly > Lg
and L = Ly < J*.

A. Scheduling Policies

In this section, we propose two kinds of scheduling policies
that achieve close to optimal objective function J* in the
many-channel asymptotic regime, i.e, the performance gap
J™ — J* vanishes when o > 1 and n — oo.

Consider a random bipartite graph G[X UY, E] where X is
the user set and Y is the channel set. There is an edge (¢, )
connecting user ¢ and channel j if and only if C; ;(t) = 1. A
matching M is a set of edges such that no two edges share
an endpoint. Based on constraints (5) and (7), the scheduling
problem boils down to find a matching M in each time-slot.
The corresponding decision matrix S(¢) is determined by

Sii () = LG, jyemy- (22)

In this section, we use bipartite graph G to model the user-
channel connectivity and develop matching policies.

PM (Perfect Matching) Policy. If G has a perfect matching
M (every user vertex x is incident to exactly one edge (x,y) €
M), then for any edge (4, j) € M, set S; ;(t) = 1. Otherwise,
set X;(t) = 0 for all user 7. In other words, the PM policy
updates any user ¢ who has the desire to update (U;(t) = 1) if
there exists a perfect matching. Otherwise, no packet is served
even though some users can still get service.

This policy is sub-optimal when the number of channels is
small, since some channel resources may be wasted due to
its lazy behavior. However, as we will soon see, this policy
achieves close-to-optimal age performance when the number
of channels becomes large.

In the following lemma, we show that in each time-slot,
with high probability (close to 1) that the random bipartite
graph G has a perfect matching.

Lemma 4: In each time-slot ¢, assume bipartite graph G[X U
Y, E] is generated by the binary matrix C(t). There exists a
constant Ny > 0, such that the probability that G has a perfect
matching is lower bounded by:

P (G has a PM) > 1 — 3ne~ 1", (23)

where constant Cy = log; /() for all n.> Ny.
Proof: The result follows from Lemma 1 in [24]. |

As n — o0, it is highly possible that G’ has a perfect match-
ing in every time-slot. In other words, with high probability,
each user is offered the transmission opportunity. In this case,
the PM policy approximates the virtual-perfect policy in the
asymptotic regime. As we know E[J™"] < E[J7] for any
m € II, one can expect that the PM policy achieves near-
optimal age performance in the asymptotic regime.

Theorem 2: Consider a many-channel information update
system described by X (¢). Let J ™" denote the expectation of
the long-term average of user’s age under PM policy, the gap
between E[J™ ] and J* can be bounded by

E[J™ ] = J* < 6ne=". (24)

for all n > M.
Proof: Please refer to Section V-B. [ |

Remark 2: Although the PM policy achieves near-optimal
age performance in the many-channel asymptotic regime, i.e.,
o > 1 and n — oo, the transmission opportunity of all
channels would be lost if a perfect matching could not be
found (even by one or a few disconnected users).

Next, we develop a policy which shares the nice asymptotic
near-optimality of the PM policy, but overcomes its limitation
in non-asymptotic regimes.

Class of MWM (Maximum Weighted Matching) Policies.
Consider the random bipartite graph G = [X U Y, E], now
we associate each user vertex ¢ € X with a non-negative
weight W;(t) > 0 in each time-slot ¢. Based on G and the
weight vector W (¢), the users to update is determined by the
Maximum Weighted Matching M. A user is served in time-
slot ¢ if it is covered by an edge from M, ie., X;(t) = 1
only if there exists channel j, such that edge (7,j) € M, and
X;(t) = Z;nﬂ LG gyemy-

Note that if W (¢) is age-independent, the policy may still
be inefficient. For example, assume user 1 has the desire to
update, i.e., U;(t) = 1. If we assign Wi(¢) = 0, then user
1 may not be covered by the Maximum Weighted Matching
even a perfect matching does exist. On the other hand, assume
user 2’s information is up to date and there is no new pending
packet. If we assign Ws(¢) by a large weight that dominates
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all other weights in W (¢). User 2 has the highest priority for
the maximum weighted matching, however, it could waste the
channel resources since it contributes 0 to age reduction. To
address this issue, we define an age-aware weight vector W ()
based on system state X'(¢) to indicate the desire for update.

Definition 2: Given the system state X(t), W (¢) is an age-
aware weight vector if the following property holds

Wi(t) > 0,
Wit) = 0,

if U;(t) =1,

if Uy (t) = 0. (22)

Remark 3: With an age-aware weight vector W (¢), no user
with 0 age-difference (H;(t) = D;(t)) is updated. Any strictly
positive number can be assigned to the user with strictly
positive age-difference (H;(t) — D;(t) > 0, i.e., U;(t) = 1).

Definition 3: A policy m belongs to the class of MWM
policies (ITMWM) if there exists an age-aware weight vector
W(t), such that the users to update is determined by the
Maximum Weighted Matching with weight W (¢).

It is obvious that any policy 7 € IITMWM s work-
conserving even with finite number of users or channels. Now
we show that the class of MWM policies are also near-optimal
in the asymptotic regime. The following lemmas help us build
the relationship between the class of MWM policies and the
PM policy.

Lemma 5: Let 7 be an arbitrary policy from ITM"WM For
any given sample path w and time-slot ¢, by the end of time-
slot ¢, policy 7 has served every packet that 77’ has served.

Proof: Consider two information update systems S; and
So, each consists of n users and m channels. Both systems
have the same arrivals and channel state realization. S; uses
policy 7 and S, uses policy 7. We only need to show that
for any given sample path w, if a packet = for user i is served
by #”M by the end of time-slot ¢, then the same packet
must be served in the same time-slot or it has already been
served by the policy 7.

First of all, packet x is not replaced by a new packet without
being served in system S;. Assume there is a new packet y for
the same user 4, packet y arrives in time-slot ¢’ < ¢. If packet
x has not been served by policy 7, packet = is no longer the
latest packet and will be replaced. Since S; and S, share the
same arrivals realization, packet y also arrives in system So
in time-slot ¢’. At this time, packet = has not been served by
policy 7M since ¢’ < t, it should be replaced by packet ¥ as
well. This fact contradicts with the assumption that packet x
is still in system So and is served exactly in time-slot ¢. We
know that packet x is not replaced in system S;.

Now we consider two cases:

Case 1: packet = has already been served in system S;.
This is what we want and there is nothing to prove.

Case 2: packet z is the latest pending packet for user i
in system S;. Since packet x is served in system S;, we know
that the bipartite graph G has a perfect matching that covers
all user vertices. Note that even a perfect matching exists,
policy 77M only serve packets for users that have the desire to
update (U(t) = 1). Due to the existence of perfect matching,

the maximum weighted matching can serve any user ¢ that
satisfies U;(t) = 1 as the total weight increases by adding up
strictly positive values. Therefore, packet x is also served in
time-slot ¢ in system Sj. [ |
Lemma 6: Let 7 be an arbitrary policy from ITMWM  we
have E[J7] < E[J™ "]
Proof: We only need to show that with probability one,
Jr < J%PM for any 7' > 0. Similar to the proof of
lemma 5, we consider two information update systems S;
and S, S; uses policy 7 and Sy uses policy 77 . Consider
time period [0,7 — 1], assume system So served p packets
for user 4, namely xq,w2, - ,x,. According to Lemma 5,
x1,T9, -+ ,Tp have also been served in system S;. Let 5 (z)
denote the service time of packet z in system S, we have
ti(z) < ta(x) for all @ € {m1,x2,- - ,2,}. We divide
time interval [0, 7 — 1] into subintervals, [0, t2(x1)], [t2(z1) +

1,t2(5€2)], DI [tg(l‘p_l) + 1, tg(xp)], [tz(l‘p) + 1,7 — 1]. As
shown in Fig. 5, we can apply the same argument from Lemma
1 to prove the dominating result. [ ]
Xt
Ag
Sz
o Txy T X 1 1x; X, t
A, A Az A, Ag

Fig. 5. The age comparison of a certain user between policy 7 from the
class of MWM policies (S1) and the perfect matching policy 77 M (Ss) for
a certain user. For any time-slot ¢, policy 7 has served every packet that 7w M
has served. In this example, policy 7 has one more service to serve packet As.
The green markers from two systems have the same age, the age in system S
is always no larger than that in system Sg between two consecutive markers.

Based on Lemma 6 and Theorem 2, we have the following
theorem.

Theorem 3: Consider a many-channel information update
system described by X (t). Let m be an arbitrary policy from
the class of MWM policies, then 7 is work-conserving and
the gap between J™ and J* can be bounded by

E[J™] — J* < 6ne” ", (26)

for all n > M.

There are a few weight vectors W(¢) that satisfy (25).
In the Age Difference Weighted Matching (ADWM) policy,
we choose W;(t) = H;(t) — D;(t) to be the age difference
between the user’s age and packet’s age (a.k.a. delay). The
ADWM policy minimizes the total age sum in each time-slot,
hence, it is expected to achieve good age performance. We
can also use an update-indicator weight vector W;(t) = U;(t)
to develop an Update-indicator Weighted Matching (UWM)
policy. UWM is also a work-conserving policy but treats all
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users that have the desire for update equally regardless of the
age-difference contribution.

However, Delay Weighted Matching (DWM) with W;(¢) =
D;(t), which achieves good delay performance [22] in multi-
user multi-channel systems, is sub-optimal in terms of age
performance. Since the weight vector violates the requirement
(25). Assume a new packet arrival for user ¢ comes in time-slot
t with D, (t) = 0, it is associated with 0 weight. If the current
age H;(t) is very high, then DWM loses the opportunity to
reduce the age to 1.

B. Analysis of the PM Policy

In this section, we focus on the age performance analysis
of the PM policy. The same argument also works for Theorem
3 using Lemma 5 and 6.

We first consider a finite horizon 7" and a user 7, assume
there are N services to user i from 0 to time-slot 7' — 1
with 7! service happens in time-slot X! and set X} = 0.
Let I;(7) be the number of time-slots between (7 — 1) and

7™ service to user 4, i.e., I;(7) = X! — X! _|. Let R; denote
the number of remaining time-slots after the last service event
before T. In 7t interval, the age evolves as D;(X!_ ;) +
1,D; (XT 1) +2,-++, Dy(XL_|)+1I;(7). Hence, the total age
sum in 7" interval is given by D;(X:_{)I;(T) + M
We use (9) and (13) to characterize the objective function
under PM policy:

PM 1

T o L n ?TP]VI
S D IPILNU
=1 t=0
NT

SRR, i I () + Ii(7)
—iﬂ{ﬁf;nth(D*-rﬂb“7+ 2
1 ; R?+ R,

Before evaluating the age performance, we introduce the
following lemma which helps to simplify (27).
Lemma 7: Let R; denote the remaining part of user ¢ in

(27) after NT service, i.e.,
1 ; R? 4+ R;
‘Ri—qhg;nj,P%CXNxTﬂRi+2}7 (28)

then R; = 0 with probability one.

We omit the proof of Lemma 7 due to the limited space.

Remark 4: From Lemma 7, we know that the remaining
part in (27) is negligible. We only need to focus on the first
NI complete intervals.

Now (27) can be rewritten as

n

NT
RHS2; = lim —ZD (XTI ) Ii(7).

T—oo N

€2y

We divide the rest of the analysis into part 1 and part 2 to
evaluate RHS1; and RH S2; respectively.

Part 1: Evaluating RHS1; in (30)

If we consider a service event as a renewal, then {X*}
is a renewal process, {I;} is a series of ii.d. inter-renewal
time. Note that a service (renewal) event can happen only if
there is at least one packet arrival coming in since the last
service. Therefore, after the last service, we need to wait until
the first packet arrival occurs, and then wait until there is a
good channel opportunity, i.e., there exists a perfect matching.
We have the following lemma to derive the first and second
moment of the inter-renewal time I;.

Lemma 8: The first and second moments of the inter-renewal
time [; are given by:

E[1;) = DitPs ~Pibs “;%p_ Db (32)
s

E[12] = DiDs {(1—%)(2—%)

(1 =ps)(2 —ps)}
Ps = pi p; P
(33)
where p; is the probability that the bipartite graph G has a
perfect matching.

Applying the elementary reward renewal theorem, we have:

NT
) 1
RHSliZTlf;oﬁg””T@;ﬁZ
1 (E[12]
= — 1 p. 1. 4
2n<n<:[m+> W oY

Part 2: Evaluating RHS2; in (31)
The distribution of D;(X_,), i.e., the packet delay at (7 —
1)t service of user i, is given by the following lemma:
Lemma 9: The PMF of D;(X!_,) is given by:
P (D;(X!_)) = d) — Pibs) -
(35)

for all 7 > 1 and d > 0. The initial packet delay D;(X}) = 0
with probability one.

Let us consider the reverse process {X‘} of the renewal
process {X'}, and a sequence of i.i.d. random variables
{D;(X?)}, that follows the distribution (35) for all 7 > 0.
The only difference between {D;(X%)} and {D;(X%)} is
that D;(X}) may not be zero and is treated as if the sys-
tem is running from —oc. The process {X’} starts with

the first interval I;(N7), a random number D; (XJZVT »

=1 —p)*1—p)*(ps +pi

gt = Z [RHS1; + RHS2;] wp.l. (29) is then generated based on (35). We have I; (NT — 1) >
i=1 Di(X NT— ,)» and hence, the next interval length depends
where on the value of D;(X’ NT— 1)- Therefore, the sequence
NT 1
1o I2(r) + I, {(xi, Dixi_n)} .
RHSL, — Thm - Z ; (T)—2i— (T) (30) (XL, Di(X:_ ) T is a Markov renewal process. Let
et i Yi(7) = D;j(X!_|)I;(7) denote the reward of 7! interval.
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The expectation of the reward function is finite*.
E[Yi(r)] = E [ Di(Xi_)L(7)]
=B [Di(X{_)|E[L(n)] <o0.  (36)

Applying the renewal theorem for Markov renewal process
[25], we have:

E[L(n)|Di(X?)]]

S E[L(7)]
E[Di(Xi )| E [E [L(n)Di(XD)] ]

- E[L(r)

—E |Di(X1,)]. (37)

with probability one.
Since D;(X{) > 0 and D;(X}) = 0 with probability one,

1
1

. < 3 . .
RHS?2; < Thm - E Yi(7)

T:NiT

(38)

with probability one.
Substituting (34), (37) and (38) into (29), we have

PM 1 n A~ . 1 E[IQ]
<= E|D;(X;_ = C ). @3
sy o]+ 5 (B ) o0
with probability one, which leads to
PM 1 ~ : 1 E[I2]
G < = (X - ! 1)].
Bl < n; [E D] + 5 (]E[I,-] + )}
(40)
PM
The performance gap E [J g } — J* can be bounded by

E |:J71_P1Wi| _ g
711 Zn; {E [DAXLJ} + % (IIEE[[I;Z] - ;p>}
1 > l(1 —ps) = ;(1 = Ps)-

n<— Ps DPs

=

IN
\

(41)

Recall that ps > 1 — 3ne=<1" for all n > N;. We
can choose a large enough number Ns > 0, such that

for all n > max{Ny, N2}, % < m < 2. Let
M £ max{N7, No}, we have
P M * —Cin
E[J™ ]| = J" < 6ne """ (42)

for all n > M.

“4Note that I; () depends on D;(X%) but is independent from D; (X i

As n — oo, the gap between IE[J”PM] and the optimal
objective value J* vanishes near-exponentially fast.

VI. MANY-USER ASYMPTOTIC REGIME

In this regime, we fix a < 1, i.e., the number of channels
m is smaller than the number of users n and let the number
of channels m — oo. Lower bounds L4 and Lg are both
non-trivial, whichever becomes larger depends on the arrival
probabilities {p;}! ; and channel-user ratio c.

Next, we propose a class of RMWM (Randomized Max-
imum Weighted Matching) policies that achieve good age
performance when the number of channels m — oo.

Class of RMWM Policies. The scheduler randomly gen-
erates m different users with equal probability, let X’ denote
the set of generated users. Now construct a subgraph G’ =
[X'UY, E'] from the random bipartite graph G = [X UY,, E|,
where E' C E is the set of all edges that have an endpoint
in X'. In subgraph G’, there are equal number of users and
channels, i.e., |X’| = |Y| = m. The scheduler then uses an
age-aware weight vector W (¢) to determine the Maximum
Weighted Matching M on G’. A user is updated in time-
slot ¢ if it is covered by an edge from M, ie., X;(t) =1
only if there exists channel j, such that edge (7,7) € M, and
Xi(t) = 2551 Lgemy-

The analysis of the class of RMWM policies is difficult
since the distribution of the total number of updates per time-
slot is intractable. As in Section V, we propose a simple policy
RPM (Randomized Perfect Matching) for ease of analysis.

RPM Policy. The scheduler randomly generates m different
users with equal probability, and the subgraph G’ is con-
structed in the same way. If G’ has a perfect matching, then
any user ¢ with U;(¢) > 0 will be updated by the packet in
the buffer. Otherwise, no user is updated.

Remark 5: The same argument in Lemma 5 does not
apply directly since two policies may randomly generate two
different user sets. The same result still holds if they select
the same user set X’(¢) in each time-slot t.

Lemma 10: Let 7 be an arbitrary policy from the class of
RMWM policies and 7%7M denote the RPM policy, assume
they select the same user set X'(t) in each time-slot ¢. For any
given sample path w and time-slot ¢, by the end of time-slot
t, policy 7 has served every packet that 7727 has served.

Similarly, we have the following dominance property.

Lemma 11: E[J™] <E {J“RPM} .

Proof: Based on the result of Lemma 10, applying the
same argument from Lemma 6, we have:

RPM

E[J7|X', = X'| <E {J” X e = X'| . (43)

Note that X',; and X' rrn have the same distribution, taking
the expectation for both sides the result follows. [ ]

Next, we focus on the analysis of the RPM policy. We can
apply the same argument from Section V-B, we only need to
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replace ps by ap, due to the randomness (each user is selected
with probability «). Based on (41), we have:

1 n
gﬁ;

2 2
<La+—Ls<(1+4—)J"

S S

2 —p; 1 1
p+ —
Di

E [J’T

RPM:|

aps 2
(44)

From Lemma 4, we have p; > 1 — 3me= 1™ for all m > Nj.
Take m — oo and apply Lemma 11, we have:

Theorem 4: Consider a many-user information update sys-
tem described by X'(t). Let 7 be an arbitrary policy from the
class of RMWM policies, the competitive ratio can be upper
bounded by:

lim /7]

m—oo  J*

<3. (45)

Remark 6: Competitive ratio (45) is a very general result
that holds for all channel-user ratio «, arrival probabilities
{p:}_, and any connectivity probability ¢ > 0.

VII. NUMERICAL SIMULATIONS

In this section, we use numerical simulations to validate
the theoretical results under two regimes and compare the age
performance between different policies. In both regimes, we
set arrival probabilities p; = 0.5 for any user 1 < ¢ < n and
set connectivity probability ¢ = 0.2.

A. Many-channel Asymptotic Regime

In this regime, the number of channels m is greater than
or equal to the number of users n. We assume m n
and run simulations for different m. Based on (21), the
lower bound L = 2 is independent from n and ¢. We use
DWM (Delay Weighted Matching), UWM (Update-indicator
Weighted Matching) and ADWM (Age Difference Weighted
Matching) policies and compare the age performance in terms
of the age expectation E [J™].

—4&—DWM
© UWM
------- ADWM
e = = =Lower bound
=)
g
&
=
_&a’i) ADWM
§ A A
<

5 10 15 20 25
Number of channels: m

30

Fig. 6. Simulation results when m = n.
From Fig. 6, we have the following observations
e UWM and ADWM policy both converge to the lower
bound very fast. Even for m = 10, the gap to the lower
bound is already negligible. On the other hand, DWM
is sub-optimal, the gap E[J™] — J* > 2 even in the
asymptotic regime.

e The age performance of UWM policy is very close to
ADWM policy. They are both from the class of MWM
policies and only differ from the choice of weight vectors.
As long as (25) is satisfied, any policy from ITMWM
should converge to the lower bound asymptotically.

B. Many-user Asymptotic Regime

In this regime, the number of channels m is less than the
number of users n. We assume n = 5m, i.e., « = 0.2, and
run simulations for different m. We use RUWM (Randomized
Update-indicator Weighted Matching), RADWM (Random-
ized Age Difference Weighted Matching) to compare the
age performance in terms of the age expectation E[J™].
We also use MADWM (Maximum Age Difference Weighted
Matching) as a benchmark policy where in each time-slot m
users with the largest age difference are selected in set X
and the schedule is determined by the maximum weighted
matching with age difference weight in the subgraph [X Y, E]

30

—&—RUWM
0= RADWM
—6—MADWM

= = =Lower bound

Average age (slot): E[J"]

2 4 6 8 10 12 14 16 18
Number of channels: m

20
Fig. 7. Simulation results when n = 5m.

From Fig. 7, we have the following observations
o The objective value E[J™] of RUWM and RADWM

policy is less than 3 times of lower bound when m > 6.

The competitive ratio EE}]:} — 2 when m — oo.

o All three policies have very similar convergence rate, for
all m the objective values of RUWM and RADWM are
within 2 times of that in MADWM.

Note that the scheduler in MADWM needs to track the
up-to-date age information of all flows, while RUWM and
RADWM only require 1-bit information of the update-
indicator from each flow.

VIII. CONCLUSION

In this paper, we investigate the age minimization prob-
lem in multi-user multi-channel systems. Age of information
measures the elapsed time of the last served packet since its
generation, hence, it depends on the inter-arrival and inter-
service time. Based on this observation, we derive a policy-
independent lower bound for the age minimization problem.
Then we focus on two asymptotic regimes, i.e., many-channel
asymptotic regime and many-user asymptotic regime. In both
regimes, we propose classes of policies which achieve prov-
ably good age performance. This paper demonstrates how to
exploit multi-channel flexibility to improve the age perfor-
mance in information updating systems.
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