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Abstract. Quantitative ethnographers across a range of domains study complex 
collaborative thinking (CCT): the processes by which members of a group or 
team develop shared understanding by making cognitive connections from the 
statements and actions of the group. CCT is difficult to model because the actions 
of group members are interdependent—the activity of any individual is influ-
enced by the actions of other members of the group. Moreover, the actions of 
group members engaged in some collaborative tasks may need to follow a par-
ticular order. However, current techniques can account for either interdepend-
ence or order, but not both. In this paper, we present directed epistemic network 
analysis (dENA), an extension of epistemic network analysis (ENA), as a method 
that can simultaneously account for the interdependent and ordered aspects of 
CCT. To illustrate the method, we compare a qualitative analysis of two U.S. 
Navy commanders working in a simulation to ENA and dENA analyses of their 
performance. We find that by accounting for interdependence but not order, ENA 
was not able to model differences between the commanders seen in the qualita-
tive analysis, but by accounting for both interdependence and order, dENA was 
able to do so. 

Keywords: Complex Collaborative Thinking, Directed Epistemic Network 
Analysis (dENA), Epistemic Network Analysis (ENA). 

1 Introduction 

Many quantitative ethnographers study complex collaborative thinking (CCT) 
[12][8][17], often conceptualized as the process by which members of a group develop 
shared understanding. Researchers attempting to model CCT face the challenge of ac-
counting for interdependence, or the direct influence of group activity on the actions of 
individual members. Interdependence implies that the relationship between events are 
inherently temporal—that is, individual actions are more strongly influenced by imme-
diately preceding actions than by more distant ones [21]. The concurrent interdependent 
and temporal aspects of CCT make assessing individuals difficult, as models must ac-
count for individual contributions in the context of group contributions within recent 
temporal context. Additionally, some collaborative tasks require group members to per-
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form a series of actions in a specific order to accomplish the shared goal. Current mod-
eling approaches can account for some combinations of interdependence, temporality, 
and order, but no extant techniques can account for all three simultaneously. In this 
paper, we propose a new technique, directed epistemic network analysis (dENA), an 
extension of epistemic network analysis (ENA) [18], that can construct models of CCT 
that account for interdependence, temporality, and order. We tested this novel technique 
on a well- dataset for which there are published findings on CCT, and we compared 
dENA models of CCT with ENA models. We found that by accounting for interde-
pendence but not order, ENA was not able to model differences between individuals 
seen in the qualitative analysis, but by accounting for both interdependence and order, 
dENA was able to do so. 

2 Theory 

Quantitative ethnographers study tasks involving CCT across a wide range of domains, 
from collaborative problem solving by students learning social science research meth-
ods [12] to interactions between children and robots [8]. This prior works suggests that 
CCT involves three key elements: interdependence, temporality, and order.  
In collaborative contexts, interdependence has been defined in terms of the coordi-

nation of behavior and information between group members [2]. In particular, as indi-
viduals participate in collaborative activities, they add information to the common 
ground, or the set of shared knowledge and experiences resulting from interactions with 
other members [1]. Group members then respond to information in the common ground, 
which influences subsequent actions and interpretations [4]. Thus, interdependence can 
be more generally defined as the influence of the group’s actions on those of a given 
member of the group. 
The interdependence of group processes also means that CCT has an important tem-

poral aspect: events at any given point in time are influenced by events that occurred 
previously. Suthers and Desiato [21] argue that the recent temporal context, or imme-
diately preceding events, have the greatest influence on the interpretation of subsequent 
actions and interactions. That is, actions taken by some group members affect the like-
lihood of actions taken by others in the near future [5]. For example, if one individual 
asks a question, another will likely respond in short order. 
In addition, the order in which events unfold in the recent temporal context affects 

group members’ future actions and interactions [15]. Some collaborative tasks require 
groups to follow a particular sequence of events, such as the specific order of actions 
naval navigation teams need to take to accurately track the position of their ships [6]. 
Thus, it may be important to simultaneously account for all three of these elements 

in models of CCT. However, existing approaches account for some, but not all, of these 
characteristics. For example, Sequential Pattern Mining and Lag Sequential Analysis 
account for order and temporality by using sliding windows to identify sequences of 
discourse moves occurring in the same recent temporal context [7][14]. A key limita-
tion of both methods is that while they can model the interdependence of a team as a 
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whole, neither technique models individual CCT in relation to the contributions of col-
laborators; that is, they do not account for the how one specific individual’s actions 
depend on others in a team or group. 
Epistemic network analysis (ENA), on the other hand, models temporality and inter-

dependence in collaborative activity [23] but does not explicitly represent the order of 
events in the model. That is, it can account for how he how one specific individual’s 
actions depend on recent actions of others in a team or group, but not the order in which 
events occurred within a window of time. The algorithm accumulates codes, or indica-
tors of meaningful discourse moves made by group members that occur cotemporally—
that is, within the same recent temporal context. The algorithm visualizes the relative 
co-occurrence of codes using weighted network diagrams, with each node in the net-
work corresponding to a code. The network diagram for each unit of analysis, or group 
member, is summarized using an ENA score and plotted in the same metric space. This 
enables researchers to directly compare the actions of specific individuals in the context 
of the group. 
Recent work comparing ENA to Sequential Pattern Mining found that, in at least one 

context, ENA outperformed Sequential Pattern Mining as a measure of CCT [22]. This 
suggests that accounting for order may be less important than accounting for co-tem-
porality, but there are contexts where accounting for order in CCT has been shown to 
be important, as in Hutchin’s study of naval navigation teams [6].  
Some studies have sought to use ENA to accomplish this goal. D’Angelo and col-

leagues [3] used ENA to model order by using two nodes for each code instead of one. 
One node represented instances when an individual was responding to the code; the 
other represented instances when an individual responded with the code. While D’An-
gelo et al. [3] were able to use this method to compare the operative discourse of surgi-
cal residents as they performed simulated procedures, there are drawbacks to this ap-
proach. In particular, the resulting ENA visualizations are difficult to interpret: it is hard 
to keep track of the difference between responding to and responding with the same 
code. Also, this approach doubles the number of codes, which can cause overfitting 
problems in models with fewer units of analysis.  
Others have accounted for order by including only those connections that occurred 

in a particular sequence [16]. However, this approach only works if there is a strong 
justification for defining one or more connections as meaningful only in one order; and 
doing so makes the interpretation of resulting visualizations more difficult, as the net-
work graphs do not indicate the directionality of the connections. 
In what follows, we propose an approach to account for the ordering of events within 

an ENA framework. The technique, directed ENA (dENA), tracks both what individu-
als respond with and what they respond to as they act within the context of a group. 
Rather than accomplishing this by representing each code with two nodes, dENA rep-
resents the directionality of a response using triangles between each set of codes. An 
individual’s network is then summarized with two ENA scores, drawn as a vector, to 
represent their overall responses as well as the common ground to which they re-
sponded. Thus, dENA provides a method to compare the discourse of individuals within 
a group, accounting simultaneously for interdependence, temporality, and order. 
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To test this technique, we use data on Navy air defense warfare teams that has pre-
viously been analyzed by quantitative ethnographic researchers using a variety of meth-
odologies, including ENA [22][23]. We compared ENA and dENA to address the fol-
lowing research questions: 

1. What differences does ENA show between two units of analysis that are qualita-
tively different?  
2. What differences does dENA show between two units of analysis that are qualita-
tively different? 

3 Study 1 

3.1 Methods 

Data. We analyzed discourse data collected from U.S. Navy air defense warfare teams 
engaging in training scenarios. Each team’s goal was to perform the detect-to-engage 
sequence, in which they must detect and identify nearby vessels, or tracks, and assess 
whether these tracks pose a threat to the Navy ship.  
The detect-to-engage sequence typically begins with the detection and identification 

of a track. When a track’s identity is uncertain, team members continue monitoring its 
behavior and make an assessment as to whether its behavior is threatening. Based on 
these assessments, teams decide to warn tracks of imminent attach or engage them in 
combat.  
Every team participated in the same four training scenarios, with each scenario test-

ing how the team handled a different set of tracks. Each team consisted of six partici-
pants: two commanders and four support roles. In this analysis, we focused on interac-
tions between one of the command roles, the Tactical Action Officer (TAO), and other 
members of the team.  

Coding. We analyzed the transcripts using the codes in Table 1, which were developed 
by Swiecki et al. [23] using a grounded approach informed by prior qualitative analyses 
on similar data [11] as well as existing air defense warfare literature [13]. The nCodeR 
package for the R statistical programming language was used to develop an automated 
classifier for each code in Table 1 [10]. All codes were validated at a kappa threshold 
of 0.65 and a rho threshold of 0.05. 
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Table 1. Qualitative codes, definitions and examples. 

Code Definition Example 
DETECT/IDENTIFY Talk about radar detection of a 

track or the identification of a 
track, (e.g., vessel type) 

IR/EW NEW BEARING, 
BEARING 078 APQ120 
CORRELATES TRACK 7036 
POSSIBLE F-4  

TRACK BEHAVIOR Talk about kinematic data 
about a track or a track’s loca-
tion 

AIR/IDS TRACK NUMBER 7021 
DROP IN ALTITUDE TO 18 
THOUSAND FEET  

SEEKING 

INFORMATION 
Asking questions regarding 
track behavior, identification, 
or status 

TAO CO, WE'VE UPGRADED 
THEM TO LEVEL 7 RIGHT?  

DETERRENT ORDERS Giving orders meant to warn 
or deter tracks  

TIC AIR, CONDUCT LEVEL 2 
WARNING ON 7037  

DEFENSIVE ORDERS Giving orders to prepare de-
fenses or engage hostile tracks  

TAO/CO COVER 7016 WITH 
BIRDS  

Epistemic Network Analysis. We used ENA [18] to visualize and test differences in 
the discourse of commanders in both conditions. We conducted the analysis using the 
rENA package [9] for the R programming language. 
The data were segmented by team and scenario. This segmentation defined the ENA 

conversations, or the set of utterances made by the team members over the course of 
the scenario. The ENA algorithm slid a moving window [20] of 5 lines over the con-
versations to identify co-occurrences between codes for each unit of analysis (i.e., for 
each commander). Once the co-occurrences were accumulated, they were transformed 
into high-dimensional vectors for each unit of analysis and normalized and centered. 
Next, the algorithm performed a dimensional reduction on the unit vectors via singular 
value decomposition. This process resulted in an ENA score for each unit of analysis 
on each dimension. 
Each unit’s score was visualized by projecting the resulting values from the first two 

dimensions of the dimensional reduction into a lower dimensional space. In addition to 
scores, the method produces a weighted network graph for each unit of analysis whose 
nodes represent the codes and whose edges represent the relative frequency of co-oc-
currence between those codes. Thicker and more saturated lines indicate more frequent 
co-occurrence. 
ENA uses an optimization routine to co-register each ENA score with its associated 

weighted network graph. By projecting each unit’s ENA score and weighted network 
graph into the same metric space, ENA enabled us to compare which connections were 
stronger between different units of analysis, as well as define the dimensions along 
which units of analysis differed. The algorithm positions the nodes in the metric space 
by minimizing the distance between the plotted points and the centroids of each net-
work. ENA also computes a representation to visually compare two networks in the 
same space by subtracting the connection weights of one unit’s network from the other 
network and plotting the network difference. 
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3.2 Results 

Qualitative results. Previous analyses [22] suggested that a key issue for commanders 
in these scenarios is maintaining awareness of tactical information.  
For example, the following excerpt shows part of one team’s activity (Team 1) as 

they dealt with a hostile combat helicopter (which they refer to as “TRACK 7023”). 
The excerpt begins when the TAO orders the team to issue a warning to the helicopter 
(“LEVEL 3 WARNING”) and send fighter jets to intercept it.  
 

Line Team member Utterance 
6447 TAO AIR TAO, COVER TRACK 7023 LEVEL 3 WARNING, 

SAY AGAIN, LEVEL 3 WARNINGS. 
6448 ADWC AIR, COVERING INSIDE TRACK 7023. 
6449 TAO ASK HIM TO VECTOR TO 000. 
6450 IDS WHERE IS 23? 
6451 TAO THEY BEAR 047, 12 MILES. 

 
The action unfolds as follows: 
 
6447. The TAO issues two orders. The first is a DEFENSIVE ORDER to the ADWC to 

“COVER TRACK 7023”; the second is a DETERRENT ORDER to the IDS to warn 
the track to move away from the area.  
 

6448. In response, the Air Defense Warfare Coordinator (ADWC) begins tracking 
the hostile helicopter with the onboard ship. 
 

6449. The TAO tells the Identification Supervisor (IDS) what the content of the 
warning should be: specifically, to tell the helicopter to turn to 0°, or due north, 
away from the ship. 
 

6450. The IDS responds by SEEKING INFORMATION on the position of the helicopter, 
asking “WHERE IS 23?” 
 

6451. The TAO, in turn, responds by describing the relevant part of the TRACK 
BEHAVIOR, which in this case is the helicopter’s most recent position: “THEY 
BEAR 047, 12 MILES,” meaning they are 12 miles north-east of the ship—and 
thus, turning north will lead them away.  

  
In other words, Team 1 maintained tactical awareness because when a supporting 

member of the team (the IDS) was SEEKING INFORMATION about TRACK 7023’s recent 
behavior, the TAO responded with the relevant information about the TRACK 
BEHAVIOR. 
In the next excerpt, a second team (Team 2) also maintained awareness of tactical 

information about the helicopter designated as TRACK 7023, albeit in a different way 
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than Team 1. The excerpt begins after the TAO orders the ADWC to attack the hostile 
helicopter, and a news helicopter is shot down by mistake: 
 

 
Line Team member Utterance 
4857 TAO AWC/TAO HOW DO WE KNOW THAT WE SHOT 

DOWN THE NEWS HELO? 
4858 ADWC BECAUSE COUPLE OF SECONDS AFTER I FIRED A 

SHOT IT FLEW RIGHT ACROSS OUR BOW AND 
TOOK THE HIT. 

4859 TAO AND THEN DISAPPEARED OFF THE SCREEN? 
4860 ADWC THAT'S AFFIRMATIVE YOU MIGHT WANT TO GO UP 

TO BRIDGE AND ASK. 
 
The action unfolds as follows: 
 
4857. The TAO is SEEKING INFORMATION about how the ADWC knows the team 

had hit a news helicopter: “HOW DO WE KNOW THAT WE SHOT DOWN 
THE NEWS HELO?” 
 

4858.  The ADWC responds by describing the TRACK BEHAVIOR of NEWS HELO: 
shortly after the ADWC fired on Track 7023 (“COUPLE OF SECONDS 
AFTER I FIRED A SHOT”) the news helicopter flew into the line of fire 
(“FLEW RIGHT ACROSS OUR BOW AND TOOK THE HIT”). 

 
4859. The TAO, now SEEKING INFORMATION to confirm that the news helicopter was 

actually hit, asks whether the helicopter disappeared off the screen. 
 

4860. The ADWC responds that the helicopter did disappear (TRACK BEHAVIOR).  
 
In other words, unlike the TAO on Team 1, who responded to SEEKING INFORMATION 
by providing TRACK BEHAVIOR, the TAO from Team 2 was SEEKING INFORMATION 
from others in order to discover more about the TRACK BEHAVIOR that led to the down-
ing of a non-combatant.  
 
Epistemic Network Analysis. In the ENA model shown in Figure 1, the top of the 
space contains connections to SEEKING INFORMATION. The bottom of the space contains 
DETECT/IDENTIFY and TRACK BEHAVIOR, codes most associated with generating infor-
mation about the tracks. This suggests that the commanders’ discourse was most dis-
tinguished on the vertical dimension in terms of Providing Information and Seeking 
Information.  
The ENA scores for both Team 1’s TAO (Figure 1, left) and Team 2’s TAO (Figure 

1, right) are positioned toward to the top of the space. This means their discourse fo-
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cused on connections to Seeking Information. For both TAO’s, the strongest connec-
tions were between SEEKING INFORMATION and DETECT/IDENTIFY as well as SEEKING 
INFORMATION and TRACK BEHAVIOR.  

 
Fig. 1. ENA plots for the TAOs from Team 1 (blue) and Team 2 (red). 

Comparing the networks of the two TAOs using a network difference graph shows 
that the TAOs’ networks are very similar (see Figure 2). The ENA scores for both TAOs 
overlap, meaning there is little difference in the summary of these networks’ connec-
tions. Additionally, the strong connections in the individual plots between SEEKING 
INFORMATION and DETECT/IDENTIFY as well as SEEKING INFORMATION and TRACK 
BEHAVIOR are thin and desaturated, suggesting that there is little difference in the 
weight or strength of those connections between the networks.  The network difference 
graph thus suggests little difference in the discourse of the two teams’ TAOs. 
 

 
Fig. 2. Network difference graph for the TAOs from Team 1 (blue) and Team 2 (red). 
 
These results suggest that both commanders were involved in exchanges in which 

DETECT/IDENTIFY and TRACK BEHAVIOR information was missed or incomplete and had 
to be clarified. These findings are consistent with those of Swiecki et al. [22], who 
found that teams often had to ask explicitly for Tactical Information to be repeated.  
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3.3 Discussion 

The qualitative results show that both TAOs were involved in situations in which con-
nections were made between SEEKING INFORMATION and TRACK BEHAVIOR. However, 
the TAO in Team 1 responded to SEEKING INFORMATION with TRACK BEHAVIOR while 
the TAO in Team 2 was SEEKING INFORMATION in order to understand TRACK 
BEHAVIOR. That is, the Team 1 TAO was providing information about TRACK 
BEHAVIOR after another team member was SEEKING INFORMATION. The Team 2 TAO 
did the opposite: they were responding when another team member described TRACK 
BEHAVIOR by SEEKING INFORMATION (that is, additional information) about the tactical 
situation.  
In other words, although the ENA plots show that both TAO’s made connections 

between SEEKING INFORMATION and TRACK BEHAVIOR: 
1. What the two TAOs were doing was actually quite different;  
2. These differences can be seen in the order in which the codes occur in the dis-
course; and  

3. These differences are not apparent because the unordered ENA model treats as 
identical: (a) the TAO providing information to other team members who are ask-
ing about the tactical situation, and (b) the TAO seeking additional information 
from other team members to clarify the tactical situation. 

4 Study 2 

4.1 Methods 

Directed Epistemic Network Analysis. We conducted the second study using the 
same data and coding scheme as the first. For this study, we developed and imple-
mented directed epistemic network analysis (dENA), an extension of ENA that ac-
counts for the order in which a connection between two codes occurred.  
The ENA algorithm uses a moving window to identify connections formed from a 

current line of data (e.g., turn of talk), or response, to the preceding lines within the 
window, or common ground. These connections counts are then accumulated into a 
symmetric adjacency matrix for each unit of analysis: the number of connections from 
any code A to code B are the same as the number of connections from B to A. 
Rather than produce a symmetric adjacency matrix for each, unit of analysis, dENA 

accounts for the order in which the connection occur by constructing an asymmetric 
adjacency matrix for each unit of analysis: the number of connections from any code A 
to code B may be different than the number of connections from B to A. Figure 3 high-
lights how this matrix is created using coded data from the first qualitative example in 
Study 1. With a moving window of 5 lines, dENA collapses code occurrences from the 
common ground (lines 2-5) and response (line 6) using a binary summation. The bina-
rized summation of the ground and response code occurrences are then represented as 
vectors and multiplied to construct an asymmetric adjacency matrix.  
The asymmetric adjacency matrices are then transformed to create two high-dimen-

sional vectors for each unit of analysis, the ground vector and the response vector. The 
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ground vector represents the connections formed from the codes in the common ground 
to the codes in the unit’s responses. The response vector represents the connections 
formed from the unit’s contributions back to the contributions in the common ground. 
Put another way, the ground vector summarizes what a given unit responds to, while 
the response vector summarizes what a given unit responds with. 
 
 
Line 

Seeking 
Information 

Detect/ 
Identify 

Track 
Behavior 

Deterrent 
Orders 

Defensive 
Orders 

1 0 1 0 0 0 
2 0 0 0 1 1 
3 0 0 0 0 0 
4 0 0 0 0 0 
5 1 0 0 0 0 
6 0 0 1 0 0 
      
Ground  
Summation 1 0 0 1 1 

Response 
Summation 0 0 1 0 0 

Fig. 3. The top section shows a moving window (indicated by the red dashed line) on coded 
data. Line 6 represents the current turn of talk, or the response line. The portion of the window 
shaded gray represents the recent temporal context, or the ground lines.  
The bottom section shows the ground and response summation vectors for the indicated win-
dow. 

The ground and response vectors for all units are normalized and centered and the 
algorithm performs a dimensional reduction via a singular value decomposition of the 
matrix of either the ground or response vectors. This process, which involves the same 
mathematics used in ENA, results in a pair of dENA scores for each unit of analysis in 
the lower dimensional space: a ground score and a response score. 
The scores are visualized by plotting them in the lower dimensional space resulting 

from the dimensional reduction (see arrow in Figure 4). For each unit, its scores are 
represented by a vector with its head at the response score and tail at the ground score. 
Subpopulations within the data are summarized by independently calculating the mean 
response and ground scores. The scores are then connected by a vector from ground 
mean to response mean. 
To help interpret these vectors, the algorithm co-registers directed and weighted net-

work graphs in the same low dimensional space. For each unit, its graph shows the 
strength and directionality of the connections it made. 
The nodes of the network correspond to the codes, and node size is proportional to 

the number of occurrences of that code as a response in the data, with larger nodes 
indicating more responses. The color and saturation of the circle within each node is 
proportional to the number of self-connections for that code: that is, when a code ap-
pears in both the response and ground of a given window. Colored circles that are larger 
and more saturated reflect codes with more frequent self-connections. For example, 
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Figure 4 suggests that roughly a quarter of responses made with code A were responding 
to code A. 
 

 
Fig. 4. Sample unit’s dENA network. The overall size of the nodes represents the relative re-
sponse strength with each code. The red dot in the middle of CODE A represents self-connec-
tions. The triangles represent directed connections: more saturated and opaque connections 
mean stronger connections. The network is summarized by two scores, connected as a vector. 
The tail of the vector is a ground score summarizing the ground connections and the head is the 
response score representing the response connections.  

The relative frequency of connections between any two codes are represented by two 
triangles. The connections between code A and code C, for example, are represented by 
one triangle with its base at code A pointing towards code C and the other with its base 
at code C pointing towards code A. Thicker and more saturated triangles indicate more 
frequent connections. Each triangle represents an ordered connection between two 
codes. The base of the triangle represents the common ground that a code was respond-
ing to and the opposite vertex of the triangle represents the response. Thus, in a given 
unit’s network, the triangle with a base at code C and vertex directed towards code A 
would be interpreted as that unit’s relative response to code C with code A.  
The location of the tapered point where two triangles meet indicates the relative pro-

portion of responses of one code to the other. For example, if the two triangles meet 
closer to code A’s node, connections of A in response to C were more frequent than the 
reverse. 
Network nodes in dENA are positioned in the space using the same optimization 

routine used in ENA, except that in dENA, the algorithm minimizes the distance be-
tween the means of the ground and response scores and the centroids of the correspond-
ing networks. As a result, the dENA metric space can be interpreted based on the loca-
tion of the nodes. Units with vectors on the right side of the space have more frequent 
connections between the codes on the right side of the space. Similarly, units with vec-
tors on the left have more frequent connections between the codes on the left side of 
the space. The vector that represents a unit of analysis shows the directionality of the 
network: which nodes the unit is responding to (ground score, or tail of the vector) and 
what responses are made (response score, or head of the vector). Like the unit vectors, 
the network graphs can be averaged for subpopulations within the data to view their 
overall patterns of directed connections. We visually compared the dENA network 
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graphs of two units of analysis in the same space by subtracting the connection weights 
of one unit’s network from the other and plotting the network difference. 

4.2 Results 

Qualitative results. Recall that the qualitative results from Study 1 show that the TAO 
on Team 1 responded to SEEKING INFORMATION with TRACK BEHAVIOR to help the team 
maintain tactical awareness of the situation. In contrast, the TAO on Team 2 responded 
to TRACK BEHAVIOR by SEEKING INFORMATION to understand the tactical situation.  

Directed Epistemic Network Analysis. We examined the directed epistemic networks 
of the TAOs from Team 1 and Team 2. The left side of the space contains 
DETECT/IDENTIFY and TRACK BEHAVIOR, codes associated Providing Information. The 
right side of the space contains connections to SEEKING INFORMATION.  This means the 
TAOs’ discourse was most distinguished in terms of Providing Information and Seek-
ing Information (Figure 7). 

  

 

Fig. 7. dENA plots for the TAOs from Team 1 (blue) and Team 2 (red). 

The strongest directed connections in each TAO’s network were between SEEKING 
INFORMATION and TRACK BEHAVIOR and SEEKING INFORMATION and DETECT/IDENTIFY: 
the triangles with the widest base, darkest saturation, and heaviest opacity are based at 
TRACK BEHAVIOR and DETECT/IDENTIFY and point towards SEEKING INFORMATION. This 
means that relative to other directed connections, each TAO responded more to TRACK 
BEHAVIOR and DETECT/IDENTIFY with SEEKING INFORMATION.  
Each TAO’s vector summarizes the information in their respective networks. Over-

all, both TAOs were responding to Providing Information with Seeking Information. 
The ground scores, or tails of the summary vectors, are positioned closer to the side 
associated with Providing Information. The response scores, or heads of the summary 
vectors, are closer to the side associated with Seeking Information.  
The network subtraction shows that the greatest difference in their networks was the 

connection between SEEKING INFORMATION and TRACK BEHAVIOR (Figure 8). The TAO 
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on Team 1 (blue) responded strongly to SEEKING INFORMATION with TRACK BEHAVIOR 
relative to the TAO on Team 2. In contrast, the TAO on Team 2 responded strongly 
with SEEKING INFORMATION to TRACK BEHAVIOR compared to the other TAO.   
The two triangles meet at a point approximately midway between SEEKING 

INFORMATION and TRACK BEHAVIOR. This means that the TAO on Team 1 responded 
to SEEKING INFORMATION with TRACK BEHAVIOR with approximately the same relative 
frequency as the TAO on Team 2 (red) responded to TRACK BEHAVIOR with SEEKING 
INFORMATION.  
Taken together, this suggests that the key difference in how the two TAOs made 

connections between TRACK BEHAVIOR and SEEKING INFORMATION was the order of the 
connections rather than their relative frequency. 

 

Fig. 8. dENA network difference plot for the TAOs from Team 1 (blue) and Team 2 (red). 

4.3 Discussion 

The dENA results show that both TAOs were involved in situations where tactical in-
formation was missed and needed to be clarified. Each TAO’s dENA plots shows strong 
responses between TRACK BEHAVIOR and DETECT/IDENTIFY, on one hand, and SEEKING 
INFORMATION on the other. Comparing the differences between the TAOs shows that 
the Team 1 TAO responded to SEEKING INFORMATION with TRACK BEHAVIOR while the 
TAO on Team 2 was SEEKING INFORMATION in response to TRACK BEHAVIOR. These 
results align with the qualitative results of Study 1—the Team 1 TAO was providing 
tactical information to other team members while the TAO on Team 2 was SEEKING 
INFORMATION about TRACK BEHAVIOR to better understand the tactical situation. 

5 General Discussion 

In this paper, we compared the results of a qualitative analysis with those of two quan-
titative analyses leveraging ENA. Using data on U.S. Navy air defense warfare teams, 
we focused on the discourse of two tactical officers (TAOs) on two different teams that 
participated in the same training simulations. Our qualitative analysis showed that both 
teams were involved in situations where information was reiterated to maintain aware-
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ness of the tactical situation. However, the TAO on Team 1 provided tactical infor-
mation to team members about hostile track behavior, while the TAO on Team 2 re-
quested information from team members to gain a better understanding of the situation. 
This suggests a need to consider the order in which the two TAOs made connections 
between SEEKING INFORMATION and TACTICAL INFORMATION to evaluate their perfor-
mance and give relevant feedback. 
The ENA model (Study 1) showed that both TAOs were involved in situations re-

quests were made for tactical information. However, the model showed little difference 
between the two TAOs. In contrast, the dENA model (Study 2) was aligned with the 
qualitative findings: relative to the TAO on team 2, the TAO on Team 1 responded 
more often to SEEKING INFORMATION by describing TRACK BEHAVIOR; relative to the 
TAO on Team 1, the TAO on Team 2 responded more often to TRACK BEHAVIOR by 
SEEKING INFORMATION. 
These results demonstrate dENA’s ability to model the interdependent, temporal, 

and ordered aspects of Complex Collaborative Thinking (CCT). Like ENA, dENA uses 
a moving window to account for the ways group members respond to events in the 
recent temporal context [20], and accounts for interdependence by measuring connec-
tions within that window to model individuals’ responses to information in the common 
ground [1]. But unlike ENA, dENA preserves the order of events, enabling the algo-
rithm to model the influence of information from the common ground on individuals’ 
responses [4].  
This approach builds on, but also extends, the visual affordances of ENA. ENA rep-

resents networks in two ways: (1) as network graphs, where the strength of connections 
between nodes is represented by line thickness and saturation; and (2) as a set of points 
in a metric space that allows networks to be compared statistically in terms of their 
content. Crucially, ENA co-registers a statistical model of networks with their individ-
ual network graphs such that the dimensions of the statistical model can be interpreted 
using the positions of nodes in the network. dENA retains these key properties but 
adapts them to account for the order in which the events that generate the networks 
occur. First, the network graphs in dENA account for directionality between nodes by 
representing each pairwise connection with a pair of triangles, such that the thickness 
and saturation of the triangles represents the total strength of the pairwise connection, 
and the relative heights of the triangles represent the proportion of connections going 
in each direction. The number of times each node is part of a response is modeled by 
the size of the node, and self-references are represented as a proportion of the node size. 
Second, each network is represented a vector in the metric space pointing from the 
position of its accumulated ground to the position of its accumulated response. dENA 
co-registers the network graphs with the vector corresponding to each network such 
that the dimensions of the metric space can be interpreted in terms of the flow of infor-
mation in the networks.  
This study has several limitations. The analysis was conducted using a single dataset. 

However, the data we used—and the analysis we provided—was only meant to provide 
an example of how dENA can model interdependent, temporal, and ordered elements 
common in a CCT context. Future work will, of course, explore using this approach to 
model other domains of CCT. Second, we have yet to develop a method for testing 
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whether differences between network vectors are significant. We intend to incorporate 
significance testing in future work. Additionally, the current implementation of dENA 
does not yet account for sequences of more than two events. Our future work will ex-
plore extensions of dENA to account for and represent longer sequences. 
These limitations notwithstanding, this work shows dENA is a method that can an-

alyze the CCT of individuals in the context of a group, representing ordered connections 
in a way that visually captures qualitative differences that unordered models cannot. 
Unlike other approaches, dENA is thus able to present an interpretable visualization 
capable of simultaneously accounting for interdependence, temporality, and order. 
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