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Abstracts

Quadrature for Parabolic Space-Time Galerkin BEM
JOHANNES TAUSCH

Boundary integral formulations of parabolic PDEs involve layer operators on
the lateral boundary ¥ of the space-time domain ). For instance, the single layer
operator of the heat equation is given by

Vq(x,t) = /E(X -y, t—71)q(y,7)dE, -, (x,t) € X,
b

where the heat kernel is

— L exp (—L_y'z) t>T
E(x—y,t—7) = { @@ ) )
0, t<T.

There are two choices for the construction of finite element spaces for the Galerkin
discretization

(1) A tensor product of a finite element space on the boundary surface and a
finite element space on the time interval.

(2) A space of piecewise polynomials on a triangulation of ¥. Since a parabolic
PDE has a time and space variables, the triangulation consists of triangles
in two, and tetrahedra in three spatial dimensions.

The first choice is easier to implement and has been analyzed in [1]. The second
choice has received some recent interest [2] and enables space-time adaptivity and
moving geometries with changes of topology. In either case, the numerical real-
ization of Galerkin method involves computing possibly singular integrals. In the
context of layer potentials for elliptic operators it is well known how to obtain sin-
gularity removing transformations which lead to efficient quadrature rules [4]. For
parabolic operators discretized with tensor product meshes a similar methodology
was developed in [3].

The goal of this work is to introduce these transformations for the case of a
triangulation of 3. If ¥,,¥, are two patches on the space-time boundary, then
the task is to compute integrals of the form

(1) I = / / E(X7Y7t - T)i/f(xd’afﬁ) dzy,‘r dzr,t .
e /Xy

Here 9 (x,y,t,7) is a smooth function that incorporates contributions of the shape
functions and the kernel has singularities if ¥, and 3, coincide, have a common
vertex, edge or, in the case of three spatial dimensions, have a common face.

The patches ¥, and 3, can be parametrized by the standard simplex

oW ={x:0<73,<---<7, <1}
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using an affine transformation. Thus integral (1) becomes

2) I= / / k(X,5)dy dx.

o(n) g(n)

The integration domain o™ x ¢(™ is a complex polytope in 2n dimension which
is the convex hull of the vertices
elv.j: { eq/ ) i7j6{07"'7n}7
€j

where the e;’s denote the vertices of the standard simplex o(™

0 1 1 1

0 0 1 1
€y = . €] = . €y = . e =

0 0 | 0 1

The polytope o™ x ¢(™ is then divided into simplices in R?” using the planes
1 =Y1,---Tn = Yn

We obtain Ny = 6 and N3 = 20. The next step is to introduce the singular and
non-singular variables. For two spatial dimensions (n = 2) we set

s=2: s=3: s=4:
2] =y — 1, 2] =y — 1, 2] = 1,
Zé =Yz — T2, ZIQ = T2, Zé = T2,
Z1 =21, 23 = Y2, 23 = a1,
Zo = X3, Z1 = 1, zy = T3,

depending on whether ¥, and X, are identical (s=2), have a common edge (s=3)
or a common vertex (s=4). Here, s is the number of singular variables. Proceed-
ing analogously for three spatial dimensions implies that the number of singular
variables is s € {3,4,5,6}.

The simplices Sy are again images of simplices in z-coordinates, the latter sim-
plices can be mapped by a second linear transformation to the standard simplex
0" By construction, the singular variables are mapped on the s-dimensional
standard simplex o(*). The domain for the remaining variables is a simplex in
R2"~* whose vertices depend linearly on the singular variables. Since the latter
variables do not enter the kernel, they only appear as polynomials and can be
integrated analytically. Thus integral (2) appears as

(3) Ikz/ ! E( B )w<w’>dw'.

b-w’ bw’%
o(s)
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where (+) is a polynomial, and B and b represent the coefficients of the transfor-

mation that maps w’ to x —y and ¢ — 7. This integral is singular at w’ = 0 which

suggests to use the Duffy-like transform
/

52
w' = [ fzw} where w € o

which has Jacobian £2*~!. Then

s—1)

)

t—17= bI'W 252 (b()+b1w1 +"'+bs—1ws—l) = 525(“’)7

and integral (3) becomes

o] [ () e

Note that the smallest power of ¢ in the numerator occurs when n = 2 and s = 2.
In this case 2s — 1 —n = 1, so the singularity at £ = 0 gets canceled by this power.
However, this does not prove that the integrand will always be a smooth function.
In particular, the integrand is singular when the quantity ¢t — 7 (and hence 3(w))
changes signs when X, and X, overlap in the time variable.

Recall that the function E(-) is continued by zero when S(w) < 0, thus we have
to integrate integral (4) only over the intersection of oG~ with the half-space
H* ={w : g(w) > 0}, i.e., the domain

T:=oct"VNHT

We will now describe the geometry of T' in more detail. We set d = s — 1 and
re-name the vertices of o(® to v; such that

v, e HT, ief0,....d},
Vi, €H, je{l,....d}.

Here, H~ defines the complementary half-space. Since a simplex has an edge
between any pair of vertices, there are intersection points v; ; with the plane H 0
on the edges between v; and Vi For convenience, we also denote the vertices
vi by v;o. It is then easy to verify that the vertices of 1" are the convex hull of
the points v; ;, 1 =10... c?, 7=0... CA[, which motivates us to define the transform

(5) w =W, W) = Zvi,j Bi(W)pj(W).

Here ¢; denote the linear Lagrange polynomials of the standard simplex, i.e.,
¢i(ej) = d;;. Since 0 < ¢; <1 and ), ¢; = 1 it follows that ¢ maps o@D x g
into T. The following result states that the map ¢ is also onto.

Theorem 1. If the plane H° does not contain any of the vertices of o @ then T is
combinatorially equivalent to o @ x oD and equation (5) defines a bijective map
between o' x oD and T.
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We do not give a careful proof of this result here. We only mention that the
idea is to arrange the vertices e; ; in and v;; into two rectangular arrays. The
faces of each polytope are obtained by canceling rows and columns from the array.
Thus there is a one-to-one correspondence of all faces. Further, beginning with the
lowest-dimension, we see that ¢ in (5) maps bijectively between the corresponding
faces.

Returning to the affine function g (W) we see that

Zﬂ Vi ¢z Zﬂ Vio0 d)l (1 _{El)

Here, the last step follows from the fact that 8 vanishes on the vertices on H® and
that ¢o(W) = 1 — w;. Now introduce another Duffy transform

< 1-¢ < o (d-1)
W= 9 where w € ¢ .
oo ]
Thus ¢ = 1 — w; and integral(4) becomes

1

Ik_/// / ( (v?r,vir)) o (§,¢, W, W) dwdw d(d€

0 0 () 5(d—1)

where ¢ > 0 is smooth and s is a polynomial. To handle the ratio £/ we
introduce the following two transform which map (A, u) € [0,1]? to two triangles
in the (¢, ¢) plane which add up to [0,1]2,

o[E]-[X] m 0[¢]-[3]

Since the Jacobian contributes an additional factor of A we find that Iy is the sum
of
11

1= [ [ [ ] B o) Jiw (0 5v0) v drd

0 0 (@) g(d—1)
1

1
1 1 o ~ o ~ 1o
= [ [ ] ] 2 (o om0 v (0 00) dias e

0 0 5(d) g(d—1)

These integrands are smooth and can be treated using standard quadrature rules.
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